CN115121970A - Titanium alloy drilling system utilizing infrared picosecond ultrafast laser - Google Patents
Titanium alloy drilling system utilizing infrared picosecond ultrafast laser Download PDFInfo
- Publication number
- CN115121970A CN115121970A CN202110323093.1A CN202110323093A CN115121970A CN 115121970 A CN115121970 A CN 115121970A CN 202110323093 A CN202110323093 A CN 202110323093A CN 115121970 A CN115121970 A CN 115121970A
- Authority
- CN
- China
- Prior art keywords
- laser
- laser light
- mirror
- titanium alloy
- light reflected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 31
- 238000005553 drilling Methods 0.000 title claims abstract description 27
- 238000006243 chemical reaction Methods 0.000 claims abstract description 20
- 230000010287 polarization Effects 0.000 claims abstract description 9
- 230000001131 transforming effect Effects 0.000 claims description 13
- 230000003287 optical effect Effects 0.000 claims description 7
- 230000009466 transformation Effects 0.000 claims description 6
- 241001270131 Agaricus moelleri Species 0.000 claims description 3
- 238000003754 machining Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
- B23K26/382—Removing material by boring or cutting by boring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
- B23K26/0624—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0643—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
- B23K26/702—Auxiliary equipment
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
技术领域technical field
本发明涉及利用超快激光的加工,具体地,涉及利用红外皮秒超快激光的钛合金钻孔加工系统。The present invention relates to processing using ultrafast laser, in particular, to a titanium alloy drilling processing system using infrared picosecond ultrafast laser.
背景技术Background technique
目前,在利用超快激光的加工技术中,一般利用纳秒激光对材料进行加工,纳秒激光指的是激光的单个脉冲作用时间在纳秒范围内。利用纳秒激光的加工方式是利用高能量的激光光束在进行聚焦后照射材料表面,使其发生物理或化学反应,本质上,利用纳秒激光的加工方式是一种热加工方式,但由于作用时间短,通常在几个纳秒范围内,所以材料受到热影响的区域也不会非常大,从而能够保证加工的效果与加工速度。At present, in the processing technology using ultrafast laser, nanosecond laser is generally used to process materials, and nanosecond laser means that the action time of a single pulse of laser is in the nanosecond range. The processing method using nanosecond laser is to use a high-energy laser beam to irradiate the surface of the material after focusing to cause a physical or chemical reaction. In essence, the processing method using nanosecond laser is a thermal processing method, but due to its effect The time is short, usually in the range of several nanoseconds, so the area of the material affected by heat is not very large, so that the processing effect and processing speed can be guaranteed.
此外,除纳秒激光之外,皮秒激光也具有超短脉冲时间,皮秒激光的单个脉冲作用时间在皮秒范围内,利用皮秒激光的加工方式对于材料的热影响更小,甚至于可以忽略不计。相比于利用纳秒激光的加工,整个加工过程中没有重铸材料,加工过程干净,激光能量的吸收对材料或波长的依赖性更小,因此,更能适用于微精密激光加工领域。In addition, in addition to nanosecond lasers, picosecond lasers also have ultra-short pulse times. The action time of a single pulse of picosecond lasers is in the picosecond range. The processing method using picosecond lasers has less thermal impact on materials, and even can be ignored. Compared with the processing with nanosecond laser, there is no recast material in the whole processing process, the processing process is clean, and the absorption of laser energy is less dependent on the material or wavelength. Therefore, it is more suitable for the field of micro-precision laser processing.
由于钛合金具有强度高的特性,目前针对钛合金膜片的钻孔加工一般利用纳秒激光钻孔,然而,利用纳秒激光对钛合金膜片的钻孔加工存在以下问题:1)加工形成的孔的直径>0.15mm,无法满足孔的直径<0.1mm的微孔加工需求;2)存在对于材料的热影响比较大的问题,有烧黑现象;3)利用纳秒激光加工会影响产品的性能,并且存在加工残渣。Due to the high strength of titanium alloys, nanosecond laser drilling is generally used for the drilling of titanium alloy diaphragms at present. However, the drilling of titanium alloy diaphragms by nanosecond lasers has the following problems: The diameter of the hole is more than 0.15mm, which cannot meet the requirements of micro-hole processing with the diameter of the hole less than 0.1mm; 2) There is a problem of a relatively large thermal impact on the material, and there is a phenomenon of burning black; 3) The use of nanosecond laser processing will affect the product performance and the presence of processing residues.
发明内容SUMMARY OF THE INVENTION
为了解决钛合金钻孔加工中存在的问题,本发明提供一种利用红外皮秒超快激光的钛合金钻孔加工系统,其包括:激光光源,其配置为发射红外皮秒超快激光;第一激光反射镜,其配置为对所述激光光源发射的激光进行反射;第二激光反射镜,其配置为对所述第一激光反射镜所反射的激光进行反射,以使所述第二激光反射镜所反射的激光与第一激光反射镜的入射激光平行;激光变换单元,其配置为改变所述第二激光反射镜所反射的激光的偏振态、光束圆度、光斑尺寸、能量分布和发散角;以及多轴振镜及聚焦单元,其配置为:改变通过所述激光变换单元的激光在要加工的钛合金膜片的入射角,并且对激光进行聚焦,以进行钻孔加工。In order to solve the problems existing in the drilling processing of titanium alloys, the present invention provides a titanium alloy drilling processing system using an infrared picosecond ultrafast laser, which includes: a laser light source configured to emit infrared picosecond ultrafast lasers; A laser reflecting mirror configured to reflect the laser light emitted by the laser light source; a second laser reflecting mirror configured to reflect the laser light reflected by the first laser reflecting mirror, so that the second laser light The laser reflected by the mirror is parallel to the incident laser of the first laser mirror; the laser conversion unit is configured to change the polarization state, beam roundness, spot size, energy distribution and Divergence angle; and a multi-axis galvanometer and a focusing unit, which are configured to: change the incident angle of the laser beam passing through the laser conversion unit on the titanium alloy diaphragm to be processed, and focus the laser beam to perform drilling processing.
可选地,所述激光变换单元包括:第一变换装置,其配置为改变所述第二激光反射镜所反射的激光的光斑尺寸、光束圆度和偏振态;以及第二变换装置,其配置为改变所述第一变换装置输出的激光的能量分布和发散角。Optionally, the laser transforming unit includes: a first transforming device configured to change the spot size, beam circularity and polarization state of the laser light reflected by the second laser mirror; and a second transforming device configured In order to change the energy distribution and divergence angle of the laser light output by the first conversion device.
可选地,所述系统进一步包括:第三激光反射镜,其配置为对所述第一变换装置输出的激光进行反射;以及第四激光反射镜,其配置为对所述第三激光反射镜所反射的激光进行反射,以使所述第四激光反射镜所反射的激光与第三激光反射镜的入射激光平行。Optionally, the system further includes: a third laser mirror configured to reflect the laser light output by the first conversion device; and a fourth laser mirror configured to reflect the third laser mirror The reflected laser light is reflected so that the laser light reflected by the fourth laser mirror is parallel to the incident laser light of the third laser mirror.
可选地,所述第一变换装置包括:扩束镜,其配置为改变所述第二激光反射镜反射的激光的光斑尺寸;以及偏振镜,其配置为改变通过所述扩束镜的激光的光束圆度和偏振态。Optionally, the first transforming device includes: a beam expander configured to change the spot size of the laser light reflected by the second laser mirror; and a polarizer configured to change the laser light passing through the beam expander beam circularity and polarization state.
可选地,所述第二变换装置包括:二元光学变换元件,其配置为将所述第四激光反射镜反射的激光的能量分布从高斯分布改变为平顶分布;以及波片,其配置为改变通过所述二元光学变换元件的激光的发散角。Optionally, the second transforming device includes: a binary optical transforming element configured to change the energy distribution of the laser light reflected by the fourth laser mirror from a Gaussian distribution to a flat-top distribution; and a wave plate configured To change the divergence angle of the laser light passing through the binary optical conversion element.
可选地,所述系统进一步包括:加工夹具,其配置为对要加工的钛合金膜片进行固定;以及运动导轨,其配置为使所述加工夹具能够移动。Optionally, the system further includes: a processing fixture configured to fix the titanium alloy diaphragm to be processed; and a moving guide rail configured to enable the processing fixture to move.
可选地,所述激光光源发射的激光的功率为100W。Optionally, the power of the laser light emitted by the laser light source is 100W.
本发明的利用红外皮秒超快激光的钛合金钻孔加工系统能够满足孔的直径<0.1mm的加工需求,并且对于材料的热影响较小,加工过程干净,不会出现加工残渣。The titanium alloy drilling processing system utilizing the infrared picosecond ultrafast laser of the invention can meet the processing requirement of the diameter of the hole < 0.1 mm, and has less thermal influence on the material, the processing process is clean, and no processing residues appear.
附图说明Description of drawings
图1为根据本发明的示例性实施方案的利用红外皮秒超快激光的钛合金钻孔加工系统的示意图;1 is a schematic diagram of a titanium alloy drilling processing system using an infrared picosecond ultrafast laser according to an exemplary embodiment of the present invention;
图2为根据本发明的示例性实施方案的利用红外皮秒超快激光的钛合金钻孔加工系统中的激光光路的示意图;以及2 is a schematic diagram of a laser light path in a titanium alloy drilling processing system using an infrared picosecond ultrafast laser according to an exemplary embodiment of the present invention; and
图3为利用根据本发明的示例性实施方案的利用红外皮秒超快激光的钛合金钻孔加工系统加工的钛合金膜片的孔的效果图。3 is an effect diagram of a hole of a titanium alloy membrane processed by a titanium alloy drilling processing system using an infrared picosecond ultrafast laser according to an exemplary embodiment of the present invention.
具体实施方式Detailed ways
应当理解,此处所描述的具体实施方案仅用于解释本发明,并不用于限制本发明。It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
下面将结合图1至图3详细描述本发明的示例性实施方案。Exemplary embodiments of the present invention will be described in detail below with reference to FIGS. 1 to 3 .
根据本发明的示例性实施方案的利用红外皮秒超快激光的钛合金钻孔加工系统1可以包括:激光光源10、第一激光反射镜20、第二激光反射镜30、激光变换单元40以及多轴振镜及聚焦单元50。The titanium alloy drilling processing system 1 using infrared picosecond ultrafast laser according to the exemplary embodiment of the present invention may include: a
在本实施方案中,激光光源10可以发射红外皮秒超快激光,在本实施方案中,红外皮秒超快激光的功率可以设置为100W。In this embodiment, the
在本实施方案中,可以设置第一激光反射镜20和第二激光反射镜30,第一激光反射镜20可以对激光光源10发射的激光进行反射,可以设置为使反射激光与入射激光呈90°,即,以入射角45°来布置第一激光反射镜20,也可以根据实际需要以其他数值的入射角来布置第一激光反射镜。并且,第二激光反射镜30可以对第一激光反射镜20所反射的激光进一步进行反射,可以将第二激光反射镜30设置为使其反射的激光与第一反射镜20的入射激光平行。In this embodiment, a
激光变换单元40可以改变第二激光反射镜30所反射的激光的偏振态、光束圆度、光斑尺寸、能量分布和发散角。在本实施方案中,激光变换单元40可以包括第一变换装置41和第二变换装置42,具体地,第一变换装置41可以通过扩束镜411改变激光的光斑尺寸,并且通过偏振镜412改变激光的光束圆度和偏振态。第二变换装置42可以通过二元光学变换元件421将第一变换装置41输出的激光的能量分布从高斯分布改变为平顶分布,并且通过波片422改变激光的发散角。The laser transforming unit 40 can change the polarization state, beam roundness, spot size, energy distribution and divergence angle of the laser light reflected by the
此外,在本实施方案中,可以在第一变换装置41与第二变换装置42之间进一步设置第三激光反射镜60和第四激光反射镜70。具体地,第三激光反射镜60可以对第一变换装置41输出的激光(在本实施方案中,可以是通过偏振镜412的激光)进行反射,类似于上述第一激光反射镜20,可以设置为使反射激光与入射激光呈90°,即,以入射角45°来布置第三激光反射镜60。并且,第四激光反射镜70可以对第三激光反射镜60所反射的激光进行进一步反射,类似于第二激光反射镜30,可以将第四激光反射镜70设置为使其反射的激光与第三反射镜60的入射激光平行。Furthermore, in this embodiment, a
整体上,第四激光反射镜70所反射的激光的方向与激光光源10发射的激光的方向相同。并且,在本实施方案中,为了硬件的布局能够较为容易地实现,设置了四个激光反射镜,以改变激光的传输路径,但是不限于此,也可以根据实际需要设置不同数量的激光反射镜,从而实现不同的激光传输路径。As a whole, the direction of the laser light reflected by the
进一步地,本实施方案的系统1中的多轴振镜及聚焦单元50可以改变通过激光变换单元40的激光(在本实施方案中,可以是通过波片422的激光)在要加工的钛合金膜片的入射角,并且对激光进行聚焦,以进行钻孔加工。根据实际需求,通过改变激光的入射角,加工后形成的孔的内壁可以呈竖直状,也可以倾斜成不同角度。Further, the multi-axis galvanometer and focusing
此外,在本实施方案中,利用红外皮秒超快激光的钛合金钻孔加工系统1可以进一步包括加工夹具80和运动导轨90(未示出)。加工夹具80可以对要加工的钛合金膜片进行固定,并且运动导轨90可以使加工夹具80能够移动,从而可以与移动的激光进行配合,使加工效果得到保证。In addition, in this embodiment, the titanium alloy drilling processing system 1 using an infrared picosecond ultrafast laser may further include a
在本实施方案的利用红外皮秒超快激光的钛合金钻孔加工系统1中,为了优化系统1的硬件的整体布局,第一激光反射镜20、第二激光反射镜30、第三激光反射镜60、第四激光反射镜70以及激光变换单元40中的各个光学元件可以集成为一个模块,在本实施方案中,该模块可以称为光路调节和传输模块。In the titanium alloy drilling processing system 1 using infrared picosecond ultrafast laser in this embodiment, in order to optimize the overall layout of the hardware of the system 1, the
同样地,多轴振镜及聚焦单元50也可以集成为一个模块,在本实施方案中,该模块可以称为多轴振镜及聚焦模块。Likewise, the multi-axis galvanometer and the focusing
此外,加工夹具80和运动导轨90也可以集成为一个模块,在本实施方案中,该模块可以称为加工夹具和运动平台模块。In addition, the
本实施方案的利用红外皮秒超快激光的钛合金钻孔加工系统能够满足孔的直径<0.1mm的加工需求,并且对于材料的热影响较小,成型的孔的尺寸精度高,并且不会出现加工残渣。The titanium alloy drilling processing system using the infrared picosecond ultrafast laser of this embodiment can meet the processing requirements of the diameter of the hole < 0.1 mm, and has less thermal influence on the material, the formed hole has high dimensional accuracy, and will not Processing residues appear.
上面结合附图对本发明的实施方案进行了描述,但本发明并不局限于上述的具体实施方案,上述的具体实施方案仅仅是示意性的,而不是限制性的,本领域技术人员在本发明的启示下,在不脱离本发明的宗旨和权利要求所保护的范围的情况下,还可以做出很多形式,这些均属于本发明的保护范围。The embodiments of the present invention are described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific embodiments. The above-mentioned specific embodiments are only illustrative rather than restrictive. Under the inspiration of the present invention, without departing from the spirit of the present invention and the protection scope of the claims, many forms can also be made, which all belong to the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110323093.1A CN115121970A (en) | 2021-03-26 | 2021-03-26 | Titanium alloy drilling system utilizing infrared picosecond ultrafast laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110323093.1A CN115121970A (en) | 2021-03-26 | 2021-03-26 | Titanium alloy drilling system utilizing infrared picosecond ultrafast laser |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115121970A true CN115121970A (en) | 2022-09-30 |
Family
ID=83374737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110323093.1A Pending CN115121970A (en) | 2021-03-26 | 2021-03-26 | Titanium alloy drilling system utilizing infrared picosecond ultrafast laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115121970A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103645563A (en) * | 2013-12-25 | 2014-03-19 | 苏州德龙激光股份有限公司 | Laser shaping device |
CN108031992A (en) * | 2017-12-29 | 2018-05-15 | 苏州德龙激光股份有限公司 | The ultrafast systems of processing of LTCC and its method |
CN108602160A (en) * | 2016-02-15 | 2018-09-28 | 三菱重工业株式会社 | Laser machine |
CN110640338A (en) * | 2019-08-21 | 2020-01-03 | 江苏大学 | A composite pulsed laser deep hole machining device based on Bessel beam |
CN110919174A (en) * | 2019-12-20 | 2020-03-27 | 武汉华工激光工程有限责任公司 | Rotary light path light beam device and rotary light path light beam system |
CN211991452U (en) * | 2020-03-23 | 2020-11-24 | 南京萃智激光应用技术研究院有限公司 | Ultraviolet picosecond laser processing device |
CN215091441U (en) * | 2021-03-26 | 2021-12-10 | 苏州运达恒兴科技有限公司 | Titanium alloy drilling system utilizing infrared picosecond ultrafast laser |
-
2021
- 2021-03-26 CN CN202110323093.1A patent/CN115121970A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103645563A (en) * | 2013-12-25 | 2014-03-19 | 苏州德龙激光股份有限公司 | Laser shaping device |
CN108602160A (en) * | 2016-02-15 | 2018-09-28 | 三菱重工业株式会社 | Laser machine |
CN108031992A (en) * | 2017-12-29 | 2018-05-15 | 苏州德龙激光股份有限公司 | The ultrafast systems of processing of LTCC and its method |
CN110640338A (en) * | 2019-08-21 | 2020-01-03 | 江苏大学 | A composite pulsed laser deep hole machining device based on Bessel beam |
CN110919174A (en) * | 2019-12-20 | 2020-03-27 | 武汉华工激光工程有限责任公司 | Rotary light path light beam device and rotary light path light beam system |
CN211991452U (en) * | 2020-03-23 | 2020-11-24 | 南京萃智激光应用技术研究院有限公司 | Ultraviolet picosecond laser processing device |
CN215091441U (en) * | 2021-03-26 | 2021-12-10 | 苏州运达恒兴科技有限公司 | Titanium alloy drilling system utilizing infrared picosecond ultrafast laser |
Non-Patent Citations (1)
Title |
---|
黄兴滨: "《物理光学基础》", 31 August 2016, 黑龙江大学出版社, pages: 186 - 195 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110640338B (en) | A composite pulsed laser deep hole machining device based on Bessel beam | |
CN114096371B (en) | Phase-modified quasi-non-diffracted laser beam for high angle laser machining of transparent workpieces | |
US9436012B2 (en) | Method and apparatus for laser cutting | |
CN110494255B (en) | Apparatus and method for laser machining transparent workpieces using phase-shifted focal lines | |
KR102705403B1 (en) | Active control of laser processing of transparent workpieces | |
CN112867578A (en) | Laser processing apparatus, method of operating the same, and method of processing workpiece using the same | |
TW201350246A (en) | Method for cutting workpiece by layer and apparatus by same | |
CN110753596B (en) | Device and method for laser-based separation of transparent and fragile workpieces | |
US11858063B2 (en) | Phase-modified quasi-non-diffracting laser beams for high angle laser processing of transparent workpieces | |
CN111604583B (en) | Dual-wavelength femtosecond laser color marking device | |
CN113056345A (en) | System and method for modifying transparent substrates | |
CN103934577B (en) | Stray-light-free laser processing system with adjustable cutting width | |
CN108723012A (en) | A kind of integrated laser cleaning electro-optical system | |
CN111302609A (en) | Method and device for double-laser-beam composite welding of glass | |
CN114364484A (en) | Method for laser machining transparent workpieces using curved quasi-non-diffractive laser beams | |
CN215091441U (en) | Titanium alloy drilling system utilizing infrared picosecond ultrafast laser | |
WO2021035565A1 (en) | Bessel beam with axicon for glass cutting | |
CN110587118A (en) | Double-laser beam combining device and double-laser composite processing light beam system | |
CN115121970A (en) | Titanium alloy drilling system utilizing infrared picosecond ultrafast laser | |
CN104526160B (en) | A kind of laser processing and laser-processing system | |
TWI792876B (en) | Laser Drilling Device | |
CN215091338U (en) | Titanium alloy processing tank system utilizing infrared picosecond ultrafast laser | |
KR100862522B1 (en) | Laser processing device and substrate cutting method | |
CN116018234A (en) | Phase-modified quasi-non-diffracted laser beam for high angle laser machining of transparent workpieces | |
CN113341628A (en) | Femtosecond ultra-continuous white light generating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |