CN115116842B - Application of perfluorinated substituent-containing polyvinylamine copolymer in monocrystalline silicon piece alkali polishing - Google Patents
Application of perfluorinated substituent-containing polyvinylamine copolymer in monocrystalline silicon piece alkali polishing Download PDFInfo
- Publication number
- CN115116842B CN115116842B CN202210751415.7A CN202210751415A CN115116842B CN 115116842 B CN115116842 B CN 115116842B CN 202210751415 A CN202210751415 A CN 202210751415A CN 115116842 B CN115116842 B CN 115116842B
- Authority
- CN
- China
- Prior art keywords
- polishing
- monocrystalline silicon
- solution
- alkali
- silicon wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 88
- 229910021421 monocrystalline silicon Inorganic materials 0.000 title claims abstract description 73
- 229920001577 copolymer Polymers 0.000 title claims abstract description 43
- 239000003513 alkali Substances 0.000 title claims abstract description 41
- 235000012431 wafers Nutrition 0.000 claims abstract description 74
- 239000000654 additive Substances 0.000 claims abstract description 17
- 230000000996 additive effect Effects 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 12
- -1 ammonia ions Chemical class 0.000 claims abstract description 9
- 229920002873 Polyethylenimine Polymers 0.000 claims abstract description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 48
- 239000000047 product Substances 0.000 claims description 34
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 26
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 18
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical group C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 claims description 17
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical group N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 claims description 16
- 238000006460 hydrolysis reaction Methods 0.000 claims description 16
- 239000002244 precipitate Substances 0.000 claims description 15
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- 230000007062 hydrolysis Effects 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 238000004140 cleaning Methods 0.000 claims description 9
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 9
- 229940071870 hydroiodic acid Drugs 0.000 claims description 9
- 239000004711 α-olefin Substances 0.000 claims description 8
- 238000007517 polishing process Methods 0.000 claims description 6
- 230000005588 protonation Effects 0.000 claims description 6
- 238000000746 purification Methods 0.000 claims description 6
- 239000003999 initiator Substances 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1 -dodecene Natural products CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 claims description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 claims description 2
- 230000009471 action Effects 0.000 claims description 2
- 238000007334 copolymerization reaction Methods 0.000 claims description 2
- 229940069096 dodecene Drugs 0.000 claims description 2
- 238000002203 pretreatment Methods 0.000 claims description 2
- 150000003254 radicals Chemical class 0.000 claims description 2
- 239000000413 hydrolysate Substances 0.000 claims 5
- 238000001035 drying Methods 0.000 claims 2
- 238000005406 washing Methods 0.000 claims 2
- 108010009736 Protein Hydrolysates Proteins 0.000 claims 1
- 235000019441 ethanol Nutrition 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- ZCYXXKJEDCHMGH-UHFFFAOYSA-N nonane Chemical compound CCCC[CH]CCCC ZCYXXKJEDCHMGH-UHFFFAOYSA-N 0.000 claims 1
- BKIMMITUMNQMOS-UHFFFAOYSA-N normal nonane Natural products CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 claims 1
- 238000007781 pre-processing Methods 0.000 claims 1
- 238000000967 suction filtration Methods 0.000 claims 1
- 238000001308 synthesis method Methods 0.000 claims 1
- 229920002554 vinyl polymer Polymers 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 8
- 125000005010 perfluoroalkyl group Chemical group 0.000 abstract description 6
- 125000000524 functional group Chemical group 0.000 abstract description 4
- 229920006317 cationic polymer Polymers 0.000 abstract description 2
- 230000002209 hydrophobic effect Effects 0.000 abstract description 2
- 239000003223 protective agent Substances 0.000 abstract description 2
- 229910021529 ammonia Inorganic materials 0.000 abstract 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 32
- 239000007788 liquid Substances 0.000 description 15
- 125000001424 substituent group Chemical group 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- 238000010521 absorption reaction Methods 0.000 description 8
- 229910021419 crystalline silicon Inorganic materials 0.000 description 5
- 238000002161 passivation Methods 0.000 description 5
- 101001073212 Arabidopsis thaliana Peroxidase 33 Proteins 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 4
- 101001123325 Homo sapiens Peroxisome proliferator-activated receptor gamma coactivator 1-beta Proteins 0.000 description 4
- 102100028961 Peroxisome proliferator-activated receptor gamma coactivator 1-beta Human genes 0.000 description 4
- 125000003368 amide group Chemical group 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N 1-nonene Chemical compound CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- DCTOHCCUXLBQMS-UHFFFAOYSA-N 1-undecene Chemical compound CCCCCCCCCC=C DCTOHCCUXLBQMS-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N methylene hexane Natural products CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- GVEUEBXMTMZVSD-UHFFFAOYSA-N 3,3,4,4,5,5,6,6,6-nonafluorohex-1-ene Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C=C GVEUEBXMTMZVSD-UHFFFAOYSA-N 0.000 description 1
- NKAMGQZDVMQEJL-UHFFFAOYSA-N 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodec-1-ene Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C=C NKAMGQZDVMQEJL-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229910000939 field's metal Inorganic materials 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/06—Other polishing compositions
- C09G1/14—Other polishing compositions based on non-waxy substances
- C09G1/18—Other polishing compositions based on non-waxy substances on other substances
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
技术领域Technical Field
本发明属于高分子材料与太阳能电池技术领域,具体涉及含全氟取代基的聚乙烯胺共聚物在单晶硅片碱抛光中的应用。The invention belongs to the technical field of polymer materials and solar cells, and particularly relates to application of a polyvinylamine copolymer containing a perfluorinated substituent in alkali polishing of a single crystal silicon wafer.
背景技术Background Art
太阳能光伏发电具有很好的应用前景,目前光伏行业发展趋势为提效降本,而常规结构电池的效率已无较大提升空间,研发热点为高效的单晶硅太阳能电池。目前市场存在的各种P型高效电池中,只有背钝化技术(PERC)能够在成本持平的基础上,最大程度地提高电池的性能。该技术涉及的产品效率高、开压高、封装损失低、具有更好的弱光响应,是抢占主流市场的战略性产品。Solar photovoltaic power generation has a good application prospect. The current development trend of the photovoltaic industry is to improve efficiency and reduce costs. However, the efficiency of conventional structure batteries has no room for improvement. The research and development hotspot is high-efficiency monocrystalline silicon solar cells. Among the various P-type high-efficiency batteries currently on the market, only the rear passivation technology (PERC) can maximize the performance of the battery on the basis of cost parity. The products involved in this technology have high efficiency, high opening voltage, low packaging loss, and better weak light response. It is a strategic product to seize the mainstream market.
目前PERC电池生产工艺流程为:湿法碱制绒、低压扩散制结、刻蚀和背抛光、ALD氧化铝镀膜、PECVD正/反氮化硅镀膜、印刷烧结、测试分选。PERC电池背钝化技术是在电池背表面沉积一层Al2O3膜,主要通过Al2O3膜含有负电荷的特性对电池背表面实现良好的钝化效果,通过在钝化膜上印刷电极,使得金属电极与硅能够形成欧姆接触,使得光生载流子得到有效收集。在PERC太阳能电池的制备工艺流程中,对硅片的背面进行抛光可以更有效地提高太阳能电池片的性能。At present, the production process of PERC cells is as follows: wet alkaline texturing, low-pressure diffusion junction, etching and back polishing, ALD aluminum oxide coating, PECVD positive/reverse silicon nitride coating, printing and sintering, and testing and sorting. The PERC cell back passivation technology is to deposit a layer of Al 2 O 3 film on the back surface of the cell. The Al 2 O 3 film mainly uses the negative charge characteristic to achieve a good passivation effect on the back surface of the cell. By printing electrodes on the passivation film, the metal electrode and silicon can form an ohmic contact, so that the photogenerated carriers can be effectively collected. In the preparation process of PERC solar cells, polishing the back of the silicon wafer can more effectively improve the performance of solar cells.
硅片的背面抛光工艺是对硅片背面进行镀膜前的抛光处理,抛光后背表面平坦,增加了太阳光谱中长波波段的光在硅片背表面的反射,增加透射光返回硅片内部二次吸收,提升了IQE,增加了输出电流;同时抛光后硅片背表面比表面积减小,从而降低了背面光生载流子的复合,提升了硅片寿命,同时提升了钝化效果;抛光后硅片背场印刷烧结后产生的铝团聚更容易与硅接触,使背场合金层的有效面积增加。The back-side polishing process of silicon wafers is to polish the back side of the silicon wafer before coating. After polishing, the back surface is flat, which increases the reflection of long-wave light in the solar spectrum on the back surface of the silicon wafer, increases the secondary absorption of transmitted light returning to the silicon wafer, improves IQE, and increases output current; at the same time, the specific surface area of the back surface of the silicon wafer is reduced after polishing, thereby reducing the recombination of photogenerated carriers on the back side, increasing the life of the silicon wafer, and improving the passivation effect; after polishing, the aluminum agglomerates produced after the back field printing and sintering of the silicon wafer are more likely to contact with silicon, increasing the effective area of the back field alloy layer.
目前,工业化单晶硅电池片生产抛光步骤中,主要使用三种抛光剂:1、硝酸、氢氟酸组成的蚀刻液,缺陷在于,抛光处理后的硅片抛光反射率较低、生产成本较高,同时环境污染比较严重;2、四甲基氢氧化铵类,这类抛光剂处理后的硅片反射率较高,但缺陷在于,抛光液成本较高、环境污染比较严重,抛光处理成本较高;3、浓碱类,使用高浓度的氢氧化钾、氢氧化钠无机碱抛光,缺陷在于,工艺不稳定,反应过程不易控制,同时碱会腐蚀硅片正面的氧化硅,从而破坏正面PN结,导致电池失效。在此情况下,使用碱抛光添加剂保护正面氧化硅层即可起到扬长避短的作用,据此,单晶硅碱抛光添加剂的保护效果成为提高单晶硅太阳能电池性能的关键。At present, three types of polishing agents are mainly used in the polishing steps of industrialized monocrystalline silicon cell production: 1. Etching liquid composed of nitric acid and hydrofluoric acid. The disadvantage is that the reflectivity of the silicon wafer after polishing is low, the production cost is high, and the environmental pollution is serious; 2. Tetramethylammonium hydroxide. The reflectivity of the silicon wafer treated with this type of polishing agent is high, but the disadvantage is that the cost of the polishing liquid is high, the environmental pollution is serious, and the polishing cost is high; 3. Concentrated alkali, using high-concentration potassium hydroxide and sodium hydroxide inorganic alkali for polishing, the disadvantage is that the process is unstable and the reaction process is difficult to control. At the same time, the alkali will corrode the silicon oxide on the front of the silicon wafer, thereby destroying the front PN junction and causing the battery to fail. In this case, using alkali polishing additives to protect the front silicon oxide layer can play a role in leveraging strengths and avoiding weaknesses. Based on this, the protective effect of monocrystalline silicon alkali polishing additives has become the key to improving the performance of monocrystalline silicon solar cells.
发明内容Summary of the invention
本发明目的在于提供一种全氟取代基的聚乙烯胺共聚物的合成方法,同时提供全氟取代基的聚乙烯胺共聚物在钙钛矿阻变存储器中的应用是本发明的另一发明目的。The object of the present invention is to provide a method for synthesizing a polyvinylamine copolymer having a perfluorinated substituent. Another object of the present invention is to provide an application of the polyvinylamine copolymer having a perfluorinated substituent in a perovskite resistive random access memory.
基于上述目的,本发明采取以下技术方案:Based on the above purpose, the present invention adopts the following technical solutions:
含全氟取代基的聚乙烯胺共聚物在单晶硅片碱抛光中的应用。Application of polyvinylamine copolymers containing perfluorinated substituents in alkaline polishing of single crystal silicon wafers.
将全氟取代基的聚乙烯胺共聚物配置成碱抛光液对单晶硅片进行抛光处理。The polyvinylamine copolymer with a perfluorinated substituent is configured into an alkaline polishing liquid to polish a single crystal silicon wafer.
单晶硅片抛光处理包括以下步骤:The polishing process of single crystal silicon wafers includes the following steps:
1)对单晶硅片清洗预处理;1) Cleaning and pre-treating the single crystal silicon wafer;
2)将步骤1)预处理后的单晶硅片置于碱抛光液中,对单晶硅片的背面进行抛光;碱抛光液的重量百分比组成为:添加剂0.5-3.5%、碱剂1-3%、余量为水,所述添加剂为全氟取代基的聚乙烯胺共聚物;2) placing the single crystal silicon wafer pretreated in step 1) in an alkaline polishing solution to polish the back of the single crystal silicon wafer; the alkaline polishing solution comprises by weight: 0.5-3.5% additive, 1-3% alkaline agent, and the balance water, wherein the additive is a polyvinylamine copolymer with a perfluorinated substituent;
3)将步骤2)抛光后的单晶硅片纯化处理即可。3) Purify the single crystal silicon wafer after polishing in step 2).
碱抛光液的制备方法为:先将添加剂加一部分水溶解,得全氟取代基的聚乙烯胺共聚物溶液;再将碱剂溶解于另一部分水,得稀碱液,全氟取代基的聚乙烯胺共聚物溶液和稀碱液混合即得。The preparation method of the alkaline polishing liquid is as follows: firstly, the additive is dissolved in a part of water to obtain a perfluoro-substituted polyvinylamine copolymer solution; then, the alkaline agent is dissolved in another part of water to obtain a dilute alkaline solution; and the perfluoro-substituted polyvinylamine copolymer solution and the dilute alkaline solution are mixed to obtain the polishing liquid.
步骤1)中,单晶硅片的清洗预处理方法:依次采用乙醇溶液、水对单晶硅片进行清洗,干燥;步骤2)中,抛光温度40-80℃,抛光时间2-16min;所述碱剂为氢氧化钠或氢氧化钾,水为去离子水。In step 1), the cleaning pretreatment method of the single crystal silicon wafer is: the single crystal silicon wafer is cleaned with ethanol solution and water in sequence, and then dried; in step 2), the polishing temperature is 40-80°C, and the polishing time is 2-16min; the alkaline agent is sodium hydroxide or potassium hydroxide, and the water is deionized water.
全氟取代基的聚乙烯胺共聚物的合成方法,包括以下步骤:The method for synthesizing a polyvinylamine copolymer having a perfluorinated substituent comprises the following steps:
1)在氮气保护下,将N-乙烯基甲酰胺、全氟取代α-烯烃和引发剂加入含有有机溶剂的反应容器中进行自由基共聚反应,反应结束后,分离纯化,得初步产物;所述N-乙烯基甲酰胺、全氟取代α-烯烃的物质的量之比为(4-99)∶1;1) under nitrogen protection, adding N-vinylformamide, perfluorosubstituted α-olefin and initiator into a reaction vessel containing an organic solvent to carry out free radical copolymerization reaction, and after the reaction is completed, separating and purifying to obtain a preliminary product; the molar ratio of N-vinylformamide to perfluorosubstituted α-olefin is (4-99):1;
2)将步骤1)初步产物在碱性作用下进行水解反应,分离纯化得水解产物;2) subjecting the preliminary product of step 1) to a hydrolysis reaction under the action of alkalinity, and separating and purifying the hydrolyzate;
3)将步骤2)水解产物进行质子化反应,再次分离纯化得目标产物。3) subjecting the hydrolysis product of step 2) to protonation reaction, and separating and purifying again to obtain the target product.
步骤1)中,全氟取代α-烯烃为1H,1H,2H-全氟-1-己、庚、辛、壬、癸、十一或十二烯;引发剂为偶氮二异丁腈,偶氮二异丁腈的质量与N-乙烯基甲酰胺、全氟取代α-烯烃质量和之比为0.1%-5%;步骤1)和2)中,有机溶剂为四氢呋喃。In step 1), the perfluoro-substituted α-olefin is 1H, 1H, 2H-perfluoro-1-hexene, heptene, octene, nonene, decene, undecene or dodecene; the initiator is azobisisobutyronitrile, and the ratio of the mass of azobisisobutyronitrile to the mass of N-vinylformamide and the perfluoro-substituted α-olefin is 0.1%-5%; in steps 1) and 2), the organic solvent is tetrahydrofuran.
步骤2)中,水解反应过程:将步骤1)初步产物和氢氧化钠加入含有无水乙醇的反应容器中,在氮气保护下,于60-80℃下,水解反应24-48h;分离纯化步骤为:将反应后的溶液蒸发去除无水乙醇,加入到四氢呋喃中,产生黑色沉淀,抽滤,将黑色沉淀用四氢呋喃洗涤、干燥,得水解产物。In step 2), the hydrolysis reaction process is as follows: the preliminary product of step 1) and sodium hydroxide are added to a reaction vessel containing anhydrous ethanol, and the hydrolysis reaction is carried out at 60-80° C. for 24-48 hours under nitrogen protection; the separation and purification step is as follows: the solution after the reaction is evaporated to remove the anhydrous ethanol, and the solution is added to tetrahydrofuran to generate a black precipitate, which is filtered, and the black precipitate is washed with tetrahydrofuran and dried to obtain a hydrolysis product.
步骤2)中,N-乙烯基甲酰胺和氢氧化钠的物质的量之比为(0.25-1)∶1,初步产物在初步产物、氢氧化钠、无水乙醇的溶液中的质量浓度为5-20%。In step 2), the molar ratio of N-vinylformamide to sodium hydroxide is (0.25-1):1, and the mass concentration of the preliminary product in the solution of the preliminary product, sodium hydroxide and anhydrous ethanol is 5-20%.
步骤3)中,质子化反应过程:在氮气保护下,将步骤2)水解产物溶解于无水乙醇中,再加入氢碘酸进行质子化反应;再次分离纯化步骤为:将反应后的溶液加入二氯甲烷中,产生棕色沉淀,过滤,将棕色沉淀用二氯甲烷洗涤,干燥,得目标产物。In step 3), the protonation reaction process is as follows: under nitrogen protection, the hydrolysis product of step 2) is dissolved in anhydrous ethanol, and then hydroiodic acid is added to carry out a protonation reaction; the second separation and purification step is as follows: the solution after the reaction is added to dichloromethane to produce a brown precipitate, which is filtered, and the brown precipitate is washed with dichloromethane and dried to obtain the target product.
步骤3)中,水解产物在水解产物、氢碘酸、无水乙醇的溶液中质量浓度为5-20%,氢碘酸的质量浓度为57%,n(水解产物)/n(HI)=0.25-1。In step 3), the mass concentration of the hydrolyzate in the solution of the hydrolyzate, hydroiodic acid and anhydrous ethanol is 5-20%, the mass concentration of the hydroiodic acid is 57%, and n(hydrolyzate)/n(HI)=0.25-1.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1)本发明将耐酸碱的全氟烷基链共聚到水溶性聚乙烯胺阳离子聚合物主链中的方法,使全氟取代基的聚乙烯胺共聚物含有亲水性-NH3+功能基团和疏水性耐酸碱全氟烷基链,在单晶硅碱抛光时,氨离子与氧化硅之间有相互作用,将其作为单晶硅片碱抛光的添加剂用于正面氧化硅层的保护剂,单晶硅片进行背面抛光时,既保证了共聚物在正面氧化硅表面的有效组装,又保证了耐酸碱官能团在共聚物自组装膜内的均匀分布,保护单晶硅片的正面PN结不被破坏,提高了单晶硅片背面的抛光效果;1) The present invention provides a method for copolymerizing an acid- and alkali-resistant perfluoroalkyl chain into a main chain of a water-soluble polyvinylamine cationic polymer, so that the polyvinylamine copolymer with a perfluoro-substituted group contains a hydrophilic -NH 3+ functional group and a hydrophobic acid- and alkali-resistant perfluoroalkyl chain. During the alkali polishing of single-crystalline silicon, there is an interaction between the ammonia ion and the silicon oxide. The copolymer is used as an additive for the alkali polishing of the single-crystalline silicon wafer as a protective agent for the front silicon oxide layer. When the single-crystalline silicon wafer is back-polished, the copolymer is effectively assembled on the front silicon oxide surface and the acid- and alkali-resistant functional groups are uniformly distributed in the copolymer self-assembled film, thereby protecting the front PN junction of the single-crystalline silicon wafer from being destroyed and improving the polishing effect of the back of the single-crystalline silicon wafer.
2)将全氟取代基的聚乙烯胺共聚物应用于单晶硅片抛光时,不需要使用传统工艺中的硝酸、氢氟酸或四甲基氢氧化铵,就可以获得优异的抛光效果,同时碱和共聚物的浓度远低于常规抛光工艺,生产过程无挥发,后续添加量小,节省加工成本,对环境无污染。2) When the polyvinylamine copolymer with perfluorinated substituents is applied to the polishing of single crystal silicon wafers, excellent polishing effect can be obtained without using nitric acid, hydrofluoric acid or tetramethylammonium hydroxide in the traditional process. At the same time, the concentration of alkali and copolymer is much lower than that of the conventional polishing process. There is no volatilization in the production process, and the subsequent addition amount is small, which saves processing costs and does not pollute the environment.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明的技术方案,下面将对实施例中所需要使用的附图做简单介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solution of the present invention, the following is a brief introduction to the drawings required for use in the embodiments. Obviously, the drawings described below are only some embodiments of the present invention. For those skilled in the art, other drawings can be obtained based on these drawings without paying any creative work.
图1为PNVF、P(NVF-co-HDFD)和P(VAm-co-HDFD)的FTIR谱图;Figure 1 is the FTIR spectra of PNVF, P(NVF-co-HDFD) and P(VAm-co-HDFD);
图2为P(VAm·HI-co-HDFD)的1H-NMR谱图;FIG2 is the 1 H-NMR spectrum of P(VAm·HI-co-HDFD);
图3为未抛光的单晶硅片正面(a)和背面(b)SEM图;FIG3 is a SEM image of the front side (a) and back side (b) of an unpolished single crystal silicon wafer;
图4为纯碱抛光所得到的单晶硅片正面(c)和背面(d)SEM图;FIG4 is a SEM image of the front side (c) and back side (d) of a single crystal silicon wafer obtained by soda ash polishing;
图5为使用添加剂后所得到的单晶硅片正面(e)和背面(f)SEM图。FIG5 is a SEM image of the front side (e) and back side (f) of the single crystal silicon wafer obtained after using the additive.
具体实施方式DETAILED DESCRIPTION
为使本发明的目的、技术方案和优点更加清楚,下面对本发明的技术方案进行详细描述,但下述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。In order to make the purpose, technical scheme and advantages of the present invention clearer, the technical scheme of the present invention is described in detail below, but the following embodiments are only part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other implementation methods obtained by those skilled in the art without making creative work belong to the scope of protection of the present invention.
实施例1Example 1
一种全氟取代基的聚乙烯胺共聚物的合成方法,包括以下步骤:A method for synthesizing a polyvinylamine copolymer having a perfluorinated substituent comprises the following steps:
1)在氮气保护下,将N-乙烯基甲酰胺(NVF)、1H,1H,2H-全氟-1-癸烯(HDFD)和偶氮二异丁腈(AIBN)加入含有四氢呋喃的史莱克瓶中(w(NVF+HDFD)/w(solute)=10%),于65℃下,冷凝回流搅拌9h(随着反应的进行,溶液由无色透明逐渐变为白色,并随着时间的延长白色加深,最后无明显的颜色变化),反应结束后,反应后溶液静置,产生大量白色沉淀,过滤,得沉淀产物,将沉淀产物用四氢呋喃洗涤三次(去除残留的未反应完的单体),置于40℃的真空干燥箱里干燥24h(除去四氢呋喃),得初步产物(P(NVF-co-HDFD));所述N-乙烯基甲酰胺、HDFD的物质的量之比为10∶1;偶氮二异丁腈的质量与N-乙烯基甲酰胺、HDFD质量和之比为3%;1) Under nitrogen protection, N-vinylformamide (NVF), 1H,1H,2H-perfluoro-1-decene (HDFD) and azobisisobutyronitrile (AIBN) were added to a Shrek bottle containing tetrahydrofuran (w(NVF+HDFD)/w(solute)=10%), and condensed and refluxed at 65°C with stirring for 9h (as the reaction proceeded, the solution gradually changed from colorless and transparent to white, and the white color deepened with time, and finally there was no obvious color change). The reaction results were as follows: After the reaction, the solution was allowed to stand to generate a large amount of white precipitate, which was filtered to obtain a precipitate product. The precipitate product was washed three times with tetrahydrofuran (to remove the residual unreacted monomers), and dried in a vacuum drying oven at 40°C for 24 hours (to remove tetrahydrofuran) to obtain a preliminary product (P(NVF-co-HDFD)); the molar ratio of N-vinylformamide to HDFD was 10:1; the mass ratio of azobisisobutyronitrile to the mass sum of N-vinylformamide and HDFD was 3%;
2)将步骤1)初步产物和氢氧化钠加入含有无水乙醇的史莱克瓶中,在氮气保护下,于70℃下,冷凝回流搅拌24h(随着反应的进行,溶液由浑浊的白色逐渐变为棕色,并随着时间的延长变为黑色,最后无明显的颜色变化),反应结束后,将反应后的溶液旋蒸去除无水乙醇,然后溶解在少量的无水乙醇中,逐滴加入到四倍体积的四氢呋喃中,产生黑色沉淀,抽滤,将黑色沉淀用四氢呋喃洗涤三次(去除未反应完的NaOH和副产物甲酸钠),置于40℃的真空烘箱中干燥24h,得水解产物(P(VAm-co-HDFD));N-乙烯基甲酰胺和氢氧化钠的物质的量之比为1∶4,初步产物在初步产物、氢氧化钠、无水乙醇的溶液中质量浓度为10%;2) The preliminary product of step 1) and sodium hydroxide are added to a Shrek bottle containing anhydrous ethanol, and under nitrogen protection, condensed and refluxed at 70° C. with stirring for 24 hours (as the reaction proceeds, the solution gradually changes from turbid white to brown, and becomes black as time goes by, and finally there is no obvious color change). After the reaction is completed, the solution after the reaction is rotary evaporated to remove the anhydrous ethanol, and then dissolved in a small amount of anhydrous ethanol, and added dropwise to four times the volume of tetrahydrofuran to produce a black precipitate, which is filtered, and the black precipitate is washed three times with tetrahydrofuran (to remove unreacted NaOH and by-product sodium formate), and placed in a vacuum oven at 40° C. to dry for 24 hours to obtain a hydrolysis product (P(VAm-co-HDFD)); the molar ratio of N-vinylformamide to sodium hydroxide is 1:4, and the mass concentration of the preliminary product in the solution of the preliminary product, sodium hydroxide and anhydrous ethanol is 10%;
3)在氮气保护下,将步骤2)水解产物加入含有无水乙醇的史莱克瓶中,搅拌24h使水解产物充分溶解,再加入氢碘酸,在避光氮气保护的条件下,0℃下,反应24h,将反应后的溶液逐滴加入二氯甲烷中,产生棕色沉淀,过滤,将棕色沉淀用二氯甲烷超声洗涤三次,置于真空烘箱里40℃下,干燥24h,得目标产物全氟取代基的聚乙烯胺共聚物(P(VAm·HI-co-HDFD));水解产物在水解产物、氢碘酸、无水乙醇的溶液中质量浓度为10%,氢碘酸的质量浓度为57%,n(水解产物)/n(HI)=0.5。3) under nitrogen protection, the hydrolysis product of step 2) is added to a Shrek bottle containing anhydrous ethanol, stirred for 24 hours to fully dissolve the hydrolysis product, and then hydroiodic acid is added. Under the condition of light-proof nitrogen protection, the reaction is carried out at 0° C. for 24 hours. The solution after the reaction is added dropwise into dichloromethane to produce a brown precipitate, which is filtered. The brown precipitate is ultrasonically washed three times with dichloromethane, placed in a vacuum oven at 40° C., and dried for 24 hours to obtain the target product, a perfluorosubstituted polyethyleneamine copolymer (P(VAm·HI-co-HDFD)); the mass concentration of the hydrolysis product in the solution of the hydrolysis product, hydroiodic acid, and anhydrous ethanol is 10%, the mass concentration of the hydroiodic acid is 57%, and n(hydrolysis product)/n(HI)=0.5.
其中:w(NVF+HDFD)为NVF、HDFD的质量之和,w(solution)为NVF、HDFD、AIBN、四氢呋喃的溶液质量之和。Wherein: w(NVF+HDFD) is the sum of the masses of NVF and HDFD, and w(solution) is the sum of the solution masses of NVF, HDFD, AIBN and tetrahydrofuran.
P(VAm·HI-co-HDFD)共聚物合成路线Synthesis route of P(VAm·HI-co-HDFD) copolymer
对实施例1的共聚物产物进行分析和检测。The copolymer product of Example 1 was analyzed and tested.
(1)核磁共振仪(NMR)(1) Nuclear Magnetic Resonance (NMR)
本研究采用Bruker DPX-400核磁共振波谱分析仪,以DMSO-d6作溶剂对聚合物进行1H-NMR分析。In this study, a Bruker DPX-400 nuclear magnetic resonance spectrometer was used to analyze the polymers by 1H-NMR using DMSO-d6 as solvent.
(2)红外光谱仪(FTIR)(2) Infrared spectrometer (FTIR)
本研究采用Bruker公司的TENSOR-27红外光谱仪对聚合物进行红外光谱分析,采用全反射模式,测试范围400cm-1~4000cm-1。In this study, TENSOR-27 infrared spectrometer from Bruker was used to analyze the polymer using infrared spectra in total reflection mode with a test range of 400 cm -1 to 4000 cm -1 .
(3)X射线衍射仪(XRD)(3) X-ray diffractometer (XRD)
本实验采用的X射线衍射仪型号为RINT-2500,利用该仪器对钙钛矿薄膜进行了物相分析。实验中以Cu Kα为辐射源扫描速度为10°/min。The X-ray diffractometer model used in this experiment is RINT-2500, which is used to analyze the phase of the perovskite film. Cu Kα is used as the radiation source in the experiment. The scanning speed was 10°/min.
(4)场发射扫描电子显微镜(FESEM)(4) Field emission scanning electron microscopy (FESEM)
本实验采用产于日本型号为JSM-7001F的场发射扫描电子显微镜(FESEM)来观察钙钛矿材料的表面形貌。In this experiment, a field emission scanning electron microscope (FESEM) model JSM-7001F produced in Japan was used to observe the surface morphology of the perovskite material.
(5)接触角测试仪(5) Contact angle tester
本研究采用上海中晨技术设备有限公司的JC2000C1型接触角测量仪测量蒸馏水在薄膜表面的接触角。In this study, the contact angle of distilled water on the film surface was measured using the JC2000C1 contact angle meter produced by Shanghai Zhongchen Technology Equipment Co., Ltd.
图1为P(NVF-co-HDFD)的FTIR谱图,另附PNVF的FTIR谱图作为对比。根据P(NVF-co-HDFD)和PNVF的红外光谱可知,3500-3100cm-1为胺和酰胺N-H的伸缩振动峰,1652cm-1处为酰胺基团中C=O的伸缩振动吸收峰,1537cm-1处为酰胺基团N-H的面内弯曲振动吸收峰,1386cm-1处为次甲基C-H的键内弯曲振动峰,1250cm-1处为酰胺基团C-N键的伸缩振动峰,这些是两种聚合物的共同结构特征。但在P(NVF-co-HDFD)的谱图中出现了C-F键的特征吸收峰,其中,在1204cm-1处的吸收峰归属于CF2不对称伸缩振动,在1146cm-1处的吸收峰归属于CF3对称伸缩振动模式,这些数据充分证明了P(NVF-co-HDFD)的成功合成。Figure 1 is the FTIR spectrum of P(NVF-co-HDFD), and the FTIR spectrum of PNVF is attached for comparison. According to the infrared spectra of P(NVF-co-HDFD) and PNVF, 3500-3100 cm -1 is the stretching vibration peak of amine and amide NH, 1652 cm -1 is the stretching vibration absorption peak of C=O in the amide group, 1537 cm -1 is the in-plane bending vibration absorption peak of amide group NH, 1386 cm -1 is the intra-bond bending vibration peak of methine CH, and 1250 cm -1 is the stretching vibration peak of amide group CN bond, which are the common structural features of the two polymers. However, the characteristic absorption peak of CF bond appears in the spectrum of P(NVF-co-HDFD), among which the absorption peak at 1204 cm -1 belongs to the asymmetric stretching vibration of CF 2 , and the absorption peak at 1146 cm -1 belongs to the symmetric stretching vibration mode of CF 3. These data fully prove the successful synthesis of P(NVF-co-HDFD).
图1为P(VAm-co-HDFD)的FTIR谱图,在1652cm-1处酰胺基团中C=O的伸缩振动吸收峰消失,在1588cm-1处出现了-NH3 +的伸缩振动吸收峰,这充分证明了P(NVF-co-HDFD)在碱性条件下完全水解得到了P(VAm-co-HDFD)。Figure 1 is the FTIR spectrum of P(VAm-co-HDFD). The stretching vibration absorption peak of C=O in the amide group at 1652 cm -1 disappears, and the stretching vibration absorption peak of -NH3 + appears at 1588 cm -1 , which fully proves that P(NVF-co-HDFD) is completely hydrolyzed under alkaline conditions to obtain P(VAm-co-HDFD).
图2为P(VAm·HI-co-HDFD)的1H-NMR图谱,1.99ppm处的化学位移是主链上亚甲基-CH2-的质子峰,3.85ppm处的信号峰是主链上次甲基-CH-的质子峰,2.51ppm处的信号峰归属于氘代试剂DMSO的质子峰,而8.07ppm处的信号峰则是-NH3 +的质子峰,以上结果证明了最终产物P(VAm·HI-co-HDFD)的成功合成。Figure 2 is the 1 H-NMR spectrum of P(VAm·HI-co-HDFD). The chemical shift at 1.99 ppm is the proton peak of the methylene -CH 2 - on the main chain, the signal peak at 3.85 ppm is the proton peak of the methine -CH- on the main chain, the signal peak at 2.51 ppm is attributed to the proton peak of the deuterated reagent DMSO, and the signal peak at 8.07 ppm is the proton peak of -NH 3 + . The above results prove the successful synthesis of the final product P(VAm·HI-co-HDFD).
实施例2Example 2
含全氟取代基的聚乙烯胺共聚物在单晶硅片碱抛光中的应用,将全氟取代基的聚乙烯胺共聚物配置成碱抛光液对单晶硅片进行抛光处理。The invention discloses an application of a polyvinylamine copolymer containing a perfluorinated substituent in alkali polishing of a single crystal silicon wafer. The polyvinylamine copolymer containing a perfluorinated substituent is configured into an alkali polishing liquid to polish the single crystal silicon wafer.
单晶硅片抛光处理包括以下步骤:The polishing process of single crystal silicon wafers includes the following steps:
1)清洗预处理:先采用95%乙醇溶液对单晶硅片超声清洗1h,再用去离子水清洗后,干燥备用;1) Cleaning pretreatment: First, use 95% ethanol solution to ultrasonically clean the single crystal silicon wafer for 1 hour, then rinse it with deionized water, and dry it for later use;
2)将步骤1)清洗预处理后的单晶硅片浸没于碱抛槽中碱抛光液,对单晶硅片的背面进行抛光;抛光温度80℃,抛光时间5min;碱抛光液由以下重量百分比的组分制成:添加剂2%、氢氧化钠质量分数3%,余量为去离子水;2) immersing the single crystal silicon wafer after the cleaning and pretreatment in step 1) in an alkaline polishing liquid in an alkaline polishing tank, and polishing the back side of the single crystal silicon wafer; the polishing temperature is 80° C., and the polishing time is 5 min; the alkaline polishing liquid is made of the following components in weight percentage: 2% additive, 3% sodium hydroxide mass fraction, and the balance is deionized water;
3)纯化处理:将步骤2)抛光后的单晶硅片用去离子水清洗,烘干即可。3) Purification treatment: The single crystal silicon wafer polished in step 2) is cleaned with deionized water and dried.
步骤2)碱抛光液的制备方法,如1000g碱抛光液,包括以下步骤:1)全氟取代基的聚乙烯胺共聚物溶液的配置:将相应质量的实施例1制得的全氟取代基的聚乙烯胺共聚物溶解于450g去离子水中,得全氟取代基的聚乙烯胺共聚物溶液;Step 2) A method for preparing an alkaline polishing liquid, such as 1000 g of the alkaline polishing liquid, comprising the following steps: 1) Preparation of a perfluoro-substituted polyvinylamine copolymer solution: dissolving a corresponding mass of the perfluoro-substituted polyvinylamine copolymer prepared in Example 1 in 450 g of deionized water to obtain a perfluoro-substituted polyvinylamine copolymer solution;
2)将相应质量的氢氧化钠溶解于500g去离子水中,得稀碱液;2) dissolving a corresponding amount of sodium hydroxide in 500 g of deionized water to obtain a dilute alkali solution;
3)将步骤1)全氟取代基的聚乙烯胺共聚物溶液和稀碱液在碱抛槽中混合,补足去离子水至1000g,即得。将碱抛光液利用碱抛槽加热机构加热至抛光温度80摄氏度待用。3) Mix the polyvinylamine copolymer solution with perfluorinated substituents in step 1) and the diluted alkali solution in an alkali polishing tank, and add deionized water to 1000 g to obtain the alkali polishing solution. Heat the alkali polishing solution to a polishing temperature of 80 degrees Celsius using the heating mechanism of the alkali polishing tank for standby use.
步骤1)清洗前处理能够去除单晶硅片表面油污及其他杂质,排除干扰因素。Step 1) Pre-cleaning treatment can remove oil and other impurities on the surface of the single crystal silicon wafer and eliminate interfering factors.
步骤3)纯化处理清洗抛光后单晶硅片残留的杂质。Step 3) purifying impurities remaining in the single crystal silicon wafer after cleaning and polishing.
实施例3Example 3
含全氟取代基的聚乙烯胺共聚物在单晶硅片碱抛光中的应用,将全氟取代基的聚乙烯胺共聚物配置成碱抛光液对单晶硅片进行抛光处理。The invention discloses an application of a polyvinylamine copolymer containing a perfluorinated substituent in alkali polishing of a single crystal silicon wafer. The polyvinylamine copolymer containing a perfluorinated substituent is configured into an alkali polishing liquid to polish the single crystal silicon wafer.
单晶硅片抛光处理包括以下步骤:The polishing process of single crystal silicon wafers includes the following steps:
1)清洗预处理:先采用95%乙醇溶液对单晶硅片超声清洗1h,再用去离子水清洗后,干燥备用;1) Cleaning pretreatment: First, use 95% ethanol solution to ultrasonically clean the single crystal silicon wafer for 1 hour, then rinse it with deionized water, and dry it for later use;
2)将步骤1)清洗预处理后的单晶硅片浸没于碱抛槽中碱抛光液,对单晶硅片的背面进行抛光;抛光温度50℃,抛光时间16min;碱抛光液由以下重量百分比的组分制成:添加剂6%、氢氧化钠质量分数1%,余量为去离子水;2) immersing the single crystal silicon wafer after the cleaning and pretreatment in step 1) in an alkaline polishing liquid in an alkaline polishing tank, and polishing the back side of the single crystal silicon wafer; the polishing temperature is 50° C., and the polishing time is 16 min; the alkaline polishing liquid is made of the following components in weight percentage: 6% additive, 1% sodium hydroxide mass fraction, and the balance is deionized water;
3)纯化处理:将步骤2)抛光后的单晶硅片用去离子水清洗,烘干即可。3) Purification treatment: The single crystal silicon wafer polished in step 2) is cleaned with deionized water and dried.
碱抛光液的制备方法参照实施例2。The preparation method of the alkaline polishing liquid is as shown in Example 2.
实施例4效果试验Embodiment 4 effect test
基于验证单晶硅片碱抛光效果的需要,因此,使用飞纳台式扫描电子显微镜观察未抛光的单晶硅片、碱剂抛光所得到的单晶硅片、实施例2使用添加剂后的单晶硅片表面抛光效果,并分别进行EDS观察单晶硅片抛光正面和背面,SEM图分别如3、4、5。Based on the need to verify the alkali polishing effect of single crystal silicon wafers, a Phenom desktop scanning electron microscope was used to observe the surface polishing effects of unpolished single crystal silicon wafers, single crystal silicon wafers obtained by alkali polishing, and single crystal silicon wafers after using additives in Example 2, and EDS was used to observe the polished front and back sides of the single crystal silicon wafers, and the SEM images are shown in Figures 3, 4, and 5, respectively.
其中:碱剂抛光的方法步骤与实施例2的不同之处在于,碱抛光液中未添加添加剂。The difference between the alkaline polishing method and the step of Example 2 is that no additive is added to the alkaline polishing liquid.
图3中,未抛光的单晶硅片正面(a)和背面(b);图4中,碱剂抛光的单晶硅片正面(c)和背面(d);图5中,实施例2使用添加剂后的单晶硅片正面(e)和背面(f)。In Figure 3, the front side (a) and back side (b) of an unpolished single crystal silicon wafer; in Figure 4, the front side (c) and back side (d) of a single crystal silicon wafer polished with an alkali agent; in Figure 5, the front side (e) and back side (f) of a single crystal silicon wafer after using the additive in Example 2.
由图3得知,未抛光的单晶硅片正面和背面均为形状分布均匀的金字塔。As shown in FIG3 , both the front and back sides of the unpolished single crystal silicon wafer are pyramids with uniform shapes.
由图4得知,使用稀碱液对单晶硅片进行抛光,发现单晶硅片背面抛光效果并不是很好,而且背面被抛光的同时,正面也被破坏。As shown in FIG4 , when the single crystal silicon wafer is polished with a dilute alkali solution, it is found that the polishing effect of the back side of the single crystal silicon wafer is not very good, and while the back side is polished, the front side is also damaged.
由图5得知,使用实施例2配制好的碱抛光液对单晶硅片进行抛光,可以看出,单晶硅片背面抛光效果显著,且背面平整度提高,与此同时,单晶硅片正面缓蚀效果显著。As shown in FIG5 , the single crystal silicon wafer is polished using the alkaline polishing solution prepared in Example 2. It can be seen that the polishing effect on the back side of the single crystal silicon wafer is significant, and the flatness of the back side is improved. At the same time, the corrosion inhibition effect on the front side of the single crystal silicon wafer is significant.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210153470 | 2022-02-19 | ||
CN2022101534706 | 2022-02-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115116842A CN115116842A (en) | 2022-09-27 |
CN115116842B true CN115116842B (en) | 2024-10-29 |
Family
ID=83329540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210751415.7A Active CN115116842B (en) | 2022-02-19 | 2022-06-28 | Application of perfluorinated substituent-containing polyvinylamine copolymer in monocrystalline silicon piece alkali polishing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115116842B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115377252B (en) * | 2022-10-24 | 2023-01-13 | 英利能源发展(天津)有限公司 | Method for inhibiting polycrystalline silicon surface explosion film growth by PECVD method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200046510A (en) * | 2018-10-24 | 2020-05-07 | 솔브레인 주식회사 | Polishing composition and polishing method using the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL151794A0 (en) * | 2000-03-31 | 2003-04-10 | Bayer Ag | Polishing agent and method for producing planar layers |
US20080274618A1 (en) * | 2007-05-04 | 2008-11-06 | Ferro Corporation | Polishing composition and method for high selectivity polysilicon cmp |
JP2011517328A (en) * | 2008-03-07 | 2011-06-02 | アドバンスド テクノロジー マテリアルズ,インコーポレイテッド | Non-selective oxide etching wet cleaning composition and method of use |
US11046869B2 (en) * | 2015-09-09 | 2021-06-29 | Showa Denko Materials Co., Ltd. | Polishing liquid, polishing liquid set, and substrate polishing method |
CN106206951B (en) * | 2016-07-19 | 2018-08-21 | 郑州大学 | The new application of polyvinylamine, perovskite thin film, perovskite solar cell and preparation method thereof |
-
2022
- 2022-06-28 CN CN202210751415.7A patent/CN115116842B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200046510A (en) * | 2018-10-24 | 2020-05-07 | 솔브레인 주식회사 | Polishing composition and polishing method using the same |
Also Published As
Publication number | Publication date |
---|---|
CN115116842A (en) | 2022-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110571149B (en) | Preparation method of P-type full-contact passivated solar cell | |
CN101840961B (en) | Industrialized production process of crystalline silicon solar battery | |
CN104037257B (en) | Solaode and manufacture method, single-side polishing apparatus | |
CN114256382B (en) | Silicon wafer texturing and cleaning method and crystalline silicon solar cell preparation method | |
CN111969078B (en) | Texturing method of monocrystalline silicon wafer, monocrystalline silicon solar cell and preparation method thereof | |
CN104218122B (en) | A kind of etching method of the polysilicon emitter rate reducing diamond wire cutting | |
CN113948611B (en) | P-type IBC battery, preparation method thereof, assembly and photovoltaic system | |
CN112940875B (en) | Solar cell silicon wafer cleaning agent and solar cell silicon wafer cleaning method | |
CN105576074A (en) | Wet etching method for N-type double-sided battery | |
CN115116842B (en) | Application of perfluorinated substituent-containing polyvinylamine copolymer in monocrystalline silicon piece alkali polishing | |
CN113421946B (en) | Solar Cell Rework Process | |
CN105895714A (en) | Smooth modification liquid, smooth modification method, heterojunction solar cell silicon wafer and heterojunction solar cell | |
CN106676636A (en) | A chemical auxiliary agent for textured corrosion of silicon crystal surface | |
CN103606595A (en) | Reutilization method and grating line recovery method of defective monocrystalline silicon battery sheet after sintering | |
CN115478327B (en) | Monocrystalline silicon etching texturing additive, monocrystalline silicon etching texturing liquid containing monocrystalline silicon etching texturing additive, preparation method and application of monocrystalline silicon etching texturing additive | |
CN115347063B (en) | Novel TOPCON alkali polishing small tower base silicon wafer substrate and manufacturing method thereof | |
CN103531667A (en) | Unqualified solar cell slice processing method | |
CN118571984A (en) | A method for removing aluminum oxide from solar cells, solar cells, and solar cell modules | |
CN118048696A (en) | An ultra-small velvet-making additive and a method of using the same | |
CN113013029B (en) | Silicon solar cell de-winding coating polysilicon or amorphous silicon additive, de-winding plating method and method for improving N-type cell yield | |
CN116053358B (en) | Preparation method of heterojunction battery | |
CN113903832B (en) | Alkali polishing method for crystal silicon surface battery | |
CN110534614A (en) | A kind of preparation method of P-type crystal silicon battery | |
CN103500772B (en) | Slurry corrosion method prepares the process of polished backside polycrystalline silicon solar cell | |
CN119685938A (en) | A TOPCon battery single crystal silicon alkaline polishing additive and a method of using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |