CN115113171A - A multi-line lidar and its data point cloud processing method - Google Patents
A multi-line lidar and its data point cloud processing method Download PDFInfo
- Publication number
- CN115113171A CN115113171A CN202110304314.0A CN202110304314A CN115113171A CN 115113171 A CN115113171 A CN 115113171A CN 202110304314 A CN202110304314 A CN 202110304314A CN 115113171 A CN115113171 A CN 115113171A
- Authority
- CN
- China
- Prior art keywords
- laser
- transmitting
- lidar
- receiving
- receiving module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4814—Constructional features, e.g. arrangements of optical elements of transmitters alone
- G01S7/4815—Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4816—Constructional features, e.g. arrangements of optical elements of receivers alone
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
本发明涉及一种多线激光雷达及其数据点云处理方法,所述多线激光雷达包括可旋转的旋转基座和沿周向设置在所述旋转基座上的多个激光发射接收模组;所述激光发射接收模组包括:激光发射阵列,其包括阵列布置的多个激光发射器,所述激光发射器用于发射出射激光,所述出射激光经探测目标反射产生反射激光;以及激光探测阵列,其包括阵列布置的多个激光探测器,所述激光探测器用于接收反射激光,其中,在所述多个激光发射接收模组所包括的多个激光发射阵列之间,沿周向方向对应布置的多个激光发射器分别具有不同的发射角度。本发明的多线激光雷达及其数据点云处理方法能提高多线激光雷达的探测精度。
The invention relates to a multi-line laser radar and a data point cloud processing method thereof. The multi-line laser radar comprises a rotatable rotating base and a plurality of laser transmitting and receiving modules arranged on the rotating base along the circumferential direction. The laser emission and reception module includes: a laser emission array, which includes a plurality of laser transmitters arranged in an array, the laser transmitters are used to emit outgoing laser light, and the outgoing laser light is reflected by the detection target to generate reflected laser light; and laser detection an array, which includes a plurality of laser detectors arranged in an array, the laser detectors are used for receiving reflected laser light, wherein, between the plurality of laser emission arrays included in the plurality of laser emission and receiving modules, along the circumferential direction The plurality of laser emitters arranged correspondingly have different emission angles, respectively. The multi-line laser radar and the data point cloud processing method of the invention can improve the detection accuracy of the multi-line laser radar.
Description
技术领域technical field
本发明一般地涉及激光技术领域。更具体地,本发明涉及一种多线激光雷达及其数据点云处理方法。The present invention generally relates to the field of laser technology. More specifically, the present invention relates to a multi-line laser radar and a data point cloud processing method thereof.
背景技术Background technique
随着激光技术的不断发展,激光技术不断地在生活的各个方面得到运用,如激光测量等。激光雷达的基本原理是向目标探测物发射激光光束,再来接受反射回来的反射光束,通过计算激光的往返时间确定激光雷达到目标探测物的距离。多线激光雷达是通过发射多个激光光束,并且通过比较接收的反射光束,来获取目标探测物的距离、高度、速度以及形状大小等信息。With the continuous development of laser technology, laser technology has been continuously used in all aspects of life, such as laser measurement. The basic principle of lidar is to emit a laser beam to the target detection object, and then receive the reflected beam, and determine the distance from the lidar to the target detection object by calculating the round-trip time of the laser. Multi-line LiDAR obtains information such as the distance, height, speed, shape and size of the target detection object by emitting multiple laser beams and comparing the received reflected beams.
目前,广泛采用多线激光雷达对目标探测物进行检测,对于多线激光雷达而言,其探测精度与激光雷达的激光光束的数量有关,但是激光雷达的激光光束的数量会受到激光雷达的体积的限制。因此,传统的多线激光雷达普遍存在着精度较低或者体积较大的问题。此外,传统的多线激光雷达的点云数据是针对各个激光发射光源为中心进行建模,这样建模得到的点云数据精度较低。At present, multi-line lidar is widely used to detect target detection objects. For multi-line lidar, the detection accuracy is related to the number of laser beams of lidar, but the number of laser beams of lidar will be affected by the volume of lidar. limits. Therefore, the traditional multi-line lidar generally has the problem of low accuracy or large volume. In addition, the point cloud data of the traditional multi-line lidar is modeled for each laser emitting light source as the center, so the accuracy of the point cloud data obtained by modeling is low.
因此,需要研发一种精度较高并且体积较小的多线激光雷达,以提高传统的多线激光雷达中存在的精度较低以及体积较大的问题;并使得得到的探测物数据点云信息精度高。Therefore, it is necessary to develop a multi-line laser radar with high precision and small volume to improve the problems of low precision and large volume in traditional multi-line laser radar; and make the obtained point cloud information of the detected object data. High precision.
发明内容SUMMARY OF THE INVENTION
为了解决上面提到的一个或多个技术问题,本发明提供一种多线激光雷达及其数据点云处理方法,以提高传统的多线激光雷达探测精度较差以及体积较大的问题。In order to solve one or more technical problems mentioned above, the present invention provides a multi-line laser radar and a data point cloud processing method thereof, so as to improve the problems of poor detection accuracy and large volume of traditional multi-line laser radar.
在第一方面中,本发明的示例性实施方式提供一种多线激光雷达,其可以包括可旋转的旋转基座和沿周向设置在所述旋转基座上的多个激光发射接收模组,所述激光发射接收模组可以包括:激光发射阵列,其包括阵列布置的多个激光发射器,所述激光发射器用于发射出射激光,所述出射激光经探测目标反射产生反射激光;以及激光探测阵列,其包括阵列布置的多个激光探测器,所述激光探测器用于接收反射激光,其中,在所述多个激光发射接收模组所包括的多个激光发射阵列之间,沿周向方向对应布置的多个激光发射器分别可以具有不同的发射角度。In a first aspect, an exemplary embodiment of the present invention provides a multi-line laser radar, which may include a rotatable rotating base and a plurality of laser transmitting and receiving modules circumferentially disposed on the rotating base , the laser emitting and receiving module may include: a laser emitting array, which includes a plurality of laser emitters arranged in an array, the laser emitters are used to emit outgoing laser light, and the outgoing laser light is reflected by the detection target to generate reflected laser light; and laser light A detection array, which includes a plurality of laser detectors arranged in an array, the laser detectors are used to receive reflected laser light, wherein, between the plurality of laser emission arrays included in the plurality of laser emission and reception modules, along the circumferential direction The plurality of laser emitters arranged in corresponding directions may respectively have different emission angles.
在一个示例性的实施方式中,在所述多个激光发射接收模组所包括的多个激光发射阵列之间,沿周向方向对应布置的多个激光发射器分别可以具有不同的高度。In an exemplary embodiment, among the plurality of laser emitting arrays included in the plurality of laser emitting and receiving modules, the plurality of laser emitters correspondingly arranged along the circumferential direction may have different heights, respectively.
在一个示例性的实施方式中,所述激光探测器的数量可以与所述激光发射器的数量相同,并且所述多个激光探测器可以分别具有与所述多个激光发射器一一对应的角度和高度。In an exemplary embodiment, the number of the laser detectors may be the same as the number of the laser emitters, and the plurality of laser detectors may respectively have a one-to-one correspondence with the plurality of laser emitters angle and height.
在一个示例性的实施方式中,所有的激光发射器可以均具有不同的发射角度。In an exemplary embodiment, all of the laser emitters may have different firing angles.
在一个示例性的实施方式中,所述激光发射接收模组进一步可以包括:光学接收结构,其包括接收透镜,所述接收透镜用于收集反射激光并使收集的反射激光入射至相应的激光探测器;和/或光学出射结构,其包括发射透镜,所述发射透镜布置在所述接收透镜周围,并且用于收集所述激光发射器发射的出射激光。In an exemplary embodiment, the laser transmitting and receiving module may further include: an optical receiving structure including a receiving lens, the receiving lens is used to collect the reflected laser light and make the collected reflected laser light incident on the corresponding laser detector and/or an optical exit structure comprising a transmitting lens arranged around the receiving lens and for collecting exit laser light emitted by the laser transmitter.
在一个示例性的实施方式中,所述光学出射结构可以包括至少四个发射透镜,所述光学接收结构可以包括至少一个接收透镜,其中,所述至少四个发射透镜可以布置在所述接收透镜的一侧。In an exemplary embodiment, the optical exit structure may include at least four transmitting lenses, and the optical receiving structure may include at least one receiving lens, wherein the at least four transmitting lenses may be arranged on the receiving lens side.
在一个示例性的实施方式中,所述多个激光发射接收模组可以包括:第一激光发射接收模组、第二激光发射接收模组、第三激光发射接收模组和第四激光发射接收模组,其中,第一激光发射接收模组与第三激光发射接收模组呈中心对称结构,第二激光发射接收模组与第四激光发射接收模组呈中心对称结构,第一激光发射接收模组与第二激光发射接收模组呈轴对称结构,第三激光发射接收模组与第四激光发射接收模组呈轴对称结构。In an exemplary embodiment, the plurality of laser transmitting and receiving modules may include: a first laser transmitting and receiving module, a second laser transmitting and receiving module, a third laser transmitting and receiving module, and a fourth laser transmitting and receiving module The module, wherein the first laser transmitting and receiving module and the third laser transmitting and receiving module are in a center-symmetric structure, the second laser transmitting and receiving module and the fourth laser transmitting and receiving module are in a center-symmetric structure, and the first laser transmitting and receiving module is in a center-symmetric structure. The module and the second laser transmitting and receiving module are in an axisymmetric structure, and the third laser transmitting and receiving module and the fourth laser transmitting and receiving module are in an axisymmetric structure.
在一个示例性的实施方式中,所述激光发射阵列进一步可以包括发射板,阵列布置的多个激光发射器设置于所述发射板上,并且所述激光探测阵列进一步可以包括接收板,阵列布置的多个激光探测器设置于所述接收板上。In an exemplary embodiment, the laser emitting array may further include a emitting plate on which a plurality of laser emitters arranged in an array are arranged, and the laser detection array may further include a receiving plate, which is arranged in an array. A plurality of laser detectors are arranged on the receiving board.
在一个示例性的实施方式中,所述激光发射阵列进一步可以包括光源驱动装置和与所述光源驱动装置电连接的至少四个激光发射器;所述激光探测阵列进一步可以包括信号处理装置和与所述信号处理装置电连接的至少四个激光探测器;并且所述激光探测器可以与所述激光发射器分别一一对应。In an exemplary embodiment, the laser emission array may further include a light source driving device and at least four laser emitters electrically connected to the light source driving device; the laser detection array may further include a signal processing device and a The signal processing device is electrically connected to at least four laser detectors; and the laser detectors may correspond to the laser transmitters in one-to-one correspondence.
在一个示例性的实施方式中,所述多线激光雷达进一步可以包括电机、顶板和挡光板,所述电机与旋转基座连接,以使旋转基座在电机的驱动下旋转;所述顶板设置在所述激光发射接收模组上方;并且所述挡光板设置于所述多个激光发射接收模组之间,以用于分隔所述多个激光发射接收模组。In an exemplary embodiment, the multi-line laser radar may further include a motor, a top plate and a light blocking plate, the motor is connected with the rotating base, so that the rotating base is driven by the motor to rotate; the top plate is provided with above the laser transmitting and receiving modules; and the light blocking plate is arranged between the plurality of laser transmitting and receiving modules to separate the plurality of laser transmitting and receiving modules.
在一个示例性的实施方式中,所述多线激光雷达进一步可以包括控制装置,所述控制装置与所述电机相连接,以通过所述电机控制所述旋转基座的旋转。In an exemplary embodiment, the multi-line lidar may further include a control device connected with the motor to control the rotation of the rotating base through the motor.
在一个示例性的实施方式中,所述多线激光雷达进一步可以包括方位检测装置,其配置为确定目标的方位,包括:确定激光在所述目标与所述激光雷达之间的往返时间T;确定激光在预定坐标系下与预定平面的第一夹角α;确定激光发射器的随着所述旋转基座的旋转角度β;以及根据所述往返时间T、所述激光发射器在所述预定坐标系中的位置、第一夹角α和旋转角度β来确定所述目标的方位。In an exemplary embodiment, the multi-line lidar may further include an azimuth detection device configured to determine the azimuth of the target, including: determining the round-trip time T of the laser light between the target and the lidar; determining a first included angle α between the laser and a predetermined plane in a predetermined coordinate system; determining a rotation angle β of the laser emitter with the rotating base; and according to the round-trip time T, the laser emitter is in the The position in the predetermined coordinate system, the first included angle α and the rotation angle β are used to determine the orientation of the target.
在第二方面中,本发明的示例性实施方式提供一种用于第一方面及其各个实施方式所描述的多线激光雷达的数据点云处理方法,所述方法可以包括:确定激光在所述目标与所述激光雷达之间的往返时间T;确定激光在预定坐标系下与预定平面的第一夹角α;确定激光发射器的随着所述旋转基座的旋转角度β;以及根据所述往返时间T、所述激光发射器在所述预定坐标系中的位置、第一夹角α和旋转角度β来确定所述目标的方位。In a second aspect, an exemplary embodiment of the present invention provides a data point cloud processing method for the multi-line lidar described in the first aspect and various embodiments thereof, the method may include: determining where the laser is determine the round-trip time T between the target and the lidar; determine the first angle α between the laser and the predetermined plane under the predetermined coordinate system; determine the rotation angle β of the laser transmitter with the rotating base; and according to The round-trip time T, the position of the laser transmitter in the predetermined coordinate system, the first included angle α and the rotation angle β are used to determine the orientation of the target.
如上所述,本发明的示例性实施方式的激光雷达可以在旋转基座上布置多个激光发射接收模组,并且这些激光发射接收模组所包括的多个激光发射器可以具有不同的发射角度,因此可以增加探测目标上像素点的数量,从而可以显著地提高激光雷达的分辨率。As described above, the laser radar according to the exemplary embodiment of the present invention may arrange a plurality of laser transmitting and receiving modules on the rotating base, and the plurality of laser transmitters included in these laser transmitting and receiving modules may have different emission angles , so the number of pixels on the detection target can be increased, so that the resolution of the lidar can be significantly improved.
此外,本发明的示例性实施方式的激光雷达通过将多个激光发射接收模组所包括的多个激光发射器设置为具有不同的高度,可以增加激光发射器的数量而不增加激光发射接收模组的高度,因此本发明的激光雷达可以在不增加激光雷达的整体高度的前提下提高激光雷达的分辨率,从而可以减小激光雷达的体积。In addition, the lidar of the exemplary embodiment of the present invention can increase the number of laser transmitters without increasing the laser transmitter and receiver modules by setting the plurality of laser transmitters included in the plurality of laser transmitter and receiver modules to have different heights. Therefore, the lidar of the present invention can improve the resolution of the lidar without increasing the overall height of the lidar, thereby reducing the volume of the lidar.
另外,本发明的多线激光雷达及其数据点云处理方法可以以激光雷达的旋转轴线作为z轴来建立三维直角坐标系,使得由激光雷达的多个激光发射接收模组产生的像素点可以在同一个预定坐标系下计算,并且可以在同一个预定坐标系下绘制探测目标的数据点云。因此,本发明的多线激光雷达及其数据点云处理方法可以提高激光雷达的探测精度。In addition, the multi-line laser radar and its data point cloud processing method of the present invention can use the rotation axis of the laser radar as the z-axis to establish a three-dimensional rectangular coordinate system, so that the pixel points generated by the multiple laser transmitting and receiving modules of the laser radar can be It is calculated in the same predetermined coordinate system, and the data point cloud of the detection target can be drawn in the same predetermined coordinate system. Therefore, the multi-line laser radar and the data point cloud processing method of the present invention can improve the detection accuracy of the laser radar.
附图说明Description of drawings
通过参考附图阅读下文的详细描述,本发明示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本发明的若干实施方式,并且相同或对应的标号表示相同或对应的部分,其中:The above and other objects, features and advantages of exemplary embodiments of the present invention will become readily understood by reading the following detailed description with reference to the accompanying drawings. In the accompanying drawings, several embodiments of the present invention are shown by way of example and not limitation, and like or corresponding reference numerals refer to like or corresponding parts, wherein:
图1是示出根据本发明的示例性实施方式的一种多线激光雷达的示意图;FIG. 1 is a schematic diagram illustrating a multi-line lidar according to an exemplary embodiment of the present invention;
图2是示出根据本发明的示例性实施方式的多线激光雷达的激光发射阵列的示意图;2 is a schematic diagram illustrating a laser emission array of a multi-line lidar according to an exemplary embodiment of the present invention;
图3是示出根据本发明的示例性实施方式的多线激光雷达的激光发射器的等效布局示意图;3 is a schematic diagram illustrating an equivalent layout of a laser transmitter of a multi-line lidar according to an exemplary embodiment of the present invention;
图4是示出根据本发明的另一个示例性实施方式的多线激光雷达的激光发射阵列的示意图;4 is a schematic diagram illustrating a laser emission array of a multi-line lidar according to another exemplary embodiment of the present invention;
图5是示出根据本发明的又一个示例性实施方式的多线激光雷达的激光发射阵列的示意图;5 is a schematic diagram illustrating a laser emission array of a multi-line lidar according to yet another exemplary embodiment of the present invention;
图6是示出根据本发明的示例性实施方式的多线激光雷达的光学出射结构和光学接收结构的示意图;6 is a schematic diagram illustrating an optical output structure and an optical reception structure of a multi-line lidar according to an exemplary embodiment of the present invention;
图7是示出根据本发明的示例性实施方式的多线激光雷达对目标探测物进行测量的示意图;以及FIG. 7 is a schematic diagram illustrating the measurement of a target detection object by a multi-line lidar according to an exemplary embodiment of the present invention; and
图8是示出根据本发明的示例性实施方式的多线激光雷达的数据点云处理方法的流程图。FIG. 8 is a flowchart illustrating a data point cloud processing method of a multi-line lidar according to an exemplary embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts shall fall within the protection scope of the present invention.
应当理解,本发明的权利要求、说明书及附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。本发明的说明书和权利要求书中使用的术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。It should be understood that the terms "first", "second", "third" and "fourth" in the claims, description and drawings of the present invention are used to distinguish different objects, rather than to describe a specific order . The terms "comprising" and "comprising" used in the description and claims of the present invention indicate the presence of the described features, integers, steps, operations, elements and/or components, but do not exclude one or more other features, integers , step, operation, element, component and/or the presence or addition of a collection thereof.
还应当理解,在此本发明说明书中所使用的术语仅仅是出于描述特定实施方式的目的,而并不意在限定本发明。如在本发明说明书和权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。还应当进一步理解,在本发明说明书和权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。It should also be understood that the terminology used in this specification of the present invention is for the purpose of describing particular embodiments only, and is not intended to limit the present invention. As used in the present specification and claims, the singular forms "a," "an," and "the" are intended to include the plural unless the context clearly dictates otherwise. It will be further understood that, as used in the present specification and claims, the term "and/or" refers to and including any and all possible combinations of one or more of the associated listed items.
如在本说明书和权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。As used in this specification and in the claims, the term "if" may be contextually interpreted as "when" or "once" or "in response to determining" or "in response to detecting". Similarly, the phrases "if it is determined" or "if the [described condition or event] is detected" may be interpreted, depending on the context, to mean "once it is determined" or "in response to the determination" or "once the [described condition or event] is detected. ]" or "in response to detection of the [described condition or event]".
多线激光雷达是激光雷达的一种,是通过多个激光发射器发射激光来探测目标的位置、速度等特征量,其工作原理是先向目标发射出射激光,然后接收从探测目标反射回来的反射激光并与出射激光进行比较,由此可以获得目标的有关信息。Multi-line LiDAR is a kind of LiDAR. It uses multiple laser transmitters to emit laser light to detect the position, speed and other characteristics of the target. Its working principle is to first emit laser light to the target, and then receive the reflected light from the detection target Information about the target can be obtained by reflecting the laser light and comparing it with the outgoing laser light.
目前,传统的多线激光雷达通常是在发射板和接收板上分别设置多个激光发射器和多个激光探测器,利用多个激光发射器发射的出射激光进行探测,从而实现多线激光探测。然而,多线激光雷达的线数决定了激光雷达的探测精度,增加线数的方式通常只是在发射板上增加激光发射器的数量,而增加激光发射器的数量会增加发射板以及对应的光学结构的体积,从而使激光雷达的体积增加。At present, the traditional multi-line lidar usually sets multiple laser transmitters and multiple laser detectors on the transmitting board and the receiving board respectively, and uses the outgoing lasers emitted by the multiple laser transmitters for detection, thereby realizing multi-line laser detection. . However, the number of lines of the multi-line lidar determines the detection accuracy of the lidar. The way to increase the number of lines is usually only to increase the number of laser transmitters on the emission board, and increasing the number of laser transmitters will increase the emission board and the corresponding optical The volume of the structure, thereby increasing the volume of the lidar.
此外,在发射板上增加激光发射器的数量会增加激光发射器的设置密度,从而增加激光发射器的调试难度。因此,单纯地增加激光发射器数量来增加线数的方式,会受整个激光雷达的体积以及激光雷达角度调试难度的限制,从而导致激光雷达的探测精度难以提高。In addition, increasing the number of laser emitters on the emission board will increase the density of laser emitters, thereby increasing the difficulty of debugging the laser emitters. Therefore, the method of simply increasing the number of laser transmitters to increase the number of lines will be limited by the volume of the entire lidar and the difficulty of debugging the angle of the lidar, which makes it difficult to improve the detection accuracy of the lidar.
针对上述问题,本发明的示例性实施方式提供一种多线激光雷达,该多线激光雷达可以包括至少一个旋转基座和布置在旋转基座上的至少两个激光发射接收模组,激光接收发射模组可以包括:激光发射阵列、激光探测阵列、光学出射结构和光学接收结构,其中,激光发射阵列可以包括:接收板、激光发射器和准直筒,激光探测阵列可以包括:接收板和激光探测器。In view of the above problems, an exemplary embodiment of the present invention provides a multi-line laser radar, the multi-line laser radar may include at least one rotating base and at least two laser transmitting and receiving modules arranged on the rotating base. The emission module may include: a laser emission array, a laser detection array, an optical output structure and an optical reception structure, wherein the laser emission array may include: a receiving plate, a laser transmitter and a collimating cylinder, and the laser detection array may include: a receiving plate and a laser detector.
本发明的多线激光雷达可以利用在竖直方向上不同角度、不同位置排列的多个激光发射器来发射出射激光,该出射激光经过准直筒进行光路准直后,通过对应的发射透镜射出,在遇到探测目标后发生反射产生反射激光。反射激光通过接收透镜汇聚,并且由在竖直方向上以不同角度、不同位置排列的、与激光发射器一一对应的激光探测器进行检测。The multi-line laser radar of the present invention can use a plurality of laser transmitters arranged at different angles and different positions in the vertical direction to emit outgoing laser light. Reflection occurs after encountering the detection target to generate reflected laser light. The reflected laser light is condensed by the receiving lens, and detected by the laser detectors arranged at different angles and positions in the vertical direction and corresponding to the laser emitters one-to-one.
进一步地,本发明的多线激光雷达通过计时单元和方位检测装置确定与测距相关的激光光束信息,从而可以计算探测目标相对于激光雷达的旋转轴线的三维数据点云信息。本发明的多线激光雷达不仅可以有效地提高多线激光雷达的分辨率并且具有较小的整体体积,而且还可以较精确地计算和处理探测目标的三维数据点云信息。Further, the multi-line laser radar of the present invention determines the laser beam information related to ranging through the timing unit and the azimuth detection device, so that the three-dimensional data point cloud information of the detection target relative to the rotation axis of the laser radar can be calculated. The multi-line laser radar of the present invention can not only effectively improve the resolution of the multi-line laser radar and have a smaller overall volume, but also can calculate and process the three-dimensional data point cloud information of the detection target more accurately.
下面结合附图来详细描述本发明的具体实施方式。The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图1是示出根据本发明的示例性实施方式的激光雷达的示意图。FIG. 1 is a schematic diagram illustrating a lidar according to an exemplary embodiment of the present invention.
如图1所示,本发明的示例性实施方式提供一种激光雷达,该激光雷达可以包括:可旋转的旋转基座100和沿周向设置在该旋转基座100上的多个激光发射接收模组200。具体地,激光发射接收模组200可以包括:激光发射阵列210a-210d,其包括阵列布置的多个激光发射器211,激光发射器211用于发射出射激光,出射激光经探测目标反射产生反射激光;以及激光探测阵列220a-220d,其包括阵列布置的多个激光探测器221,激光探测器221用于接收反射激光。As shown in FIG. 1 , an exemplary embodiment of the present invention provides a lidar, which may include: a rotatable rotating
具体而言,如图1所示,上述的激光发射阵列210a-210d可以包括多个激光发射器211,多个激光发射器211可以朝向激光雷达的外部发射出射激光,该出射激光遇到探测目标会反射产生反射激光,并且该反射激光可以由布置在激光发射阵列210a-210d附近的激光探测阵列上的激光探测器221接收,由此可以实现激光探测。Specifically, as shown in FIG. 1, the above-mentioned
图2是示出根据本发明的示例性实施方式的多线激光雷达的激光发射阵列的示意图。FIG. 2 is a schematic diagram illustrating a laser emission array of a multi-line lidar according to an exemplary embodiment of the present invention.
进一步如图2所示,多个激光发射阵列210a-210d中的每一个激光发射阵列包括沿第一方向间隔布置的多个激光发射器211,所述第一方向与激光雷达的旋转轴线平行。特别地,在图2示出的实施方式中,第一方向为图2中的竖直方向。As further shown in FIG. 2, each of the plurality of
特别地,如图2所示,在多个激光发射接收模组200所包括的多个激光发射阵列210a-210d之间,沿周向方向对应布置的多个激光发射器211可以分别具有不同的发射角度。这里,所述的发射角度是指激光发射器211发射的出射激光与第一平面之间的夹角,所述第一平面为与激光雷达的旋转轴线垂直的平面。In particular, as shown in FIG. 2 , among the multiple
具体而言,在图2中并列示出了多个激光发射接收模组200所包括的多个激光发射阵列210a-210d,其中,在多个激光发射阵列210a-210d之间沿周向方向对应布置的多个激光发射器211在图2中显示为沿横向方向对应布置四个激光发射器211。如图所示,在图2中一共示出了四行对应布置的多个激光发射器211,每一行包括四个激光发射器,每一行中的四个激光发射器可以分别具有不同的发射角度。可以理解的是,这样布置可以在激光雷达旋转的情况下,使得沿周向方向对应布置的多个激光发射器211分别在探测目标上产生一个像素点,从而可以增加在探测目标上产生的像素点的数量。Specifically, in FIG. 2 , a plurality of
因此,可以理解,本公开的多线激光雷达通过将多个激光发射阵列上沿周向方向对应布置的多个激光发射器分别设置为具有不同的发射角度,可以在激光雷达旋转的情况下实现360°视场下的扫描测距,从而可以增加射入探测目标的像素点的数量,进而提高激光雷达的分辨率。Therefore, it can be understood that the multi-line lidar of the present disclosure can be realized when the lidar rotates by setting the plurality of laser transmitters correspondingly arranged along the circumferential direction on the plurality of laser emission arrays to have different emission angles respectively. The scanning ranging under the 360° field of view can increase the number of pixels that are incident on the detection target, thereby improving the resolution of the lidar.
进一步地,继续参考图2,在一个示例性的实施方式中,在多个激光发射接收模组200所包括的多个激光发射阵列210a-210d之间,沿周向方向对应布置的多个激光发射器211可以分别具有不同的高度。Further, with continued reference to FIG. 2 , in an exemplary embodiment, among the plurality of
具体而言,与上文所述的发射角度类似,如图2所示,一共示出了四行对应布置的多个激光发射器211,每一行包括四个激光发射器211,每一行中的四个激光发射器211可以分别具有不同的高度。这里,可以理解所述高度为图2中沿竖直方向的高度,该竖直方向与多线激光雷达的旋转轴线平行。Specifically, similar to the above-mentioned emission angles, as shown in FIG. 2 , a total of four
因此,可以理解,上述布置可以在激光雷达旋转的情况下,使得沿周向方向对应布置的多个激光发射器211分别在探测目标上产生一个像素点,从而可以增加在探测目标上产生的像素点的数量。Therefore, it can be understood that the above arrangement can make a plurality of
此外,可以理解的是,虽然在图2中示出的实施方式中包括四行对应布置的多个激光发射器211,并且每一行包括四个激光发射器211,但是这种布置方式仅为本公开的优选实施方式。对于行数和每一行所包括的激光发射器的数量而言,本领域技术人员可以根据应用场景选择不同数量的行以及每一行所包括的激光发射器的数量,本公开对此不做限制。In addition, it can be understood that, although the embodiment shown in FIG. 2 includes a plurality of
进一步地,在一个示例性的实施方式中,所有的激光发射器可以均具有不同的发射角度。换而言之,本公开的多线激光雷达所包括的全部激光发射器的每一个均可以具有不同的发射角度。这样布置使得每一个激光发射器211分别可以在探测目标上产生一个像素点,从而可以进一步增加在探测目标上产生的像素点的数量。Further, in an exemplary embodiment, all the laser emitters may have different emission angles. In other words, each of all the laser transmitters included in the multi-line lidar of the present disclosure may have different emission angles. This arrangement enables each
在一个示例性的实施方式中,如图1所示,本发明的多线激光雷达可以示例性地包括四个激光发射接收模组200,上述四个激光发射接收模组200可以包括:第一激光发射接收模组200a、第二激光发射接收模组200b、第三激光发射接收模组200c和第四激光发射接收模组200d。具体地,第一激光发射接收模组200a与第三激光发射接收模组200c呈中心对称结构,第二激光发射接收模组200b与第四激光发射接收模组200d呈中心对称结构,第一激光发射接收模组200a与第二激光发射接收模组200b呈轴对称结构,第三激光发射接收模组200c与第四激光发射接收模组200d呈轴对称结构。In an exemplary embodiment, as shown in FIG. 1 , the multi-line laser radar of the present invention may exemplarily include four laser transmitting and receiving
这里,可以理解的是,上述的第一激光发射接收模组200a与第三激光发射接收模组200c呈中心对称结构是指第一激光发射接收模组200a和第三激光发射接收模组200c的整体布局方向的对称,而并非指第一激光发射接收模组200a和第三激光发射接收模组200c内部布置的各种元件的形状、位置和方向等也互相对称。Here, it can be understood that the above-mentioned first laser transmitting and receiving
同样地,第二激光发射接收模组200b与第四激光发射接收模组200d呈中心对称结构,第一激光发射接收模组200a与第二激光发射接收模组200b呈轴对称结构,以及第三激光发射接收模组200c与第四激光发射接收模组200d呈轴对称结构也是指激光发射接收模组200的整体布局方向的对称,非不旨在表示激光发射接收模组内部布置的各种元件的形状、位置和方向等也互相对称。Similarly, the second laser transmitting and receiving
因此,可以理解,如上布置的四个激光发射接收模组200a-200d可以分别朝向激光雷达的四个方向进行探测,如图1所示,并且由于这些激光发射接收模组200a-200d设置在可旋转的旋转基座100上,因此,在激光雷达旋转的情况下,每一个激光发射接收模组均可以实现360°视场下的扫描测距,从而可以增加用于探测目标的激光发射接收模组的数量,进而提高激光雷达的分辨率。Therefore, it can be understood that the four laser transmitting and receiving
此外,本公开的示例性的实施方式优选地设置4个激光发射接收模组,相比于布置其他数量的激光发射接收模组,这样布置不仅可以提高激光雷达的空间利用率而且布局简单。因此,本公开的激光雷达不仅可以减小体积和提高分辨率,而且还具有易于组装和调试的优点。In addition, the exemplary embodiment of the present disclosure is preferably provided with 4 laser transmitting and receiving modules. Compared with arranging other numbers of laser transmitting and receiving modules, this arrangement can not only improve the space utilization rate of the lidar, but also simplify the layout. Therefore, the lidar of the present disclosure can not only reduce the volume and improve the resolution, but also have the advantages of being easy to assemble and debug.
进一步地,如图1所示,上述的激光发射接收模组200a-200d可以包括:激光发射阵列210a-210d,其包括阵列布置的多个激光发射器211,该激光发射器211用于发射出射激光,该出射激光经探测目标反射产生反射激光;以及激光探测阵列220a-220d,其包括阵列布置的多个激光探测器221,激光探测器221用于接收反射激光,其中,在多个激光发射接收模组200所包括的多个激光发射器211中,至少两个激光发射器211具有不同的发射角度。Further, as shown in FIG. 1 , the above-mentioned laser transmitting and receiving
在一个示例性的实施方式中,如图2所示,布置在同一个激光发射阵列上的多个激光发射器211中的至少两个激光发射器211可以具有不同的发射角度;优选地,每一个激光发射器211均可以具有不同的发射角度。In an exemplary embodiment, as shown in FIG. 2 , at least two
具体而言,如图2所示,上述的激光发射阵列210a-210d可以包括多个激光发射器211,激光发射器211可以朝向激光雷达的外部发射出射激光,该出射激光遇到探测目标会反射产生反射激光,并且该反射激光可以由布置在激光发射阵列210a-210d附近的激光探测阵列上的激光探测器221接收,由此可以实现一次激光探测。Specifically, as shown in FIG. 2, the above-mentioned
进一步如图2所示,四个激光发射阵列210a-210d中的每一个激光发射阵列包括沿竖直方向间隔布置的四个激光发射器211,因此根据本示例性实施方式的激光雷达一共可以具有十六个激光发射器211,十六个激光发射器211具有不同的发射角度。As further shown in FIG. 2 , each of the four
进一步地,如图2所示,可以将上述四个激光发射阵列210a-210d分别布置在第一激光发射接收模组200a、第二激光发射接收模组200b、第三激光发射接收模组200c和第四激光发射接收模组200d中,可以使得十六个激光发射器211不必布置在同一个竖直方向上,因此可以降低激光雷达的整体高度,进而减小激光雷达的体积。Further, as shown in FIG. 2 , the above-mentioned four
图3是示出根据本发明的示例性实施方式的多线激光雷达的激光发射器211的等效布局示意图。FIG. 3 is a schematic diagram illustrating an equivalent layout of a
当激光雷达的旋转基座100旋转时,十六个激光发射器211会在旋转的同时向360°视场发射不同出射角度的出射激光,并且这十六个激光发射器211的等效布局和出射激光的等效分布形态如图3所示。由此可见,相比于仅设置一个激光发射接收模组的传统激光雷达,本发明的多线激光雷达可以在探测目标上产生十六个像素点,因此本发明的多线激光雷达可以显著地提高激光雷达的分辨率。When the
因此,可以理解,虽然在上述的示例性实施方式中描述了包括四个激光发射接收模组200a-200d、四个激光发射阵列210a-210d以及十六个激光发射器211的激光雷达,但是本发明不旨在限定激光雷达的数量,本领域技术人员根据本发明所披露的发明构思可以根据需要选择激光发射接收模组和激光发射阵列的数量,还可以根据需要选择每一个激光发射阵列所包括的激光发射器的数量。Therefore, it can be understood that although the above-mentioned exemplary embodiment describes a lidar including four laser transmitting and receiving
在另一个示例性的实施方式中,在多个激光发射接收模组200所包括的多个激光发射器211中,至少两个激光发射器211可以具有不同的高度;优选地,布置在同一个激光发射阵列上的多个激光发射器211中的至少两个激光发射器211可以具有不同的高度;更优选地,每一个激光发射器211均可以具有不同的高度。In another exemplary embodiment, among the plurality of
可以理解,在根据本示例性实施方式的多线激光雷达中,由于激光发射器211可以沿竖直方向布置,并且通过使激光发射器211高低错落排列,可以增加激光发射器211的数量,从而可以提高激光雷达的分辨率而不会增加激光雷达的整体高度,因此可以减小激光雷达的体积。It can be understood that in the multi-line lidar according to the present exemplary embodiment, since the
在一个示例性的实施方式中,激光探测器221的数量可以与激光发射器211的数量相同,并且多个激光探测器221可以分别具有与多个激光发射器211一一对应的角度和高度。具体地,多个激光探测器221可以与多个激光发射器211发射的出射激光一一对应,每一个出射激光遇到探测目标形成的反射激光会由一个对应的激光探测器221进行接收。这样布置可以使得每一个激光发射器211发射的出射激光都有对应的激光探测器进行接收,由此可以提高激光雷达的探测精度。In an exemplary embodiment, the number of
在一个示例性的实施方式中,如图2所示,激光发射阵列进一步可以包括发射板212,阵列布置的多个激光发射器211可以沿竖直方向间隔设置于发射板212上。此外,激光探测阵列进一步可以包括接收板222,阵列布置的多个激光探测器221可以沿竖直方向间隔设置于接收板222上。这样布置可以在竖直方向上布置多个激光发射器211,由此可以增加激光发射器211的数量,从而可以提高激光雷达的探测精度。In an exemplary embodiment, as shown in FIG. 2 , the laser emitting array may further include a emitting
在一个示例性的实施方式中,如图2所示,上述的激光发射阵列进一步可以包括光源驱动装置和与该光源驱动装置电连接的至少四个激光发射器211。上述的激光探测阵列进一步可以包括信号处理装置和与该信号处理装置电连接的至少四个激光探测器221,并且激光探测器221可以与激光发射器分别一一对应。In an exemplary embodiment, as shown in FIG. 2 , the above-mentioned laser emitting array may further include a light source driving device and at least four
在一个示例性的实施方式中,激光雷达进一步可以包括:发光控制装置,其与光源驱动装置连接,以用于控制激光发射器211的发光。In an exemplary embodiment, the lidar may further include: a light emission control device, which is connected to the light source driving device for controlling the light emission of the
图4是示出根据本发明的另一个示例性实施方式的多线激光雷达的激光发射阵列的示意图。进一步如图4所示,在该示例性的实施方式中,出射激光可以由脉冲发射器产生,也可以由激光光纤以分线的形式产生并传输至激光发射器211。FIG. 4 is a schematic diagram illustrating a laser emission array of a multi-line lidar according to another exemplary embodiment of the present invention. Further as shown in FIG. 4 , in this exemplary embodiment, the outgoing laser light may be generated by a pulse transmitter, or may be generated by a laser fiber in the form of a split line and transmitted to the
图5是示出根据本发明的又一个示例性实施方式的多线激光雷达的激光发射阵列的示意图。进一步如图5所示,在该示例性的实施方式中,出射激光也可以由脉冲发射器产生,也可以由激光光纤以多线的形式产生并传输至激光发射器211。FIG. 5 is a schematic diagram illustrating a laser emission array of a multi-line lidar according to yet another exemplary embodiment of the present invention. As further shown in FIG. 5 , in this exemplary embodiment, the outgoing laser light may also be generated by a pulse transmitter, or may be generated by a laser fiber in the form of multiple lines and transmitted to the
在一个示例性的实施方式中,如图1所示,激光发射接收模组200a-200d进一步可以包括:光学接收结构,其包括接收透镜230a-230d,接收透镜230a-230d用于收集反射激光并使收集的反射激光入射至相应的激光探测器221。具体地,上述接收透镜230a-230d可以收集反射激光,并且将反射激光汇聚至激光探测器221。In an exemplary embodiment, as shown in FIG. 1 , the laser transmitting and receiving
在一个示例性的实施方式中,如图1所示,激光发射接收模组200a-200d进一步可以包括:光学出射结构,其包括发射透镜240a-240d,发射透镜240a-240d布置在接收透镜230a-230d周围,并且用于收集激光发射器211发射的出射激光。在一个应用场景中,如图1所示,多个激光发射接收模组200a-200d中的每一个可以包括至少四个发射透镜240a-240d和至少一个接收透镜230a-230d,上述至少四个发射透镜240a-240d可以分别布置在接收透镜230a-230d的右上方、右下方、左上方和左下方。In an exemplary embodiment, as shown in FIG. 1 , the laser transmitting and receiving
图6是示出根据本发明的示例性实施方式的多线激光雷达的光学出射结构和光学接收结构的示意图。6 is a schematic diagram illustrating an optical output structure and an optical reception structure of a multi-line lidar according to an exemplary embodiment of the present invention.
在一个示例性的实施方式中,如图6所示,光学出射结构可以包括至少四个发射透镜240a-240d,光学接收结构可以包括至少一个接收透镜230a-230d,其中,至少四个发射透镜240a-240d可以布置在接收透镜230a-230d的一侧,并且与激光发射器211一一对应,激光发射器211发射的出射激光可以由准直筒213准直后再经过发射透镜240a-240d出射。这样布置可以降低发射透镜240a-240d的调试难度。In an exemplary embodiment, as shown in FIG. 6 , the optical outgoing structure may include at least four transmitting
在一个示例性的实施方式中,多线激光雷达进一步可以包括电机、顶板和挡光板300。具体地,上述的电机可以与激光雷达的旋转基座100连接,以使旋转基座100能够在电机的驱动下旋转。进一步地,上述的顶板可以布置在激光发射接收模组200上方,以在该顶板和旋转基座100之间形成容纳激光发射接收模组200的空间。进一步地,上述的挡光板300可以设置于多个激光发射接收模组200之间,以用于分隔多个激光发射接收模组200,并且将每一个激光发射接收模组200的出射激光光路和反射激光光路与其他激光发射接收模组200的出射激光光路和反射激光光路隔离。In an exemplary embodiment, the multi-line lidar may further include a motor, a top plate, and a
在一个示例性的实施方式中,多线激光雷达进一步可以包括控制装置,该控制装置可以与电机相连接,以通过电机控制旋转基座100的旋转。具体地,上述控制装置可以通过改变电流的频率来改变电机的转速,当增大施加给电机的电流的频率时,可以增大电机的转速;并且当减小施加给电机的电流的频率时,可以减小电机的转速。In an exemplary embodiment, the multi-line lidar may further include a control device, which may be connected with a motor to control the rotation of the
因此,可以理解,由于可以通过控制装置控制电机的转速,因此可以通过该控制装置获取旋转基座100的转速,并且根据该转速可以计算激光雷达的激光发射器211转过的旋转角度,例如可以使用电机的角速度乘以时间来计算激光发射器211转过的旋转角度。Therefore, it can be understood that since the rotation speed of the motor can be controlled by the control device, the rotation speed of the
在一个示例性的实施方式中,根据本发明的示例性的实施方式的多线激光雷达进一步可以包括方位检测装置,其配置为确定目标的方位,包括:确定激光在目标与激光雷达之间的往返时间T;确定激光在预定坐标系下与第一平面的第一夹角α;确定激光发射器211的随着旋转基座100的旋转角度β;以及根据往返时间T、激光发射器在预定坐标系中的位置、第一夹角α和旋转角度β来确定目标的方位。In an exemplary embodiment, the multi-line lidar according to an exemplary embodiment of the present invention may further include an azimuth detection device configured to determine the azimuth of the target, including: determining a laser beam between the target and the lidar The round-trip time T; determine the first angle α between the laser and the first plane in the predetermined coordinate system; determine the rotation angle β of the
图7是示出根据本发明的示例性实施方式的激光雷达对目标探测物进行测量的示意图。FIG. 7 is a schematic diagram illustrating the measurement of a target detection object by a lidar according to an exemplary embodiment of the present invention.
具体而言,如图7所示,上述的往返时间T可以指:激光雷达的激光发射器211发射出射激光到激光探测器221接收到反射激光的时间。进一步如图7所示,上述的预定坐标系可以是以激光雷达的旋转轴线为z轴的三维直角坐标系,该三维直角坐标系的原点O可以由本领域技术人员根据需要选定。具体而言,在将激光雷达的旋转轴线作为三维直角坐标系的z轴的情况下,三维直角坐标系的xOy平面所在的位置可以根据时间应用场景来设定。Specifically, as shown in FIG. 7 , the above-mentioned round-trip time T may refer to the time from when the
示例性地,在一个应用场景中,当激光雷达竖直布置在车辆的车顶时,激光雷达的旋转轴线在竖直方向上延伸,因此上述三维直角坐标系的z轴也在竖直方向上延伸,这样三维直角坐标系的xOy平面就可以选取在激光雷达的旋转基座100的上表面,也可以选取在车辆所行使的道路表面,这可以根据实际需要来设定。Exemplarily, in an application scenario, when the lidar is vertically arranged on the roof of the vehicle, the rotation axis of the lidar extends in the vertical direction, so the z-axis of the above-mentioned three-dimensional Cartesian coordinate system is also in the vertical direction. In this way, the xOy plane of the three-dimensional rectangular coordinate system can be selected on the upper surface of the
进一步地,如图7所示,上述的第一夹角α可以指:激光雷达的激光发射器211的发射角度,即激光雷达的激光发射器211发射的出射激光与三维直角坐标系的xOy平面之间的夹角。进一步地,如图7所示,上述的旋转角度β可以指:激光雷达的激光发射器211在发射出射激光时,随着激光雷达的旋转基座100转过的角度,其等于激光雷达的激光发射器211发射的出射激光在xOy平面上的投影与x轴的夹角。Further, as shown in FIG. 7 , the above-mentioned first angle α may refer to the emission angle of the
在一个示例性的实施方式中,可以通过与激光探测器221相连接的计时单元来确定往返时间T。具体地,上述的计时单元可以记录激光雷达的激光发射器211发射出射激光的时间以及激光探测器221接收到反射激光的时间,并且计算激光探测器221接收到反射激光的时间与激光雷达的激光发射器211发射出射激光的时间之间的差值,从而可以获得往返时间T。In an exemplary embodiment, the round-trip time T may be determined by a timing unit connected to the
进一步地,在一个示例性的实施方式中,可以通过激光雷达的激光发射器211的配置获得每一个激光发射器211的发射角度,以获得激光在预定坐标系下与第一平面的第一夹角α。可以理解的是,由于激光发射器211的发射角度可以根据需要进行调节,因此激光在预定坐标系下与第一平面的第一夹角α也可以是可调节的或者固定的。Further, in an exemplary embodiment, the emission angle of each
进一步地,在一个示例性的实施方式中,可以基于激光雷达的旋转机座的转速来获得激光发射器211的随着旋转基座100的旋转角度β,例如可以使用如下公式计算旋转角度β:Further, in an exemplary embodiment, the rotation angle β of the
β=w×tβ=w×t
其中,w为旋转基座100的角速度,t为运行时间。Wherein, w is the angular velocity of the
进一步地,在一个示例性的实施方式中,可以使用如下公式计算探测目标上的每一个像素点在上述预定坐标系中的三维坐标(x,y,z):Further, in an exemplary embodiment, the following formula can be used to calculate the three-dimensional coordinates (x, y, z) of each pixel on the detection target in the above-mentioned predetermined coordinate system:
其中,h为激光发射器211距离xOy平面的距离;lx为激光发射器211距离xOz平面的距离;ly为激光发射器211距离yOz平面的距离;c为激光的速度。Wherein, h is the distance between the
进一步地,在一个示例性的实施方式中,可以分别计算激光雷达的每一个像素点在上述预定坐标系中的三维坐标(x,y,z),并且可以在三维坐标中绘制每一个像素点,从而可以获得探测目标的数据点云。Further, in an exemplary embodiment, the three-dimensional coordinates (x, y, z) of each pixel of the lidar in the above-mentioned predetermined coordinate system can be calculated separately, and each pixel can be drawn in the three-dimensional coordinates. , so that the data point cloud of the detection target can be obtained.
可以理解,在本示例性的实施方式中,可以在同一个预定坐标系下,计算由激光雷达的多个激光发射接收模组200产生的像素点,并且可以在同一个预定坐标系下绘制探测目标的数据点云。因此,相比于传统的多线激光雷达以各个激光发射光源为中心进行建模的方式,本发明的激光雷达可以显著地提高激光雷达的探测精度。It can be understood that in this exemplary embodiment, the pixel points generated by the multiple laser transmitting and receiving
图8是示出根据本发明的示例性实施方式的多线激光雷达的数据点云处理方法的流程图。FIG. 8 is a flowchart illustrating a data point cloud processing method of a multi-line lidar according to an exemplary embodiment of the present invention.
在第二方面中,如图8所示,本发明的示例性实施方式还提供一种多线激光雷达的数据点云处理方法,其可以用于如上第一方面及其各个实施方式所描述的多线激光雷达,所述方法可以包括:确定激光在目标与激光雷达之间的往返时间T(S100);确定激光在预定坐标系下与预定平面的第一夹角α(S200);确定激光发射器的随着旋转基座的旋转角度β(S300);以及根据往返时间T、激光发射器在预定坐标系中的位置、第一夹角α和旋转角度β来确定目标的方位(S400)。In the second aspect, as shown in FIG. 8 , an exemplary embodiment of the present invention further provides a data point cloud processing method for a multi-line lidar, which can be used as described in the first aspect and various embodiments thereof. For a multi-line laser radar, the method may include: determining the round-trip time T of the laser light between the target and the laser radar (S100); determining the first angle α between the laser light and a predetermined plane in a predetermined coordinate system (S200); determining the laser light the rotation angle β of the transmitter along with the rotating base (S300); and determine the orientation of the target according to the round-trip time T, the position of the laser transmitter in the predetermined coordinate system, the first included angle α and the rotation angle β (S400) .
下面结合图7所示的三维坐标系以及图8进一步描述本示例性实施方式的方法。The method of this exemplary embodiment is further described below in conjunction with the three-dimensional coordinate system shown in FIG. 7 and FIG. 8 .
具体而言,上述的往返时间T可以指:多线激光雷达的激光发射器发射出射激光到激光探测器接收到反射激光的时间。进一步如图7所示,上述的预定坐标系可以是以激光雷达的旋转轴线为z轴的三维直角坐标系,该三维直角坐标系的原点O可以由本领域技术人员根据需要选定。具体而言,在将多线激光雷达的旋转轴线作为三维直角坐标系的z轴的情况下,三维直角坐标系的xOy平面所在的位置可以根据时间应用场景来设定。Specifically, the above-mentioned round-trip time T may refer to the time from when the laser transmitter of the multi-line laser radar emits the outgoing laser light until the laser detector receives the reflected laser light. As further shown in FIG. 7 , the above-mentioned predetermined coordinate system can be a three-dimensional rectangular coordinate system with the rotation axis of the lidar as the z-axis, and the origin O of the three-dimensional rectangular coordinate system can be selected by those skilled in the art as required. Specifically, when the rotation axis of the multi-line lidar is used as the z-axis of the three-dimensional rectangular coordinate system, the position of the xOy plane of the three-dimensional rectangular coordinate system can be set according to the time application scenario.
示例性地,在一个应用场景中,当多线激光雷达竖直布置在车辆的车顶时,多线激光雷达的旋转轴线在竖直方向上延伸,因此上述三维直角坐标系的z轴也在竖直方向上延伸,这样三维直角坐标系的xOy平面就可以选取在激光雷达的旋转基座的上表面,也可以选取在车辆所行使的道路表面,这可以根据实际需要来设定。Exemplarily, in an application scenario, when the multi-line lidar is vertically arranged on the roof of the vehicle, the rotation axis of the multi-line lidar extends in the vertical direction, so the z-axis of the above three-dimensional Cartesian coordinate system is also Extend in the vertical direction, so that the xOy plane of the three-dimensional rectangular coordinate system can be selected on the upper surface of the rotating base of the lidar, or can be selected on the road surface that the vehicle travels, which can be set according to actual needs.
进一步地,如图7所示,上述的第一夹角α可以指:多线激光雷达的激光发射器的发射角度,即多线激光雷达的激光发射器发射的出射激光与三维直角坐标系的xOy平面之间的夹角。进一步地,如图7所示,上述的旋转角度β可以指:多线激光雷达的激光发射器在发射出射激光时,随着激光雷达的旋转基座转过的角度,其等于激光雷达的激光发射器发射的出射激光在xOy平面上的投影与x轴的夹角。Further, as shown in FIG. 7 , the above-mentioned first angle α may refer to: the emission angle of the laser transmitter of the multi-line lidar, that is, the difference between the outgoing laser emitted by the laser transmitter of the multi-line lidar and the three-dimensional rectangular coordinate system. The angle between the xOy planes. Further, as shown in FIG. 7 , the above-mentioned rotation angle β may refer to: when the laser transmitter of the multi-line lidar emits the outgoing laser, the angle that the rotating base of the lidar rotates is equal to the laser beam of the lidar. The angle between the projection of the outgoing laser emitted by the transmitter on the xOy plane and the x-axis.
在一个实际应用场景中,可以通过与激光探测器相连接的计时单元来确定往返时间T。具体地,上述的计时单元可以记录激光雷达的激光发射器发射出射激光的时间以及激光探测器接收到反射激光的时间,并且计算激光探测器接收到反射激光的时间与激光雷达的激光发射器发射出射激光的时间之间的差值,从而可以获得往返时间T。In a practical application scenario, the round-trip time T can be determined by a timing unit connected to the laser detector. Specifically, the above timing unit can record the time when the laser transmitter of the lidar emits the outgoing laser and the time when the laser detector receives the reflected laser, and calculate the time when the laser detector receives the reflected laser and the laser transmitter of the lidar emits the laser. The difference between the times when the laser light is emitted, so that the round-trip time T can be obtained.
进一步地,在一个示例性的实施方式中,可以通过激光雷达的激光发射器的配置获得每一个激光发射器的发射角度,以获得激光在预定坐标系下与第一平面的第一夹角α。可以理解的是,由于激光发射器的发射角度可以根据需要进行调节,因此激光在预定坐标系下与第一平面的第一夹角α也可以是可调节的或者固定的。Further, in an exemplary embodiment, the emission angle of each laser transmitter can be obtained through the configuration of the laser transmitters of the lidar, so as to obtain the first included angle α between the laser and the first plane in the predetermined coordinate system . It can be understood that, since the emission angle of the laser transmitter can be adjusted as required, the first included angle α between the laser and the first plane in the predetermined coordinate system can also be adjustable or fixed.
进一步地,在一个示例性的实施方式中,可以基于激光雷达的旋转机座的转速来获得激光发射器的随着旋转基座的旋转角度β,例如可以使用如下公式计算旋转角度β:β=w×t,其中,w为旋转基座的角速度,t为运行时间。Further, in an exemplary embodiment, the rotation angle β of the laser transmitter along with the rotating base can be obtained based on the rotation speed of the rotating base of the lidar. For example, the rotation angle β can be calculated using the following formula: β= w×t, where w is the angular velocity of the rotating base and t is the running time.
进一步地,在一个示例性的实施方式中,可以使用如下公式计算探测目标上的每一个像素点在上述预定坐标系中的三维坐标(x,y,z):Further, in an exemplary embodiment, the following formula can be used to calculate the three-dimensional coordinates (x, y, z) of each pixel on the detection target in the above-mentioned predetermined coordinate system:
其中,h为激光发射器距离xOy平面的距离;lx为激光发射器距离xOz平面的距离;ly为激光发射器距离yOz平面的距离;c为激光的速度。Among them, h is the distance between the laser transmitter and the xOy plane; lx is the distance between the laser transmitter and the xOz plane; ly is the distance between the laser transmitter and the yOz plane; c is the speed of the laser.
进一步地,在一个示例性的实施方式中,可以分别计算激光雷达的每一个像素点在上述预定坐标系中的三维坐标(x,y,z),并且可以在三维坐标中绘制每一个像素点,从而可以获得探测目标的数据点云。Further, in an exemplary embodiment, the three-dimensional coordinates (x, y, z) of each pixel of the lidar in the above-mentioned predetermined coordinate system can be calculated separately, and each pixel can be drawn in the three-dimensional coordinates. , so that the data point cloud of the detection target can be obtained.
可以理解,在本示例性的实施方式中,可以在同一个预定坐标系下,计算由激光雷达的多个激光发射接收模组产生的像素点,并且可以在同一个预定坐标系下绘制探测目标的数据点云。因此,相比于传统的多线激光雷达以各个激光发射光源为中心进行建模的方式,本发明的激光雷达可以显著地提高激光雷达的探测精度。It can be understood that in this exemplary embodiment, the pixel points generated by the multiple laser transmitting and receiving modules of the lidar can be calculated in the same predetermined coordinate system, and the detection target can be drawn in the same predetermined coordinate system data point cloud. Therefore, compared with the traditional multi-line laser radar model in which each laser emitting light source is used as the center, the laser radar of the present invention can significantly improve the detection accuracy of the laser radar.
在一个示例性的实施方式中,往返时间可以为激光发射器发射出射激光到激光探测器接收到来自于探测目标的反射激光之间的时间差。In an exemplary embodiment, the round-trip time may be the time difference between when the laser transmitter emits the outgoing laser light and the laser detector receives the reflected laser light from the detection target.
结合上文所描述的各个示例性的实施方式,本领域技术人员可以理解,本发明至少具有如下几个方面的有益效果。With reference to the various exemplary embodiments described above, those skilled in the art can understand that the present invention has at least the following beneficial effects.
一方面,本发明的示例性实施方式的激光雷达通过设置多个激光发射接收模组,并且将多个激光发射接收模组所包括的多个激光发射器设置为具有不同的发射角度,可以增加探测目标上像素点的数量,从而可以显著地提高激光雷达的分辨率。此外,本发明的示例性实施方式的多线激光雷达通过将多个激光发射器设置为具有不同的高度,可以增加激光发射器的数量,从而可以而不增加激光雷达的整体高度的前提下提高激光雷达的分辨率,进而可以减小激光雷达的体积。On the one hand, the laser radar according to the exemplary embodiment of the present invention is provided with a plurality of laser transmission and reception modules, and the plurality of laser transmitters included in the plurality of laser transmission and reception modules are arranged to have different emission angles. Detect the number of pixels on the target, which can significantly improve the resolution of lidar. In addition, the multi-line lidar of the exemplary embodiment of the present invention can increase the number of laser transmitters by arranging a plurality of laser transmitters to have different heights, so that the overall height of the lidar can be improved without increasing the overall height of the lidar. The resolution of lidar can reduce the volume of lidar.
另一方面,本发明的多线激光雷达及其数据点云处理方法通过以激光雷达的旋转轴线为z轴建立三维直角坐标系,使得可以在同一个预定坐标系下,计算由激光雷达的多个激光发射接收模组产生的像素点,并且可以在同一个预定坐标系下绘制探测目标的数据点云。因此本发明的激光雷达和通过激光雷达确定目标的方位的方法可以进一步提高激光雷达的探测精度。On the other hand, the multi-line laser radar and its data point cloud processing method of the present invention establish a three-dimensional Cartesian coordinate system with the rotation axis of the laser radar as the z-axis, so that the multi-line laser radar can be calculated under the same predetermined coordinate system. The pixel points generated by each laser transmitting and receiving module can draw the data point cloud of the detection target in the same predetermined coordinate system. Therefore, the laser radar and the method for determining the orientation of the target by the laser radar of the present invention can further improve the detection accuracy of the laser radar.
在本说明书的上述描述中,除非另有明确的规定和限定,术语“固定”、“安装”、“相连”或“连接”等术语应该做广义的理解。例如,就术语“连接”来说,其可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,或者可以是两个元件内部的连通或两个元件的相互作用关系。因此,除非本说明书另有明确的限定,本领域技术人员可以根据具体情况理解上述术语在本发明中的具体含义。In the above description of this specification, unless otherwise expressly specified and limited, terms such as "fixed", "installed", "connected" or "connected" should be construed in a broad sense. For example, with regard to the term "connection", it may be a fixed connection, a detachable connection, or an integrated; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediate medium , or it can be a communication within two elements or an interaction relationship between two elements. Therefore, unless otherwise clearly defined in this specification, those skilled in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
根据本说明书的上述描述,本领域技术人员还可以理解如下使用的术语,例如“上”、“下”、“前”、“后”、“左”、“右”、“长度”、“宽度”、“厚度”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”、“中心”、“纵向”、“横向”、“顺时针”或“逆时针”等指示方位或位置关系的术语是基于本说明书的附图所示的方位或位置关系的,其仅是为了便于阐述本发明的方案和简化描述的目的,而不是明示或暗示所涉及的装置或元件必须要具有特定的方位、以特定的方位来构造和进行操作,因此上述的方位或位置关系术语不能被理解或解释为对本发明方案的限制。From the above description of this specification, those skilled in the art can also understand the following terms such as "upper", "lower", "front", "rear", "left", "right", "length", "width" ", "thickness", "vertical", "horizontal", "top", "bottom", "inner", "outer", "axial", "radial", "circumferential", "center", Terms indicating an orientation or a positional relationship such as "longitudinal", "horizontal", "clockwise" or "counterclockwise" are based on the orientation or positional relationship shown in the drawings of this specification, which are only for the convenience of explaining the present invention The purpose of the scheme and simplified description is not to express or imply that the involved devices or elements must have a particular orientation, be constructed and operate in a particular orientation, so the above-mentioned orientation or positional relationship terms should not be understood or construed as Limitations of Invention Schemes.
另外,本说明书中所使用的术语“第一”或“第二”等用于指代编号或序数的术语仅用于描述目的,而不能理解为明示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”或“第二”的特征可以明示或者隐含地包括至少一个该特征。在本说明书的描述中,“多个”的含义是至少两个,例如两个,三个或更多个等,除非另有明确具体的限定。In addition, the terms "first" or "second" used in this specification to refer to the terms of numbers or ordinal numbers are only for the purpose of description, and should not be construed as expressing or implying relative importance or implicitly indicating the indicated the number of technical characteristics. Thus, a feature defined as "first" or "second" may expressly or implicitly include at least one of that feature. In the description of this specification, "plurality" means at least two, such as two, three or more, etc., unless expressly and specifically defined otherwise.
虽然本说明书已经示出和描述了本发明的多个实施方式,但对于本领域技术人员显而易见的是,这样的实施方式只是以示例的方式提供的。本领域技术人员会在不偏离本发明思想和精神的情况下想到许多更改、改变和替代的方式。应当理解的是在实践本发明的过程中,可以采用对本文所描述的本发明实施方式的各种替代方案。所附权利要求书旨在限定本发明的保护范围,并因此覆盖这些权利要求范围内的模块组成、等同或替代方案。While this specification has shown and described various embodiments of the present invention, it will be obvious to those skilled in the art that such embodiments have been provided by way of example only. Numerous modifications, changes and substitutions will occur to those skilled in the art without departing from the spirit and spirit of the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. The appended claims are intended to define the scope of the invention, and therefore to cover modular compositions, equivalents, or alternatives within the scope of these claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110304314.0A CN115113171A (en) | 2021-03-22 | 2021-03-22 | A multi-line lidar and its data point cloud processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110304314.0A CN115113171A (en) | 2021-03-22 | 2021-03-22 | A multi-line lidar and its data point cloud processing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115113171A true CN115113171A (en) | 2022-09-27 |
Family
ID=83324402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110304314.0A Pending CN115113171A (en) | 2021-03-22 | 2021-03-22 | A multi-line lidar and its data point cloud processing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115113171A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106842228A (en) * | 2017-01-19 | 2017-06-13 | 北京飞思迈尔光电科技有限公司 | A kind of optical scanner sensor |
WO2017193269A1 (en) * | 2016-05-10 | 2017-11-16 | 深圳市速腾聚创科技有限公司 | Multiline lidar |
CN108445469A (en) * | 2018-05-11 | 2018-08-24 | 天津大学 | A kind of rotating mirror scanning device and method of multi-line laser radar |
CN110389354A (en) * | 2019-07-19 | 2019-10-29 | 深圳市镭神智能系统有限公司 | A kind of multi-line laser radar and its driving method |
CN110389355A (en) * | 2019-07-19 | 2019-10-29 | 深圳市镭神智能系统有限公司 | A kind of multi-line laser radar |
CN111856429A (en) * | 2020-07-13 | 2020-10-30 | 武汉万集信息技术有限公司 | Multi-line laser radar and control method thereof |
-
2021
- 2021-03-22 CN CN202110304314.0A patent/CN115113171A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017193269A1 (en) * | 2016-05-10 | 2017-11-16 | 深圳市速腾聚创科技有限公司 | Multiline lidar |
CN106842228A (en) * | 2017-01-19 | 2017-06-13 | 北京飞思迈尔光电科技有限公司 | A kind of optical scanner sensor |
CN108445469A (en) * | 2018-05-11 | 2018-08-24 | 天津大学 | A kind of rotating mirror scanning device and method of multi-line laser radar |
CN110389354A (en) * | 2019-07-19 | 2019-10-29 | 深圳市镭神智能系统有限公司 | A kind of multi-line laser radar and its driving method |
CN110389355A (en) * | 2019-07-19 | 2019-10-29 | 深圳市镭神智能系统有限公司 | A kind of multi-line laser radar |
CN111856429A (en) * | 2020-07-13 | 2020-10-30 | 武汉万集信息技术有限公司 | Multi-line laser radar and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220120867A1 (en) | Transmitting unit of laser radar, laser radar, and distance measurement method | |
USRE47942E1 (en) | High definition lidar system | |
US7474256B2 (en) | Position detecting system, and transmitting and receiving apparatuses for the position detecting system | |
US8767190B2 (en) | High definition LiDAR system | |
CN108445467A (en) | A kind of scanning laser radar system | |
CN113433564B (en) | Laser radar and method for ranging using laser radar | |
CN111856429B (en) | Multi-line laser radar and control method thereof | |
EP1334465B1 (en) | Remote attitude and position indicating system | |
CN114325738B (en) | Method for measuring distance and laser radar | |
CN111781579A (en) | A control method of a lidar scanning device | |
AU2001253306A1 (en) | Remote attitude and position indicating system | |
CN109061667A (en) | A kind of four sides revolving mirror laser radar | |
CN114114606A (en) | LIDAR system and method using polygon mirror | |
CN111983585A (en) | Multi-mirror scanning control system of multi-emission single-receiver laser radar | |
JPH05240940A (en) | Optical measuring system | |
US20220075048A1 (en) | Three-dimensional positioning method and apparatus | |
CN116710802A (en) | Device for laser surveying of an environment | |
AU2014298574B2 (en) | Device for assisting in the detection of objects placed on the ground from images of the ground taken by a wave reflection imaging device | |
CN105549026A (en) | Multiline optical scanning range finding device and method | |
CN115113171A (en) | A multi-line lidar and its data point cloud processing method | |
CN218630192U (en) | Laser radar system and mobile device | |
CN211528693U (en) | Locator based on laser light curtain | |
CN114563773B (en) | LiDAR that reduces blind spots | |
CN115480260A (en) | Laser radar and intelligent sensing equipment | |
JPH0319486B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |