CN115128571A - 一种基于毫米波雷达的多人与非机动车识别方法 - Google Patents
一种基于毫米波雷达的多人与非机动车识别方法 Download PDFInfo
- Publication number
- CN115128571A CN115128571A CN202211068897.2A CN202211068897A CN115128571A CN 115128571 A CN115128571 A CN 115128571A CN 202211068897 A CN202211068897 A CN 202211068897A CN 115128571 A CN115128571 A CN 115128571A
- Authority
- CN
- China
- Prior art keywords
- unit
- dimension
- threshold
- sequence
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/411—Identification of targets based on measurements of radar reflectivity
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于毫米波雷达的多人与非机动车识别方法,包括:在检测矩阵的距离维计算对应待检单元的阈值,各阈值组成检测矩阵阈值序列;在多普勒维的速度维计算对应待检单元的阈值,得到多普勒维阈值序列;将距离维阈值序列与多普勒维序列阈值做加权计算,得到最后检测阈值,检出该待检单元;找到被检出单元对应距离多普勒图中距离维的包络,并遍历每个包络的展宽,得到包络展宽序列;对每个被检出的单元计算得到点云数据;对点云数据进行聚类,得到目标体积;根据体积判断是多人或非机动车。本发明平滑掉误判的点云,增大目标的区分度,提高目标的区分度。
Description
技术领域
本发明属于目标识别技术领域,尤其涉及一种基于毫米波雷达的多人与非机动车识别方法。
背景技术
毫米波雷达体积小、重量轻、测量精度高,且穿透烟雾、灰尘能力强,具有全天时全天候工作能力等优点,已广泛使用于汽车辅助驾驶、交通流量检测、无人机定高避障、智慧交通等领域,主要应用于雷达视场内典型目标的检测与区分。在毫米波雷达安装在机器人、汽车、无人机、道闸防砸、道闸触发等载体上时;在某些场景下,需要对当前的目标做准确的区分。
传统的CFAR检测算法检测点云效果不佳,容易出现两种极端:点云效果不丰富、虚警点过多;此外仅凭点云数据做区分目标,容易误判目标类型。
发明内容
有鉴于此,本发明对雷达回波进行距离维以及速度维FFT处理,得到检测矩阵后,在距离维与速度维分别取出对应待检单元的阈值。得到距离维以及速度维阈值后进行平均计算,得到最终检测阈值与待检单元比较,若高于阈值,则被检出;根据被检出单元找到检测矩阵中对应包络;被检出单元进行解角得到点云;再对点云进行聚类,根据聚类目标计算点云展宽;最后点云展宽与包络展宽进行乘积,得到类似目标体积,根据体积判断目标类型。
本发明公开的一种基于毫米波雷达的多人与非机动车识别方法,包括以下步骤:
S1:毫米波雷达对原始回波信号进行ADC采集;
S2:对ADC数据进行距离维与速度维FFT处理得到检测矩阵;
S3:在所述检测矩阵的距离维与速度维分别计算对应待检单元的阈值,各阈值组成检测矩阵阈值序列R;
S4:在多普勒维的距离维与速度维分别计算对应待检单元的阈值,得到多普勒维阈值序列D;
S6:找到被检出单元对应距离多普勒图中距离维的包络,并遍历每个包络的展宽,若所检单元对应同一包络,则仅算一个包络展宽,否则,计算对应单元的各个包络展宽;最终得到包络展宽序列E(n);
进一步的,在检测矩阵的距离维计算对应待检单元的阈值,包括:
将上述阈值按顺序排列,得到总的距离维阈值序列R。
进一步的,S4步骤具体包括:
在多普勒维的速度维计算对应待检单元的阈值,包括:
若多普勒维中当前待检单元的速度单元数m i <=N,N=k+n,k为保护单元个数,n为参考单元个数,则向后去掉k个保护单元后,再取n个参考单元计算均值,将均值作为速度维的第D i 个阈值;
若当前待检单元的速度单元数m i >=A-N,A为总速度单元数,则向前去掉k个保护单元后,计算n个参考单元均值,得到速度维的第D(A-ni)阈值;
若当前待检单元m i >N且m i <(A-N),则向前、向后各去掉k个保护单元后,再向前、向后各取n个参考单元,计算前后参考单元2n的均值,作为速度维的第D i 个阈值;
将上述阈值按顺序排列,得到总的速度维阈值序列D。
进一步的,将步骤S3中的距离维阈值序列R与步骤S4中多普勒维序列阈值D做加权计算,具体公式为:
Ri为检测矩阵阈值序列R中第i个元素,Di为多普勒维阈值序列D中第i个元素,C R 为检测矩阵阈值序列R的中位数,为检测矩阵阈值序列R的均值,C D 为多普勒维阈值序列D的中位数,为多普勒维阈值序列D的均值。
本发明的有益效果如下:
待检单元能更好的检测出目标的点云;
点云可能误判目标类型,本发明将聚类目标展宽乘上所对应包络后降低了点云的权重,可平滑掉误判的点云,增大了目标的区分度,提高了目标的区分度以及对目标类型的区分能力;
本发明算法结构简单,运算速度快,实时性能好。
附图说明
图1本发明的识别方法流程图;
图2多人与非机动车的包络宽度对比图。
具体实施方式
下面结合附图对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或替换,均属于本发明的保护范围。
1. 雷达对原始回波信号进行ADC采集
2. 对ADC数据进行距离维与速度维FFT处理得到检测矩阵
3. 检测矩阵中当前待检单元的距离单元数若<=N(保护单元k + 参考单元n)个距离单元,则向后去掉k个保护单元后再取n个参考单元取均值,得到距离维的第个阈值;当前待检单元的距离单元数若>=总距离单元数A-N,则向前去掉k个保护单元后再取n个参考单元后再取n个参考单元取均值(),得到距离维的第阈值;当前待检单元>N且<(A-N),则向前向后各去掉k个保护单元后再各取n个参考单元,再由前后参考单元2n取均值得到距离维的第个阈值;最后得到总的距离维阈值序列R。
4. 同步骤3在多普勒维得到多普勒维阈值序列D。
Ri为检测矩阵阈值序列R中第i个元素,Di为多普勒维阈值序列D中第i个元素,C R 为检测矩阵阈值序列R的中位数,为检测矩阵阈值序列R的均值,C D 为多普勒维阈值序列D的中位数, 为多普勒维阈值序列D的均值。
6. 对应步骤5中被检出的单元找到该单元对应距离多普勒图中距离维的包络,并遍历每个包络的展宽,若所检单元对应同一包络,则仅算一个包络展宽,否则,计算对应单元的各个包络展宽;最终得到包络展宽序列E(n)。
参考图2,图2中行人和非机动车的包络宽度区分度大,图中圆圈为多人(多个行人)与非机动车对应的包络,可以有效判别出行人或非机动车。
本发明的有益效果如下:
待检单元能更好的检测出目标的点云;
点云可能误判目标类型,本发明将聚类目标展宽乘上所对应包络后降低了点云的权重,可平滑掉误判的点云,增大了目标的区分度,提高了目标的区分度以及对目标类型的区分能力;
本发明算法结构简单,运算速度快,实时性能好。
本文所使用的词语“优选的”意指用作实例、示例或例证。本文描述为“优选的”任意方面或设计不必被解释为比其他方面或设计更有利。相反,词语“优选的”的使用旨在以具体方式提出概念。如本申请中所使用的术语“或”旨在意指包含的“或”而非排除的“或”。即,除非另外指定或从上下文中清楚,“X使用A或B”意指自然包括排列的任意一个。即,如果X使用A;X使用B;或X使用A和B二者,则“X使用A或B”在前述任一示例中得到满足。
而且,尽管已经相对于一个或实现方式示出并描述了本公开,但是本领域技术人员基于对本说明书和附图的阅读和理解将会想到等价变型和修改。本公开包括所有这样的修改和变型,并且仅由所附权利要求的范围限制。特别地关于由上述组件(例如元件等)执行的各种功能,用于描述这样的组件的术语旨在对应于执行所述组件的指定功能(例如其在功能上是等价的)的任意组件(除非另外指示),即使在结构上与执行本文所示的本公开的示范性实现方式中的功能的公开结构不等同。此外,尽管本公开的特定特征已经相对于若干实现方式中的仅一个被公开,但是这种特征可以与如可以对给定或特定应用而言是期望和有利的其他实现方式的一个或其他特征组合。而且,就术语“包括”、“具有”、“含有”或其变形被用在具体实施方式或权利要求中而言,这样的术语旨在以与术语“包含”相似的方式包括。
本发明实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以多个或多个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。上述提到的存储介质可以是只读存储器,磁盘或光盘等。上述的各装置或系统,可以执行相应方法实施例中的存储方法。
综上所述,上述实施例为本发明的一种实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何背离本发明的精神实质与原理下所做的改变、修饰、代替、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (4)
1.一种基于毫米波雷达的多人与非机动车识别方法,其特征在于,包括以下步骤:
S1:毫米波雷达对原始回波信号进行ADC采集;
S2:对ADC数据进行距离维与速度维FFT处理得到检测矩阵;
S3:在所述检测矩阵的距离维计算对应待检单元的阈值,各阈值组成检测矩阵阈值序列R;
S4:在多普勒维的速度维计算对应待检单元的阈值,得到多普勒维阈值序列D;
S6:找到被检出单元对应距离多普勒图中距离维的包络,并遍历每个包络的展宽,若所检单元对应同一包络,则仅算一个包络展宽,否则,计算对应单元的各个包络展宽;最终得到包络展宽序列E(n);
S7:对每个被检出的单元进行角度FFT,再进行角度估计,得到目标对应角度,再由目标对应角度得到点云数据;
2.根据权利要求1所述的基于毫米波雷达的多人与非机动车识别方法,其特征在于,在检测矩阵的距离维计算对应待检单元的阈值,包括:
将上述阈值按顺序排列,得到总的距离维阈值序列R。
3.根据权利要求1所述的基于毫米波雷达的多人与非机动车识别方法,其特征在于,S4步骤具体包括:
在多普勒维的速度维计算对应待检单元的阈值,包括:
若多普勒维中当前待检单元的速度单元数m i <=N,N=k+n,k为保护单元个数,n为参考单元个数,则向后去掉k个保护单元后,再取n个参考单元计算均值,将均值作为速度维的第D i 个阈值;
若当前待检单元的速度单元数m i >=A-N,A为总速度单元数,则向前去掉k个保护单元后,计算n个参考单元均值,得到速度维的第D(A-ni)阈值;
将上述阈值按顺序排列,得到总的速度维阈值序列D。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211068897.2A CN115128571B (zh) | 2022-09-02 | 2022-09-02 | 一种基于毫米波雷达的多人与非机动车识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211068897.2A CN115128571B (zh) | 2022-09-02 | 2022-09-02 | 一种基于毫米波雷达的多人与非机动车识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115128571A true CN115128571A (zh) | 2022-09-30 |
CN115128571B CN115128571B (zh) | 2022-12-20 |
Family
ID=83387369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211068897.2A Active CN115128571B (zh) | 2022-09-02 | 2022-09-02 | 一种基于毫米波雷达的多人与非机动车识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115128571B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115932779A (zh) * | 2023-03-01 | 2023-04-07 | 长沙莫之比智能科技有限公司 | 基于避障雷达距离多普勒积分的枯树目标检测方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102778680A (zh) * | 2012-06-06 | 2012-11-14 | 西安电子科技大学 | 基于参数化的匀加速运动刚体群目标成像方法 |
JP2018205174A (ja) * | 2017-06-06 | 2018-12-27 | 株式会社東芝 | レーダ装置及びそのレーダ信号処理方法 |
CN111045008A (zh) * | 2020-01-15 | 2020-04-21 | 深圳市华讯方舟微电子科技有限公司 | 基于展宽计算的车载毫米波雷达目标识别方法 |
CN112505648A (zh) * | 2020-11-19 | 2021-03-16 | 西安电子科技大学 | 基于毫米波雷达回波的目标特征提取方法 |
CN112946630A (zh) * | 2021-01-27 | 2021-06-11 | 上海兰宝传感科技股份有限公司 | 一种基于毫米波雷达的人员计数跟踪方法 |
CN113253262A (zh) * | 2021-05-27 | 2021-08-13 | 长沙莫之比智能科技有限公司 | 一种基于一维距离像记录背景对比检测目标方法 |
WO2021247427A1 (en) * | 2020-05-31 | 2021-12-09 | Qualcomm Incorporated | Clustering in automotive imaging |
WO2022078799A1 (de) * | 2020-10-15 | 2022-04-21 | HELLA GmbH & Co. KGaA | Erkennungsverfahren zum erkennen von statischen objekten |
CN114742117A (zh) * | 2022-06-13 | 2022-07-12 | 长沙莫之比智能科技有限公司 | 复杂室内场景下毫米波雷达的人体生命体征检测方法 |
CN114814808A (zh) * | 2022-03-21 | 2022-07-29 | 森思泰克河北科技有限公司 | 基于雷达的脚踢信号识别方法、雷达、存储介质及汽车 |
-
2022
- 2022-09-02 CN CN202211068897.2A patent/CN115128571B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102778680A (zh) * | 2012-06-06 | 2012-11-14 | 西安电子科技大学 | 基于参数化的匀加速运动刚体群目标成像方法 |
JP2018205174A (ja) * | 2017-06-06 | 2018-12-27 | 株式会社東芝 | レーダ装置及びそのレーダ信号処理方法 |
CN111045008A (zh) * | 2020-01-15 | 2020-04-21 | 深圳市华讯方舟微电子科技有限公司 | 基于展宽计算的车载毫米波雷达目标识别方法 |
WO2021247427A1 (en) * | 2020-05-31 | 2021-12-09 | Qualcomm Incorporated | Clustering in automotive imaging |
WO2022078799A1 (de) * | 2020-10-15 | 2022-04-21 | HELLA GmbH & Co. KGaA | Erkennungsverfahren zum erkennen von statischen objekten |
CN112505648A (zh) * | 2020-11-19 | 2021-03-16 | 西安电子科技大学 | 基于毫米波雷达回波的目标特征提取方法 |
CN112946630A (zh) * | 2021-01-27 | 2021-06-11 | 上海兰宝传感科技股份有限公司 | 一种基于毫米波雷达的人员计数跟踪方法 |
CN113253262A (zh) * | 2021-05-27 | 2021-08-13 | 长沙莫之比智能科技有限公司 | 一种基于一维距离像记录背景对比检测目标方法 |
CN114814808A (zh) * | 2022-03-21 | 2022-07-29 | 森思泰克河北科技有限公司 | 基于雷达的脚踢信号识别方法、雷达、存储介质及汽车 |
CN114742117A (zh) * | 2022-06-13 | 2022-07-12 | 长沙莫之比智能科技有限公司 | 复杂室内场景下毫米波雷达的人体生命体征检测方法 |
Non-Patent Citations (3)
Title |
---|
THOMAS WAGNER 等: "Modification of DBSCAN and application to range/Doppler/DoA measurements for pedestrian recognition with an automotive radar system", 《2015 EUROPEAN RADAR CONFERENCE (EURAD)》 * |
林青松 等: "低分辨雷达回波序列轮廓像目标分类方法研究", 《现代雷达》 * |
薛培林 等: "基于信息融合的城市自主车辆实时目标识别", 《机械工程学报》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115932779A (zh) * | 2023-03-01 | 2023-04-07 | 长沙莫之比智能科技有限公司 | 基于避障雷达距离多普勒积分的枯树目标检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115128571B (zh) | 2022-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9262838B2 (en) | Method and apparatus for detecting traffic video information | |
CN113009441B (zh) | 一种雷达运动反射面多径目标的识别方法及装置 | |
US20240053468A1 (en) | Vehicle-mounted bsd millimeter wave radar based method for obstacle recognition at low speed | |
CN109696676B (zh) | 一种有效障碍物目标确定方法、装置和车辆 | |
CN110379178A (zh) | 基于毫米波雷达成像的无人驾驶汽车智能泊车方法 | |
CN112526521A (zh) | 一种汽车毫米波防撞雷达的多目标跟踪方法 | |
US8212717B2 (en) | Radar imaging system and method using second moment spatial variance | |
CN115061113B (zh) | 用于雷达的目标检测模型训练方法、装置及存储介质 | |
CN113009448A (zh) | 多径目标的检测方法、装置、设备和存储介质 | |
CN112731307A (zh) | 基于距离-角度联合估计的ratm-cfar检测器及检测方法 | |
CN114114192A (zh) | 集群目标检测方法 | |
CN115128571B (zh) | 一种基于毫米波雷达的多人与非机动车识别方法 | |
CN116148862B (zh) | 一种探鸟雷达飞鸟综合预警评估方法 | |
CN104035084A (zh) | 一种用于非均匀杂波背景的动态规划检测前跟踪方法 | |
CN113820686B (zh) | 一种基于航迹生成杂波图处理雷达一次点迹的方法 | |
CN114488053B (zh) | 一种基于毫米波雷达的静止车辆判别方法 | |
CN118795421A (zh) | 用于雷达的杂波抑制方法、装置及存储介质 | |
CN111337894B (zh) | 一种智能参考单元平均恒虚警检测方法 | |
Kruse et al. | Target classification based on near-distance radar sensors | |
CN112014822B (zh) | 车载雷达测量数据识别方法、装置、介质和电子装置 | |
CN114814778B (zh) | 一种基于毫米波雷达的载体速度解算方法 | |
CN113866750A (zh) | 一种基于毫米波雷达的行人目标检测和跟踪方法 | |
CN113625266A (zh) | 应用雷达检测低速目标的方法、装置、存储介质和设备 | |
Tang et al. | Experimental results of target classification using mm wave corner radar sensors | |
CN111273249A (zh) | 一种基于雷达虚警预处理时间的智能杂波分区方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |