CN115099095A - Generating method of structural compliance matrix based on structural finite element model and related components - Google Patents
Generating method of structural compliance matrix based on structural finite element model and related components Download PDFInfo
- Publication number
- CN115099095A CN115099095A CN202210736568.4A CN202210736568A CN115099095A CN 115099095 A CN115099095 A CN 115099095A CN 202210736568 A CN202210736568 A CN 202210736568A CN 115099095 A CN115099095 A CN 115099095A
- Authority
- CN
- China
- Prior art keywords
- structural
- target
- finite element
- preset
- element model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及航空航天飞行器气动弹性数值模拟技术领域,特别涉及基于结构有限元模型的结构柔度矩阵生成方法、装置、设备及介质。The invention relates to the technical field of aeroelastic numerical simulation of aerospace vehicles, in particular to a method, device, equipment and medium for generating a structural compliance matrix based on a structural finite element model.
背景技术Background technique
航空航天飞行器静气动弹性耦合模拟中结构变形计算主要有结构有限元求解、模态叠加和柔度矩阵求解三种方法。其中,结构有限元求解具有分析精度高、适用范围广等优点,但有限元求解运算量大、接口复杂,一般在结构比较复杂的情况下使用;模态叠加方法将结构位移分解到模态空间,通过不同模态之间的线性加权获得结构的变形,具有计算量小、算法简单的优点,但结构变形的预测精度依赖性结构模态阶数的选取,具有一定的经验性;柔度矩阵方法通过构建结构模型的柔度矩阵,根据施加的载荷矢量,利用矩阵运算直接得到结构变形,具有计算量小、实现容易的特点,是静气动弹性耦合模拟线性结构变形计算中最常用的一种方法。The structural deformation calculation in the static aeroelastic coupling simulation of aerospace vehicle mainly includes three methods: structural finite element solution, modal superposition and compliance matrix solution. Among them, the structural finite element solution has the advantages of high analysis accuracy and wide application range, but the finite element solution has a large amount of computation and complex interfaces, and is generally used in the case of complex structures; the modal superposition method decomposes the structural displacement into the modal space , the deformation of the structure is obtained by linear weighting between different modes, which has the advantages of small calculation amount and simple algorithm, but the prediction accuracy of the structural deformation depends on the selection of the structural mode order, which has a certain degree of experience; the flexibility matrix The method constructs the flexibility matrix of the structural model, and directly obtains the structural deformation by using the matrix operation according to the applied load vector. It has the characteristics of small calculation amount and easy realization. method.
结构柔度矩阵是刚度矩阵的逆矩阵,因此可以基于刚度矩阵求逆得到,某些商业结构仿真软件提供了刚度矩阵的输出接口,例如Nastran,通过提取刚度矩阵并进行求逆运算即可获得结构的柔度矩阵。该结构柔度矩阵生成方法存在两个问题,一是该方法生成的是全部结构自由度下的柔度矩阵,当结构自由度数量非常大时,不仅求逆运算量巨大,且由于刚度矩阵条件数偏大会引起明显的计算误差,而庞大的矩阵规模也给柔度矩阵的存储和使用带来不便;二是某些商业软件出于技术保密的考虑,关闭了刚度矩阵提取的接口,从而使得基于这类商业软件有限元模型无法直接获得结构柔度矩阵。The structural flexibility matrix is the inverse matrix of the stiffness matrix, so it can be obtained based on the inversion of the stiffness matrix. Some commercial structural simulation software provides the output interface of the stiffness matrix, such as Nastran, by extracting the stiffness matrix and performing the inversion operation to obtain the structure. the flexibility matrix. There are two problems in this structural flexibility matrix generation method. One is that this method generates the flexibility matrix under all structural degrees of freedom. When the number of structural degrees of freedom is very large, not only the inversion calculation is huge, but also due to the stiffness matrix condition The number deviation will cause obvious calculation errors, and the huge matrix size also brings inconvenience to the storage and use of the flexibility matrix; second, some commercial software closes the interface for extracting stiffness matrix due to technical confidentiality considerations. The structural compliance matrix cannot be obtained directly based on the finite element model of such commercial software.
综上可见,如何提高获取结构柔度矩阵的灵活性以及容易度是本领域有待解决的问题。In conclusion, it can be seen that how to improve the flexibility and ease of obtaining the structural compliance matrix is a problem to be solved in the art.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的在于提供一种基于结构有限元模型的结构柔度矩阵生成方法、装置、设备及介质,能够提高获取结构柔度矩阵的灵活性以及容易度。其具体方案如下:In view of this, the purpose of the present invention is to provide a method, device, device and medium for generating a structural compliance matrix based on a structural finite element model, which can improve the flexibility and ease of obtaining the structural compliance matrix. Its specific plan is as follows:
第一方面,本申请公开了一种基于结构有限元模型的结构柔度矩阵生成方法,包括:In a first aspect, the present application discloses a method for generating a structural compliance matrix based on a structural finite element model, including:
基于与目标飞行器中的目标部件对应的离散单元类型、离散单元尺寸与离散单元分布生成结构有限元计算网格,并基于所述结构有限元计算网格、对应的求解类型和求解参数,创建所述目标部件的结构有限元模型;Based on the discrete element type, discrete element size, and discrete element distribution corresponding to the target component in the target aircraft, a structural finite element calculation grid is generated, and based on the structural finite element calculation grid, the corresponding solution type, and the solution parameters, all Describe the structural finite element model of the target component;
从所述结构有限元模型中筛选出表面网格点,并基于预设柔度矩阵规模和预设载荷传递加载要求从所述表面网格点筛选出若干个目标表面网格点,以得到目标网格点集;Screen out surface mesh points from the structural finite element model, and screen out several target surface mesh points from the surface mesh points based on the preset compliance matrix scale and preset load transfer loading requirements to obtain the target grid point set;
分别获取所述目标网格点集中所有所述目标表面网格点在不同预设自由度下的位移响应,并基于预设自由度顺序,将每一所述位移响应进行组装以得到所述目标部件的结构柔度矩阵,以便基于所述结构柔度矩阵对所述目标部件进行静气动弹性耦合模拟。Obtain the displacement responses of all the target surface grid points in the target grid point set under different preset degrees of freedom respectively, and assemble each of the displacement responses based on the preset degree of freedom sequence to obtain the target A structural compliance matrix of the component, so as to perform a static aeroelastic coupling simulation of the target component based on the structural compliance matrix.
可选的,所述基于与目标部件对应的离散单元类型、离散单元尺寸与离散单元分布生成结构有限元计算网格之前,还包括:Optionally, before generating the structural finite element calculation grid based on the discrete element type, discrete element size and discrete element distribution corresponding to the target component, the method further includes:
基于目标部件的几何特性和分析精度要求,确定与所述目标部件对应的离散单元类型、离散单元尺寸与离散单元分布。Based on the geometric characteristics of the target component and the analysis accuracy requirements, the discrete unit type, discrete unit size and discrete unit distribution corresponding to the target component are determined.
可选的,所述基于所述结构有限元计算网格、对应的求解类型和求解参数,创建所述目标部件的结构有限元模型,包括:Optionally, creating a structural finite element model of the target component based on the structural finite element calculation grid, the corresponding solution type and solution parameters, including:
利用所述目标部件的材料参数确定结构有限元模型的本构关系,并在所述结构有限元计算网格的节点上添加对应的约束边界条件;Determine the constitutive relationship of the structural finite element model by using the material parameters of the target component, and add corresponding constraint boundary conditions on the nodes of the structural finite element calculation grid;
选取对应的求解类型和求解参数,并基于所述本构关系、所述约束边界条件、所述求解类型和所述求解参数,创建所述目标部件的结构有限元模型。A corresponding solution type and solution parameter are selected, and based on the constitutive relation, the constrained boundary condition, the solution type and the solution parameter, a structural finite element model of the target component is created.
可选的,所述从结构有限元模型中筛选出表面网格点,包括:Optionally, the filtering of surface mesh points from the structural finite element model includes:
利用面单元连接关系分析方法从结构有限元模型中筛选出表面网格点;The surface mesh points are screened out from the structural finite element model using the surface element connection relationship analysis method;
或,利用面单元法向特征分析方法从所述结构有限元模型中筛选出所述表面网格点。Or, the surface mesh points are screened out from the structural finite element model by using the surface element normal feature analysis method.
可选的,所述分别获取所述目标网格点集中所有所述目标表面网格点在不同预设自由度下的位移响应,包括:Optionally, the separately acquiring the displacement responses of all the target surface grid points in the target grid point set under different preset degrees of freedom, including:
获取所述目标网格点集中每一所述目标表面网格点分别在x方向、y方向以及z方向下时所述目标网格点集中所有所述目标表面网格点的位移响应。Acquire the displacement responses of all the target surface grid points in the target grid point set when each of the target surface grid points in the target grid point set is in the x direction, the y direction and the z direction respectively.
可选的,所述获取所述目标网格点集中每一所述目标表面网格点分别在x方向、y方向以及z方向下时所述目标网格点集中所有所述目标表面网格点的位移响应,包括:Optionally, when each of the target surface grid points in the acquired target grid point set is in the x direction, the y direction and the z direction respectively, all the target surface grid points in the target grid point set are obtained. displacement response, including:
从所述目标网格点集中任意选取当前所述目标表面网格点;The current target surface grid point is arbitrarily selected from the target grid point set;
对当前所述目标表面网格点施加x方向的单位载荷,并基于预设静力学求解算法得到所述目标网格点集中所有所述目标表面网格点的第一位移响应,然后清除当前所述目标表面网格点在所述x方向的所述单位载荷;Apply a unit load in the x direction to the current target surface grid point, and obtain the first displacement responses of all the target surface grid points in the target grid point set based on a preset statics solution algorithm, and then clear the current the unit load of the target surface grid point in the x direction;
对当前所述目标表面网格点施加y方向的单位载荷,并基于预设静力学求解算法得到所述目标网格点集中所有所述目标表面网格点的第二位移响应,然后清除当前所述目标表面网格点在所述y方向的所述单位载荷;Apply a unit load in the y direction to the current target surface grid point, and obtain the second displacement responses of all the target surface grid points in the target grid point set based on a preset statics solution algorithm, and then clear the current the unit load of the target surface grid point in the y direction;
对当前所述目标表面网格点施加z方向的单位载荷,并基于预设静力学求解算法得到所述目标网格点集中所有所述目标表面网格点的第三位移响应,然后清除当前所述目标表面网格点在所述z方向的所述单位载荷。Apply a unit load in the z-direction to the current target surface grid point, and obtain the third displacement response of all the target surface grid points in the target grid point set based on a preset statics solution algorithm, and then clear the current the unit load of the target surface grid point in the z direction.
可选的,所述基于预设自由度顺序,将每一所述位移响应进行组装以得到所述目标部件的结构柔度矩阵之后,还包括:Optionally, after assembling each of the displacement responses based on a preset order of degrees of freedom to obtain a structural compliance matrix of the target component, the method further includes:
在不同预设载荷加载条件下,分别利用所述结构有限元模型和柔度矩阵方法计算出的若干个第一结构位移以及相应的若干个第二结构位移,并分别计算若干个所述第一结构位移与相应的若干个所述第二结构位移之间的若干个位移差异,然后从所述若干个位移差异中筛选出满足预设条件的目标位移差异;Under different preset load loading conditions, several first structural displacements and corresponding several second structural displacements calculated by the structural finite element model and the flexibility matrix method are respectively used, and several first structural displacements are calculated respectively. several displacement differences between the structural displacement and the corresponding several second structural displacements, and then screen out the target displacement differences that meet the preset conditions from the several displacement differences;
判断所述目标位移差异是否大于预设差异阈值,若否则判定所述结构柔度矩阵满足预设要求;若是则判定所述结构柔度矩阵不满足所述预设要求,并重新跳转至所述基于与目标部件对应的离散单元类型、离散单元尺寸与离散单元分布生成结构有限元计算网格的步骤。Determine whether the target displacement difference is greater than a preset difference threshold, if not, determine that the structural compliance matrix meets the preset requirements; if so, determine that the structural compliance matrix does not meet the preset requirements, and re-jump to the Describe the steps of generating a structural finite element calculation grid based on the discrete element type, discrete element size and discrete element distribution corresponding to the target component.
第二方面,本申请公开了一种基于结构有限元模型的结构柔度矩阵生成装置,包括:In a second aspect, the present application discloses a device for generating a structural compliance matrix based on a structural finite element model, including:
模型创建模块,用于基于与目标飞行器中的目标部件对应的离散单元类型、离散单元尺寸与离散单元分布生成结构有限元计算网格,并基于所述结构有限元计算网格、对应的求解类型和求解参数,创建所述目标部件的结构有限元模型;A model creation module for generating a structural finite element calculation grid based on the discrete element type, discrete element size and discrete element distribution corresponding to the target component in the target aircraft, and based on the structural finite element calculation grid and the corresponding solution type and solving parameters to create a structural finite element model of the target component;
网格点集获取模块,用于从所述结构有限元模型中筛选出表面网格点,并基于预设柔度矩阵规模和预设载荷传递加载要求从所述表面网格点筛选出若干个目标表面网格点,以得到目标网格点集;The grid point set acquisition module is used to filter out the surface grid points from the finite element model of the structure, and select several surface grid points from the surface grid points based on the preset compliance matrix scale and the preset load transfer loading requirements target surface grid points to get the target grid point set;
矩阵获取模块,用于分别获取所述目标网格点集中所有所述目标表面网格点在不同预设自由度下的位移响应,并基于预设自由度顺序,将每一所述位移响应进行组装以得到所述目标部件的结构柔度矩阵,以便基于所述结构柔度矩阵对所述目标部件进行静气动弹性耦合模拟。A matrix acquisition module is used to separately acquire the displacement responses of all the target surface grid points in the target grid point set under different preset degrees of freedom, and based on the preset degree of freedom sequence, each of the displacement responses is performed. Assembling to obtain a structural compliance matrix of the target component, so as to perform a static aeroelastic coupling simulation on the target component based on the structural compliance matrix.
第三方面,本申请公开了一种电子设备,包括:In a third aspect, the present application discloses an electronic device, comprising:
存储器,用于保存计算机程序;memory for storing computer programs;
处理器,用于执行所述计算机程序,以实现前述公开的基于结构有限元模型的结构柔度矩阵生成方法的步骤。The processor is configured to execute the computer program to implement the steps of the aforementioned method for generating a structural compliance matrix based on a structural finite element model.
第四方面,本申请公开了一种计算机可读存储介质,用于存储计算机程序;其中,所述计算机程序被处理器执行时实现前述公开的基于结构有限元模型的结构柔度矩阵生成方法的步骤。In a fourth aspect, the present application discloses a computer-readable storage medium for storing a computer program; wherein, when the computer program is executed by a processor, the aforementioned method for generating a structural compliance matrix based on a structural finite element model is implemented. step.
可见,本申请基于与目标飞行器中的目标部件对应的离散单元类型、离散单元尺寸与离散单元分布生成结构有限元计算网格,并基于所述结构有限元计算网格、对应的求解类型和求解参数,创建所述目标部件的结构有限元模型;从所述结构有限元模型中筛选出表面网格点,并基于预设柔度矩阵规模和预设载荷传递加载要求从所述表面网格点筛选出若干个目标表面网格点,以得到目标网格点集;分别获取所述目标网格点集中每一所述目标表面网格点在不同预设自由度下的位移响应,并基于预设自由度顺序,将每一所述目标表面网格点的所述位移响应进行组装以得到所述目标部件的结构柔度矩阵,以便基于所述结构柔度矩阵对所述目标部件进行静气动弹性耦合模拟。由此可见,本申请基于目标部件的离散单元的相关信息生成结构有限元计算网格,并基于结构有限元计算网格、对应的求解类型和求解参数,创建目标部件的结构有限元模型,然后将结构有限元模型中目标网格点集的位移响应进行组装以得到目标部件的结构柔度矩阵,无需计算刚度矩阵的逆矩阵以得到目标部件的结构柔度矩阵,提高了获取目标部件的结构柔度矩阵的灵活性以及容易度。It can be seen that the present application generates a structural finite element calculation grid based on the discrete element type, discrete element size and discrete element distribution corresponding to the target component in the target aircraft, and based on the structural finite element calculation grid, the corresponding solution type and solution parameters, create a structural finite element model of the target component; screen out surface mesh points from the structural finite element model, and select the surface mesh points from the surface mesh points based on a preset compliance matrix scale and preset load transfer loading requirements Screen out a number of target surface grid points to obtain a target grid point set; respectively obtain the displacement responses of each target surface grid point in the target grid point set under different preset degrees of freedom, and based on the preset Assuming the order of degrees of freedom, the displacement responses of each of the target surface grid points are assembled to obtain a structural compliance matrix of the target component, so that the target component can be statically aerodynamic based on the structural compliance matrix. Elastic coupling simulation. It can be seen that the present application generates a structural finite element calculation grid based on the relevant information of the discrete elements of the target component, and creates a structural finite element model of the target component based on the structural finite element calculation grid, the corresponding solution type and solution parameters, and then The displacement response of the target grid point set in the structural finite element model is assembled to obtain the structural compliance matrix of the target component, and there is no need to calculate the inverse matrix of the stiffness matrix to obtain the structural compliance matrix of the target component, which improves the acquisition of the structure of the target component. Flexibility and ease of compliance matrix.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following briefly introduces the accompanying drawings required for the description of the embodiments or the prior art. Obviously, the drawings in the following description are only It is an embodiment of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to the provided drawings without creative work.
图1为本申请公开的一种基于结构有限元模型的结构柔度矩阵生成方法流程图;1 is a flowchart of a method for generating a structural compliance matrix based on a structural finite element model disclosed in the present application;
图2为本申请公开的一种具体的基于结构有限元模型的结构柔度矩阵生成方法流程图;2 is a flowchart of a specific method for generating a structural compliance matrix based on a structural finite element model disclosed in the present application;
图3为本申请公开的一种具体的目标部件示意图;3 is a schematic diagram of a specific target component disclosed in the application;
图4为本申请公开的一种具体的结构有限元计算网格示意图;4 is a schematic diagram of a specific structural finite element calculation grid disclosed in the application;
图5为本申请公开的一种具体的结构有限元模型示意图;5 is a schematic diagram of a specific structural finite element model disclosed in the application;
图6为本申请公开的一种具体的目标表面节点选取示意图;6 is a schematic diagram of a specific target surface node selection disclosed in the application;
图7为本申请公开的一种具体的结构柔度矩阵校验示意图;7 is a schematic diagram of a specific structural compliance matrix verification disclosed in the application;
图8为本申请公开的一种基于结构有限元模型的结构柔度矩阵生成装置结构示意图;8 is a schematic structural diagram of a device for generating a structural compliance matrix based on a structural finite element model disclosed in the present application;
图9为本申请公开的一种电子设备结构图。FIG. 9 is a structural diagram of an electronic device disclosed in this application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
结构柔度矩阵是刚度矩阵的逆矩阵,因此可以基于刚度矩阵求逆得到,某些商业结构仿真软件提供了刚度矩阵的输出接口,例如Nastran,通过提取刚度矩阵并进行求逆运算即可获得结构的柔度矩阵。该结构柔度矩阵生成方法存在两个问题,一是该方法生成的是全部结构自由度下的柔度矩阵,当结构自由度数量非常大时,不仅求逆运算量巨大,且由于刚度矩阵条件数偏大会引起明显的计算误差,而庞大的矩阵规模也给柔度矩阵的存储和使用带来不便;二是某些商业软件出于技术保密的考虑,关闭了刚度矩阵提取的接口,从而使得基于这类商业软件有限元模型无法直接获得结构柔度矩阵。The structural flexibility matrix is the inverse matrix of the stiffness matrix, so it can be obtained based on the inversion of the stiffness matrix. Some commercial structural simulation software provides the output interface of the stiffness matrix, such as Nastran, by extracting the stiffness matrix and performing the inversion operation to obtain the structure. the flexibility matrix. There are two problems in this structural flexibility matrix generation method. One is that this method generates the flexibility matrix under all structural degrees of freedom. When the number of structural degrees of freedom is very large, not only the inversion calculation is huge, but also due to the stiffness matrix condition The number deviation will cause obvious calculation errors, and the huge matrix size also brings inconvenience to the storage and use of the flexibility matrix; second, some commercial software closes the interface for extracting stiffness matrix due to technical confidentiality considerations. The structural compliance matrix cannot be obtained directly based on the finite element model of such commercial software.
为此本申请相应的提供了一种基于结构有限元模型的结构柔度矩阵生成方案,能够提高获取结构柔度矩阵的灵活性以及容易度。To this end, the present application accordingly provides a structural compliance matrix generation scheme based on a structural finite element model, which can improve the flexibility and ease of obtaining the structural compliance matrix.
参见图1所示,本申请实施例公开了一种基于结构有限元模型的结构柔度矩阵生成装置,包括:Referring to FIG. 1 , an embodiment of the present application discloses a device for generating a structural compliance matrix based on a structural finite element model, including:
步骤S11:基于与目标飞行器中的目标部件对应的离散单元类型、离散单元尺寸与离散单元分布生成结构有限元计算网格,并基于所述结构有限元计算网格、对应的求解类型和求解参数,创建所述目标部件的结构有限元模型。Step S11 : generating a structural finite element calculation grid based on the discrete element type, discrete element size and discrete element distribution corresponding to the target component in the target aircraft, and based on the structural finite element calculation grid, corresponding solution types and solution parameters , to create a structural finite element model of the target component.
本实施例中,在基于与目标飞行器中的目标部件对应的离散单元类型、离散单元尺寸与离散单元分布生成结构有限元计算网格之前,需要根据目标飞行器中目标部件的几何特性,结合分析精度要求,确定目标部件的离散单元类型、离散单元尺寸与离散单元分布。在生成结构有限元计算网格时,可以利用剖分算法生成结构有限元计算网格。基于目标部件使用的结构材料选择准确的材料参数,以确定结构有限元模型的本构关系,基于目标部件与环境之间的约束关系,在对应的结构有限元网格节点上添加正确的约束边界条件,并且可以选择静力学求解作为结构有限元模型的求解类型,并基于分析要求完成求解参数的选取,进而完成结构有限元模型的创建。In this embodiment, before generating the structural finite element calculation grid based on the discrete element type, discrete element size, and discrete element distribution corresponding to the target component in the target aircraft, it is necessary to combine the analysis accuracy according to the geometric characteristics of the target component in the target aircraft. Requirements, determine the discrete element type, discrete element size and discrete element distribution of the target part. When generating the structural finite element calculation grid, the subdivision algorithm can be used to generate the structural finite element calculation grid. Select accurate material parameters based on the structural material used by the target component to determine the constitutive relationship of the structural finite element model, and add correct constraint boundaries on the corresponding structural finite element mesh nodes based on the constraint relationship between the target component and the environment According to the conditions, the statics solution can be selected as the solution type of the structural finite element model, and the selection of the solution parameters is completed based on the analysis requirements, and then the creation of the structural finite element model is completed.
步骤S12:从所述结构有限元模型中筛选出表面网格点,并基于预设柔度矩阵规模和预设载荷传递加载要求从所述表面网格点筛选出若干个目标表面网格点,以得到目标网格点集。Step S12: screen out the surface grid points from the structural finite element model, and screen out several target surface grid points from the surface grid points based on the preset compliance matrix scale and the preset load transfer loading requirements, to get the target grid point set.
本实施例中,所述从结构有限元模型中筛选出表面网格点,具体包括:利用面单元连接关系分析方法从结构有限元模型中筛选出表面网格点;或,利用面单元法向特征分析方法从所述结构有限元模型中筛选出所述表面网格点。基于预设柔度矩阵规模和预设载荷传递加载要求,并通过手工选取或算法筛选的方式从表面网格点筛选出若干个目标表面网格点Pi,以得到目标网格点集P,其中目标表面网格点Pi为用于进行传递载荷加载的网格点。In this embodiment, the filtering of the surface grid points from the structural finite element model specifically includes: selecting the surface grid points from the structural finite element model by using the surface element connection relationship analysis method; or, using the surface element normal direction The feature analysis method selects the surface mesh points from the structural finite element model. Based on the preset compliance matrix scale and the preset load transfer loading requirements, a number of target surface grid points P i are selected from the surface grid points by manual selection or algorithm screening to obtain the target grid point set P, The target surface grid point P i is the grid point used for load transfer.
步骤S13:分别获取所述目标网格点集中所有所述目标表面网格点在不同预设自由度下的位移响应,并基于预设自由度顺序,将每一所述位移响应进行组装以得到所述目标部件的结构柔度矩阵,以便基于所述结构柔度矩阵对所述目标部件进行静气动弹性耦合模拟。Step S13 : respectively acquiring the displacement responses of all the target surface grid points in the target grid point set under different preset degrees of freedom, and assembling each of the displacement responses based on the sequence of the preset degrees of freedom to obtain a structural compliance matrix of the target component, so as to perform a static aeroelastic coupling simulation of the target component based on the structural compliance matrix.
本实施例中,可以从目标网格点集P中任意选取一个网格点作为当前目标表面网格点Pi,在Pi施加x方向的单位载荷,进行预设静力学求解,获取并存储目标网格点集P全部网格点的位移响应dXYZ1,然后清除全部载荷;In this embodiment, a grid point can be arbitrarily selected from the target grid point set P as the current target surface grid point P i , a unit load in the x direction is applied to P i , a preset statics solution is performed, and the obtained and stored Displacement response dXYZ 1 of all grid points of the target grid point set P, and then clear all loads;
在Pi施加y方向的单位载荷,进行预设静力学求解,获取并存储目标网格点集P全部网格点的位移响应dXYZ2,然后清除全部载荷;在Pi施加z方向的单位载荷,进行预设静力学求解,获取并存储目标网格点集P全部网格点的位移响应dXYZ3,然后清除全部载荷。可以理解的是,遍历目标网格点集P中所有的网格点,在目标网格点集P中每个网格点上,依次在x、y、z自由度方向上施加单位载荷,并开展预设静力学分析,获取对应载荷下的目标网格点集P全部网格点的位移响应。Apply a unit load in the y direction to Pi, perform a preset statics solution, obtain and store the displacement responses dXYZ 2 of all grid points in the target grid point set P, and then clear all loads; apply a unit load in the z direction to Pi , perform a preset statics solution, obtain and store the displacement responses dXYZ 3 of all grid points in the target grid point set P, and then remove all loads. It can be understood that all grid points in the target grid point set P are traversed, and unit loads are sequentially applied in the x, y, and z degrees of freedom directions on each grid point in the target grid point set P, and Carry out a preset static analysis to obtain the displacement responses of all grid points of the target grid point set P under the corresponding load.
本实施例中,基于预设自由度顺序,将每一目标表面网格点的位移响应dXYZ1、dXYZ2、dXYZ3进行组装以得到目标部件的结构柔度矩阵C,其中组装关系如下所示:In this embodiment, based on the preset order of degrees of freedom, the displacement responses dXYZ 1 , dXYZ 2 , and dXYZ 3 of each target surface grid point are assembled to obtain the structural compliance matrix C of the target component, wherein the assembly relationship is as follows :
C=[dXYZ1 … dXYZw … dXYZN];C=[dXYZ 1 ... dXYZ w ... dXYZ N ];
dXYZw=[dXYZ1 dXYZ2 dXYZ3]w;dXYZ w =[dXYZ 1 dXYZ 2 dXYZ 3 ] w ;
式中,dx、dy、dz分别表示x、y、z自由度方向的位移响应,N表示目标网格点集P全部网格点的数量,w表示在目标网格点集P中的第w个网格点上施加单位载荷,i表示目标网格点集P中第i个网格点上的位移响应,xForce、yForce、zForce分别表示在x、y、z自由度方向施加单位载荷获得的网格点的位移响应。In the formula, dx, dy, and dz represent the displacement responses in the x, y, and z degrees of freedom directions, respectively, N represents the number of all grid points in the target grid point set P, and w represents the wth in the target grid point set P. A unit load is applied to each grid point, i represents the displacement response at the ith grid point in the target grid point set P, and xForce, yForce, and zForce represent the result obtained by applying a unit load in the x, y, and z degrees of freedom directions, respectively. Displacement response of grid points.
本实施例中,可以将生成的结构柔度矩阵按照特定的数据格式输出为结构柔度矩阵文件,能够作为其他软件模块的输入数据文件,以便其他软件模块基于结构柔度矩阵文件进行相关计算,例如,可以作为进行静气动弹性耦合模拟时的输入数据文件,以便对目标飞行器中的目标部件进行静气动弹性耦合模拟。In this embodiment, the generated structural compliance matrix can be output as a structural compliance matrix file according to a specific data format, which can be used as an input data file for other software modules, so that other software modules can perform related calculations based on the structural compliance matrix file, For example, it can be used as an input data file when performing a coupled static and aeroelastic simulation to perform a coupled static and aeroelastic simulation of a target component in a target aircraft.
可见,本申请基于与目标飞行器中的目标部件对应的离散单元类型、离散单元尺寸与离散单元分布生成结构有限元计算网格,并基于所述结构有限元计算网格、对应的求解类型和求解参数,创建所述目标部件的结构有限元模型;从所述结构有限元模型中筛选出表面网格点,并基于预设柔度矩阵规模和预设载荷传递加载要求从所述表面网格点筛选出若干个目标表面网格点,以得到目标网格点集;分别获取所述目标网格点集中所有所述目标表面网格点在不同预设自由度下的位移响应,并基于预设自由度顺序,将每一所述位移响应进行组装以得到所述目标部件的结构柔度矩阵,以便基于所述结构柔度矩阵对所述目标部件进行静气动弹性耦合模拟。由此可见,本申请基于目标部件的离散单元的相关信息生成结构有限元计算网格,并基于结构有限元计算网格、对应的求解类型和求解参数,创建目标部件的结构有限元模型,然后将结构有限元模型中目标网格点集的位移响应进行组装以得到目标部件的结构柔度矩阵,无需计算刚度矩阵的逆矩阵以得到目标部件的结构柔度矩阵,提高了获取目标部件的结构柔度矩阵的灵活性以及容易度。It can be seen that the present application generates a structural finite element calculation grid based on the discrete element type, discrete element size and discrete element distribution corresponding to the target component in the target aircraft, and based on the structural finite element calculation grid, the corresponding solution type and solution parameters, create a structural finite element model of the target component; screen out surface mesh points from the structural finite element model, and select the surface mesh points from the surface mesh points based on a preset compliance matrix scale and preset load transfer loading requirements Screen out a number of target surface grid points to obtain a target grid point set; respectively obtain the displacement responses of all the target surface grid points in the target grid point set under different preset degrees of freedom, and based on the preset In order of degrees of freedom, each of the displacement responses is assembled to obtain a structural compliance matrix of the target component, so as to perform a static aeroelastic coupling simulation of the target component based on the structural compliance matrix. It can be seen that the present application generates a structural finite element calculation grid based on the relevant information of the discrete elements of the target component, and creates a structural finite element model of the target component based on the structural finite element calculation grid, the corresponding solution type and solution parameters, and then The displacement response of the target grid point set in the structural finite element model is assembled to obtain the structural compliance matrix of the target component, and there is no need to calculate the inverse matrix of the stiffness matrix to obtain the structural compliance matrix of the target component, which improves the acquisition of the structure of the target component. Flexibility and ease of compliance matrix.
参见图2所示,本申请实施例公开了一种具体的基于结构有限元模型的结构柔度矩阵生成方法,包括:Referring to FIG. 2 , an embodiment of the present application discloses a specific method for generating a structural compliance matrix based on a structural finite element model, including:
步骤S21:基于目标飞行器中目标部件的几何特性和分析精度要求,确定与所述目标部件对应的离散单元类型、离散单元尺寸与离散单元分布。Step S21 : Determine the discrete unit type, discrete unit size and discrete unit distribution corresponding to the target component based on the geometric characteristics and analysis accuracy requirements of the target component in the target aircraft.
本实施例中,基于目标部件的几何特性和分析精度要求,确定与所述目标部件对应的离散单元类型、离散单元尺寸与离散单元分布目标部件。例如图3所示的一种具体的目标部件示意图,目标部件为目标飞行器中的平板部件1。In this embodiment, the discrete unit type, discrete unit size, and discrete unit distribution target component corresponding to the target component are determined based on the geometric characteristics and analysis accuracy requirements of the target component. For example, a schematic diagram of a specific target component shown in FIG. 3 , the target component is a flat plate component 1 in the target aircraft.
步骤S22:基于所述离散单元类型、所述离散单元尺寸与所述离散单元分布生成结构有限元计算网格,并基于所述结构有限元计算网格、对应的求解类型和求解参数,创建所述目标部件的结构有限元模型。Step S22: Generate a structural finite element calculation grid based on the discrete element type, the discrete element size, and the discrete element distribution, and create a finite element calculation grid based on the structural finite element calculation grid, the corresponding solution type, and the solution parameters. Describe the structural finite element model of the target component.
本实施例中,例如图4所示的一种具体的结构有限元计算网格示意图,基于离散单元2的类型、尺寸与分布生成结构有限元计算网格,平板部件1在长度方向设置17个网格点、宽度方向设置5个网格点、厚度方向设置2个网格点,三个方向的网格点3均采用均匀分布,网格点3定义后通过映射剖分算法生成平板部件1的结构有限元计算网格。In this embodiment, for example, a schematic diagram of a specific structural finite element calculation grid shown in FIG. 4 , a structural finite element calculation grid is generated based on the type, size and distribution of the discrete elements 2 , and 17 plates are set in the length direction of the flat plate member 1 . The grid points, 5 grid points in the width direction, and 2 grid points in the thickness direction are set. The grid points 3 in the three directions are uniformly distributed. The structural finite element calculation mesh.
本实施例中,所述基于所述结构有限元计算网格、对应的求解类型和求解参数,创建所述目标部件的结构有限元模型,包括:利用所述目标部件的材料参数确定结构有限元模型的本构关系,并在所述结构有限元计算网格的节点上添加对应的约束边界条件;选取对应的求解类型和求解参数,并基于所述本构关系、所述约束边界条件、所述求解类型和所述求解参数,创建所述目标部件的结构有限元模型。例如基于平板部件1使用钢材料定义弹性模量、泊松比、密度等材料参数,确定结构有限元模型材料的本构关系,例如图5所示的一种具体的结构有限元模型示意图,基于平板部件1右端固支,在结构有限元计算网格的对应右端面网格点上添加固支约束4,可以选择静力学求解作为结构有限元模型的求解类型,并根据分析要求完成迭代方法等求解参数的选取,完成结构有限元模型的创建。In this embodiment, creating the structural finite element model of the target component based on the structural finite element calculation grid, the corresponding solution type and the solution parameters includes: determining the structural finite element using material parameters of the target component The constitutive relationship of the model, and the corresponding constraint boundary conditions are added to the nodes of the structural finite element calculation grid; the corresponding solution type and solution parameters are selected, and based on the constitutive relationship, the constraint boundary conditions, the According to the solution type and the solution parameters, a structural finite element model of the target component is created. For example, using steel material to define material parameters such as elastic modulus, Poisson's ratio, and density based on plate component 1 to determine the constitutive relationship of the material of the structural finite element model, such as the schematic diagram of a specific structural finite element model shown in Figure 5, based on The right end of the plate component 1 is clamped, and the clamp constraint 4 is added to the corresponding right end face grid point of the structural finite element calculation grid. Statics solution can be selected as the solution type of the structural finite element model, and the iterative method can be completed according to the analysis requirements, etc. The selection of solving parameters is completed to complete the creation of the finite element model of the structure.
步骤S23:从所述结构有限元模型中筛选出表面网格点,并基于预设柔度矩阵规模和预设载荷传递加载要求从所述表面网格点筛选出若干个目标表面网格点,以得到目标网格点集。Step S23: screen out surface mesh points from the structural finite element model, and screen out a number of target surface mesh points from the surface mesh points based on a preset compliance matrix scale and a preset load transfer loading requirement, to get the target grid point set.
本实施例中,通过面单元连接关系分析方法或面单元法向特征分析方法,从平板部件1的结构有限元模型的全部网格点中,将平板部件1全部的170个表面网格点选择出来,例如图6所示的一种具体的目标表面节点选取示意图,基于预设柔度矩阵规模和预设载荷传递加载要求,通过手工选取或算法筛选的方式,从170个表面网格点中选择70个目标表面节点,构成求解平板部件1的结构柔度矩阵的目标网格点集P。In this embodiment, all 170 surface mesh points of the plate part 1 are selected from all the mesh points of the structural finite element model of the plate part 1 by the surface element connection relationship analysis method or the surface element normal feature analysis method. For example, a schematic diagram of a specific target surface node selection shown in Figure 6, based on the preset flexibility matrix scale and preset load transfer loading requirements, through manual selection or algorithm screening, from 170 surface grid points. 70 target surface nodes are selected to form the target grid point set P for solving the structural compliance matrix of the plate component 1.
步骤S24:分别获取所述目标网格点集中所有所述目标表面网格点在不同预设自由度下的位移响应,并基于预设自由度顺序,将每一所述位移响应进行组装以得到所述目标部件的结构柔度矩阵,以便基于所述结构柔度矩阵对所述目标部件进行静气动弹性耦合模拟。Step S24: respectively acquiring the displacement responses of all the target surface grid points in the target grid point set under different preset degrees of freedom, and assembling each of the displacement responses based on the sequence of the preset degrees of freedom to obtain a structural compliance matrix of the target component, so as to perform a static aeroelastic coupling simulation of the target component based on the structural compliance matrix.
本实施例中,所述分别获取所述目标网格点集中所有所述目标表面网格点在不同预设自由度下的位移响应,具体包括:获取所述目标网格点集中每一所述目标表面网格点分别在x方向、y方向以及z方向下时所述目标网格点集中所有所述目标表面网格点的位移响应。In this embodiment, the separately acquiring the displacement responses of all the target surface grid points in the target grid point set under different preset degrees of freedom specifically includes: acquiring each of the target grid points in the target grid point set. The displacement responses of all the target surface grid points in the target grid point set when the target surface grid points are in the x direction, the y direction and the z direction respectively.
本实施例中,所述获取所述目标网格点集中每一所述目标表面网格点分别在x方向、y方向以及z方向下时所述目标网格点集中所有所述目标表面网格点的位移响应,具体包括:从所述目标网格点集中任意选取当前所述目标表面网格点;对当前所述目标表面网格点施加x方向的单位载荷,并基于预设静力学求解算法得到所述目标网格点集中所有所述目标表面网格点的第一位移响应,然后清除当前所述目标表面网格点在所述x方向的所述单位载荷;对当前所述目标表面网格点施加y方向的单位载荷,并基于预设静力学求解算法得到所述目标网格点集中所有所述目标表面网格点的第二位移响应,然后清除当前所述目标表面网格点在所述y方向的所述单位载荷;对当前所述目标表面网格点施加z方向的单位载荷,并基于预设静力学求解算法得到所述目标网格点集中所有所述目标表面网格点的第三位移响应,然后清除当前所述目标表面网格点在所述z方向的所述单位载荷。In this embodiment, when each of the target surface mesh points in the acquired target mesh point set is in the x direction, the y direction and the z direction respectively, all the target surface meshes in the target mesh point set are The displacement response of the point, specifically includes: arbitrarily selecting the current target surface grid point from the target grid point set; applying a unit load in the x direction to the current target surface grid point, and solving based on preset statics The algorithm obtains the first displacement response of all the target surface grid points in the target grid point set, and then clears the current unit load of the target surface grid points in the x direction; for the current target surface A unit load in the y direction is applied to the grid points, and the second displacement response of all the target surface grid points in the target grid point set is obtained based on a preset statics solution algorithm, and then the current target surface grid points are cleared. The unit load in the y direction; apply a unit load in the z direction to the current target surface mesh point, and obtain all the target surface meshes in the target mesh point set based on a preset statics solution algorithm The third displacement response of the point, then clears the unit load in the z direction for the current target surface mesh point.
本实施例中,所述基于预设自由度顺序,将每一所述位移响应进行组装以得到所述目标部件的结构柔度矩阵之后,还包括:在不同预设载荷加载条件下,分别利用所述结构有限元模型和柔度矩阵方法计算出的若干个第一结构位移以及相应的若干个第二结构位移,并分别计算若干个所述第一结构位移与相应的若干个所述第二结构位移之间的若干个位移差异,然后从所述若干个位移差异中筛选出满足预设条件的目标位移差异;判断所述目标位移差异是否大于预设差异阈值,若否则判定所述结构柔度矩阵满足预设要求;若是则判定所述结构柔度矩阵不满足所述预设要求,并重新跳转至所述基于与目标部件对应的离散单元类型、离散单元尺寸与离散单元分布生成结构有限元计算网格的步骤。如图7所示的一种具体的结构柔度矩阵校验示意图,在预设载荷加载条件1下,分别利用结构有限元模型和柔度矩阵方法计算出第一结构位移1以及第二结构位移1、在预设载荷加载条件2下,分别利用结构有限元模型和柔度矩阵方法计算出第一结构位移2以及第二结构位移2、…在预设载荷加载条件N下,分别利用结构有限元模型和柔度矩阵方法计算出第一结构位移N以及第二结构位移N;计算第一结构位移1与第二结构位移1之间的位移差异1、计算第一结构位移2与第二结构位移2之间的位移差异2、…计算第一结构位移N与第二结构位移N之间的位移差异N;从位移差异1、位移差异2、…位移差异N确定出最大位移差异以作为目标位移差异,并判断目标位移差异是否大于预设差异阈值;若否则判定结构柔度矩阵满足预设要求,即生成了正确的结构柔度矩阵;若是则判定结构柔度矩阵不满足所述预设要求,即生成了错误的结构柔度矩阵,并重新跳转至所述基于与目标部件对应的离散单元类型、离散单元尺寸与离散单元分布生成结构有限元计算网格的步骤。通过判断目标位移差异是否大于预设差异阈值,确定生成的结构柔度矩阵的正确性是否符合预设要求,进而保障后续利用结构柔度矩阵进行静气动弹性耦合模拟的可靠性。In this embodiment, after assembling each of the displacement responses to obtain the structural compliance matrix of the target component based on a preset order of degrees of freedom, the method further includes: under different preset load loading conditions, using Several first structural displacements and corresponding several second structural displacements calculated by the structural finite element model and the compliance matrix method, and several first structural displacements and corresponding several second structural displacements are calculated respectively. Several displacement differences between the structural displacements, and then screen out the target displacement differences that meet the preset conditions from the several displacement differences; determine whether the target displacement differences are greater than the preset difference threshold, if not, determine that the structural flexibility The degree matrix meets the preset requirements; if it is, it is determined that the structural compliance matrix does not meet the preset requirements, and jumps to the generated structure based on the discrete element type, discrete element size and discrete element distribution corresponding to the target component. Steps for finite element calculation of meshes. As shown in Figure 7, a specific schematic diagram of structural compliance matrix verification, under the preset load loading condition 1, the first structural displacement 1 and the second structural displacement are calculated by using the structural finite element model and the flexibility matrix method respectively. 1. Under the preset load loading condition 2, the first structural displacement 2 and the second structural displacement 2 are calculated by using the structural finite element model and the flexibility matrix method respectively. Under the preset load loading condition N, the structural finite element model and the Metamodel and compliance matrix method to calculate the displacement N of the first structure and the displacement N of the second structure; calculate the displacement difference between the displacement 1 of the first structure and the displacement 1 of the second structure 1, calculate the displacement of the first structure 2 and the displacement of the second structure Displacement difference 2 between displacement 2, ... Calculate the displacement difference N between the first structure displacement N and the second structure displacement N; determine the maximum displacement difference from the displacement difference 1, displacement difference 2, ... displacement difference N as the target Displacement difference, and determine whether the target displacement difference is greater than the preset difference threshold; if otherwise, it is determined that the structural compliance matrix meets the preset requirements, that is, a correct structural compliance matrix is generated; if so, it is determined that the structural compliance matrix does not meet the preset requirements. request, that is, an incorrect structural compliance matrix is generated, and jump to the step of generating a structural finite element calculation grid based on the discrete element type, discrete element size and discrete element distribution corresponding to the target component. By judging whether the target displacement difference is greater than the preset difference threshold, it is determined whether the correctness of the generated structural compliance matrix meets the preset requirements, thereby ensuring the reliability of the subsequent static aeroelastic coupling simulation using the structural compliance matrix.
由此可见,本申请中的结构柔度矩阵生成方法不仅适用于全部网格节点自由度,也适用于选定网格节点的自由度,从而便于调节柔度矩阵的规模,也进一步的提高基于结构有限元模型的结构柔度矩阵生成的容易度,并且本申请还可以校验结构柔度矩阵的正确性,以便后续利用结构柔度矩阵进行静气动弹性耦合模拟时,避免了因结构柔度矩阵不正确而导致模拟结果错误的情况。It can be seen that the structural flexibility matrix generation method in this application is not only applicable to all the degrees of freedom of grid nodes, but also to the degrees of freedom of selected grid nodes, so as to facilitate the adjustment of the scale of the flexibility matrix, and further improve the The ease of generating the structural flexibility matrix of the structural finite element model, and the application can also check the correctness of the structural flexibility matrix, so that when the structural flexibility matrix is used for the subsequent static aeroelastic coupling simulation, it is possible to avoid problems caused by structural flexibility. A situation where the matrix is incorrect and the simulation results are wrong.
参见图8所示,本申请实施例公开了一种基于结构有限元模型的结构柔度矩阵生成装置,包括:Referring to FIG. 8 , an embodiment of the present application discloses a device for generating a structural compliance matrix based on a structural finite element model, including:
模型创建模块11,用于基于与目标飞行器中的目标部件对应的离散单元类型、离散单元尺寸与离散单元分布生成结构有限元计算网格,并基于所述结构有限元计算网格、对应的求解类型和求解参数,创建所述目标部件的结构有限元模型;The model creation module 11 is used to generate a structural finite element calculation grid based on the discrete element type, discrete element size and discrete element distribution corresponding to the target component in the target aircraft, and based on the structural finite element calculation grid, the corresponding solution type and solution parameters to create a structural finite element model of the target component;
网格点集获取模块12,用于从所述结构有限元模型中筛选出表面网格点,并基于预设柔度矩阵规模和预设载荷传递加载要求从所述表面网格点筛选出若干个目标表面网格点,以得到目标网格点集;The grid point set acquisition module 12 is used to filter out the surface grid points from the finite element model of the structure, and select a number of surface grid points from the surface grid points based on the preset compliance matrix scale and the preset load transfer loading requirements target surface grid points to obtain the target grid point set;
矩阵获取模块13,用于分别获取所述目标网格点集中所有所述目标表面网格点在不同预设自由度下的位移响应,并基于预设自由度顺序,将每一所述位移响应进行组装以得到所述目标部件的结构柔度矩阵,以便基于所述结构柔度矩阵对所述目标部件进行静气动弹性耦合模拟。The matrix acquisition module 13 is used to separately acquire the displacement responses of all the target surface grid points in the target grid point set under different preset degrees of freedom, and based on the preset degree of freedom sequence, each of the displacement responses Assembling is performed to obtain a structural compliance matrix of the target component so as to perform a static aeroelastic coupling simulation of the target component based on the structural compliance matrix.
可见,本申请基于与目标飞行器中的目标部件对应的离散单元类型、离散单元尺寸与离散单元分布生成结构有限元计算网格,并基于所述结构有限元计算网格、对应的求解类型和求解参数,创建所述目标部件的结构有限元模型;从所述结构有限元模型中筛选出表面网格点,并基于预设柔度矩阵规模和预设载荷传递加载要求从所述表面网格点筛选出若干个目标表面网格点,以得到目标网格点集;分别获取所述目标网格点集中所有所述目标表面网格点在不同预设自由度下的位移响应,并基于预设自由度顺序,将每一所述位移响应进行组装以得到所述目标部件的结构柔度矩阵,以便基于所述结构柔度矩阵对所述目标部件进行静气动弹性耦合模拟。由此可见,本申请基于目标部件的离散单元的相关信息生成结构有限元计算网格,并基于结构有限元计算网格、对应的求解类型和求解参数,创建目标部件的结构有限元模型,然后将结构有限元模型中目标网格点集的位移响应进行组装以得到目标部件的结构柔度矩阵,无需计算刚度矩阵的逆矩阵以得到目标部件的结构柔度矩阵,提高了获取目标部件的结构柔度矩阵的灵活性以及容易度。It can be seen that the present application generates a structural finite element calculation grid based on the discrete element type, discrete element size and discrete element distribution corresponding to the target component in the target aircraft, and based on the structural finite element calculation grid, the corresponding solution type and solution parameters, create a structural finite element model of the target component; screen out surface mesh points from the structural finite element model, and select the surface mesh points from the surface mesh points based on a preset compliance matrix scale and preset load transfer loading requirements Screen out a number of target surface grid points to obtain a target grid point set; respectively obtain the displacement responses of all the target surface grid points in the target grid point set under different preset degrees of freedom, and based on the preset In order of degrees of freedom, each of the displacement responses is assembled to obtain a structural compliance matrix of the target component, so as to perform a static aeroelastic coupling simulation of the target component based on the structural compliance matrix. It can be seen that the present application generates a structural finite element calculation grid based on the relevant information of the discrete elements of the target component, and creates a structural finite element model of the target component based on the structural finite element calculation grid, the corresponding solution type and solution parameters, and then The displacement response of the target grid point set in the structural finite element model is assembled to obtain the structural compliance matrix of the target component, and there is no need to calculate the inverse matrix of the stiffness matrix to obtain the structural compliance matrix of the target component, which improves the acquisition of the structure of the target component. Flexibility and ease of compliance matrix.
图9为本申请实施例提供的一种电子设备的结构示意图。具体可以包括:至少一个处理器21、至少一个存储器22、电源23、通信接口24、输入输出接口25和通信总线26。其中,所述存储器22用于存储计算机程序,所述计算机程序由所述处理器21加载并执行,以实现前述任一实施例公开的由电子设备执行的基于结构有限元模型的结构柔度矩阵生成方法中的相关步骤。FIG. 9 is a schematic structural diagram of an electronic device according to an embodiment of the present application. Specifically, it may include: at least one
本实施例中,电源23用于为电子设备上的各硬件设备提供工作电压;通信接口24能够为电子设备创建与外界设备之间的数据传输通道,其所遵循的通信协议是能够适用于本申请技术方案的任意通信协议,在此不对其进行具体限定;输入输出接口25,用于获取外界输入数据或向外界输出数据,其具体的接口类型可以根据具体应用需要进行选取,在此不进行具体限定。In this embodiment, the power supply 23 is used to provide working voltage for each hardware device on the electronic device; the communication interface 24 can create a data transmission channel between the electronic device and external devices, and the communication protocol it follows is applicable to this Any communication protocol applying for the technical solution is not specifically limited here; the input and output interface 25 is used to obtain external input data or output data to the outside world, and its specific interface type can be selected according to specific application needs, which is not carried out here. Specific restrictions.
其中,处理器21可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器21可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器21也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central ProcessingUnit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器21可以在集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器21还可以包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关机器学习的计算操作。The
另外,存储器22作为资源存储的载体,可以是只读存储器、随机存储器、磁盘或者光盘等,其上所存储的资源包括操作系统221、计算机程序222及数据223等,存储方式可以是短暂存储或者永久存储。In addition, the memory 22, as a carrier for resource storage, can be a read-only memory, a random access memory, a magnetic disk or an optical disk, etc. The resources stored on the memory 22 include the operating system 221, the computer program 222 and the data 223, etc., and the storage method can be short-term storage or Permanent storage.
其中,操作系统221用于管理与控制电子设备上的各硬件设备以及计算机程序222,以实现处理器21对存储器22中海量数据223的运算与处理,其可以是Windows、Unix、Linux等。计算机程序222除了包括能够用于完成前述任一实施例公开的由电子设备执行的基于结构有限元模型的结构柔度矩阵生成方法的计算机程序之外,还可以进一步包括能够用于完成其他特定工作的计算机程序。数据223除了可以包括电子设备接收到的由外部设备传输进来的数据,也可以包括由自身输入输出接口25采集到的数据等。The operating system 221 is used to manage and control various hardware devices and computer programs 222 on the electronic device, so as to realize the operation and processing of the massive data 223 in the memory 22 by the
进一步的,本申请实施例还公开了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序被处理器加载并执行时,实现前述任一实施例公开的由基于结构有限元模型的结构柔度矩阵生成过程中执行的方法步骤。Further, an embodiment of the present application further discloses a computer-readable storage medium, where a computer program is stored in the storage medium, and when the computer program is loaded and executed by a processor, the computer program disclosed in any of the foregoing embodiments can be implemented based on a computer program. Method steps performed during the generation of a structural compliance matrix for a structural finite element model.
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。Finally, it should also be noted that in this document, relational terms such as first and second are used only to distinguish one entity or operation from another, and do not necessarily require or imply these entities or that there is any such actual relationship or sequence between operations. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
以上对本发明所提供的一种基于结构有限元模型的结构柔度矩阵生成方法、装置、设备及介质进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The method, device, equipment and medium for generating a structural compliance matrix based on a structural finite element model provided by the present invention have been described in detail above. The principles and implementations of the present invention are described with specific examples in this paper. The description of the embodiment is only used to help understand the method of the present invention and its core idea; meanwhile, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in specific embodiments and application scope. As mentioned above, the contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210736568.4A CN115099095B (en) | 2022-06-27 | 2022-06-27 | Method, device, equipment and medium for generating structural flexibility matrix based on structural finite element model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210736568.4A CN115099095B (en) | 2022-06-27 | 2022-06-27 | Method, device, equipment and medium for generating structural flexibility matrix based on structural finite element model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115099095A true CN115099095A (en) | 2022-09-23 |
CN115099095B CN115099095B (en) | 2025-03-14 |
Family
ID=83294154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210736568.4A Active CN115099095B (en) | 2022-06-27 | 2022-06-27 | Method, device, equipment and medium for generating structural flexibility matrix based on structural finite element model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115099095B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116415470A (en) * | 2023-06-06 | 2023-07-11 | 中国空气动力研究与发展中心计算空气动力研究所 | Boundary point extraction method, device and medium for structure finite element |
CN117235832A (en) * | 2023-11-16 | 2023-12-15 | 中国空气动力研究与发展中心计算空气动力研究所 | Method, device, equipment and medium for selecting aeroelastic coupling simulation interface point |
CN119647222B (en) * | 2025-02-20 | 2025-04-11 | 中国空气动力研究与发展中心计算空气动力研究所 | Flexible aircraft motion deformation coupling analysis method, device, equipment and medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090012751A1 (en) * | 2006-01-27 | 2009-01-08 | National University Corporation Nagoya University | Method and program for structure analysis by finite element method |
US20100100361A1 (en) * | 2007-02-28 | 2010-04-22 | Keio University | Numerical structure-analysis calculation system |
CN108692907A (en) * | 2018-03-30 | 2018-10-23 | 中国空气动力研究与发展中心高速空气动力研究所 | A kind of space flexibility matrix of wind tunnel test support device determines method |
CN112685975A (en) * | 2021-01-05 | 2021-04-20 | 中南大学 | Hybrid modeling method for fluid-solid coupling analysis of flexible structure-cavity combined system |
-
2022
- 2022-06-27 CN CN202210736568.4A patent/CN115099095B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090012751A1 (en) * | 2006-01-27 | 2009-01-08 | National University Corporation Nagoya University | Method and program for structure analysis by finite element method |
US20100100361A1 (en) * | 2007-02-28 | 2010-04-22 | Keio University | Numerical structure-analysis calculation system |
CN108692907A (en) * | 2018-03-30 | 2018-10-23 | 中国空气动力研究与发展中心高速空气动力研究所 | A kind of space flexibility matrix of wind tunnel test support device determines method |
CN112685975A (en) * | 2021-01-05 | 2021-04-20 | 中南大学 | Hybrid modeling method for fluid-solid coupling analysis of flexible structure-cavity combined system |
Non-Patent Citations (5)
Title |
---|
唐迪: "大型风力机气动弹性计算方法研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》, no. 01, 15 January 2016 (2016-01-15), pages 041 - 4 * |
孙岩 等: "TRIP软件的静气动弹性计算模块开发及精度验证", 《空气动力学学报》, vol. 35, no. 5, 31 October 2017 (2017-10-31), pages 620 - 624 * |
寇西平: "大展弦比机翼高速静气动弹性模型设计研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》, no. 04, 15 April 2014 (2014-04-15), pages 031 - 6 * |
李春霞 等: "三自由度θXθYZ柔性机构的柔度分析与计算", 《工程力学》, vol. 31, no. 8, 31 August 2014 (2014-08-31), pages 204 - 208 * |
杨凯 等: "应用有限元技术进行气动与结构联动设计的方法研究——基于ANSYS的某导弹弹翼柔度系数矩阵计算", 《机械设计与制造工程》, no. 24, 31 December 2008 (2008-12-31), pages 32 - 33 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116415470A (en) * | 2023-06-06 | 2023-07-11 | 中国空气动力研究与发展中心计算空气动力研究所 | Boundary point extraction method, device and medium for structure finite element |
CN116415470B (en) * | 2023-06-06 | 2023-08-25 | 中国空气动力研究与发展中心计算空气动力研究所 | Boundary point extraction method, device and medium for structure finite element |
CN117235832A (en) * | 2023-11-16 | 2023-12-15 | 中国空气动力研究与发展中心计算空气动力研究所 | Method, device, equipment and medium for selecting aeroelastic coupling simulation interface point |
CN117235832B (en) * | 2023-11-16 | 2024-03-12 | 中国空气动力研究与发展中心计算空气动力研究所 | Method, device, equipment and medium for selecting aeroelastic coupling simulation interface point |
CN119647222B (en) * | 2025-02-20 | 2025-04-11 | 中国空气动力研究与发展中心计算空气动力研究所 | Flexible aircraft motion deformation coupling analysis method, device, equipment and medium |
Also Published As
Publication number | Publication date |
---|---|
CN115099095B (en) | 2025-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210312110A1 (en) | Systems and methods for automatically realizing models for co-simulation | |
AU2021240156B2 (en) | Quantum Control Pulse Generation Method And Apparatus, Device, And Storage Medium | |
Schauer et al. | Parallel computation of 3-D soil-structure interaction in time domain with a coupled FEM/SBFEM approach | |
DE102019003851A1 (en) | Systems and methods for the automatic realization of models for co-simulation | |
Sundnes et al. | Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells | |
JP7525257B2 (en) | System and method for stability-based constrained numerical calibration of material models - Patents.com | |
CN114862656B (en) | Multi-GPU-based acquisition method for training cost of distributed deep learning model | |
CN115099095A (en) | Generating method of structural compliance matrix based on structural finite element model and related components | |
AU2022235532A1 (en) | Simulation method of quantum system, computing device, apparatus and storage medium | |
CN117827619B (en) | Method, device, equipment, medium and system for time-consuming prediction simulation of heterogeneous computing power | |
US8711160B1 (en) | System and method for efficient resource management of a signal flow programmed digital signal processor code | |
CN116257363A (en) | Resource scheduling method, device, equipment and storage medium | |
CN112231863B (en) | Solar wing cell array substrate modeling method, device, equipment and storage medium | |
US20220012378A1 (en) | Method of performing design verification with automatic optimization and related design verification system | |
US10706193B1 (en) | Computer processing during simulation of a circuit design | |
CN116542178A (en) | Constant flow numerical simulation method, device, equipment and medium | |
Sahni et al. | In-Memory Parallel Anisotropic Mesh Adaptation for Unsteady Hypersonic Problems | |
CN115759260A (en) | Inference method and device of deep learning model, electronic equipment and storage medium | |
CN115099398A (en) | Hardware accelerator operation optimization method and device, electronic equipment and storage medium | |
CN114860590A (en) | Interface testing method, device, equipment and storage medium | |
Peng et al. | Estimating distribution sensitivity using generalized likelihood ratio method | |
CN112307589A (en) | Unit working condition creating method and device, electronic equipment and storage medium | |
Qamar et al. | Overcoming current mechatronic design challenges: a discussion | |
US20230142773A1 (en) | Method and system for real-time simulations using convergence stopping criterion | |
CN111694595B (en) | A Software Behavior Adjustment Method Based on Error Tolerance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |