CN115116828A - Homoepitaxial structure based on nitride single crystal substrate and its uniformity control method - Google Patents
Homoepitaxial structure based on nitride single crystal substrate and its uniformity control method Download PDFInfo
- Publication number
- CN115116828A CN115116828A CN202210759553.XA CN202210759553A CN115116828A CN 115116828 A CN115116828 A CN 115116828A CN 202210759553 A CN202210759553 A CN 202210759553A CN 115116828 A CN115116828 A CN 115116828A
- Authority
- CN
- China
- Prior art keywords
- layer
- single crystal
- nitride
- crystal substrate
- nitride layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 208
- 239000000758 substrate Substances 0.000 title claims abstract description 147
- 239000013078 crystal Substances 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000010410 layer Substances 0.000 claims description 324
- 239000000463 material Substances 0.000 claims description 61
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 30
- 239000000470 constituent Substances 0.000 claims description 22
- 239000004065 semiconductor Substances 0.000 claims description 18
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- 239000002346 layers by function Substances 0.000 claims description 11
- 230000001276 controlling effect Effects 0.000 claims description 6
- 238000009736 wetting Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 230000005693 optoelectronics Effects 0.000 abstract description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 29
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 8
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000407 epitaxy Methods 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 238000005424 photoluminescence Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000001657 homoepitaxy Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02389—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
- C30B25/205—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer the substrate being of insulating material
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/68—Crystals with laminate structure, e.g. "superlattices"
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
- H01L21/02507—Alternating layers, e.g. superlattice
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Led Devices (AREA)
- Recrystallisation Techniques (AREA)
Abstract
本申请公开了一种基于氮化物单晶衬底的同质外延结构及其均匀性调控方法。所述均匀性调控方法包括:提供包含第二III族元素的氮化物单晶衬底;在所述衬底上生长界面弛豫层,所述界面弛豫层包括二元氮化物层,所述二元氮化物层包括第一III族元素,所述第一III族元素与所述第二III族元素不同,以产生压应力或张应力,从而平衡所述衬底的翘曲;在所述界面弛豫层上生长翘曲调控层,所述翘曲调控层包括三元氮化物层或包含三元氮化物层的超晶格结构。本申请通过在衬底上先进行界面弛豫层和翘曲调控层的可控生长,从而实现同质外延结构的翘曲可控及高均匀性生长;同时制备的同质外延结构更加平整,在光电器件或者电子器件中有广泛的应用前景。
The present application discloses a homoepitaxial structure based on a nitride single crystal substrate and a method for controlling the uniformity thereof. The uniformity control method includes: providing a nitride single crystal substrate containing a second group III element; growing an interface relaxation layer on the substrate, the interface relaxation layer comprising a binary nitride layer, and the The binary nitride layer includes a first group III element different from the second group III element to generate compressive or tensile stress to balance the warpage of the substrate; in the A warpage control layer is grown on the interface relaxation layer, and the warpage control layer includes a ternary nitride layer or a superlattice structure including the ternary nitride layer. In the present application, the controllable growth of the interface relaxation layer and the warpage control layer is carried out on the substrate, so as to realize the warpage controllable and high uniform growth of the homoepitaxial structure; at the same time, the prepared homoepitaxial structure is more flat, It has broad application prospects in optoelectronic devices or electronic devices.
Description
技术领域technical field
本申请涉及一种半导体发光结构,具体涉及一种基于氮化物单晶衬底的同质外延结构及其均匀性调控方法,属于半导体技术领域。The present application relates to a semiconductor light-emitting structure, in particular to a homoepitaxial structure based on a nitride single crystal substrate and a uniformity control method thereof, belonging to the technical field of semiconductors.
背景技术Background technique
GaN基器件的生长大多基于蓝宝石、硅等异质衬底,需要从衬底通过生长过渡层来消除失配,从而获得GaN外延层。同时,其过渡层也是调整外延片的凹凸性,进而达到调节外延片生长均匀性的重要手段。比如在蓝光LED的外延生长中,在生长有源区量子阱时,In组分决定了发光波长,而In的融入与温度相关,如果外延片不平温度就会不均匀,造成In的分布不均,进而降低了波长的均匀性。此时,通常可以通过调整过渡层来实现调节翘曲,使得在量子阱生长过程中外延片尽可能的平,从而保证波长均匀性。The growth of GaN-based devices is mostly based on heterogeneous substrates such as sapphire and silicon, and it is necessary to remove the mismatch by growing a transition layer from the substrate to obtain a GaN epitaxial layer. At the same time, the transition layer is also an important means to adjust the unevenness of the epitaxial wafer, thereby achieving the adjustment of the growth uniformity of the epitaxial wafer. For example, in the epitaxial growth of blue LEDs, when the quantum wells in the active region are grown, the In composition determines the emission wavelength, and the incorporation of In is related to temperature. If the epitaxial wafer is uneven, the temperature will be uneven, resulting in uneven distribution of In. , thereby reducing the uniformity of the wavelength. At this time, the warpage can usually be adjusted by adjusting the transition layer, so that the epitaxial wafer is as flat as possible during the growth of the quantum well, thereby ensuring wavelength uniformity.
而基于GaN单晶衬底的同质外延生长,由于衬底已经是GaN材料层,不需要任何过渡层,所以在后期的生长中无法通过过渡层来调整翘曲值。而随着不同掺杂浓度的外延层材料以及GaN单晶衬底本身在高温下翘曲变化,都会影响到生长时外延片所受的温度,进而影响到外延片的均匀性。但是,目前的常规生长方法没有任何技术和办法对此进行调控。For the homoepitaxial growth based on GaN single crystal substrate, since the substrate is already a GaN material layer and does not need any transition layer, the warpage value cannot be adjusted by the transition layer in the later growth. With different doping concentrations of epitaxial layer materials and the warpage of the GaN single crystal substrate itself at high temperatures, the temperature of the epitaxial wafer during growth will be affected, thereby affecting the uniformity of the epitaxial wafer. However, the current conventional growth methods do not have any technology and method to regulate this.
发明内容SUMMARY OF THE INVENTION
本申请的主要目的在于提供一种基于氮化物单晶衬底的同质外延结构及其均匀性调控方法,以克服现有技术中的不足。The main purpose of the present application is to provide a homoepitaxial structure based on a nitride single crystal substrate and a method for controlling the uniformity thereof, so as to overcome the deficiencies in the prior art.
为实现前述发明目的,本申请采用的技术方案包括:In order to achieve the aforementioned purpose of the invention, the technical solutions adopted in this application include:
本申请的一个方面提供了一种基于氮化物单晶衬底的同质外延结构的均匀性调控方法,其包括:One aspect of the present application provides a method for controlling the uniformity of a homoepitaxial structure based on a nitride single crystal substrate, comprising:
提供氮化物单晶衬底,所述衬底包括第二III族元素;providing a nitride single crystal substrate, the substrate including a second group III element;
在所述衬底上生长界面弛豫层,所述界面弛豫层包括二元氮化物层,所述二元氮化物层包括第一III族元素,所述第一III族元素与所述第二III族元素不同,以产生压应力或张应力,从而平衡所述衬底的翘曲;An interfacial relaxation layer is grown on the substrate, the interfacial relaxation layer includes a binary nitride layer, the binary nitride layer includes a first group III element, the first group III element and the second Different Group III elements to create compressive or tensile stress to balance the warpage of the substrate;
在所述界面弛豫层上生长翘曲调控层,所述翘曲调控层表面平整,所述翘曲调控层包括三元氮化物层或包含三元氮化物层的超晶格结构,所述三元氮化物层包括第一III族元素和第二III族元素。A warpage control layer is grown on the interface relaxation layer, the surface of the warpage control layer is flat, the warpage control layer includes a ternary nitride layer or a superlattice structure including a ternary nitride layer, the The ternary nitride layer includes a first group III element and a second group III element.
本申请的一个方面提供了一种基于氮化物单晶衬底的同质外延结构,其特征在于,包括:One aspect of the present application provides a homoepitaxial structure based on a nitride single crystal substrate, characterized by comprising:
氮化物单晶衬底,Nitride single crystal substrates,
界面弛豫层,其生长在所述衬底上,所述界面弛豫层包括二元氮化层,所述二元氮化层的组成材料与所述衬底的组成材料晶格失配,以产生压应力或张应力,从而平衡所述衬底的翘曲;an interface relaxation layer grown on the substrate, the interface relaxation layer comprising a binary nitride layer, and the constituent material of the binary nitride layer is lattice mismatched with the constituent material of the substrate, to generate compressive or tensile stress to balance the warpage of the substrate;
翘曲调控层,其生长在所述界面弛豫层上,所述翘曲调控层表面平整,所述翘曲调控层包括三元氮化物层或包含三元氮化物层的超晶格结构。The warpage control layer is grown on the interface relaxation layer, the surface of the warpage control layer is flat, and the warpage control layer includes a ternary nitride layer or a superlattice structure including a ternary nitride layer.
本申请的另又一个方面提供了所述基于氮化物单晶衬底的同质外延结构在制备UV-LED器件或GaN基器件中的用途。Yet another aspect of the present application provides use of the nitride single crystal substrate-based homoepitaxial structure in the preparation of a UV-LED device or a GaN-based device.
相较于现有技术,本申请通过在氮化物单晶衬底上先进行界面弛豫层和翘曲调控层的可控生长(具体通过界面弛豫层和翘曲调控层的组分和厚度进行调整),从而实现同质外延结构的高均匀性生长;同时制备的同质外延结构更加平整,在光电器件或者电子器件中有广泛的应用前景。Compared with the prior art, the present application firstly performs the controllable growth of the interface relaxation layer and the warpage control layer on the nitride single crystal substrate (specifically, through the composition and thickness of the interface relaxation layer and the warpage control layer. adjustment), thereby achieving high uniformity growth of the homoepitaxial structure; at the same time, the prepared homoepitaxial structure is more flat, and has broad application prospects in optoelectronic devices or electronic devices.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the drawings that are used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1a-图1b分别为本申请一典型实施例方案中同质外延结构的示意图。1a-1b are schematic diagrams of a homoepitaxial structure according to a typical embodiment of the present application, respectively.
图2为本申请实施例1中制备的同质外延结构样品A的光致发光PL测试图谱;Fig. 2 is the photoluminescence PL test pattern of the homoepitaxial structure sample A prepared in Example 1 of the application;
图3为本申请对比例1中制备的同质外延结构样品B的光致发光PL测试图谱;Fig. 3 is the photoluminescence PL test pattern of the homoepitaxial structure sample B prepared in Comparative Example 1 of the application;
图4位本申请一典型实施例方案中在制备界面弛豫层和翘曲调控层时第一III族源、第二III族源及氮源通入装置示意图。FIG. 4 is a schematic diagram of the device for feeding the first group III source, the second group III source and the nitrogen source during the preparation of the interface relaxation layer and the warpage control layer in a typical embodiment of the present application.
具体实施方式Detailed ways
鉴于现有技术的不足,本案发明人经长期研究和实践,得以提出本申请的技术方案,如下将予以更为详细的说明。In view of the deficiencies of the prior art, the inventor of the present application has been able to propose the technical solution of the present application after long-term research and practice, which will be described in more detail below.
本申请的一些实施例提供的一种基于氮化物单晶衬底的同质外延结构的均匀性调控方法包括:A method for controlling the uniformity of a homoepitaxial structure based on a nitride single crystal substrate provided by some embodiments of the present application includes:
提供氮化物单晶衬底,所述衬底包括第二III族元素;providing a nitride single crystal substrate, the substrate including a second group III element;
在所述衬底上生长界面弛豫层,所述界面弛豫层包括二元氮化物层,所述二元氮化物层包括第一III族元素,所述第一III族元素与所述第二III族元素不同,以产生压应力或张应力,从而平衡所述衬底的翘曲;An interfacial relaxation layer is grown on the substrate, the interfacial relaxation layer includes a binary nitride layer, the binary nitride layer includes a first group III element, the first group III element and the second Different Group III elements to create compressive or tensile stress to balance the warpage of the substrate;
在所述界面弛豫层上生长翘曲调控层,所述翘曲调控层表面平整,所述翘曲调控层包括三元氮化物层或包含三元氮化物层的超晶格结构,所述三元氮化物层包括第一III族元素和第二III族元素。A warpage control layer is grown on the interface relaxation layer, the surface of the warpage control layer is flat, the warpage control layer includes a ternary nitride layer or a superlattice structure including a ternary nitride layer, the The ternary nitride layer includes a first group III element and a second group III element.
在一个实施例中,所述二元氮化物层的组成材料的晶格常数大于所述氮化物单晶衬底的组成材料的晶格常数,以产生张应力;或者,所述二元氮化物层的组成材料的晶格常数小于所述氮化物单晶衬底的组成材料的晶格常数,以产生压应力。In one embodiment, the lattice constant of the constituent material of the binary nitride layer is greater than the lattice constant of the constituent material of the nitride single crystal substrate to generate tensile stress; or, the binary nitride The lattice constant of the constituent material of the layer is smaller than the lattice constant of the constituent material of the nitride single crystal substrate to generate compressive stress.
在一个实施例中,所述第一III族元素为Al或In,第二III族元素为Ga。In one embodiment, the first group III element is Al or In, and the second group III element is Ga.
在一个实施例中,所述第一III族元素与第二III族元素相邻。In one embodiment, the first group III element is adjacent to the second group III element.
在一个实施例中,所述氮化物单晶衬底的厚度在1μm以上。In one embodiment, the thickness of the nitride single crystal substrate is more than 1 μm.
进一步地,所述氮化物单晶衬底的厚度为1-2.5μm。Further, the thickness of the nitride single crystal substrate is 1-2.5 μm.
在一个实施例中,所述界面弛豫层的厚度为1-10nm。In one embodiment, the thickness of the interfacial relaxation layer is 1-10 nm.
在一个实施例中,所述三元氮化物层的厚度为10nm-100nm,所述包含三元氮化物层的超晶格结构的厚度为10nm-200nm。In one embodiment, the thickness of the ternary nitride layer is 10 nm-100 nm, and the thickness of the superlattice structure including the ternary nitride layer is 10 nm-200 nm.
在一个实施例中,当所述预置应力为张应力时,所述二元氮化物层中第一III族元素的含量为5at.%~10at.%,所述包含三元氮化物层的超晶格结构中第一III族元素的含量为5at.%~20at.%。In one embodiment, when the pre-stress is tensile stress, the content of the first group III element in the binary nitride layer is 5 at. % to 10 at. The content of the first group III element in the superlattice structure is 5 at.% to 20 at.%.
具体地,所述二元氮化物层为InN材料时,所述三元氮化物层为InGaN材料,且InGaN材料中In元素的含量为5at.%~10at.%,三元氮化物层的厚度为10~50nm,同时所述三元氮化物层中的组分可不变也可以是组分渐变。Specifically, when the binary nitride layer is made of InN material, the ternary nitride layer is made of InGaN material, and the content of In element in the InGaN material is 5 at.% to 10 at.%, and the thickness of the ternary nitride layer is It is 10-50 nm, and the composition in the ternary nitride layer can be unchanged or the composition can be graded.
具体地,所述二元氮化物层为InN材料时,所述包含三元氮化物层的超晶格结构为InGaN/GaN超晶格结构,且InGaN材料中In元素的含量为5at.%~20at.%,包含三元氮化物层的超晶格结构的厚度为10~200nm。Specifically, when the binary nitride layer is an InN material, the superlattice structure including the ternary nitride layer is an InGaN/GaN superlattice structure, and the content of In element in the InGaN material is 5 at.%~ 20 at. %, the thickness of the superlattice structure including the ternary nitride layer is 10 to 200 nm.
在一个实施例中,当所述预置应力为压应力时,所述三元氮化物层中第一III族元素的含量为5at.%~20at.%,所述包含三元氮化物层的超晶格结构中第一III族元素的含量为5at.%~100at.%。In one embodiment, when the pre-stress is compressive stress, the content of the first group III element in the ternary nitride layer is 5 at. % to 20 at. %, and the ternary nitride layer containing the The content of the first group III element in the superlattice structure is 5 at. % to 100 at. %.
具体地,所述二元氮化物层为AlN材料时,所述三元氮化物层为AlGaN单层材料,AlGaN中Al元素的含量为5at.%~20at.%,三元氮化物层的厚度为10~100nm,同时所述三元氮化物层中的组分可不变也可以是组分渐变。Specifically, when the binary nitride layer is an AlN material, the ternary nitride layer is an AlGaN single-layer material, the content of Al element in AlGaN is 5 at.% to 20 at.%, and the thickness of the ternary nitride layer is It is 10-100 nm, and the composition in the ternary nitride layer can be unchanged or the composition can be graded.
具体地,所述二元氮化物层为AlN材料时,所述包含三元氮化物层的超晶格结构为AlGaN/GaN超晶格结构,AlGaN中Al元素的含量为5at.%~100at.%,包含三元氮化物层的超晶格结构的厚度为10~200nm。Specifically, when the binary nitride layer is made of AlN material, the superlattice structure including the ternary nitride layer is an AlGaN/GaN superlattice structure, and the content of Al element in AlGaN is 5 at.%~100at. %, the thickness of the superlattice structure including the ternary nitride layer is 10-200 nm.
进一步地,所述超晶格结构包括InGaN/GaN超晶格结构、AlGaN/GaN超晶格结构等,且不限于此。Further, the superlattice structure includes an InGaN/GaN superlattice structure, an AlGaN/GaN superlattice structure, etc., and is not limited thereto.
本申请中,GaN的晶格常数介于InN和AlN之间,而三者的热失配小于晶格失配,故可以灵活实现张应力和压应力之间的转变。比如,InN的晶格常数大于GaN,此时在GaN单晶衬底上生长In(Ga)N时,就会引入张应力,使后续生长的外延层往凹的方向弯曲。而AlN的晶格常数小于GaN,此时在衬底上生长Al(Ga)N时,就会引入压应力,使后续生长的外延层往凸的方向弯曲。而由于生长的是异质层材料,其晶格是不匹配的,需要单晶衬底这样晶体质量很好的材料为基底。从而实现了本申请中氮化物单晶衬底的同质外延结构的均匀性调控方法。In the present application, the lattice constant of GaN is between InN and AlN, and the thermal mismatch of the three is smaller than the lattice mismatch, so the transformation between tensile stress and compressive stress can be flexibly realized. For example, the lattice constant of InN is larger than that of GaN. In this case, when In(Ga)N is grown on a GaN single crystal substrate, tensile stress will be introduced, causing the subsequently grown epitaxial layer to bend in a concave direction. However, the lattice constant of AlN is smaller than that of GaN. At this time, when Al(Ga)N is grown on the substrate, compressive stress will be introduced, causing the subsequently grown epitaxial layer to bend in a convex direction. However, due to the growth of heterogeneous layer materials, the lattices are not matched, and a material with good crystal quality such as a single crystal substrate is required as the base. Thus, the uniformity control method of the homoepitaxial structure of the nitride single crystal substrate in the present application is realized.
在一个实施例中,所述基于氮化物单晶衬底的同质外延结构的均匀性调控方法具体包括:In one embodiment, the uniformity control method of the homoepitaxial structure based on the nitride single crystal substrate specifically includes:
S1、将所述衬底置入生长腔室,并在所述生长腔室内形成保护性气氛,之后将所述衬底温度设置为所述二元氮化物层的生长温度,再向所述生长腔室内输入第一III族源,以在所述衬底表面沉积一层第一III族元素的原子,形成界面浸润层;S1. Put the substrate into a growth chamber, and form a protective atmosphere in the growth chamber, then set the substrate temperature to the growth temperature of the binary nitride layer, and then grow the inputting the first group III source into the chamber to deposit a layer of atoms of the first group III element on the surface of the substrate to form an interface wetting layer;
S2、向所述生长腔室内输入第一III族源和氮源,在所述界面浸润层上生长二元氮化物层,从而形成界面弛豫层;S2, inputting a first group III source and a nitrogen source into the growth chamber, and growing a binary nitride layer on the interface wetting layer, thereby forming an interface relaxation layer;
S3、向所述生长腔室内输入第一III族源、第二III族源及氮源,在所述界面弛豫层上生长三元氮化物层或包含三元氮化物层的超晶格结构,从而形成翘曲调控层。S3. Input the first group III source, the second group III source and the nitrogen source into the growth chamber, and grow a ternary nitride layer or a superlattice structure including a ternary nitride layer on the interface relaxation layer , thereby forming a warpage control layer.
进一步地,所述第一III族源可以是In、Al、Ga、B源等,且不限于此。Further, the first Group III source may be In, Al, Ga, B source, etc., and is not limited thereto.
具体地,所述第一III族源可以是TMIn或者TMAl。Specifically, the first group III source may be TMIn or TMAl.
进一步地,所述第二III族源可以是Al、Ga、源等,且不限于此。Further, the second group III source may be Al, Ga, source, etc., and is not limited thereto.
在一个实施例中,所述氮化物单晶衬底包括GaN单晶衬底或AlN单晶衬底。In one embodiment, the nitride single crystal substrate includes a GaN single crystal substrate or an AlN single crystal substrate.
在一个实施例中,步骤S3具体包括:将所述第一III族源、第二III族源及氮源交替输入所述生长腔室,在所述界面弛豫层上生长超晶格结构,从而形成所述翘曲调控层。In one embodiment, step S3 specifically includes: alternately inputting the first group III source, the second group III source, and the nitrogen source into the growth chamber, and growing a superlattice structure on the interface relaxation layer, Thus, the warpage regulating layer is formed.
在一个实施例中,步骤S3具体包括:向所述生长腔室内输入第一III族源、第二III族源及氮源,并将所述第一III族源、第二III族源及氮源的流量控制在200sccm以下,以及将所述生长腔室内的气压设置为30-70torr,在所述界面弛豫层上生长超晶格结构,从而形成所述翘曲调控层。In one embodiment, step S3 specifically includes: inputting the first group III source, the second group III source and the nitrogen source into the growth chamber, and adding the first group III source, the second group III source and the nitrogen source to the growth chamber The flow rate of the source is controlled below 200 sccm, and the gas pressure in the growth chamber is set to 30-70 torr to grow a superlattice structure on the interface relaxation layer, thereby forming the warpage control layer.
例如,对于AlGaN/GaN的超晶格层,可以通过交替通入所需的Al源、Ga源和N源,交替在衬底表面淀积成膜,降低生长速率,提高晶格排布的致密性;此外,还可以在AlGaN/GaN的超晶格层的生长时,降低气流流量,200sccm;降低压强,30-70torr,以提高晶格排布的致密性。For example, for the superlattice layer of AlGaN/GaN, by alternately feeding in the required Al source, Ga source and N source, alternately depositing films on the surface of the substrate, reducing the growth rate and improving the density of the lattice arrangement In addition, during the growth of the AlGaN/GaN superlattice layer, the airflow rate can be reduced to 200sccm; the pressure can be reduced to 30-70torr to improve the density of the lattice arrangement.
在一个实施例中,在制备界面弛豫层和翘曲调控层时,所述第一III族源、第二III族源及氮源通入装置示意图如图4所示。In one embodiment, during the preparation of the interface relaxation layer and the warpage control layer, a schematic diagram of the device for feeding the first group III source, the second group III source and the nitrogen source is shown in FIG. 4 .
在一个实施例中,当所述氮化物单晶衬底为GaN单晶衬底时,所述二元氮化物层为AlN层,所述三元氮化物层为AlxGa1-xN层,所述包含三元氮化物层的超晶格结构为AlxGa1-xN/GaN超晶格结构,0<x<1;In one embodiment, when the nitride single crystal substrate is a GaN single crystal substrate, the binary nitride layer is an AlN layer, and the ternary nitride layer is an AlxGa1 - xN layer , the superlattice structure comprising the ternary nitride layer is an AlxGa1 - xN /GaN superlattice structure, 0<x<1;
或者,当所述氮化物单晶衬底为GaN单晶衬底时,所述二元氮化物层为InN层,所述三元氮化物层为InyGa1-yN层,所述包含三元氮化物层的超晶格结构为InyGa1-yN/GaN超晶格结构,0<y<1;Alternatively, when the nitride single crystal substrate is a GaN single crystal substrate, the binary nitride layer is an InN layer, the ternary nitride layer is an InyGa1 -yN layer , and the The superlattice structure of the ternary nitride layer is In y Ga 1-y N/GaN superlattice structure, 0<y<1;
或者,当所述氮化物单晶衬底为AlN单晶衬底时,所述二元氮化物层为GaN层,所述三元氮化物层为AlxGa1-xN层,所述包含三元氮化物层的超晶格结构为AlxGa1-xN/AlN超晶格结构,0<x<1;Alternatively, when the nitride single crystal substrate is an AlN single crystal substrate, the binary nitride layer is a GaN layer, the ternary nitride layer is an AlxGa1 - xN layer, and the The superlattice structure of the ternary nitride layer is AlxGa1 - xN /AlN superlattice structure, 0<x<1;
或者,当所述氮化物单晶衬底为AlN单晶衬底时,所述二元氮化物层为BN层,所述三元氮化物层为BxAl1-xN层,所述包含三元氮化物层的超晶格结构为BxAl1-xN/AlN超晶格结构,0<x<1。Alternatively, when the nitride single crystal substrate is an AlN single crystal substrate, the binary nitride layer is a BN layer, the ternary nitride layer is a B x Al 1-x N layer, and the The superlattice structure of the ternary nitride layer is a BxAl1 - xN/AlN superlattice structure, 0<x<1.
在一个实施例中,所述均匀性调控方法还包括:在所述翘曲调控层上生长半导体功能层。In one embodiment, the uniformity control method further includes: growing a semiconductor functional layer on the warpage control layer.
在一个较为具体的实施方案中,所述基于氮化物单晶衬底的同质外延结构的均匀性调控方法可以包括:In a more specific embodiment, the uniformity control method of the homoepitaxial structure based on the nitride single crystal substrate may include:
首先,在氨气的保护GaN单晶衬底的情况下升温到InN基或者AlN基材料的生长温度后,进行界面弛豫层的生长。需要断开氨气的同时,通入有机金属源TMIn或者TMAl,时间控制在几秒,目的是为了在GaN单晶衬底上铺一层金属In原子或者金属Al原子,作用是浸润衬底二次外延的界面层。然后切入氨气,进行生长InN或者AlN材料,为后续失配材料进行晶格弛豫,从而生长界面弛豫层,厚度控制在1-10nm。界面弛豫层为生长翘曲调控层进行前期的弛豫和界面处理,来保证后续较厚的材料的晶体质量和有效调控。First, the growth of the interface relaxation layer is performed after the temperature is raised to the growth temperature of the InN-based or AlN-based material while the GaN single crystal substrate is protected by ammonia gas. When the ammonia gas needs to be disconnected, the organometallic source TMIn or TMAl is introduced, and the time is controlled within a few seconds. The purpose is to lay a layer of metal In atoms or metal Al atoms on the GaN single crystal substrate, and the function is to wet the substrate two. Sub-epitaxial interface layer. Then, ammonia gas is cut to grow InN or AlN material, and lattice relaxation is performed for the subsequent mismatch material, so as to grow the interface relaxation layer, and the thickness is controlled at 1-10 nm. The interfacial relaxation layer performs pre-relaxation and interfacial treatment for the growth warpage control layer to ensure the crystal quality and effective control of subsequent thicker materials.
接着,对应InN基材料的界面弛豫层,则生长翘曲调控层为InGaN材料或者InGaN/GaN超晶格结构来进行外延片凹方向的弯曲调整;InGaN材料的In元素的含量为5%~10%,组分可不变也可以是组分渐变,厚度范围10-50nm,如果是InGaN/GaN超晶格结构,InGaN的In元素的含量为5%~20%,则厚度范围10-200nm。对应AlN基材料的界面弛豫层,则生长翘曲调控层为AlGaN单层材料或者AlGaN超晶格结构来进行外延片凸方向的弯曲调整;AlGaN材料的Al元素的含量为5%~20%,组分可不变也可以是组分渐变,厚度范围10-100nm。如果是AlGaN/GaN超晶格结构,AlGaN的Al元素的含量为5%~100%,厚度范围10-200nm。以上完成翘曲调控层的生长。Next, corresponding to the interface relaxation layer of the InN-based material, the growth warpage control layer is an InGaN material or an InGaN/GaN superlattice structure to adjust the bending in the concave direction of the epitaxial wafer; the content of the In element of the InGaN material is 5%~ 10%, the composition can be unchanged or the composition can be graded, and the thickness range is 10-50nm. If it is an InGaN/GaN superlattice structure, the content of In in InGaN is 5%-20%, and the thickness range is 10-200nm. Corresponding to the interface relaxation layer of the AlN-based material, the growth warpage control layer is an AlGaN single-layer material or an AlGaN superlattice structure to adjust the bending of the epitaxial wafer convex direction; the Al element content of the AlGaN material is 5% to 20% , the composition can be unchanged or the composition can be graded, and the thickness range is 10-100nm. If it is an AlGaN/GaN superlattice structure, the content of Al element in AlGaN is 5% to 100%, and the thickness ranges from 10 to 200 nm. The above completes the growth of the warpage control layer.
本申请提出在GaN单晶衬底上,首先沉积界面弛豫层,为后续翘曲调控层做准备,该层的材料为金属In/InN材料或金属Al/AlN材料,后续再以Al(In)GaN材料或者超晶格材料为翘曲调控层,然后再生长外延结构,如光电器件的LED或者电子器件的HEMT结构。本申请通过翘曲调控层中In(Ga)N或Al(Ga)N的组分和厚度调整,来实现整个外延片的凹凸性调节,从而实现对翘曲的可控以及高均匀性外延片的生长。This application proposes to deposit an interface relaxation layer on the GaN single crystal substrate first to prepare for the subsequent warpage control layer. The material of this layer is metal In/InN material or metal Al/AlN material, and then Al(In ) GaN material or superlattice material is the warpage control layer, and then the epitaxial structure is grown, such as the LED of the optoelectronic device or the HEMT structure of the electronic device. The present application realizes the adjustment of the unevenness of the entire epitaxial wafer by adjusting the composition and thickness of In(Ga)N or Al(Ga)N in the warpage control layer, so as to achieve controllable warpage and high uniformity of the epitaxial wafer growth.
本申请中为了平衡氮化物单晶衬底的翘曲问题,先生长与氮化物单晶衬底晶格失配大的界面弛豫层来平衡衬底的翘曲,同时也可以作为后续翘曲调控层的过渡层,提高晶体质量;其次后续生长的翘曲调控层是为了将平衡翘曲后的结构逐渐长平,可以通过减缓生长速率,使得晶格排布更加致密,拉应力或压应力更加均匀,实现更好的平整度。In this application, in order to balance the warpage problem of the nitride single crystal substrate, the interfacial relaxation layer with a large lattice mismatch with the nitride single crystal substrate is first grown to balance the warpage of the substrate, and it can also be used as a subsequent warpage. The transition layer of the control layer improves the crystal quality; secondly, the warpage control layer of the subsequent growth is to gradually flatten the structure after the equilibrium warping, which can slow down the growth rate and make the lattice arrangement more dense, tensile stress or compressive stress. More uniform for better flatness.
本申请的一些实施例提供了一种基于氮化物单晶衬底的同质外延结构,其包括:Some embodiments of the present application provide a homoepitaxial structure based on a nitride single crystal substrate, comprising:
氮化物单晶衬底;Nitride single crystal substrate;
界面弛豫层,其生长在所述衬底上,所述界面弛豫层包括二元氮化层,所述二元氮化层的组成材料与所述衬底的组成材料晶格失配,以产生压应力或张应力,从而平衡所述衬底的翘曲;an interface relaxation layer grown on the substrate, the interface relaxation layer comprising a binary nitride layer, and the constituent material of the binary nitride layer is lattice mismatched with the constituent material of the substrate, to generate compressive or tensile stress to balance the warpage of the substrate;
翘曲调控层,其生长在所述界面弛豫层上,所述翘曲调控层表面平整,所述翘曲调控层包括三元氮化物层或包含三元氮化物层的超晶格结构。The warpage control layer is grown on the interface relaxation layer, the surface of the warpage control layer is flat, and the warpage control layer includes a ternary nitride layer or a superlattice structure including a ternary nitride layer.
在一个实施例中,所述基于氮化物单晶衬底的同质外延结构还包括半导体功能层,所述半导体功能层生长在所述翘曲调控层上。In one embodiment, the homoepitaxial structure based on the nitride single crystal substrate further includes a semiconductor functional layer, and the semiconductor functional layer is grown on the warpage control layer.
在一个实施例中,所述二元氮化层第一III族氮化层的组成材料的晶格常数大于所述衬底的组成材料的晶格常数,以产生张应力;或者,所述第一III族氮化层的组成材料的晶格常数小于所述衬底的组成材料的晶格常数,以产生压应力。In one embodiment, the lattice constant of the constituent material of the first group III nitride layer of the binary nitride layer is greater than the lattice constant of the constituent material of the substrate, so as to generate tensile stress; or, the third The lattice constant of the constituent material of a group III nitride layer is smaller than the lattice constant of the constituent material of the substrate to generate compressive stress.
在一个实施例中,所述氮化物单晶衬底的厚度在1μm以上。In one embodiment, the thickness of the nitride single crystal substrate is more than 1 μm.
进一步地,所述氮化物单晶衬底的厚度为1-2.5μm。Further, the thickness of the nitride single crystal substrate is 1-2.5 μm.
在一个实施例中,所述界面弛豫层的厚度为1-10nm。In one embodiment, the thickness of the interfacial relaxation layer is 1-10 nm.
在一个实施例中,所述三元氮化物层的厚度为10nm-100nm,所述包含所述三元氮化物层组成的超晶格结构的厚度为10nm-200nm。In one embodiment, the thickness of the ternary nitride layer is 10 nm-100 nm, and the thickness of the superlattice structure comprising the ternary nitride layer is 10 nm-200 nm.
在一个实施例中,当所述氮化物单晶衬底为GaN单晶衬底时,所述二元氮化物层为AlN层,所述三元氮化物层为AlxGa1-xN层,所述包含三元氮化物层的超晶格结构为AlxGa1-xN/GaN超晶格结构,0<x<1;In one embodiment, when the nitride single crystal substrate is a GaN single crystal substrate, the binary nitride layer is an AlN layer, and the ternary nitride layer is an AlxGa1 - xN layer , the superlattice structure comprising the ternary nitride layer is an AlxGa1 - xN /GaN superlattice structure, 0<x<1;
或者,当所述氮化物单晶衬底为GaN单晶衬底时,所述二元氮化物层为InN层,所述三元氮化物层为InyGa1-yN层,所述包含三元氮化物层的超晶格结构为InyGa1-yN/GaN超晶格结构,0<y<1;Alternatively, when the nitride single crystal substrate is a GaN single crystal substrate, the binary nitride layer is an InN layer, the ternary nitride layer is an InyGa1 -yN layer , and the The superlattice structure of the ternary nitride layer is In y Ga 1-y N/GaN superlattice structure, 0<y<1;
或者,当所述氮化物单晶衬底为AlN单晶衬底时,所述二元氮化物层为GaN层,所述三元氮化物层为AlxGa1-xN层,所述包含三元氮化物层的超晶格结构为AlxGa1-xN/AlN超晶格结构,0<x<1;Alternatively, when the nitride single crystal substrate is an AlN single crystal substrate, the binary nitride layer is a GaN layer, the ternary nitride layer is an AlxGa1 - xN layer, and the The superlattice structure of the ternary nitride layer is AlxGa1 - xN /AlN superlattice structure, 0<x<1;
或者,当所述氮化物单晶衬底为AlN单晶衬底时,所述二元氮化物层为BN层,所述三元氮化物层为BxAl1-xN层,所述包含三元氮化物层的超晶格结构为BxAl1-xN/AlN超晶格结构,0<x<1。Alternatively, when the nitride single crystal substrate is an AlN single crystal substrate, the binary nitride layer is a BN layer, the ternary nitride layer is a B x Al 1-x N layer, and the The superlattice structure of the ternary nitride layer is a BxAl1 - xN /AlN superlattice structure, 0<x<1.
在一个实施例中,所述均匀性调控方法还包括:在所述翘曲调控层上生长半导体功能层。In one embodiment, the uniformity control method further includes: growing a semiconductor functional layer on the warpage control layer.
在一个实施例中,当所述预置应力为张应力时,所述二元氮化物层中第一III族元素的含量为5at.%~10at.%,所述包含三元氮化物层的超晶格结构中第一III族元素的含量为5at.%~20at.%。In one embodiment, when the pre-stress is tensile stress, the content of the first group III element in the binary nitride layer is 5 at. % to 10 at. The content of the first group III element in the superlattice structure is 5 at.% to 20 at.%.
具体地,所述二元氮化物层为InN材料时,所述三元氮化物层为InGaN材料,且InGaN材料中In元素的含量为5at.%~10at.%,三元氮化物层的厚度为10~50nm,同时所述三元氮化物层中的组分可不变也可以是组分渐变。Specifically, when the binary nitride layer is made of InN material, the ternary nitride layer is made of InGaN material, and the content of In element in the InGaN material is 5 at.% to 10 at.%, and the thickness of the ternary nitride layer is It is 10-50 nm, and the composition in the ternary nitride layer can be unchanged or the composition can be graded.
具体地,所述二元氮化物层为InN材料时,所述包含三元氮化物层的超晶格结构为InGaN/GaN超晶格结构,且InGaN材料中In元素的含量为5at.%~20at.%,包含三元氮化物层的超晶格结构的厚度为10~200nm。Specifically, when the binary nitride layer is an InN material, the superlattice structure including the ternary nitride layer is an InGaN/GaN superlattice structure, and the content of In element in the InGaN material is 5 at.%~ 20 at. %, the thickness of the superlattice structure including the ternary nitride layer is 10 to 200 nm.
在一个实施例中,当所述预置应力为压应力时,所述三元氮化物层中第一III族元素的含量为5at.%~20at.%,所述包含三元氮化物层的超晶格结构中第一III族元素的含量为5at.%~100at.%。In one embodiment, when the pre-stress is compressive stress, the content of the first group III element in the ternary nitride layer is 5 at. % to 20 at. %, and the ternary nitride layer containing the The content of the first group III element in the superlattice structure is 5 at. % to 100 at. %.
具体地,所述二元氮化物层为AlN材料时,所述三元氮化物层为AlGaN单层材料,AlGaN中Al元素的含量为5at.%~20at.%,三元氮化物层的厚度为10~100nm,同时所述三元氮化物层中的组分可不变也可以是组分渐变。Specifically, when the binary nitride layer is an AlN material, the ternary nitride layer is an AlGaN single-layer material, the content of Al element in AlGaN is 5 at.% to 20 at.%, and the thickness of the ternary nitride layer is It is 10-100 nm, and the composition in the ternary nitride layer can be unchanged or the composition can be graded.
具体地,所述二元氮化物层为AlN材料时,所述包含三元氮化物层的超晶格结构为AlGaN/GaN超晶格结构,AlGaN中Al元素的含量为5at.%~100at.%,包含三元氮化物层的超晶格结构的厚度为10~200nm。Specifically, when the binary nitride layer is made of AlN material, the superlattice structure including the ternary nitride layer is an AlGaN/GaN superlattice structure, and the content of Al element in AlGaN is 5 at.%~100at. %, the thickness of the superlattice structure including the ternary nitride layer is 10-200 nm.
在一个实施例中,所述氮化物单晶衬底包括GaN单晶衬底或AlN单晶衬底,且不限于此。In one embodiment, the nitride single crystal substrate includes a GaN single crystal substrate or an AlN single crystal substrate, and is not limited thereto.
在一个实施例中,所述同质外延结构为半导体发光器件结构,其中所述半导体功能层包括第一导电类型的半导体层、多量子阱发光层和第二导电类型的半导体层。In one embodiment, the homoepitaxial structure is a semiconductor light emitting device structure, wherein the semiconductor functional layer includes a first conductivity type semiconductor layer, a multiple quantum well light emitting layer and a second conductivity type semiconductor layer.
在一个实施例中,所述同质外延结构为电子器件结构,其中所述半导体功能层包括高阻层、插入层、沟道层、势垒层、帽层等。In one embodiment, the homoepitaxial structure is an electronic device structure, wherein the semiconductor functional layer includes a high resistance layer, an insertion layer, a channel layer, a barrier layer, a cap layer, and the like.
在一个较为具体的实施方案中,一种基于氮化物单晶衬底的同质外延结构如图1a所示,包括GaN单晶衬底(前述的氮化物半导体单晶衬底),依次生长在所述衬底上的界面弛豫层和翘曲调控层,以及形成于翘曲调控层上的N型GaN区域层、MQWs发光层、p型GaN区域层(前述的半导体功能层)。其中通过界面弛豫层和翘曲调控层实现对N型GaN区域层、MQWs发光层、p型GaN区域层的均匀性调控。In a more specific embodiment, a homoepitaxial structure based on a nitride single crystal substrate is shown in FIG. 1a, including a GaN single crystal substrate (the aforementioned nitride semiconductor single crystal substrate), which is sequentially grown on The interface relaxation layer and the warpage control layer on the substrate, and the N-type GaN region layer, the MQWs light-emitting layer, and the p-type GaN region layer (the aforementioned semiconductor functional layer) formed on the warpage control layer. The uniformity control of the N-type GaN region layer, the MQWs light-emitting layer, and the p-type GaN region layer is achieved through the interface relaxation layer and the warpage control layer.
在一个较为具体的实施方案中,一种基于氮化物单晶衬底的同质外延结构如图1b所示,包括GaN单晶衬底(前述的氮化物半导体单晶衬底),依次生长在所述衬底上的界面弛豫层和翘曲调控层,以及形成于翘曲调控层上的高阻层、插入层、沟道层、势垒层、帽层(前述的半导体功能层)。In a more specific embodiment, a homoepitaxial structure based on a nitride single crystal substrate is shown in FIG. 1b, including a GaN single crystal substrate (the aforementioned nitride semiconductor single crystal substrate), which is sequentially grown on The interface relaxation layer and the warpage control layer on the substrate, and the high resistance layer, the insertion layer, the channel layer, the barrier layer, and the cap layer (the aforementioned semiconductor functional layer) formed on the warpage control layer.
以下将结合附图及若干实施例对本申请的技术方案进行更详细的描述,但应当理解,如下实施例仅仅是为了解释和说明该技术方案,但不限制本申请的范围。又及,若非特别说明,如下实施例中所采用的各种原料、反应设备、检测设备及方法等均是本领域已知的。The technical solution of the present application will be described in more detail below with reference to the accompanying drawings and several embodiments, but it should be understood that the following embodiments are only for explaining and illustrating the technical solution, but do not limit the scope of the present application. Moreover, unless otherwise specified, various raw materials, reaction equipment, detection equipment and methods used in the following examples are known in the art.
常规的GaN单晶衬底在同质外延中易出现凹的现象,因此,实施例以解决衬底GaN单晶衬底凹的现象而采用的均匀性调控方法为例。Conventional GaN single crystal substrates are prone to concave phenomenon in homoepitaxy. Therefore, the embodiment takes the uniformity control method adopted to solve the concave phenomenon of the GaN single crystal substrate as an example.
实施例1Example 1
将GaN单晶衬底放入MOCVD外延系统生长GaN同质LED外延片,记为样品A。The GaN single crystal substrate is put into the MOCVD epitaxy system to grow the GaN homogenous LED epitaxial wafer, which is denoted as sample A.
首先压强设为70torr,开启氨气,在N2载气的气氛下升温到1100℃,达到平衡后,关闭氨气的同时切入TMAl流量300sccm,持续时间5s,在单晶衬底表面铺约一层金属Al原子。然后重新打开氨气,生长AlN约1min,厚度约2nm。至此完成界面弛豫层的生长。然后在同样条件下,同时通入Al源、Ga源及氮源,进行AlGaN/GaN的超晶格材料生长,其中AlGaN的厚度为3nm,AlGaN中Al元素的含量为50%,GaN的厚度为2nm,周期30个。First, the pressure was set to 70torr, the ammonia gas was turned on, and the temperature was raised to 1100 °C in the atmosphere of N 2 carrier gas. After reaching equilibrium, the ammonia gas was turned off and the flow rate of TMAl was switched to 300sccm for 5s. layer of metal Al atoms. Then the ammonia gas was turned on again, and AlN was grown for about 1 min with a thickness of about 2 nm. So far, the growth of the interface relaxation layer is completed. Then, under the same conditions, Al source, Ga source and nitrogen source were simultaneously fed to grow AlGaN/GaN superlattice material, wherein the thickness of AlGaN was 3 nm, the content of Al element in AlGaN was 50%, and the thickness of GaN was 2nm, 30 cycles.
完成翘曲调控层后,生长LED外延结构,2μm厚度n型GaN,接着5个周期的InGaN/GaN量子阱,其中InGaN的In元素的含量为15%,厚度3nm,GaN的厚度12nm,然后是200nm厚度的p型GaN。After completing the warpage control layer, grow the LED epitaxial structure with a thickness of 2 μm n-type GaN, followed by 5 cycles of InGaN/GaN quantum wells, where the content of In element in InGaN is 15%, the thickness is 3 nm, the thickness of GaN is 12 nm, and then the 200nm thick p-type GaN.
对比例1Comparative Example 1
方法同实施例1,不同之处在于:GaN单晶衬底不生长界面弛豫层及翘曲调控层,制备的同质GaN外延片记为样品B。The method is the same as in Example 1, except that the interface relaxation layer and the warpage control layer are not grown on the GaN single crystal substrate, and the prepared homogenous GaN epitaxial wafer is recorded as sample B.
对实施例1和对比例1中的样品A和样品B进行测试,图2-图3为样品A和样品B的光致发光PL测试图谱。可见,常规生长方法(即对比例1中的方案),由于GaN单晶衬底的生长工艺和后续切磨抛的原因,容易晶格弯曲而生长LED时容易出现如样品B波长中间短、整体中心凹陷的情况,在主波长450nm的情况,波长均匀性在4.4nm。而通过本申请实施例1中插入界面弛豫层和翘曲调控层后,GaN同质外延片样品A,在相同的主波长情况下,波长均匀性提高到1.2nm。这是外延片的弯曲变凸的结果,验证了本申请提供的调控方法的有效性。The samples A and B in Example 1 and Comparative Example 1 were tested. Figures 2 to 3 are the photoluminescence PL test patterns of samples A and B. It can be seen that the conventional growth method (ie the solution in Comparative Example 1), due to the growth process of the GaN single crystal substrate and the subsequent cutting, grinding and polishing, is easy to bend the lattice and grow LEDs. In the case of the center depression, in the case of the dominant wavelength of 450 nm, the wavelength uniformity is 4.4 nm. However, after inserting the interface relaxation layer and the warpage control layer in Example 1 of the present application, the GaN homoepitaxial wafer sample A has the same dominant wavelength, and the wavelength uniformity is improved to 1.2 nm. This is the result of the curvature of the epitaxial wafer becoming convex, which verifies the effectiveness of the control method provided in this application.
对比例2Comparative Example 2
方法同实施例1,不同之处在于:GaN单晶衬底不生长界面弛豫层(即:直接在GaN单晶衬底上依次生长AlGaN/GaN的超晶格材料和LED外延结构),制备的同质GaN外延片记为样品C。The method is the same as in Example 1, except that the interface relaxation layer is not grown on the GaN single crystal substrate (that is, the AlGaN/GaN superlattice material and the LED epitaxial structure are grown on the GaN single crystal substrate in turn), and the preparation The homogenous GaN epitaxial wafer is denoted as sample C.
对比例3Comparative Example 3
方法同实施例1,不同之处在于:GaN单晶衬底不生长翘曲调控层(即:直接在GaN单晶衬底上依次生长界面弛豫层和LED外延结构),制备的同质GaN外延片记为样品D。The method is the same as in Example 1, except that the warpage control layer is not grown on the GaN single crystal substrate (that is, the interface relaxation layer and the LED epitaxial structure are directly grown on the GaN single crystal substrate in turn), and the prepared homogeneous GaN The epitaxial wafer is designated as sample D.
实施例2Example 2
方法同实施例1,不同之处在于:在进行翘曲调控层生长时,将Al源、Ga源及氮源交替输入生长腔室,在AlN界面弛豫层上生长AlGaN/GaN的超晶格结构,从而形成翘曲调控层。The method is the same as that in Example 1, except that: when growing the warpage control layer, Al source, Ga source and nitrogen source are alternately input into the growth chamber, and the AlGaN/GaN superlattice is grown on the AlN interface relaxation layer. structure to form a warpage control layer.
具体地将Al源、Ga源及氮源的流量控制降低在200sccm以下,以及将生长腔室内的气压设置为30-70torr,在AlN界面弛豫层上生长AlGaN/GaN的超晶格结构,从而形成翘曲调控层。Specifically, the flow rates of the Al source, Ga source and nitrogen source are controlled to be less than 200 sccm, and the gas pressure in the growth chamber is set to 30-70 torr to grow the AlGaN/GaN superlattice structure on the AlN interface relaxation layer, thereby A warpage control layer is formed.
制备的同质GaN外延片记为样品E。The prepared homogenous GaN epitaxial wafer is denoted as sample E.
实施例3Example 3
将GaN单晶衬底放入MOCVD外延系统生长GaN同质LED外延片,记为样品F。The GaN single crystal substrate is put into the MOCVD epitaxy system to grow the GaN homogenous LED epitaxial wafer, which is denoted as sample F.
首先压强设为50torr,开启氨气,在N2载气的气氛下升温到1100℃,达到平衡后,关闭氨气的同时切入TMAl流量300ccm,持续时间5s,在单晶衬底表面铺约一层金属Al原子。然后重新打开氨气,生长AlN约1min,厚度约2nm。至此完成界面弛豫层的生长。然后在同样条件下,进行AlGaN单层材料生长,其中AlGaN的厚度为3nm,AlGaN中Al元素的含量为10%,GaN的厚度为2nm,周期30个。完成翘曲调控层后,生长LED外延结构,2μm厚度n型GaN,接着5个周期的InGaN/GaN量子阱,其中InGaN的In元素的含量为15%,厚度3nm,GaN的厚度12nm,然后是200nm厚度的p型GaN。First, the pressure is set to 50torr, the ammonia gas is turned on, and the temperature is raised to 1100 °C in the atmosphere of N 2 carrier gas. After reaching equilibrium, the TMAl flow is cut to 300 ccm while the ammonia gas is turned off, and the duration is 5s. layer of metal Al atoms. Then the ammonia gas was turned on again, and AlN was grown for about 1 min with a thickness of about 2 nm. So far, the growth of the interface relaxation layer is completed. Then, under the same conditions, AlGaN monolayer material growth is performed, wherein the thickness of AlGaN is 3 nm, the content of Al element in AlGaN is 10%, the thickness of GaN is 2 nm, and the period is 30. After completing the warpage control layer, grow the LED epitaxial structure with a thickness of 2 μm n-type GaN, followed by 5 cycles of InGaN/GaN quantum wells, where the content of In element in InGaN is 15%, the thickness is 3 nm, the thickness of GaN is 12 nm, and then the 200nm thick p-type GaN.
实施例4Example 4
将AlN单晶衬底放入MOCVD外延系统生长AlN同质UV-LED外延片,记为样品G。The AlN single crystal substrate is put into the MOCVD epitaxy system to grow the AlN homogenous UV-LED epitaxial wafer, which is denoted as sample G.
首先压强设为30torr,开启氨气,在N2载气的气氛下升温到1100℃,达到平衡后,关闭氨气的同时切入B源流量200ccm,持续时间5s,在单晶衬底表面铺约一层B原子。然后重新打开氨气,生长BN约1min,厚度约2nm。至此完成界面弛豫层的生长。然后在同样条件下,进行BN/AlN的超晶格材料生长,其中BN的厚度为3nm,AlN的厚度为2nm,周期25个。完成翘曲调控层后,生长UV-LED外延结构,2μm厚度n型AlGaN,接着5个周期的AlGaN/GaN量子阱,其中AlGaN的Al元素的含量为50%,厚度3nm,GaN的厚度12nm,然后是200nm厚度的p型AlGaN。First, the pressure is set to 30torr, the ammonia gas is turned on, and the temperature is raised to 1100 °C in the atmosphere of N 2 carrier gas. After reaching equilibrium, the ammonia gas is turned off and the flow rate of the B source is switched to 200 ccm for 5s. The surface of the single crystal substrate is spread about A layer of B atoms. Then the ammonia gas was turned on again, and BN was grown for about 1 min with a thickness of about 2 nm. So far, the growth of the interface relaxation layer is completed. Then, under the same conditions, the superlattice material growth of BN/AlN was carried out, wherein the thickness of BN was 3 nm, the thickness of AlN was 2 nm, and the period was 25. After completing the warpage control layer, grow a UV-LED epitaxial structure with a thickness of 2μm n-type AlGaN, followed by 5 cycles of AlGaN/GaN quantum wells, where the content of Al element in AlGaN is 50%, the thickness is 3nm, and the thickness of GaN is 12nm. Then there is p-type AlGaN with a thickness of 200 nm.
利用本领域习知的方式,分别利用实施例1-4以及对比例1-3中的同质外延结构制作LED器件,再对这些器件进行测试如表1所示。Using the methods known in the art, LED devices were fabricated by using the homoepitaxial structures in Examples 1-4 and Comparative Examples 1-3, respectively, and then these devices were tested as shown in Table 1.
表1实施例1-4以及对比例1-3中的同质外延结构制作LED器件的测试结果Table 1 Test results of LED devices fabricated by homoepitaxial structures in Examples 1-4 and Comparative Examples 1-3
最后应说明的是:以上所述仅为本申请的优选实施例而已,并不用于限制本申请,尽管参照前述实施例对本申请进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。Finally, it should be noted that the above are only the preferred embodiments of the present application, and are not intended to limit the present application. Although the present application has been described in detail with reference to the foregoing embodiments, for those skilled in the art, the The technical solutions described in the foregoing embodiments can be modified, or some technical features thereof can be equivalently replaced, and any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included. within the scope of protection of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210759553.XA CN115116828B (en) | 2022-06-29 | 2022-06-29 | Homoepitaxial structure based on nitride single crystal substrate and uniformity regulating and controlling method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210759553.XA CN115116828B (en) | 2022-06-29 | 2022-06-29 | Homoepitaxial structure based on nitride single crystal substrate and uniformity regulating and controlling method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115116828A true CN115116828A (en) | 2022-09-27 |
CN115116828B CN115116828B (en) | 2024-08-06 |
Family
ID=83330585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210759553.XA Active CN115116828B (en) | 2022-06-29 | 2022-06-29 | Homoepitaxial structure based on nitride single crystal substrate and uniformity regulating and controlling method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115116828B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117109456A (en) * | 2023-10-23 | 2023-11-24 | 中国科学院苏州纳米技术与纳米仿生研究所 | In-situ detection system and method for nitride homoepitaxial growth |
CN118016710A (en) * | 2024-04-10 | 2024-05-10 | 英诺赛科(珠海)科技有限公司 | GaN HEMT device and manufacturing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103165776A (en) * | 2011-12-15 | 2013-06-19 | 南通同方半导体有限公司 | Light-emitting diode structure capable of obtaining three-primary-color light |
CN105580146A (en) * | 2013-09-23 | 2016-05-11 | 传感器电子技术股份有限公司 | III-nitride heterostructures for optoelectronic devices |
CN109786513A (en) * | 2018-12-27 | 2019-05-21 | 华灿光电(浙江)有限公司 | Epitaxial wafer of light emitting diode and preparation method thereof |
CN114242854A (en) * | 2022-02-23 | 2022-03-25 | 江苏第三代半导体研究院有限公司 | A kind of homoepitaxial structure, its preparation method and peeling method |
WO2022062974A1 (en) * | 2020-09-25 | 2022-03-31 | 华为技术有限公司 | Nitride epitaxial structure and semiconductor device |
CN114361302A (en) * | 2022-03-17 | 2022-04-15 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer, light-emitting diode buffer layer and preparation method thereof |
-
2022
- 2022-06-29 CN CN202210759553.XA patent/CN115116828B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103165776A (en) * | 2011-12-15 | 2013-06-19 | 南通同方半导体有限公司 | Light-emitting diode structure capable of obtaining three-primary-color light |
CN105580146A (en) * | 2013-09-23 | 2016-05-11 | 传感器电子技术股份有限公司 | III-nitride heterostructures for optoelectronic devices |
CN109786513A (en) * | 2018-12-27 | 2019-05-21 | 华灿光电(浙江)有限公司 | Epitaxial wafer of light emitting diode and preparation method thereof |
WO2022062974A1 (en) * | 2020-09-25 | 2022-03-31 | 华为技术有限公司 | Nitride epitaxial structure and semiconductor device |
CN114242854A (en) * | 2022-02-23 | 2022-03-25 | 江苏第三代半导体研究院有限公司 | A kind of homoepitaxial structure, its preparation method and peeling method |
CN114361302A (en) * | 2022-03-17 | 2022-04-15 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer, light-emitting diode buffer layer and preparation method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117109456A (en) * | 2023-10-23 | 2023-11-24 | 中国科学院苏州纳米技术与纳米仿生研究所 | In-situ detection system and method for nitride homoepitaxial growth |
CN117109456B (en) * | 2023-10-23 | 2024-01-26 | 中国科学院苏州纳米技术与纳米仿生研究所 | In-situ detection system and method for nitride homoepitaxial growth |
CN118016710A (en) * | 2024-04-10 | 2024-05-10 | 英诺赛科(珠海)科技有限公司 | GaN HEMT device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115116828B (en) | 2024-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101416838B1 (en) | (Al, In, Ga, B) Method for controlling conductivity of N | |
JP3968566B2 (en) | Nitride semiconductor crystal manufacturing method, nitride semiconductor wafer, and nitride semiconductor device | |
CN105023979B (en) | A kind of GaN base LED epitaxial wafer and preparation method thereof | |
CN104319330B (en) | Method for growing LED epitaxial structure with high-quality InGaN/GaN active layer | |
CN104409587B (en) | A kind of InGaN base blue-green light LED epitaxial structure and growing method | |
US20110003420A1 (en) | Fabrication method of gallium nitride-based compound semiconductor | |
CN106784216A (en) | Epitaxial wafer of GaN-based light emitting diode and growth method thereof | |
WO2006086471A2 (en) | A method to grow iii-nitride materials using no buffer layer | |
CN106653971B (en) | Epitaxial wafer of GaN-based light emitting diode and growth method thereof | |
CN115472720B (en) | Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode | |
CN106098871A (en) | A kind of preparation method of light-emitting diode epitaxial wafer | |
CN115116828B (en) | Homoepitaxial structure based on nitride single crystal substrate and uniformity regulating and controlling method thereof | |
CN117393667B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, LED | |
JP2007515791A (en) | Method for growing nitride semiconductor layer and nitride semiconductor light emitting device using the same | |
JP2008034444A (en) | Group iii nitride semiconductor light emitting device, method of manufacturing same, and lamp | |
CN110610849B (en) | A kind of InGaN semiconductor material and its epitaxial preparation method and application | |
WO2002017369A1 (en) | Method of fabricating group-iii nitride semiconductor crystal, metho of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device | |
CN116190520A (en) | LED epitaxial wafer for improving wavelength yield, preparation method thereof and LED chip | |
CN106848017B (en) | Epitaxial wafer of GaN-based light emitting diode and growth method thereof | |
CN106206869B (en) | Growth method of GaN-based light emitting diode epitaxial wafer | |
CN204167348U (en) | A kind of LED epitaxial structure with high-quality InGaN/GaN active layer | |
CN118888658A (en) | LED epitaxial wafer, epitaxial growth method and LED chip | |
CN105679898B (en) | LED epitaxial structure and its growing method with warpage adjustment structure layer | |
CN116469977A (en) | A kind of multi-quantum well layer and its preparation method, epitaxial wafer and light-emitting diode | |
CN106299057A (en) | A kind of LED epitaxial structure improving brightness band 3D layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |