CN115133890B - Bridge load class D power amplifier, audio amplifier circuit and related control method - Google Patents
Bridge load class D power amplifier, audio amplifier circuit and related control method Download PDFInfo
- Publication number
- CN115133890B CN115133890B CN202110424940.3A CN202110424940A CN115133890B CN 115133890 B CN115133890 B CN 115133890B CN 202110424940 A CN202110424940 A CN 202110424940A CN 115133890 B CN115133890 B CN 115133890B
- Authority
- CN
- China
- Prior art keywords
- path
- pwm
- circuit
- output
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000010363 phase shift Effects 0.000 claims description 103
- 239000003990 capacitor Substances 0.000 claims description 42
- 230000004044 response Effects 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 24
- 230000001052 transient effect Effects 0.000 description 18
- 230000003111 delayed effect Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 5
- 230000005236 sound signal Effects 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101150056836 Sctr gene Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
本发明为一种桥式负载D类功率放大器、音频放大电路与其相关的控制方法。音频放大电路对第一路径误差信号与第二路径误差信号进行积分与调制而分别产生第一路径比较器输出与第二路径比较器输出。音频放大电路根据第一模拟差分输入与第一路径反馈信号而产生第一路径误差信号。音频放大电路根据第二模拟差分输入与第二路径反馈信号而产生第二路径误差信号。音频放大电路分别根据第一路径比较器输出与第二路径比较器输出而产生第一路径反馈信号与第二路径反馈信号。此外,音频放大电路选择性调整第一路径比较器输出与第二路径比较器输出的其中一者的相位。
The present invention is a bridge load class D power amplifier, an audio amplifier circuit and a control method related thereto. The audio amplifier circuit integrates and modulates a first path error signal and a second path error signal to generate a first path comparator output and a second path comparator output respectively. The audio amplifier circuit generates a first path error signal according to a first analog differential input and a first path feedback signal. The audio amplifier circuit generates a second path error signal according to a second analog differential input and a second path feedback signal. The audio amplifier circuit generates a first path feedback signal and a second path feedback signal according to the first path comparator output and the second path comparator output respectively. In addition, the audio amplifier circuit selectively adjusts the phase of one of the first path comparator output and the second path comparator output.
Description
技术领域Technical Field
本发明是有关于一种桥式负载D类功率放大器、音频放大电路与其相关的控制方法,且特别是有关于一种可抑制开机爆音与关机爆音的桥式负载D类功率放大器、音频放大电路与其相关的控制方法。The present invention relates to a bridge-loaded Class D power amplifier, an audio amplifier circuit and a control method thereof, and in particular to a bridge-loaded Class D power amplifier, an audio amplifier circuit and a control method thereof that can suppress popping sounds during startup and shutdown.
背景技术Background Art
具音频播放功能的移动装置逐渐普及。D类放大器因具有高效率、省电及体积小等特点,经常用于具音频播放功能的移动装置。D类放大器将输入音频信号放大后,转换为具有较大功率的脉冲宽度调制(pulse-width modulation,简称为PWM)信号。接着,扬声器将脉冲宽度调制信号的电流频率转换为声音后播放。随着技术的发展,使用者对于扬声器音质的要求也越来越高。Mobile devices with audio playback functions are becoming more and more popular. Class D amplifiers are often used in mobile devices with audio playback functions because of their high efficiency, power saving and small size. Class D amplifiers amplify the input audio signal and convert it into a pulse-width modulation (PWM) signal with higher power. Then, the speaker converts the current frequency of the pulse-width modulation signal into sound and plays it. With the development of technology, users have higher and higher requirements for the sound quality of speakers.
发明内容Summary of the invention
本发明有关于一种桥式负载D类功率放大器、音频放大电路与其相关的控制方法。借由相位移位电路的设置,桥式负载D类功率放大器、音频放大电路可动态地将因正相路径PWM输出(PWM+)、负相路径PWM输出(PWM-)的相位不一致所衍生的开机与关机爆音的现象加以抑制。The present invention relates to a bridge load class D power amplifier, an audio amplifier circuit and a control method thereof. By setting a phase shift circuit, the bridge load class D power amplifier and the audio amplifier circuit can dynamically suppress the phenomenon of popping sound when starting and shutting down caused by the phase inconsistency between the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-).
根据本发明的第一方面,提出一种音频放大电路。音频放大电路包含:调制信号产生电路、第一音频输出电路,以及第二音频输出电路。调制信号产生电路电连接于第一音频输出电路与第二音频输出电路。调制信号产生电路对第一路径误差信号进行积分与调制后产生第一路径比较器输出,以及对第二路径误差信号进行积分与调制后产生第二路径比较器输出。第一音频输出电路包含:第一路径加法器、第一相位移位电路,以及至少一第一路径回路。第一路径加法器电连接于调制信号产生电路。第一路径加法器自第一模拟差分输入减去第一路径反馈信号后产生第一路径误差信号。第一相位移位电路选择性调整第一路径比较器输出的相位。至少一第一路径回路电连接于调制信号产生电路、第一路径加法器与第一相位移位电路。至少一第一路径回路根据第一路径比较器输出而产生第一路径反馈信号。第二音频输出电路包含:第二路径加法器、第二相位移位电路,以及至少一第二路径回路。第二路径加法器电连接于调制信号产生电路。第二路径加法器自第二模拟差分输入减去第二路径反馈信号后产生第二路径误差信号。第二相位移位电路选择性调整第二路径比较器输出的相位。至少一第二路径回路电连接于调制信号产生电路、第二路径加法器与第二相位移位电路。至少一第二路径回路根据第二路径比较器输出而产生第二路径反馈信号。According to a first aspect of the present invention, an audio amplifier circuit is provided. The audio amplifier circuit comprises: a modulation signal generating circuit, a first audio output circuit, and a second audio output circuit. The modulation signal generating circuit is electrically connected to the first audio output circuit and the second audio output circuit. The modulation signal generating circuit integrates and modulates the first path error signal to generate a first path comparator output, and integrates and modulates the second path error signal to generate a second path comparator output. The first audio output circuit comprises: a first path adder, a first phase shift circuit, and at least one first path loop. The first path adder is electrically connected to the modulation signal generating circuit. The first path adder generates a first path error signal after subtracting a first path feedback signal from a first analog differential input. The first phase shift circuit selectively adjusts the phase of the first path comparator output. At least one first path loop is electrically connected to the modulation signal generating circuit, the first path adder, and the first phase shift circuit. At least one first path loop generates a first path feedback signal according to the first path comparator output. The second audio output circuit comprises: a second path adder, a second phase shift circuit, and at least one second path loop. The second path adder is electrically connected to the modulation signal generating circuit. The second path adder generates a second path error signal after subtracting the second path feedback signal from the second analog differential input. The second phase shift circuit selectively adjusts the phase of the second path comparator output. At least one second path loop is electrically connected to the modulation signal generating circuit, the second path adder and the second phase shift circuit. At least one second path loop generates a second path feedback signal according to the second path comparator output.
根据本发明的第二方面,提出一种与应用于音频放大电路的控制方法。控制方法包含以下步骤。首先,音频放大电路对第一路径误差信号与第二路径误差信号进行积分与调制而分别产生第一路径比较器输出与第二路径比较器输出。其次,音频放大电路根据第一模拟差分输入与第一路径反馈信号而产生第一路径误差信号。接着,音频放大电路根据第二模拟差分输入与第二路径反馈信号而产生第二路径误差信号。其后,音频放大电路分别根据第一路径比较器输出与第二路径比较器输出而产生第一路径反馈信号与第二路径反馈信号。此外,音频放大电路选择性调整第一路径比较器输出与第二路径比较器输出的其中一者的相位。According to a second aspect of the present invention, a control method for an audio amplifier circuit is proposed. The control method comprises the following steps. First, the audio amplifier circuit integrates and modulates the first path error signal and the second path error signal to generate a first path comparator output and a second path comparator output, respectively. Secondly, the audio amplifier circuit generates a first path error signal according to the first analog differential input and the first path feedback signal. Next, the audio amplifier circuit generates a second path error signal according to the second analog differential input and the second path feedback signal. Thereafter, the audio amplifier circuit generates a first path feedback signal and a second path feedback signal according to the first path comparator output and the second path comparator output, respectively. In addition, the audio amplifier circuit selectively adjusts the phase of one of the first path comparator output and the second path comparator output.
根据本发明的第三方面,提出一种驱动扬声器的桥式负载D类功率放大器。桥式负载D类功率放大器包含:第一半桥;第二半桥与第一相位移位电路。第一半桥因应一第一脉冲宽度调制信号且第二半桥因应第二脉冲宽度调制信号而共同驱动扬声器。第一相位移位电路用以移动第一脉冲宽度调制信号的相位。其中,第一脉冲宽度调制信号与第二脉冲宽度调制信号之间形成的相位误差与扬声器的噪声相关。According to a third aspect of the present invention, a bridge-loaded class D power amplifier for driving a speaker is provided. The bridge-loaded class D power amplifier comprises: a first half-bridge; a second half-bridge and a first phase shift circuit. The first half-bridge drives the speaker in response to a first pulse width modulation signal and the second half-bridge drives the speaker in response to a second pulse width modulation signal. The first phase shift circuit is used to shift the phase of the first pulse width modulation signal. The phase error formed between the first pulse width modulation signal and the second pulse width modulation signal is related to the noise of the speaker.
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。The present invention is described in detail below with reference to the accompanying drawings and specific embodiments, but is not intended to limit the present invention.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1,其为音频播放装置的示意图。FIG. 1 is a schematic diagram of an audio playback device.
图2,其为扬声器于开关机期间,因正相路径PWM输出(PWM+)的相位略为领先负相路径PWM输出(PWM-)的相位而衍生爆音现象的波形图。FIG. 2 is a waveform diagram showing the popping sound phenomenon caused by the positive path PWM output (PWM+) slightly leading the negative path PWM output (PWM-) during the power on and off period of the speaker.
图3A,其为在切换期间,正相路径PWM输出(PWM+)的相位领先负相路径PWM输出(PWM-)的相位的示意图。FIG. 3A is a schematic diagram showing that during a switching period, the phase of a positive path PWM output (PWM+) leads the phase of a negative path PWM output (PWM-).
图3B,其为经调整后,使正相路径PWM输出(PWM+)的相位与负相路径PWM输出(PWM-)的相位在切换期间对齐并降低噪声的示意图。FIG. 3B is a schematic diagram showing that after adjustment, the phase of the positive phase path PWM output (PWM+) is aligned with the phase of the negative phase path PWM output (PWM-) during switching and the noise is reduced.
图4,其为根据本发明构想实施例的音频输出模块的方块图。FIG. 4 is a block diagram of an audio output module according to an embodiment of the present invention.
图5A,其为正相路径PWM输出(PWM+)的相位略为领先负相路径PWM输出(PWM-)的相位时,利用本发明构想实施例的音频放大电路抑制扬声器于开关机期间所形成的爆音现象的波形图。FIG5A is a waveform diagram showing the audio amplifier circuit of an embodiment of the present invention used to suppress the popping sound phenomenon generated by the speaker during the power on and off period when the phase of the positive phase path PWM output (PWM+) is slightly ahead of the phase of the negative phase path PWM output (PWM-).
图5B,其为正相路径PWM输出(PWM+)的相位略为落后负相路径PWM输出(PWM-)的相位时,利用本发明构想实施例的音频放大电路抑制扬声器于开关机期间所形成的爆音现象的波形图。FIG5B is a waveform diagram showing the audio amplifier circuit of an embodiment of the present invention used to suppress the popping sound phenomenon generated by the speaker during the power on and off period when the phase of the positive phase path PWM output (PWM+) lags slightly behind the phase of the negative phase path PWM output (PWM-).
图6A,其为相位移位电路为可变电容的示意图。FIG. 6A is a schematic diagram showing a phase shift circuit that is a variable capacitor.
图6B,其为相位移位电路包含多个并联的电容路径的示意图。FIG. 6B is a schematic diagram showing a phase shift circuit including a plurality of parallel capacitor paths.
图7,其为根据本发明构想的音频放大电路的示意图。FIG. 7 is a schematic diagram of an audio amplifier circuit according to the present invention.
图8A,其为根据本发明构想实施例的音频放大电路,于主反馈路径断开且从反馈路径导通的电路图。FIG. 8A is a circuit diagram of an audio amplifier circuit according to an embodiment of the present invention, in which the main feedback path is disconnected and the slave feedback path is turned on.
图8B,其为根据本发明构想实施例的音频放大电路,于主反馈路径导通且从反馈路径断开的电路图。FIG. 8B is a circuit diagram of an audio amplifier circuit according to an embodiment of the present invention, in which the main feedback path is turned on and the feedback path is turned off.
图9A、图9B,其为根据本发明构想的音频放大电路,因应音频输出模块的状态而动态选择反馈路径的流程图。9A and 9B are flow charts showing the audio amplifier circuit according to the present invention, which dynamically selects a feedback path in response to the state of the audio output module.
其中,附图标记:Wherein, the reference numerals are:
1:音频播放模块1: Audio playback module
12:音频控制电路12: Audio control circuit
14:数字-模拟转换器14: Digital-to-Analog Converter
Sd:数字音频信号Sd: digital audio signal
Sctl:控制信号Sctl: control signal
Va+:正相模拟差分输入Va+: Positive phase analog differential input
Va-:负相模拟差分输入Va-: Negative phase analog differential input
13:音频放大电路13: Audio amplifier circuit
L-,L+:电感L-, L+: Inductance
PWM+:正相路径PWM输出PWM+: positive phase path PWM output
PWM-:负相路径PWM输出PWM-: Negative phase path PWM output
(PWM+)-(PWM-):PWM输出压差(PWM+)-(PWM-):PWM output voltage difference
15:扬声器15: Speaker
Ncmp+:正相路径比较器输出端点Ncmp+: Positive path comparator output endpoint
Ncmp-:负相路径比较器输出端点Ncmp-: Negative phase path comparator output endpoint
t1,t2:时点t1,t2: time point
Δt1,Δt2:相位误差Δt1, Δt2: Phase error
Ton_tr:开机暂态期间Ton_tr: startup transient period
Top:一般播放期间Top: General playback period
Toff_tr:关机暂态期间Toff_tr: Shutdown transient period
Pd1,Pd2:PWM输出压差(PWM+)-(PWM-)的大小Pd1, Pd2: PWM output voltage difference (PWM+) - (PWM-)
131:调制信号产生电路131: Modulation signal generating circuit
133:负相音频输出电路133: Negative phase audio output circuit
133a:负相路径加法器133a: Negative Phase Path Adder
133b:负相相位移位电路133b: Negative phase shift circuit
133c:负相路径主回路133c: Negative phase path main circuit
133d:负相路径从回路133d: Negative phase path from loop
135:正相音频输出电路135: Positive phase audio output circuit
135a:正相路径加法器135a: Positive Phase Path Adder
135b:正相相位移位电路135b: Positive phase shift circuit
135c:正相路径主回路135c: Positive phase path main circuit
135d:正相路径从回路135d: Positive phase path from loop
21:相位移位电路21: Phase shift circuit
Cv:可变电容Cv: variable capacitor
Gnd:接地电压Gnd: Ground voltage
C1,C2,C3,C4,C5:电容C1, C2, C3, C4, C5: capacitors
sw1,sw2,sw3,sw4,sw5,SWm+,SWm-,SWa1+,SWa2+,SWa1-,SWa2-:开关sw1,sw2,sw3,sw4,sw5,SWm+,SWm-,SWa1+,SWa2+,SWa1-,SWa2-: switch
Sf+:正相路径反馈信号Sf+: positive phase path feedback signal
Sf-:负相路径反馈信号Sf-: Negative phase path feedback signal
Serr+:正相路径误差信号Serr+: positive phase path error signal
Serr-:负相路径误差信号Serr-: Negative phase path error signal
Sfm+:正相路径主反馈信号Sfm+: positive phase path main feedback signal
Sfm-:负相路径主反馈信号Sfm-: Negative phase path main feedback signal
Sfa+:正相路径从反馈信号Sfa+: positive phase path from the feedback signal
Sfa-:负相路径从反馈信号Sfa-: Negative phase path from the feedback signal
Rm+:正相路径主反馈电阻Rm+: Main feedback resistor of the positive phase path
Rm-:负相路径主反馈电阻Rm-: Negative phase path main feedback resistor
Ra+:正相路径从反馈电阻Ra+: Positive phase path from feedback resistor
Ra-:负相路径从反馈电阻Ra-: Negative phase path from feedback resistor
INVm+:正相路径主驱动器INVm+: Normal phase path main driver
INVm-:负相路径主驱动器INVm-: Negative phase path main driver
INVa+:正相路径从驱动器INVa+: Normal phase path from driver
INVa-:负相路径从驱动器INVa-: Negative phase path from the driver
1311:积分器1311: Integrator
1313:比较电路1313: Comparison circuit
1313a:载波产生电路1313a: Carrier generating circuit
AMP:全差分放大器AMP: Fully Differential Amplifier
OP+:正相路径比较器OP+: Positive Phase Path Comparator
OP-:负相路径比较器OP-: Negative Phase Path Comparator
S201,S203,S207,S207,S209,S211,S213,S215,S209a,S209b,S209c,S209d:步骤S201, S203, S207, S207, S209, S211, S213, S215, S209a, S209b, S209c, S209d: Steps
具体实施方式DETAILED DESCRIPTION
下面结合附图对本发明的结构原理和工作原理作具体的描述:The structural principle and working principle of the present invention are described in detail below in conjunction with the accompanying drawings:
请参见图1,其为音频播放装置的示意图。音频播放装置包含音频播放模块1与音频输出模块10。Please refer to FIG1 , which is a schematic diagram of an audio playback device. The audio playback device includes an audio playback module 1 and an audio output module 10 .
音频播放模块1包含彼此电连接的音频控制电路12与数字-模拟转换器(digital-to-analog converter)14。音频控制电路12可动态地因应音频输出模块10所处的状态,发出不同类型与用途的控制信号Sctl至音频放大电路13。数字-模拟转换器14接收由音频控制电路12传送的数字音频信号Sd后,将数字音频信号Sd转换为正相模拟差分输入(positive-phase analog differential input)Va+与负相模拟差分输入(negative-phase analog differential input)Va-。The audio playback module 1 includes an audio control circuit 12 and a digital-to-analog converter 14 which are electrically connected to each other. The audio control circuit 12 can dynamically respond to the state of the audio output module 10 and send control signals Sctl of different types and purposes to the audio amplifier circuit 13. After receiving the digital audio signal Sd transmitted by the audio control circuit 12, the digital-to-analog converter 14 converts the digital audio signal Sd into a positive-phase analog differential input Va+ and a negative-phase analog differential input Va-.
音频输出模块10包含音频放大电路13、电感L+、L-与扬声器15。其中,电感L+、L-均电连接于音频放大电路13与扬声器15之间。音频放大电路13同时电连接于音频控制电路12与数字-模拟转换器14。音频放大电路13先分别对正相模拟差分输入Va+与负相模拟差分输入Va-放大并转换为正相路径脉冲宽度调制信号(简称为,正相路径PWM(pulse-widthmodulation)输出PWM+))与负相路径脉冲宽度调制信号(简称为,负相路径PWM输出(PWM-))至电感L+、L-。再由扬声器15播放音频。使用者经由扬声器15听到的音效,至少是由正相路径PWM输出(PWM+)及负相路径PWM输出(PWM-)之间的PWM输出压差(PWM+)-(PWM-)来决定。The audio output module 10 includes an audio amplifier circuit 13, an inductor L+, L- and a speaker 15. The inductors L+, L- are electrically connected between the audio amplifier circuit 13 and the speaker 15. The audio amplifier circuit 13 is also electrically connected to the audio control circuit 12 and the digital-to-analog converter 14. The audio amplifier circuit 13 first amplifies the positive phase analog differential input Va+ and the negative phase analog differential input Va- and converts them into a positive phase path pulse width modulation signal (abbreviated as positive phase path PWM (pulse-width modulation) output PWM+) and a negative phase path pulse width modulation signal (abbreviated as negative phase path PWM output (PWM-)) to the inductors L+, L-. The audio is then played by the speaker 15. The sound effect heard by the user through the speaker 15 is at least determined by the PWM output voltage difference (PWM+)-(PWM-) between the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-).
当音频输出模块10开机后并处于一般操作模式时,音频播放模块1将正相模拟差分输入Va+及负相模拟差分输入Va-传送至音频放大电路13。音频放大电路13据以产生正相路径PWM输出(PWM+)及负相路径PWM输出(PWM-)。一般来说,用于传递相关于正相路径PWM输出(PWM+)的路径与用于传递相关于负相路径PWM输出(PWM-)的路径之间至少存在阻抗不匹配的问题,其将导致输出正相路径PWM输出(PWM+)不同步于负相路径PWM输出(PWM-)。根据阻抗不匹配的状况,正相路径PWM输出(PWM+)可能领先或落后负相路径PWM输出(PWM-)。为便于说明,在图2中,假设正相路径PWM输出(PWM+)领先负相路径PWM输出(PWM-)。When the audio output module 10 is powered on and in the normal operation mode, the audio playback module 1 transmits the positive phase analog differential input Va+ and the negative phase analog differential input Va- to the audio amplifier circuit 13. The audio amplifier circuit 13 generates the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-) accordingly. Generally speaking, there is at least an impedance mismatch problem between the path used to transmit the positive phase path PWM output (PWM+) and the path used to transmit the negative phase path PWM output (PWM-), which will cause the output positive phase path PWM output (PWM+) to be asynchronous with the negative phase path PWM output (PWM-). According to the impedance mismatch condition, the positive phase path PWM output (PWM+) may lead or lag behind the negative phase path PWM output (PWM-). For ease of explanation, in FIG. 2 , it is assumed that the positive phase path PWM output (PWM+) leads the negative phase path PWM output (PWM-).
请参见图2,其为扬声器15于开关机期间,因正相路径PWM输出(PWM+)的相位领先负相路径PWM输出(PWM-)的相位而衍生爆音(pop noise)现象的波形图。在图2中,纵轴由上而下分别为正相路径PWM输出(PWM+)、负相路径PWM输出(PWM-)与PWM输出压差(PWM+)-(PWM-)的波形。横轴为时间,音频输出模块10的启用期间可包含三个时段,开机暂态期间Ton_tr、一般播放期间Top,与关机暂态期间Toff_tr。Please refer to FIG. 2, which is a waveform diagram of the pop noise phenomenon caused by the positive phase path PWM output (PWM+) leading the negative phase path PWM output (PWM-) during the power on and off period of the speaker 15. In FIG. 2, the vertical axis is the waveform of the positive phase path PWM output (PWM+), the negative phase path PWM output (PWM-), and the PWM output voltage difference (PWM+)-(PWM-) from top to bottom. The horizontal axis is time, and the activation period of the audio output module 10 can include three periods, the power on transient period Ton_tr, the normal playback period Top, and the power off transient period Toff_tr.
图2左上角的附图放大显示,在开机暂态期间Ton_tr与一般播放期间Top之间的切换期间,正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)的变化。在该切换期间,正相路径PWM输出(PWM+)的电压于时点t1上升,而负相路径PWM输出(PWM-)的电压在时点t1之后的时点(t1+Δt1)上升。即,正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)之间存在相位误差(Δt1)。因此,在开机暂态期间Ton_tr与一般播放期间Top之间的切换期间,PWM输出压差(PWM+)-(PWM-)的波形在相位误差(Δt1)的期间出现电压脉冲。在本发明中,对于PWM输出压差(PWM+)-(PWM-),以开机暂态期间Ton_tr的电位为参考电位。当电压脉冲的电位大于该参考电位时,电压脉冲视为正电压脉冲,反之亦然。据此,在相位误差(Δt1)的期间,产生正电压脉冲。The enlarged drawing in the upper left corner of FIG. 2 shows the changes of the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-) during the switching period between the power-on transient period Ton_tr and the general playback period Top. During the switching period, the voltage of the positive phase path PWM output (PWM+) rises at time point t1, while the voltage of the negative phase path PWM output (PWM-) rises at time point (t1+Δt1) after time point t1. That is, there is a phase error (Δt1) between the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-). Therefore, during the switching period between the power-on transient period Ton_tr and the general playback period Top, the waveform of the PWM output voltage difference (PWM+)-(PWM-) has a voltage pulse during the phase error (Δt1). In the present invention, for the PWM output voltage difference (PWM+)-(PWM-), the potential during the power-on transient period Ton_tr is used as the reference potential. When the potential of the voltage pulse is greater than the reference potential, the voltage pulse is regarded as a positive voltage pulse, and vice versa. As a result, a positive voltage pulse is generated during the phase error (Δt1).
图2右上角的附图放大显示,在一般播放期间Top与关机暂态期间Toff_tr之间的切换期间,正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)的变化。在该切换期间,正相路径PWM输出(PWM+)的电压于时点t2下降,负相路径PWM输出(PWM-)的电压在时点t2之后的时点(t2+Δt2)下降。即,正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)之间存在相位误差(Δt2)。因此,在一般播放期间Top与关机暂态期间Toff_tr之间的切换期间,PWM输出压差(PWM+)-(PWM-)的波形在相位误差(Δt2)的期间出现负电压脉冲。The enlarged illustration in the upper right corner of FIG. 2 shows the changes in the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-) during the switching period between the normal playback period Top and the shutdown transient period Toff_tr. During the switching period, the voltage of the positive phase path PWM output (PWM+) drops at time point t2, and the voltage of the negative phase path PWM output (PWM-) drops at time point (t2+Δt2) after time point t2. That is, there is a phase error (Δt2) between the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-). Therefore, during the switching period between the normal playback period Top and the shutdown transient period Toff_tr, the waveform of the PWM output voltage difference (PWM+)-(PWM-) has a negative voltage pulse during the phase error (Δt2).
无论是开机暂态期间Ton_tr转换至一般播放期间Top之间的切换期间的正电压脉冲,或是一般播放期间Top转换至关机暂态期间Toff_tr之间的切换期间的负电压脉冲,均导致使用者通过扬声器15将听到爆音现象,影响使用者的听觉感受。Whether it is a positive voltage pulse during the switching period from the power-on transient period Ton_tr to the normal playback period Top, or a negative voltage pulse during the switching period from the normal playback period Top to the power-off transient period Toff_tr, the user will hear a popping sound through the speaker 15, affecting the user's auditory experience.
请参见图3A,其为在切换期间,正相路径PWM输出(PWM+)的相位领先负相路径PWM输出(PWM-)的相位的示意图。此附图相当于图2左上角的附图放大。当正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)之间存在相位误差(Δt1)时,将PWM输出压差(PWM+)-(PWM-)的大小表示为Pd1。Please refer to FIG. 3A, which is a schematic diagram showing that the phase of the positive path PWM output (PWM+) leads the phase of the negative path PWM output (PWM-) during switching. This figure is equivalent to the enlarged figure in the upper left corner of FIG. 2. When there is a phase error (Δt1) between the positive path PWM output (PWM+) and the negative path PWM output (PWM-), the magnitude of the PWM output voltage difference (PWM+)-(PWM-) is represented as Pd1.
请参见图3B,其为经调整后,使正相路径PWM输出(PWM+)的相位与负相路径PWM输出(PWM-)的相位在切换期间对齐并降低噪声的示意图。此附图相当于图2左上角的附图中,将正相路径PWM输出(PWM+)的相位后移(延迟);或是将负相路径PWM输出(PWM-)的相位前移(提前)的情形。此时,相位误差(Δt1)不存在,且PWM输出压差(PWM+)-(PWM-)的大小表示为Pd2。Please refer to FIG. 3B , which is a schematic diagram of adjusting the phase of the positive path PWM output (PWM+) and the phase of the negative path PWM output (PWM-) to align during switching and reduce noise. This figure is equivalent to the figure in the upper left corner of FIG. 2 , in which the phase of the positive path PWM output (PWM+) is shifted backward (delayed); or the phase of the negative path PWM output (PWM-) is shifted forward (advanced). At this time, the phase error (Δt1) does not exist, and the size of the PWM output voltage difference (PWM+)-(PWM-) is expressed as Pd2.
比较图3A的PWM输出压差(PWM+)-(PWM-)的大小(Pd1)与图3B的PWM输出压差(PWM+)-(PWM-)的大小(Pd2)时,可以看出Pd1>Pd2。亦即,经过相位调整后,PWM输出压差(PWM+)-(PWM-)的大小降低。连带的,扬声器15的噪声也可据此而降低并提升使用者的听觉感受。为此,本发明的音频放大电路13提供相位移位电路(例如,延迟电路)的电路架构,通过调整正相路径PWM输出(PWM+)或负相路径PWM输出(PWM-)的相位而抑制前述爆音现象。When comparing the size (Pd1) of the PWM output voltage difference (PWM+)-(PWM-) of FIG. 3A with the size (Pd2) of the PWM output voltage difference (PWM+)-(PWM-) of FIG. 3B , it can be seen that Pd1>Pd2. That is, after the phase adjustment, the size of the PWM output voltage difference (PWM+)-(PWM-) is reduced. In conjunction, the noise of the speaker 15 can also be reduced and the user's auditory experience can be improved. To this end, the audio amplifier circuit 13 of the present invention provides a circuit architecture of a phase shift circuit (e.g., a delay circuit) to suppress the aforementioned popping phenomenon by adjusting the phase of the positive phase path PWM output (PWM+) or the negative phase path PWM output (PWM-).
请参见图4,其为根据本发明构想实施例的音频放大电路的方块图。在本实施例中,音频放大电路13采用桥式负载(bridge-tied load)的D类功率放大器的架构。音频放大电路13包含:调制信号产生电路131、正相音频输出电路135,与负相音频输出电路133。调制信号产生电路131同时电连接于正相音频输出电路135与负相音频输出电路133。调制信号产生电路131可为脉冲宽度调制信号产生电路。Please refer to FIG. 4, which is a block diagram of an audio amplifier circuit according to an embodiment of the present invention. In this embodiment, the audio amplifier circuit 13 adopts a bridge-tied load class D power amplifier architecture. The audio amplifier circuit 13 includes: a modulation signal generating circuit 131, a positive phase audio output circuit 135, and a negative phase audio output circuit 133. The modulation signal generating circuit 131 is electrically connected to the positive phase audio output circuit 135 and the negative phase audio output circuit 133. The modulation signal generating circuit 131 can be a pulse width modulation signal generating circuit.
正相音频输出电路135作为桥式负载的其中一个半桥。正相音频输出电路135包含:正相路径加法器135a、正相相位移位电路135b、正相路径主回路135c与正相路径从回路135d。正相相位移位电路135b、正相路径主回路135c与正相路径从回路135d均通过正相路径比较器输出端点Ncmp+而电连接于调制信号产生电路131。正相路径主回路135c与正相路径从回路135d轮流导通。正相路径加法器135a接收正相路径反馈信号Sf+,其中正相路径反馈信号Sf+为正相路径主回路135c与正相路径从回路135d其中一者的输出。正相路径加法器135a自正相模拟差分输入Va+扣除正相路径反馈信号Sf+后,产生正相路径误差信号Serr+,并将正相路径误差信号Serr+传送至调制信号产生电路131。调制信号产生电路131则根据正相路径误差信号Serr+而输出正相路径比较器输出Scmp+至正相路径比较器输出端点Ncmp+。The positive phase audio output circuit 135 serves as one half bridge of the bridge load. The positive phase audio output circuit 135 comprises: a positive phase path adder 135a, a positive phase phase shift circuit 135b, a positive phase path main loop 135c and a positive phase path slave loop 135d. The positive phase phase shift circuit 135b, the positive phase path main loop 135c and the positive phase path slave loop 135d are all electrically connected to the modulation signal generating circuit 131 through the positive phase path comparator output terminal Ncmp+. The positive phase path main loop 135c and the positive phase path slave loop 135d are turned on in turn. The positive phase path adder 135a receives the positive phase path feedback signal Sf+, wherein the positive phase path feedback signal Sf+ is the output of one of the positive phase path main loop 135c and the positive phase path slave loop 135d. The positive phase path adder 135a generates a positive phase path error signal Serr+ after deducting the positive phase path feedback signal Sf+ from the positive phase analog differential input Va+, and transmits the positive phase path error signal Serr+ to the modulation signal generating circuit 131. The modulation signal generating circuit 131 outputs the positive phase path comparator output Scmp+ to the positive phase path comparator output terminal Ncmp+ according to the positive phase path error signal Serr+.
负相音频输出电路133作为桥式负载的另一个半桥,与正相音频输出电路135组合成为驱动扬声器15的全桥。负相音频输出电路133包含:负相路径加法器133a、负相相位移位电路133b、负相路径主回路133c与负相路径从回路133d。负相相位移位电路133b、负相路径主回路133c与负相路径从回路133d均通过负相路径比较器输出端点Ncmp-而电连接于调制信号产生电路131。负相路径主回路133c与负相路径从回路133d轮流导通。负相路径加法器133a接收负相路径反馈信号Sf-,其中负相路径反馈信号Sf-为负相路径主回路133c与负相路径从回路133d其中一者的输出。负相路径加法器133a自负相模拟差分输入Va-扣除负相路径反馈信号Sf-后,产生负相路径误差信号Serr-,并将负相路径误差信号Serr-传送至调制信号产生电路131。调制信号产生电路131则根据负相路径误差信号Serr-而输出负相路径比较器输出Scmp-至负相路径比较器输出端点Ncmp-。The negative phase audio output circuit 133 is another half bridge of the bridge load, and is combined with the positive phase audio output circuit 135 to form a full bridge driving the speaker 15. The negative phase audio output circuit 133 includes: a negative phase path adder 133a, a negative phase phase shift circuit 133b, a negative phase path main loop 133c and a negative phase path slave loop 133d. The negative phase phase shift circuit 133b, the negative phase path main loop 133c and the negative phase path slave loop 133d are all electrically connected to the modulation signal generating circuit 131 through the negative phase path comparator output terminal Ncmp-. The negative phase path main loop 133c and the negative phase path slave loop 133d are turned on in turn. The negative phase path adder 133a receives the negative phase path feedback signal Sf-, wherein the negative phase path feedback signal Sf- is the output of one of the negative phase path main loop 133c and the negative phase path slave loop 133d. The negative phase path adder 133a generates a negative phase path error signal Serr- after deducting the negative phase path feedback signal Sf- from the negative phase analog differential input Va-, and transmits the negative phase path error signal Serr- to the modulation signal generating circuit 131. The modulation signal generating circuit 131 outputs the negative phase path comparator output Scmp- to the negative phase path comparator output terminal Ncmp- according to the negative phase path error signal Serr-.
如图2所述,正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)的产生可能存在相位误差,进而衍生爆音的现象。也就是说,解决前述相位误差的问题,至少可以减轻爆音现象。为此,在正相音频输出电路135设置的正相相位移位电路135b便可用于在时序上偏移在正相路径比较器输出端点Ncmp+上的正相路径比较器输出Scmp+,以及,在负相音频输出电路133设置的负相相位移位电路133b,便可用于在时序上偏移在负相路径比较器输出端点Ncmp-上的负相路径比较器输出Scmp-。As shown in FIG. 2 , there may be a phase error in the generation of the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-), which may lead to the phenomenon of popping sound. In other words, solving the aforementioned phase error problem can at least alleviate the phenomenon of popping sound. To this end, the positive phase phase shift circuit 135b provided in the positive phase audio output circuit 135 can be used to shift the positive phase path comparator output Scmp+ at the positive phase path comparator output terminal Ncmp+ in timing, and the negative phase phase shift circuit 133b provided in the negative phase audio output circuit 133 can be used to shift the negative phase path comparator output Scmp- at the negative phase path comparator output terminal Ncmp- in timing.
在本发明中,正相音频输出电路135与负相音频输出电路133之间存在在电路结构上的对称性。因此,正相路径主回路135c对正相路径比较器输出Scmp+造成的相位误差,可视为相同于负相路径主回路133c对负相路径比较器输出Scmp-造成的相位误差。也就是说,正相路径PWM输出(PWM+)及负相路径PWM输出(PWM-)之间的相位误差,正相关于正相路径比较器输出Scmp+及负相路径比较器输出Scmp-之间的相位误差。据此,可借由调整正相路径比较器输出Scmp+及负相路径比较器输出Scmp-之间的相位误差,来调整正相路径PWM输出(PWM+)及负相路径PWM输出(PWM-)之间的相位误差。因此,音频播放装置的制造商可在产品出货前,先对音频输出模块10进行校正(calibration)程序,以减轻爆音现象。In the present invention, there is symmetry in circuit structure between the positive phase audio output circuit 135 and the negative phase audio output circuit 133. Therefore, the phase error caused by the positive phase path main loop 135c to the positive phase path comparator output Scmp+ can be regarded as the same as the phase error caused by the negative phase path main loop 133c to the negative phase path comparator output Scmp-. In other words, the phase error between the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-) is positively correlated with the phase error between the positive phase path comparator output Scmp+ and the negative phase path comparator output Scmp-. Accordingly, the phase error between the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-) can be adjusted by adjusting the phase error between the positive phase path comparator output Scmp+ and the negative phase path comparator output Scmp-. Therefore, the manufacturer of the audio playback device can perform a calibration procedure on the audio output module 10 before shipping the product to reduce the popping phenomenon.
在校正程序中,若发现爆音现象源自于正相路径PWM输出(PWM+)领先负相路径PWM输出(PWM-)时,音频控制电路12便利用控制信号Sctl设定正相相位移位电路135b的等效电容Ceq+,使等效电容Ceq+的电容值增加,进而延迟正相路径PWM输出(PWM+)的产生时点。或者,音频控制电路12利用控制信号Sctl设定负相相位移位电路133b的等效电容Ceq-,使等效电容Ceq-的电容值减少,进而提早负相路径PWM输出(PWM-)的产生时点。In the calibration procedure, if it is found that the popping sound phenomenon originates from the positive phase path PWM output (PWM+) leading the negative phase path PWM output (PWM-), the audio control circuit 12 uses the control signal Sctl to set the equivalent capacitor Ceq+ of the positive phase shift circuit 135b, so that the capacitance value of the equivalent capacitor Ceq+ increases, thereby delaying the generation time of the positive phase path PWM output (PWM+). Alternatively, the audio control circuit 12 uses the control signal Sctl to set the equivalent capacitor Ceq- of the negative phase shift circuit 133b, so that the capacitance value of the equivalent capacitor Ceq- decreases, thereby advancing the generation time of the negative phase path PWM output (PWM-).
反之,若发现爆音现象源自于正相路径PWM输出(PWM+)落后负相PWM路径输出(PWM-)时,便利用控制信号Sctl设定负相相位移位电路133b的等效电容Ceq-,使等效电容Ceq-的电容值增加,进而延迟负相PWM路径输出(PWM-)的产生时点。或者,利用控制信号Sctl设定正相相位移位电路135b的等效电容Ceq+,使等效电容Ceq+的电容值减少,进而提早正相路径PWM输出(PWM+)的产生时点。On the contrary, if it is found that the popping sound phenomenon originates from the positive phase path PWM output (PWM+) lagging behind the negative phase path PWM output (PWM-), the control signal Sctl is used to set the equivalent capacitor Ceq- of the negative phase phase shift circuit 133b, so that the capacitance value of the equivalent capacitor Ceq- increases, thereby delaying the generation time point of the negative phase PWM path output (PWM-). Alternatively, the control signal Sctl is used to set the equivalent capacitor Ceq+ of the positive phase phase shift circuit 135b, so that the capacitance value of the equivalent capacitor Ceq+ decreases, thereby advancing the generation time point of the positive phase path PWM output (PWM+).
在图4的实施例中,音频放大电路13可同时设置正相相位移位电路135b与负相相位移位电路133b,但本发明不限定于此。在一些实施例中,仅设置正相相位移位电路135b及负相相位移位电路133b中的一者。举例来说,若根据电路的绕线位置等,而能事先确知正相路径主回路135c的信号传送路径与负相路径主回路133c的信号传送路径何者较长的情况下,就可仅于音频放大电路13中设置正相相位移位电路135b及负相相位移位电路133b中的一者。亦即,正相相位移位电路135b或负相相位移位电路133b的设置与否,可根据音频放大电路13的特性而考量,无须加以限定。In the embodiment of FIG. 4 , the audio amplifier circuit 13 may be provided with a positive phase shift circuit 135b and a negative phase shift circuit 133b at the same time, but the present invention is not limited thereto. In some embodiments, only one of the positive phase shift circuit 135b and the negative phase shift circuit 133b is provided. For example, if it is known in advance which of the signal transmission path of the positive phase path main loop 135c and the signal transmission path of the negative phase path main loop 133c is longer according to the winding position of the circuit, etc., only one of the positive phase shift circuit 135b and the negative phase shift circuit 133b may be provided in the audio amplifier circuit 13. That is, whether the positive phase shift circuit 135b or the negative phase shift circuit 133b is provided or not may be considered according to the characteristics of the audio amplifier circuit 13, and no limitation is required.
接着,以图5A及图5B说明本发明如何利用正相相位移位电路135b与负相相位移位电路133b通过调整相位的方式来改善爆音现象。另请留意,实际应用时,正相相位移位电路135b及负相相位移位电路133b,可通过设置电容且增加电容值的方式,延迟正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)其中一者的产生时点;或者,通过减少输出路径上既有的电容的电容值的方式,将产生正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)其中一者的时点提前。图5A及图5B的纵轴由上而下分别为正相路径PWM输出(PWM+)、负相路径PWM输出(PWM-),以及不同情况下的PWM输出压差(PWM+)-(PWM-)的情况。图5A及图5B的横轴为时间。Next, FIG. 5A and FIG. 5B illustrate how the present invention improves the popping phenomenon by adjusting the phase by using the positive phase shift circuit 135b and the negative phase phase shift circuit 133b. Please also note that in actual application, the positive phase phase shift circuit 135b and the negative phase phase shift circuit 133b can delay the generation time of one of the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-) by setting a capacitor and increasing the capacitance value; or, by reducing the capacitance value of the existing capacitor on the output path, the generation time of one of the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-) is advanced. The vertical axes of FIG. 5A and FIG. 5B are respectively the positive phase path PWM output (PWM+), the negative phase path PWM output (PWM-), and the PWM output voltage difference (PWM+)-(PWM-) under different conditions from top to bottom. The horizontal axis of FIG. 5A and FIG. 5B is time.
请参见图5A,其为正相路径PWM输出(PWM+)的相位略为领先负相路径PWM输出(PWM-)的相位时,利用本发明实施例的音频放大电路抑制扬声器15于开关机期间所形成的爆音现象的波形图。Please refer to FIG. 5A , which is a waveform diagram showing the audio amplifier circuit of an embodiment of the present invention being used to suppress the popping sound phenomenon generated by the speaker 15 during the power on and power off period when the phase of the positive phase path PWM output (PWM+) is slightly ahead of the phase of the negative phase path PWM output (PWM-).
正相路径PWM输出(PWM+)在相位上领先负相路径PWM输出(PWM-)时,若不调整正相相位移位电路135b或负相相位移位电路133b,则爆音现象维持(与图2同)。When the positive path PWM output (PWM+) leads the negative path PWM output (PWM-) in phase, if the positive phase shift circuit 135b or the negative phase shift circuit 133b is not adjusted, the popping sound phenomenon is maintained (same as FIG. 2 ).
当正相路径PWM输出(PWM+)领先负相路径PWM输出(PWM-)时,若增加正相相位移位电路135b的电容值时,可使正相路径PWM输出(PWM+)产生的时点延后,此时正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)之间的相位误差缩小。据此,让PWM输出压差(PWM+)-(PWM-)的幅度变小。因此,扬声器15所产生的爆音的程度变小。When the positive phase path PWM output (PWM+) leads the negative phase path PWM output (PWM-), if the capacitance value of the positive phase phase shift circuit 135b is increased, the timing of the positive phase path PWM output (PWM+) can be delayed, and the phase error between the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-) is reduced. Thus, the amplitude of the PWM output voltage difference (PWM+)-(PWM-) is reduced. Therefore, the degree of the popping sound generated by the speaker 15 is reduced.
另一方面,假设在正相路径PWM输出(PWM+)领先负相路径PWM输出(PWM-)的情况下,若还增加负相相位移位电路133b的电容值时,进一步使负相路径PWM输出(PWM-)产生的时点延后,此时正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)之间的相位误差变大。连带的,让PWM输出压差(PWM+)-(PWM-)的幅度变大。因此,扬声器15产生的爆音的程度变大。由图5A可以得知,当正相路径PWM输出(PWM+)领先负相路径PWM输出(PWM-)时,可通过增加正相相位移位电路135b的电容值的方式,改善PWM输出压差(PWM+)-(PWM-)的爆音现象。On the other hand, assuming that the positive phase path PWM output (PWM+) leads the negative phase path PWM output (PWM-), if the capacitance value of the negative phase phase shift circuit 133b is increased, the time point of the negative phase path PWM output (PWM-) is further delayed, and the phase error between the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-) becomes larger. As a result, the amplitude of the PWM output voltage difference (PWM+)-(PWM-) becomes larger. Therefore, the degree of the popping sound generated by the speaker 15 becomes larger. It can be seen from FIG. 5A that when the positive phase path PWM output (PWM+) leads the negative phase path PWM output (PWM-), the popping sound phenomenon of the PWM output voltage difference (PWM+)-(PWM-) can be improved by increasing the capacitance value of the positive phase phase shift circuit 135b.
请参见图5B,其为正相路径PWM输出(PWM+)的相位略为落后负相路径PWM输出(PWM-)的相位时,利用本发明实施例的音频放大电路抑制扬声器15于开关机期间所形成的爆音现象的波形图。Please refer to FIG. 5B , which is a waveform diagram showing the audio amplifier circuit of an embodiment of the present invention being used to suppress the popping sound phenomenon generated during the power on and power off of the speaker 15 when the phase of the positive phase path PWM output (PWM+) lags slightly behind the phase of the negative phase path PWM output (PWM-).
正相路径PWM输出(PWM+)落后负相路径PWM输出(PWM-)时,若不调整正相相位移位电路135b或负相相位移位电路133b,则爆音现象维持。When the positive path PWM output (PWM+) lags behind the negative path PWM output (PWM-), if the positive phase shift circuit 135b or the negative phase shift circuit 133b is not adjusted, the popping sound phenomenon will persist.
当正相路径PWM输出(PWM+)落后负相路径PWM输出(PWM-)时,若增加正相相位移位电路135b的电容值时,将导致正相路径PWM输出(PWM+)产生的时点延后,使得正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)之间的相位误差进一步变大。连带的,让PWM输出压差(PWM+)-(PWM-)的幅度变大。因此,扬声器15产生的爆音的程度变大。When the positive phase path PWM output (PWM+) lags behind the negative phase path PWM output (PWM-), if the capacitance value of the positive phase phase shift circuit 135b is increased, the timing of the positive phase path PWM output (PWM+) will be delayed, making the phase error between the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-) further increased. As a result, the amplitude of the PWM output voltage difference (PWM+)-(PWM-) increases. Therefore, the degree of the popping sound generated by the speaker 15 increases.
当正相路径PWM输出(PWM+)落后负相路径PWM输出(PWM-)时,若增加负相相位移位电路133b的电容值时,可使负相路径PWM输出(PWM-)产生的时点延后,此时正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)之间的相位误差变小。连带的,让PWM输出压差(PWM+)-(PWM-)的幅度变小。因此,扬声器15产生的爆音的程度变小。When the positive path PWM output (PWM+) lags behind the negative path PWM output (PWM-), if the capacitance value of the negative phase shift circuit 133b is increased, the time point of the negative path PWM output (PWM-) can be delayed, and the phase error between the positive path PWM output (PWM+) and the negative path PWM output (PWM-) becomes smaller. In addition, the amplitude of the PWM output voltage difference (PWM+)-(PWM-) becomes smaller. Therefore, the degree of the popping sound generated by the speaker 15 becomes smaller.
由图5B可以得知,当正相路径PWM输出(PWM+)落后负相路径PWM输出(PWM-)时,可通过增加负相相位移位电路133b的电容值的方式,改善PWM输出压差(PWM+)-(PWM-)的爆音现象。As can be seen from FIG. 5B , when the positive phase path PWM output (PWM+) lags behind the negative phase path PWM output (PWM-), the popping sound phenomenon of the PWM output voltage difference (PWM+)-(PWM-) can be improved by increasing the capacitance value of the negative phase shift circuit 133b.
根据图5A及图5B的说明可以得知,无论是正相路径PWM输出(PWM+)领先负相路径PWM输出(PWM-),或是正相路径PWM输出(PWM+)落后负相路径PWM输出(PWM-)的情形,根据本发明构想的音频放大电路13均可降低在开机暂态期间Ton_tr及一般播放期间Top之间的切换期间以及一般播放期间Top及关机暂态期间Toff_tr之间的切换期间所产生的爆音现象。According to the description of FIG. 5A and FIG. 5B , no matter the positive phase path PWM output (PWM+) leads the negative phase path PWM output (PWM-), or the positive phase path PWM output (PWM+) lags behind the negative phase path PWM output (PWM-), the audio amplifier circuit 13 conceived according to the present invention can reduce the popping sound phenomenon generated during the switching period between the power-on transient period Ton_tr and the normal playback period Top and during the switching period between the normal playback period Top and the power-off transient period Toff_tr.
当正相路径PWM输出(PWM+)领先负相路径PWM输出(PWM-)时,音频控制电路12利用控制信号Sctl增加正相相位移位电路135b的电容值;或者,音频控制电路12利用控制信号Sctl减少负相相位移位电路133b的电容值。When the positive path PWM output (PWM+) leads the negative path PWM output (PWM-), the audio control circuit 12 uses the control signal Sctl to increase the capacitance value of the positive phase shift circuit 135b; or, the audio control circuit 12 uses the control signal Sctl to reduce the capacitance value of the negative phase shift circuit 133b.
另一方面,当正相路径PWM输出(PWM+)落后负相路径PWM输出(PWM-)时,音频控制电路12利用控制信号Sctl增加负相相位移位电路133b的电容值;或者,音频控制电路12利用控制信号Sctl减少正相相位移位电路135b的电容值。On the other hand, when the positive phase path PWM output (PWM+) lags behind the negative phase path PWM output (PWM-), the audio control circuit 12 uses the control signal Sctl to increase the capacitance value of the negative phase shift circuit 133b; or, the audio control circuit 12 uses the control signal Sctl to reduce the capacitance value of the positive phase shift circuit 135b.
更进一步的,若出现爆音现象,但无法确定是正相路径PWM输出(PWM+)领先负相路径PWM输出(PWM-),或是正相路径PWM输出(PWM+)落后负相路径PWM输出(PWM-)所导致时,亦可根据图5A及图5B的波形而调整正相相位移位电路135b或是负相相位移位电路133b的电容值。例如,先试着增加正相相位移位电路135b的电容值后,发现爆音的音量降低,代表调整相位前的正相路径PWM输出(PWM+)领先调整相位前的负相路径PWM输出(PWM-)。因此,需维持增加正相相位移位电路135b的电容值(或减少负相相位移位电路133b的电容值)。反之,若增加正相相位移位电路135b的电容值后,发现爆音的音量提升,代表调整相位前的正相路径PWM输出(PWM+)落后调整相位前的负相路径PWM输出(PWM-),此时须改为增加负相相位移位电路133b的电容值(或减少正相相位移位电路135b的电容值)。Furthermore, if a popping sound phenomenon occurs, but it is not possible to determine whether it is caused by the positive phase path PWM output (PWM+) leading the negative phase path PWM output (PWM-), or the positive phase path PWM output (PWM+) lagging behind the negative phase path PWM output (PWM-), the capacitance value of the positive phase phase shift circuit 135b or the negative phase phase shift circuit 133b can also be adjusted according to the waveforms of Figures 5A and 5B. For example, after trying to increase the capacitance value of the positive phase phase shift circuit 135b, it is found that the volume of the popping sound is reduced, which means that the positive phase path PWM output (PWM+) before the phase adjustment is ahead of the negative phase path PWM output (PWM-) before the phase adjustment. Therefore, it is necessary to maintain the increase of the capacitance value of the positive phase phase shift circuit 135b (or reduce the capacitance value of the negative phase phase shift circuit 133b). On the contrary, if the volume of the popping sound increases after increasing the capacitance value of the positive phase shift circuit 135b, it means that the positive phase path PWM output (PWM+) before the phase adjustment lags behind the negative phase path PWM output (PWM-) before the phase adjustment. In this case, the capacitance value of the negative phase shift circuit 133b must be increased (or the capacitance value of the positive phase shift circuit 135b must be reduced).
同理,若先试着增加负相相位移位电路133b的电容值后,发现爆音的音量降低,代表调整相位前的正相路径PWM输出(PWM+)落后调整相位前的负相路径PWM输出(PWM-)。因此,需维持增加负相相位移位电路133b的电容值(或减少正相相位移位电路135b的电容值)。反之,若增加负相相位移位电路133b的电容值后,发现爆音的音量提升,代表调整相位前的正相路径PWM输出(PWM+)领先调整相位前的负相路径PWM输出(PWM-),此时须改为增加正相相位移位电路135b的电容值(或减少负相相位移位电路133b的电容值)。Similarly, if you try to increase the capacitance value of the negative phase shift circuit 133b first, and find that the volume of the popping sound decreases, it means that the positive phase path PWM output (PWM+) before the phase adjustment lags behind the negative phase path PWM output (PWM-) before the phase adjustment. Therefore, it is necessary to continue to increase the capacitance value of the negative phase shift circuit 133b (or reduce the capacitance value of the positive phase shift circuit 135b). Conversely, if you increase the capacitance value of the negative phase shift circuit 133b and find that the volume of the popping sound increases, it means that the positive phase path PWM output (PWM+) before the phase adjustment leads the negative phase path PWM output (PWM-) before the phase adjustment. At this time, it is necessary to increase the capacitance value of the positive phase shift circuit 135b (or reduce the capacitance value of the negative phase shift circuit 133b).
在一些实施例中,正相相位移位电路135b与负相相位移位电路133b各可采用如图6A及图6B的延迟相位移位电路21。但是,实际应用时,正相相位移位电路135b与负相相位移位电路133b的电路并不以此为限。In some embodiments, the positive phase shift circuit 135b and the negative phase shift circuit 133b can each use the delayed phase shift circuit 21 shown in FIG6A and FIG6B. However, in actual applications, the circuits of the positive phase shift circuit 135b and the negative phase shift circuit 133b are not limited thereto.
请参见图6A,其为相位移位电路21为可变电容的示意图。此附图以可变电容Cv作为相位移位电路21,相位移位电路21电连接于Ncmp(图6A中的Ncmp+及Ncmp-)。可变电容Cv的电容值由控制信号Sctl控制,且相位移位电路21的等效电容Ceq等于可变电容Cv的电容值。Please refer to FIG. 6A, which is a schematic diagram of a phase shift circuit 21 that is a variable capacitor. This figure uses a variable capacitor Cv as the phase shift circuit 21, and the phase shift circuit 21 is electrically connected to Ncmp (Ncmp+ and Ncmp- in FIG. 6A). The capacitance value of the variable capacitor Cv is controlled by the control signal Sctl, and the equivalent capacitance Ceq of the phase shift circuit 21 is equal to the capacitance value of the variable capacitor Cv.
请参见图6B,其为相位移位电路23包含多个并联的电容路径的示意图。此附图以多个并联的电容路径作为相位移位电路23,其中每个电容路径包含彼此串接的开关与电容。为了识别,各电容路径的开关及电容以不同的罗马数字区别。举例来说,第一电容路径的开关标记为sw1及电容标记为C1,其余依此类推,不再赘述。在此附图中,假设电容C1、C2、C3、C4及C5具有不同的电容值。开关sw1、sw2、sw3、sw4及sw5由控制信号Sctrl所控制。当开关sw1、sw2、sw3、sw4及sw5至少一者导通时,相位移位电路23的等效电容Ceq将改变。例如,当仅有开关sw1导通时,相位移位电路23的等效电容Ceq等于C1;以及,当开关sw1及sw2同时导通时,相位移位电路23的等效电容Ceq等于电容C1并联电容C2的等效电容。Please refer to Fig. 6B, which is a schematic diagram of a phase shift circuit 23 including a plurality of parallel capacitor paths. This figure uses a plurality of parallel capacitor paths as the phase shift circuit 23, wherein each capacitor path includes a switch and a capacitor connected in series with each other. For identification, the switches and capacitors of each capacitor path are distinguished by different Roman numerals. For example, the switch of the first capacitor path is marked as sw1 and the capacitor is marked as C1, and the rest are deduced by analogy, and no further description is given. In this figure, it is assumed that capacitors C1, C2, C3, C4 and C5 have different capacitance values. Switches sw1, sw2, sw3, sw4 and sw5 are controlled by a control signal Sctrl. When at least one of switches sw1, sw2, sw3, sw4 and sw5 is turned on, the equivalent capacitance Ceq of the phase shift circuit 23 will change. For example, when only switch sw1 is turned on, the equivalent capacitance Ceq of the phase shift circuit 23 is equal to C1; and when switches sw1 and sw2 are turned on simultaneously, the equivalent capacitance Ceq of the phase shift circuit 23 is equal to the equivalent capacitance of capacitance C1 in parallel with capacitance C2.
图6B假设电容C1、C2、C3、C4及C5的电容值分别为C、2C、4C、8C及16C。基于此种电容值的配置设定,音频控制电路12可利用二进位的方式产生与开关sw1、sw2、sw3、sw4及sw5对应的控制信号Sctl。通过对开关sw1、sw2、sw3、sw4及sw5的切换,音频控制电路12可决定等效电容Ceq的电容值。关于开关sw1、sw2、sw3、sw4及sw5的切换与相位移位电路23的等效电容Ceq的电容值的计算,此处不予详述。且,相位移位电路23所包含的电容路径的个数并不以此附图为限。FIG6B assumes that the capacitance values of capacitors C1, C2, C3, C4 and C5 are C, 2C, 4C, 8C and 16C respectively. Based on the configuration setting of such capacitance values, the audio control circuit 12 can generate the control signal Sctl corresponding to the switches sw1, sw2, sw3, sw4 and sw5 in a binary manner. By switching the switches sw1, sw2, sw3, sw4 and sw5, the audio control circuit 12 can determine the capacitance value of the equivalent capacitor Ceq. The switching of the switches sw1, sw2, sw3, sw4 and sw5 and the calculation of the capacitance value of the equivalent capacitor Ceq of the phase shift circuit 23 are not described in detail here. Moreover, the number of capacitance paths included in the phase shift circuit 23 is not limited to this figure.
请参见图7,其为根据本发明构想的音频放大电路的示意图。由此附图可以看出,调制信号产生电路131包含积分器1311与比较电路1313。Please refer to FIG. 7 , which is a schematic diagram of an audio amplifier circuit according to the present invention. As can be seen from this figure, the modulation signal generating circuit 131 includes an integrator 1311 and a comparison circuit 1313 .
积分器1311包含全差分放大器(fully differential amplifier)AMP、电容Cin+、Cin-与输入电阻Rin+、Rin-。全差分放大器AMP的非反向输入端(+)电连接于电阻Rin+,其经由输入电阻Rin+而接收正相路径误差信号Serr+。电容Cin+的两端分别电连接于全差分放大器AMP的非反向输入端(+)与反向输出端(-)。全差分放大器AMP的反向输入端(-)电连接于输入电阻Rin-,其经由输入电阻Rin-而接收负相路径误差信号Serr-。电容Cin-的两端分别电连接于全差分放大器AMP的反向输入端(-)与非反向输出端(+)。The integrator 1311 includes a fully differential amplifier AMP, capacitors Cin+, Cin-, and input resistors Rin+, Rin-. The non-inverting input terminal (+) of the fully differential amplifier AMP is electrically connected to the resistor Rin+, which receives the positive phase path error signal Serr+ via the input resistor Rin+. The two ends of the capacitor Cin+ are electrically connected to the non-inverting input terminal (+) and the inverting output terminal (-) of the fully differential amplifier AMP, respectively. The inverting input terminal (-) of the fully differential amplifier AMP is electrically connected to the input resistor Rin-, which receives the negative phase path error signal Serr- via the input resistor Rin-. The two ends of the capacitor Cin- are electrically connected to the inverting input terminal (-) and the non-inverting output terminal (+) of the fully differential amplifier AMP, respectively.
比较电路1313包含正相路径比较器OP+、负相路径比较器OP-与载波产生电路1313a。其中,载波产生电路1313a产生载波信号(例如,三角波SAW)至正相路径比较器OP+的非反向输入端(+)与负相路径比较器OP-的反向输入端(-)。比较电路1313利用三角波SAW经由正相路径比较器OP+、负相路径比较器OP-与积分器1311的输出信号作比较而在正相路径比较器输出端点Ncmp+、负相路径比较器输出端点Ncmp-产生类方波形态的正相路径比较器输出Scmp+、负相路径比较器输出Scmp-。类方波形态的正相路径比较器输出Scmp+、负相路径比较器输出Scmp-的输出频率与输入三角波SAW的频率相同,而正相路径比较器输出Scmp+、负相路径比较器输出Scmp-的工作周期随着积分器1311的输出信号(正弦波)的振幅大小而改变。The comparison circuit 1313 includes a positive phase path comparator OP+, a negative phase path comparator OP-, and a carrier generation circuit 1313a. The carrier generation circuit 1313a generates a carrier signal (e.g., a triangular wave SAW) to the non-inverting input terminal (+) of the positive phase path comparator OP+ and the inverting input terminal (-) of the negative phase path comparator OP-. The comparison circuit 1313 uses the triangular wave SAW to compare the positive phase path comparator OP+, the negative phase path comparator OP-, and the output signal of the integrator 1311 to generate a positive phase path comparator output Scmp+ and a negative phase path comparator output Scmp- in a square wave form at the positive phase path comparator output terminal Ncmp+ and the negative phase path comparator output terminal Ncmp-. The output frequency of the square wave-like positive phase path comparator output Scmp+ and the negative phase path comparator output Scmp- is the same as the frequency of the input triangle wave SAW, and the duty cycle of the positive phase path comparator output Scmp+ and the negative phase path comparator output Scmp- changes with the amplitude of the output signal (sine wave) of the integrator 1311.
如前所述,正相音频输出电路135包含正相路径主回路135c与正相路径从回路135d;负相音频输出电路133包含负相路径主回路133c与负相路径从回路133d。接着,分别说明正相路径主回路135c、正相路径从回路135d、负相路径主回路133c,以及负相路径从回路133d的内部电路。As mentioned above, the positive phase audio output circuit 135 includes a positive phase path main loop 135c and a positive phase path slave loop 135d; the negative phase audio output circuit 133 includes a negative phase path main loop 133c and a negative phase path slave loop 133d. Next, the internal circuits of the positive phase path main loop 135c, the positive phase path slave loop 135d, the negative phase path main loop 133c, and the negative phase path slave loop 133d are described respectively.
正相路径主回路135c包含:开关SWm+、正相路径主驱动器INVm+与正相路径主反馈电阻Rm+。开关SWm+根据控制信号Sctl而选择性导通。当开关SWm+导通时,正相路径主驱动器INVm+基于正相路径比较器输出Scmp+产生正相路径PWM输出(PWM+)。接着,正相路径主反馈电阻Rm+进一步将正相路径PWM输出(PWM+)转换为正相路径主反馈信号Sfm+。The positive phase path main loop 135c includes: a switch SWm+, a positive phase path main driver INVm+ and a positive phase path main feedback resistor Rm+. The switch SWm+ is selectively turned on according to the control signal Sctl. When the switch SWm+ is turned on, the positive phase path main driver INVm+ generates a positive phase path PWM output (PWM+) based on the positive phase path comparator output Scmp+. Then, the positive phase path main feedback resistor Rm+ further converts the positive phase path PWM output (PWM+) into a positive phase path main feedback signal Sfm+.
正相路径从回路135d包含:开关SWa1+、SWa2+、正相路径从驱动器INVa+与正相路径从反馈电阻Ra+。开关SWa1+、SWa2+根据控制信号Sctl而选择性同步导通或同步断开。当开关SWa1+、SWa2+同时导通时,正相路径从驱动器INVa+驱动正相路径比较器输出Scmp+产生正相驱动信号(Sdrv+)。接着,正相路径从反馈电阻Ra+进一步将正相驱动信号(Sdrv+)转换为正相路径从反馈信号Sfa+。The positive phase path slave loop 135d includes: switches SWa1+, SWa2+, a positive phase path slave driver INVa+ and a positive phase path slave feedback resistor Ra+. The switches SWa1+ and SWa2+ are selectively turned on or off synchronously according to the control signal Sctl. When the switches SWa1+ and SWa2+ are turned on at the same time, the positive phase path slave driver INVa+ drives the positive phase path comparator output Scmp+ to generate a positive phase drive signal (Sdrv+). Then, the positive phase path slave feedback resistor Ra+ further converts the positive phase drive signal (Sdrv+) into a positive phase path slave feedback signal Sfa+.
负相路径主回路133c包含:开关SWm-、负相路径主驱动器INVm-与负相路径主反馈电阻Rm-。开关SWm-根据控制信号Sctl而选择性导通。当开关SWm-导通时,负相路径主驱动器INVm-基于负相路径比较器输出Scmp-产生负相路径PWM输出(PWM-)。接着,负相路径主反馈电阻Rm-进一步将负相路径PWM输出(PWM-)转换为负相路径主反馈信号Sfm-。The negative phase path main loop 133c includes: a switch SWm-, a negative phase path main driver INVm- and a negative phase path main feedback resistor Rm-. The switch SWm- is selectively turned on according to the control signal Sctl. When the switch SWm- is turned on, the negative phase path main driver INVm- generates a negative phase path PWM output (PWM-) based on the negative phase path comparator output Scmp-. Then, the negative phase path main feedback resistor Rm- further converts the negative phase path PWM output (PWM-) into a negative phase path main feedback signal Sfm-.
负相路径从回路133d包含:开关SWa1-、SWa2-、负相路径从驱动器INVa-与负相路径从反馈电阻Ra-。开关SWa1-及SWa2-根据控制信号Sctl而选择性同步导通或同步断开。当开关SWa1-及SWa2-同时导通时,负相路径从驱动器INVa-基于负相路径比较器输出Scmp-产生负相驱动信号(Sdrv-)。接着,负相路径从反馈电阻Ra-进一步将负相驱动信号(Sdrv-)转换为负相路径从反馈信号Sfa-。The negative phase path slave loop 133d includes: switches SWa1-, SWa2-, negative phase path slave driver INVa- and negative phase path slave feedback resistor Ra-. Switches SWa1- and SWa2- are selectively turned on or off synchronously according to the control signal Sctl. When switches SWa1- and SWa2- are turned on at the same time, the negative phase path slave driver INVa- generates a negative phase drive signal (Sdrv-) based on the negative phase path comparator output Scmp-. Then, the negative phase path slave feedback resistor Ra- further converts the negative phase drive signal (Sdrv-) into a negative phase path slave feedback signal Sfa-.
根据本发明的实施例,正相路径主回路135c与正相路径从回路135d并不会同时导通;且,负相路径主回路133c与负相路径从回路133d并不会同时导通。此外,正相路径主回路135c与负相路径主回路133c同时导通;且,正相路径从回路135d与负相路径从回路133d同时导通。为便于说明,此处将各个开关的导通状态整理如表1。According to the embodiment of the present invention, the positive phase path main loop 135c and the positive phase path slave loop 135d are not turned on at the same time; and the negative phase path main loop 133c and the negative phase path slave loop 133d are not turned on at the same time. In addition, the positive phase path main loop 135c and the negative phase path main loop 133c are turned on at the same time; and the positive phase path slave loop 135d and the negative phase path slave loop 133d are turned on at the same time. For ease of description, the conduction states of each switch are summarized as shown in Table 1.
表1Table 1
由图4可以看出,正相音频输出电路135与负相音频输出电路133的内部电路相似且彼此对称。根据本发明的构想,当正相路径主回路135c与负相路径主回路133c同时导通时,正相路径从回路135d与负相路径从回路133d同时断开。反之,当正相路径主回路135c与负相路径主回路133c同时断开时,正相路径从回路135d与负相路径从回路133d同时导通。为便于理解,此处以图8A示出正相路径主回路135c与负相路径主回路133c同时断开,且正相路径从回路135d与负相路径从回路133d同时导通时,音频放大电路13的等效电路。以图8B示出正相路径主回路135c与负相路径主回路133c同时导通,且正相路径从回路135d与负相路径从回路133d同时断开时,音频放大电路13的等效电路。As can be seen from FIG. 4 , the internal circuits of the positive phase audio output circuit 135 and the negative phase audio output circuit 133 are similar and symmetrical to each other. According to the conception of the present invention, when the positive phase path main loop 135c and the negative phase path main loop 133c are turned on at the same time, the positive phase path slave loop 135d and the negative phase path slave loop 133d are turned off at the same time. Conversely, when the positive phase path main loop 135c and the negative phase path main loop 133c are turned off at the same time, the positive phase path slave loop 135d and the negative phase path slave loop 133d are turned on at the same time. For ease of understanding, FIG. 8A is used here to illustrate the equivalent circuit of the audio amplifier circuit 13 when the positive phase path main loop 135c and the negative phase path main loop 133c are turned off at the same time, and the positive phase path slave loop 135d and the negative phase path slave loop 133d are turned on at the same time. FIG. 8B shows an equivalent circuit of the audio amplifier circuit 13 when the positive phase path main loop 135 c and the negative phase path main loop 133 c are turned on at the same time, and the positive phase path slave loop 135 d and the negative phase path slave loop 133 d are turned off at the same time.
请参见图8A,其为根据本发明构想实施例的音频放大电路,于主反馈路径断开且从反馈路径导通的电路图。因正相路径主回路135c与负相路径主回路133c同时断开的缘故,此处并未示出正相路径主回路135c与负相路径主回路133c。在图8A中,仅正相从回路电路135d与负相路径从回路电路133d和调制信号产生电路131的运作相关。Please refer to FIG8A, which is a circuit diagram of an audio amplifier circuit according to an embodiment of the present invention, in which the main feedback path is disconnected and the slave feedback path is turned on. Since the positive phase path main loop 135c and the negative phase path main loop 133c are disconnected at the same time, the positive phase path main loop 135c and the negative phase path main loop 133c are not shown here. In FIG8A, only the positive phase slave loop circuit 135d and the negative phase path slave loop circuit 133d and the operation of the modulation signal generating circuit 131 are related.
在正相路径从回路135d中,开关SWa1+、SWa2+均导通。正相路径从驱动器INVa+因开关SWa1+的导通而接收正相路径比较器输出Scmp+,且正相路径加法器135a因开关Swa2+的导通而接收正相路径从回路135d产生的正相路径从反馈信号Sfa+。此时,正相路径反馈信号Sf+即为正相路径从反馈信号Sfa+(Sf+=Sfa+)。再者,调制信号产生电路131所接收的正相路径误差信号Serr+为正相模拟差分输入Va+与正相路径从反馈信号Sfa+的差。In the positive phase path slave loop 135d, switches SWa1+ and SWa2+ are both turned on. The positive phase path slave driver INVa+ receives the positive phase path comparator output Scmp+ due to the conduction of switch SWa1+, and the positive phase path adder 135a receives the positive phase path slave feedback signal Sfa+ generated by the positive phase path slave loop 135d due to the conduction of switch Swa2+. At this time, the positive phase path feedback signal Sf+ is the positive phase path slave feedback signal Sfa+ (Sf+=Sfa+). Furthermore, the positive phase path error signal Serr+ received by the modulation signal generating circuit 131 is the difference between the positive phase analog differential input Va+ and the positive phase path slave feedback signal Sfa+.
在负相路径从回路133d中,开关SWa1-、SWa2-均导通。负相路径从驱动器INVa-因开关SWa1-的导通而接收负相路径比较器输出Scmp-,且负相路径加法器133a因开关Swa2-的导通而接收负相路径从回路133d产生的负相路径从反馈信号Sfa-。此时,负相路径反馈信号Sf-即为负相路径从反馈信号Sfa-(Sf-=Sfa-)。再者,调制信号产生电路131所接收的负相路径误差信号Serr-为负相模拟差分输入Va-与负相路径从反馈信号Sfa-的差。In the negative phase path slave loop 133d, switches SWa1- and SWa2- are both turned on. The negative phase path slave driver INVa- receives the negative phase path comparator output Scmp- due to the conduction of switch SWa1-, and the negative phase path adder 133a receives the negative phase path slave feedback signal Sfa- generated by the negative phase path slave loop 133d due to the conduction of switch Swa2-. At this time, the negative phase path feedback signal Sf- is the negative phase path slave feedback signal Sfa- (Sf- = Sfa-). Furthermore, the negative phase path error signal Serr- received by the modulation signal generating circuit 131 is the difference between the negative phase analog differential input Va- and the negative phase path slave feedback signal Sfa-.
由于正相路径从回路135d与负相路径从回路133d并未用于输出正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-),而是直接连接反馈至正相路径加法器135a、负相路径加法器133a。因此,若音频放大电路13的开关SWm+、SWm-、SWa1+、SWa2+、SWa1-、SWa2-处于如图8A所示的设定状态,扬声器15并不会接收到正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)。也因此,扬声器15并不会发出任何声音。Since the positive phase path slave loop 135d and the negative phase path slave loop 133d are not used to output the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-), but are directly connected and fed back to the positive phase path adder 135a and the negative phase path adder 133a. Therefore, if the switches SWm+, SWm-, SWa1+, SWa2+, SWa1-, and SWa2- of the audio amplifier circuit 13 are in the setting state shown in FIG. 8A, the speaker 15 will not receive the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-). Therefore, the speaker 15 will not make any sound.
请参见图8B,其为根据本发明构想实施例的音频放大电路,于主反馈路径导通且从反馈路径断开的电路图。因正相路径从回路135d与负相路径从回路133d同时断开的缘故,此处并未示出正相路径从回路135d与负相路径从回路133d。在图8B中,仅正相主回路电路135c与负相路径主回路电路133c和调制信号产生电路131的运作相关。Please refer to FIG8B, which is a circuit diagram of an audio amplifier circuit according to an embodiment of the present invention, in which the main feedback path is turned on and the feedback path is turned off. Since the positive phase path slave loop 135d and the negative phase path slave loop 133d are disconnected at the same time, the positive phase path slave loop 135d and the negative phase path slave loop 133d are not shown here. In FIG8B, only the positive phase main loop circuit 135c and the negative phase path main loop circuit 133c and the modulation signal generating circuit 131 are related to the operation.
在正相路径主回路135c中,开关SWm+导通。正相路径主驱动器INVm+因开关SWm+的导通而接收正相路径比较器输出Scmp+并产生正相路径PWM输出(PWM+)。正相路径加法器135a接收正相路径主回路135c产生的正相路径主反馈信号Sfm+。此时,正相路径反馈信号Sf+即为正相路径主反馈信号Sfm+(Sf+=Sfm+)。再者,调制信号产生电路131所接收的正相路径误差信号Serr+为正相模拟差分输入Va+与正相路径主反馈信号Sfm+的差。In the positive phase path main loop 135c, the switch SWm+ is turned on. Due to the conduction of the switch SWm+, the positive phase path main driver INVm+ receives the positive phase path comparator output Scmp+ and generates a positive phase path PWM output (PWM+). The positive phase path adder 135a receives the positive phase path main feedback signal Sfm+ generated by the positive phase path main loop 135c. At this time, the positive phase path feedback signal Sf+ is the positive phase path main feedback signal Sfm+ (Sf+=Sfm+). Furthermore, the positive phase path error signal Serr+ received by the modulation signal generating circuit 131 is the difference between the positive phase analog differential input Va+ and the positive phase path main feedback signal Sfm+.
在负相路径主回路133c中,开关SWm-导通。负相路径主驱动器INVm-因开关SWm-的导通而接收接收负相路径比较器输出Scmp-并产生负相路径PWM输出(PWM-)。负相路径加法器133a接收负相路径主回路135c产生的负相路径主反馈信号Sfm-。此时,负相路径反馈信号Sf-即为负相路径主反馈信号Sfm-(Sf-=Sfm-)。再者,调制信号产生电路131所接收的负相路径误差信号Serr-为负相模拟差分输入Va-与负相路径主反馈信号Sfm-的差。In the negative phase path main loop 133c, the switch SWm- is turned on. The negative phase path main driver INVm- receives the negative phase path comparator output Scmp- due to the conduction of the switch SWm- and generates a negative phase path PWM output (PWM-). The negative phase path adder 133a receives the negative phase path main feedback signal Sfm- generated by the negative phase path main loop 135c. At this time, the negative phase path feedback signal Sf- is the negative phase path main feedback signal Sfm- (Sf- = Sfm-). Furthermore, the negative phase path error signal Serr- received by the modulation signal generating circuit 131 is the difference between the negative phase analog differential input Va- and the negative phase path main feedback signal Sfm-.
由于正相路径主回路135c与负相路径主回路133c用于输出正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)。因此,若音频放大电路13处于如图8B所示状态,扬声器15将根据正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)而发出声音。Since the positive phase path main loop 135c and the negative phase path main loop 133c are used to output the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-), if the audio amplifier circuit 13 is in the state shown in FIG. 8B , the speaker 15 will emit sound according to the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-).
请参见图9A及图9B,其系根据本揭露构想之音频放大电路,因应音频输出模块的状态而动态选择反馈路径的流程图。请同时参见图5A、图5B、图8A、图8B、图9A及图9B。Please refer to Figures 9A and 9B, which are flowcharts of dynamically selecting a feedback path according to the state of the audio output module according to the audio amplifier circuit of the present disclosure. Please also refer to Figures 5A, 5B, 8A, 8B, 9A and 9B.
首先,在步骤S201中,启用音频输出模块10。接着,在步骤S203中,当音频输出模块10处于开机暂态期间Ton_tr时,音频控制电路12产生用于切换开关状态的控制信号Sctr至音频放大电路13,使音频放大电路13处于如图8A所示的状态。在开机暂态期间Ton_tr期间,调制信号产生电路131尚未达到稳定。在此同时,音频放大电路13可利用正相路径从回路135d与负相路径从回路133d进行反馈,避免产生非预期的正相路径PWM输出(PWM+)与负相路径PWM输出(PWM-)。即,在开机暂态期间Ton_tr可利用正相路径从回路135d与负相路径从回路133d避免爆音。First, in step S201, the audio output module 10 is enabled. Next, in step S203, when the audio output module 10 is in the power-on transient period Ton_tr, the audio control circuit 12 generates a control signal Sctr for switching the switch state to the audio amplifier circuit 13, so that the audio amplifier circuit 13 is in the state shown in FIG8A. During the power-on transient period Ton_tr, the modulation signal generating circuit 131 has not yet reached stability. At the same time, the audio amplifier circuit 13 can use the positive phase path from the loop 135d and the negative phase path from the loop 133d for feedback to avoid generating unexpected positive phase path PWM output (PWM+) and negative phase path PWM output (PWM-). That is, during the power-on transient period Ton_tr, the positive phase path from the loop 135d and the negative phase path from the loop 133d can be used to avoid popping sound.
接着,在步骤S205中,音频控制电路12判断音频输出模块10是否转换至一般操作模式。若否,则重复步骤执行步骤S203。若步骤S205的判断结果为肯定,则进行到步骤S207。在步骤S207中,进一步判断是否执行出厂前校正程序。若步骤S207的判断结果为肯定,则进一步执行步骤S209。另请留意,步骤S209由音频播放装置的制造商在音频播放装置出货前进行,一般使用者操作时,步骤S207的判断结果均预设为否定。Next, in step S205, the audio control circuit 12 determines whether the audio output module 10 is switched to the normal operation mode. If not, the step S203 is repeated. If the determination result of step S205 is positive, the process proceeds to step S207. In step S207, it is further determined whether to perform the pre-shipment calibration procedure. If the determination result of step S207 is positive, the process proceeds to step S209. Please also note that step S209 is performed by the manufacturer of the audio playback device before the audio playback device is shipped. When the user generally operates, the determination result of step S207 is preset to be negative.
步骤S209进一步包含以下步骤。首先,在步骤S209a中,判断扬声器15是否发出爆音。若否,则校正程序结束。若步骤S209a的判断结果为肯定,则进行到步骤S209b。在步骤S209b中,进一步判断是否为正相路径PWM输出(PWM+)领先负相路径PWM输出(PWM-)。若步骤S209b判断结果为肯定,则进行到步骤S209c。在步骤S209c中,增加正相相位移位电路135b的电容值。若步骤S209b判断结果为否定,则进行到步骤S209d。在步骤S209d中,增加负相相位移位电路133b的电容值。此外,在校正程序中,可能对正相相位移位电路135b或负相相位移位电路133b的电容值经过数次调整,故步骤S209可能视校正的过程而选择性地重复执行。Step S209 further includes the following steps. First, in step S209a, it is determined whether the speaker 15 emits a popping sound. If not, the calibration procedure ends. If the determination result of step S209a is positive, the procedure proceeds to step S209b. In step S209b, it is further determined whether the positive phase path PWM output (PWM+) leads the negative phase path PWM output (PWM-). If the determination result of step S209b is positive, the procedure proceeds to step S209c. In step S209c, the capacitance value of the positive phase shift circuit 135b is increased. If the determination result of step S209b is negative, the procedure proceeds to step S209d. In step S209d, the capacitance value of the negative phase shift circuit 133b is increased. In addition, in the calibration procedure, the capacitance value of the positive phase shift circuit 135b or the negative phase shift circuit 133b may be adjusted several times, so step S209 may be selectively repeated depending on the calibration process.
若步骤S207的判断结果为否定,代表音频放大电路13处于一般播放期间Top,进行到步骤S211。此时,在步骤S211中,音频控制电路12产生用于切换开关状态的控制信号Sctrl至音频放大电路13,使音频放大电路13处于如图8B所示的状态。接着,在步骤S213中,音频控制电路12判断音频输出模块10是否将关闭。若步骤S213的判断结果为否定,则音频放大电路13维持步骤S211的设定状态。If the judgment result of step S207 is negative, it means that the audio amplifier circuit 13 is in the general playback period Top, and the process proceeds to step S211. At this time, in step S211, the audio control circuit 12 generates a control signal Sctrl for switching the switch state to the audio amplifier circuit 13, so that the audio amplifier circuit 13 is in the state shown in Figure 8B. Then, in step S213, the audio control circuit 12 determines whether the audio output module 10 is to be turned off. If the judgment result of step S213 is negative, the audio amplifier circuit 13 maintains the setting state of step S211.
若步骤S213的判断结果为肯定,则进行到步骤S215。在步骤S215中,音频控制电路12产生控制信号至音频放大电路13断开全部的开关。根据本发明的构想,正相路径从回路135d与负相路径从回路133d的设置可以避免开机期间因调制信号产生电路131尚未达到稳定的爆音现象。另一方面,在关机暂态期间Toff_tr期间,因调制信号产生电路131的操作已相当稳定,所以在步骤S215中,可将音频放大电路13中的开关SWa1-、SWa2-、SWm-、SWa1+、SWa2+、SWm+全部断开。If the result of the judgment in step S213 is positive, the process proceeds to step S215. In step S215, the audio control circuit 12 generates a control signal to the audio amplifier circuit 13 to turn off all switches. According to the concept of the present invention, the arrangement of the positive phase path from the loop 135d and the negative phase path from the loop 133d can avoid the popping sound phenomenon during the startup period due to the modulation signal generating circuit 131 not yet reaching stability. On the other hand, during the shutdown transient period Toff_tr, since the operation of the modulation signal generating circuit 131 is already quite stable, in step S215, the switches SWa1-, SWa2-, SWm-, SWa1+, SWa2+, and SWm+ in the audio amplifier circuit 13 can be all turned off.
根据前述说明可以得知,本发明可动态的因应正相路径PWM输出(PWM+)、负相路径PWM输出(PWM-)的领先、落后情况而设定正相相位移位电路与负相相位移位电路的电容值。一旦原本领先的信号被延迟后,因正相路径PWM输出(PWM+)、负相路径PWM输出(PWM-)之相位不一致而使PWM输出压差(PWM+)-(PWM-)发生爆音的现象可被抑制。或者,一旦原本落后的信号被提前后,因正相路径PWM输出(PWM+)、负相路径PWM输出(PWM-)之相位不一致而使PWM输出压差(PWM+)-(PWM-)发生爆音的现象可被抑制。基于阻抗不匹配而衍生之时间差的情况,可借由电容值的调整,将原本领先的信号的产生时点延后,达到抑制在让开机与关机瞬间的爆音的效果。此外,借由正相路径从回路与负相路径从回路的设置,可以在开机暂态期间Ton_tr减少因等待调制信号产生电路131的电压趋于稳定之过渡期间所产生的爆音。According to the above description, the present invention can dynamically set the capacitance value of the positive phase shift circuit and the negative phase phase shift circuit in response to the leading and lagging conditions of the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-). Once the originally leading signal is delayed, the phenomenon of the PWM output voltage difference (PWM+)-(PWM-) causing the popping sound due to the phase inconsistency between the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-) can be suppressed. Alternatively, once the originally lagging signal is advanced, the phenomenon of the PWM output voltage difference (PWM+)-(PWM-) causing the popping sound due to the phase inconsistency between the positive phase path PWM output (PWM+) and the negative phase path PWM output (PWM-) can be suppressed. Based on the time difference derived from the impedance mismatch, the generation time of the originally leading signal can be delayed by adjusting the capacitance value, so as to achieve the effect of suppressing the popping sound at the moment of starting and shutting down. In addition, by setting the positive phase path slave loop and the negative phase path slave loop, the popping sound generated during the transition period of waiting for the voltage of the modulation signal generating circuit 131 to stabilize can be reduced during the startup transient period Ton_tr.
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Of course, the present invention may have many other embodiments. Without departing from the spirit and essence of the present invention, those skilled in the art may make various corresponding changes and modifications based on the present invention, but these corresponding changes and modifications should all fall within the scope of protection of the claims attached to the present invention.
Claims (17)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110110844A TWI760158B (en) | 2021-03-25 | 2021-03-25 | Bridge-tied load class-d power amplifier, audio amplifying circuit and associated control method |
TW110110844 | 2021-03-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115133890A CN115133890A (en) | 2022-09-30 |
CN115133890B true CN115133890B (en) | 2024-11-08 |
Family
ID=82198723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110424940.3A Active CN115133890B (en) | 2021-03-25 | 2021-04-20 | Bridge load class D power amplifier, audio amplifier circuit and related control method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115133890B (en) |
TW (1) | TWI760158B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118017948B (en) * | 2024-04-09 | 2024-06-18 | 无锡市晶源微电子股份有限公司 | Class AB power amplifier, output control circuit and output control method |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3904508B2 (en) * | 2002-11-27 | 2007-04-11 | シャープ株式会社 | Digital switching amplifier |
JP2005223667A (en) * | 2004-02-06 | 2005-08-18 | Digian Technology Inc | Audio signal amplification method and apparatus |
US20070096812A1 (en) * | 2004-03-26 | 2007-05-03 | Lee Wai L | Switching amplifier with output filter feedback |
JPWO2006049154A1 (en) * | 2004-11-02 | 2008-08-07 | パイオニア株式会社 | Digital amplifier device |
TW200711290A (en) * | 2005-05-12 | 2007-03-16 | Tripath Technology Inc | Noise-shaping amplifier with waveform lock |
US7262658B2 (en) * | 2005-07-29 | 2007-08-28 | Texas Instruments Incorporated | Class-D amplifier system |
GB2429351B (en) * | 2005-08-17 | 2009-07-08 | Wolfson Microelectronics Plc | Feedback controller for PWM amplifier |
US20070057721A1 (en) * | 2005-08-31 | 2007-03-15 | Texas Instruments Incorporated | System for amplifiers with low distortion and low output impedance |
KR100929953B1 (en) * | 2006-07-07 | 2009-12-04 | 야마하 가부시키가이샤 | Offset Voltage Compensation Circuit and Class-D Amplifier |
KR100878155B1 (en) * | 2007-05-16 | 2009-01-12 | 삼성전자주식회사 | Audio system and how to control it |
JP4513832B2 (en) * | 2007-07-13 | 2010-07-28 | ヤマハ株式会社 | Class D amplifier circuit |
TWI411224B (en) * | 2009-12-07 | 2013-10-01 | Faraday Tech Corp | Class-d amplifier |
US9866188B2 (en) * | 2014-04-02 | 2018-01-09 | Nanyang Technological University | Dead time circuit for a switching circuit and a switching amplifier |
US9973157B2 (en) * | 2015-09-11 | 2018-05-15 | Ess Technology, Inc. | Method and apparatus for achieving high-output signal swing from class-D amplifier |
US10778160B2 (en) * | 2016-01-29 | 2020-09-15 | Dolby Laboratories Licensing Corporation | Class-D dynamic closed loop feedback amplifier |
ITUA20163750A1 (en) * | 2016-05-24 | 2017-11-24 | St Microelectronics Srl | PROCEDURE FOR MEASURING THE LOAD IN SUITABLE SWITCHING, DEVICE AND AMPLIFIER CORRESPONDING |
WO2018120072A1 (en) * | 2016-12-30 | 2018-07-05 | Texas Instruments Incorporated | Total harmonic distortion (thd) controlled clip detector and automatic gain limiter (agl) |
US10171101B1 (en) * | 2017-12-20 | 2019-01-01 | Cirrus Logic, Inc. | Modulators |
US11342892B2 (en) * | 2017-12-27 | 2022-05-24 | Sony Semiconductor Solutions Corporation | Amplifier and signal processing circuit |
JP7274965B2 (en) * | 2019-07-26 | 2023-05-17 | 東芝デバイス&ストレージ株式会社 | DRIVER CIRCUIT WITH OVERCURRENT PROTECTION AND METHOD OF CONTROLLING DRIVER CIRCUIT WITH OVERCURRENT PROTECTION |
-
2021
- 2021-03-25 TW TW110110844A patent/TWI760158B/en active
- 2021-04-20 CN CN202110424940.3A patent/CN115133890B/en active Active
Also Published As
Publication number | Publication date |
---|---|
TWI760158B (en) | 2022-04-01 |
TW202239138A (en) | 2022-10-01 |
CN115133890A (en) | 2022-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111512544B (en) | Configurable modal amplifier system | |
US9065394B2 (en) | Apparatus and method for expanding operation region of power amplifier | |
US8975960B2 (en) | Integrated circuit wireless communication unit and method for providing a power supply | |
US8081777B2 (en) | Volume-based adaptive biasing | |
Dapkus | Class-D audio power amplifiers: an overview | |
US8362832B2 (en) | Half-bridge three-level PWM amplifier and audio processing apparatus including the same | |
JP2010504004A (en) | Class D audio amplifier | |
US20140169588A1 (en) | Boosted Differential Class H Amplifier | |
US6351184B1 (en) | Dynamic switching frequency control for a digital switching amplifier | |
JP2019193265A (en) | Stabilizing high-performance audio amplifiers | |
US7378903B2 (en) | System and method for minimizing DC offset in outputs of audio power amplifiers | |
CN115133890B (en) | Bridge load class D power amplifier, audio amplifier circuit and related control method | |
JP2005210692A (en) | Volume control in class-d amplifier using variable supply voltage | |
CN106953608A (en) | Power amplifying device | |
US11205999B2 (en) | Amplifier with signal dependent mode operation | |
US20110058688A1 (en) | Audio processing apparatus and method | |
CN114270703A (en) | Envelope tracking device for multi-stage amplifier | |
US11588452B2 (en) | Class D amplifier circuitry | |
WO2022038334A1 (en) | Amplifiers | |
US10418950B1 (en) | Methods and apparatus for a class-D amplifier | |
US7816980B2 (en) | Audio power amplifier using virtual ground and method of processing signal in the audio power amplifier | |
JPH1117478A (en) | Power amplifier | |
JP3223048B2 (en) | Audio signal power amplifier circuit and audio device using the same | |
CN205490435U (en) | power amplifier | |
CN113329294B (en) | Audio control chip and earphone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |