CN115096594A - A device for loading and measuring six-dimensional forces in space using a cable-drive mechanism - Google Patents
A device for loading and measuring six-dimensional forces in space using a cable-drive mechanism Download PDFInfo
- Publication number
- CN115096594A CN115096594A CN202210717008.4A CN202210717008A CN115096594A CN 115096594 A CN115096594 A CN 115096594A CN 202210717008 A CN202210717008 A CN 202210717008A CN 115096594 A CN115096594 A CN 115096594A
- Authority
- CN
- China
- Prior art keywords
- loading
- dimensional force
- measuring
- wire rope
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 36
- 238000005259 measurement Methods 0.000 claims abstract description 44
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 29
- 239000010959 steel Substances 0.000 claims abstract description 29
- 238000012360 testing method Methods 0.000 claims abstract description 12
- 238000004088 simulation Methods 0.000 claims abstract description 5
- 238000005094 computer simulation Methods 0.000 claims description 21
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 230000000712 assembly Effects 0.000 claims description 5
- 238000000429 assembly Methods 0.000 claims description 5
- 230000003014 reinforcing effect Effects 0.000 claims description 5
- 230000009471 action Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 3
- 230000033001 locomotion Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K9/00—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
- F02K9/96—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by specially adapted arrangements for testing or measuring
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/16—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/02—Details or accessories of testing apparatus
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
技术领域technical field
本发明属于索驱机构与力测量技术交叉领域,涉及一种采用对称分布八索驱动并联机构加载测量空间六维力的装置。The invention belongs to the cross field of cable drive mechanism and force measurement technology, and relates to a device for loading and measuring six-dimensional force in space by using symmetrically distributed eight-cable-driven parallel mechanism.
背景技术Background technique
在航空发动机、火箭推进或卫星推力矢量等测试中,经常需要在地面试车台进行不同方向推力的加载、测试以及校准,通过大量的测试试验来获取测试数据、验证并准确评估发动机的性能,以保证飞机、火箭或卫星的安全运行。目前在航空发动机中进行多自由度耦合的空间六维力测量时,一般采用的是刚性结构,在测力台架不同位置上针对各方向设置多个力传感器,用以测量空间六维力的各分量值,后将六分量力测量值合成被测六维力值来进行。这样的测量方法会受到测力台架结构特性,各分量力交互作用等多种因素的影响,需要对六维力测量系统进行多次修正,且可测量的空间六维力方向和位置有限,这在一定程度上影响了空间六维力测量的准确性、效率性以及实时性。In tests such as aero-engine, rocket propulsion or satellite thrust vectoring, it is often necessary to load, test and calibrate the thrust in different directions on the ground test rig. Ensure the safe operation of aircraft, rockets or satellites. At present, when performing multi-degree-of-freedom coupling spatial six-dimensional force measurement in aero-engines, a rigid structure is generally used, and multiple force sensors are set in different positions of the force measuring platform for each direction to measure the spatial six-dimensional force. Each component value is then combined with the six-component force measurement value to synthesize the measured six-dimensional force value. Such a measurement method will be affected by various factors such as the structural characteristics of the force measuring bench, the interaction of each component force, and the six-dimensional force measurement system needs to be corrected many times, and the direction and position of the six-dimensional force that can be measured in space are limited. This affects the accuracy, efficiency and real-time performance of spatial six-dimensional force measurement to a certain extent.
专利号为CN106595935A,发明人张有等人的发明专利“可自解耦的航空发动机矢量力测量台架”,针对现有矢量推力测量台架不同方向测力结果存在耦合输出误差的问题,提供了一种可自解耦合的航空发动机矢量力测量台架,该自解耦合测力组件布局可以减小各测力组件之间的耦合作用,且使得测力组件的横向刚度保持恒定,可实现矢量力的高精度测量。但其仍是在现有矢量推力测量技术基础上进行的改进,测力台架的总体结构形式与原理未发生变化,不能有效解决由于测力台架的动架和定架等部件安装形式带来的测力结果误差影响。The patent number is CN106595935A, the inventor Zhang You et al.'s invention patent "aero-engine vector force measurement bench with self-decoupling", aiming at the problem of coupling output error in the force measurement results of different directions of the existing vector thrust measurement bench, provides A self-decoupling aero-engine vector force measurement bench is proposed. The self-decoupling force-measuring component layout can reduce the coupling effect between the force-measuring components and keep the lateral stiffness of the force-measuring components constant. High-precision measurement of vector forces. However, it is still an improvement on the basis of the existing vector thrust measurement technology. The overall structure and principle of the force measuring bench have not changed, and it cannot effectively solve the problem of the installation form of the moving frame and the fixed frame of the force measuring bench. Influenced by the error of the force measurement result.
专利号为CN108225778B,发明人为宋子军等的发明专利“一种空间矢量力模拟加载装置”,该装置可以较好的模拟发动机矢量推力的大小和方向,以及在台架上的传递路线,矢量力的加载范围能完整的包含发动机矢量力的范围。但其在三维空间范围内多次施加矢量力时,需要手动调节导轨的安装位置,将会涉及多个零件的调整,造成操作较为繁琐的问题。The patent number is CN108225778B, and the inventor is the invention patent "A Space Vector Force Simulation Loading Device" by Song Zijun and others. This device can better simulate the magnitude and direction of the engine vector thrust, as well as the transmission route on the bench, and the vector force The load range can completely cover the range of the engine vector force. However, when the vector force is applied multiple times in the three-dimensional space, the installation position of the guide rail needs to be manually adjusted, which will involve the adjustment of multiple parts, resulting in a cumbersome operation.
索驱动并联机器人,也叫索驱并联机构,是索驱动形式机构与并联机器人的结合,可以利用绳索与驱动装置代替刚性杆将运动与力传递到并联机构中的动平台上,具有良好的运动性能、较高的负载能力、结构简单、惯性小以及较大的工作空间等优点,其机构系统的刚度也可以通过调节绳索上的索力和绳索长度来改变。结合其独特的优势,可以通过研究机构的静力学平衡条件,从而建立起空间六维力与各索力之间的映射关系;也可以通过研究机构的动力学模型,使空间六维力承受端机构动平台运动至理想被测位姿状态。由于其结构简单,故在加载测量试验前后的装卸也很方便。所以利用索驱并联机构的各种优势即可准确高效的加载一定可控工作空间范围内的空间六维力或对其进行测量,可以改善现有加载测量机构及方法的局限性。The cable-driven parallel robot, also known as the cable-driven parallel mechanism, is a combination of a cable-driven mechanism and a parallel robot. It can use a rope and a driving device instead of a rigid rod to transmit motion and force to the moving platform in the parallel mechanism, with good motion Due to the advantages of performance, high load capacity, simple structure, small inertia and large working space, the rigidity of its mechanism system can also be changed by adjusting the cable force on the rope and the length of the rope. Combined with its unique advantages, it is possible to establish the mapping relationship between the six-dimensional force in space and each cable force by studying the static equilibrium conditions of the institution; it can also use the dynamic model of the research institution to make the six-dimensional force in space bear the end. The mechanism moves the platform to the ideal measured pose state. Due to its simple structure, the loading and unloading before and after the loading measurement test is also very convenient. Therefore, using the various advantages of the cable-drive parallel mechanism can accurately and efficiently load or measure the spatial six-dimensional force within a certain controllable working space, which can improve the limitations of the existing loading measurement mechanism and method.
发明内容SUMMARY OF THE INVENTION
本发明为克服现有空间六维力加载测量中,测力结构复杂,工作空间有限,发明了一种采用索驱机构进行空间六维力加载测量的装置,采用对称分布八索驱动并联机构加载或测量空间六维力,并将加载测量组件利用钢丝绳悬挂于索驱空间六维力加载测量机构内部。装置结合不同索驱并联机构的优劣点,如冗余度、结构特性、工作空间等进行新的设计,结构简单;工作空间适中。索的数目,也即冗余度适当,索力计算方便。通过研究机构的动力学关系,可实现加载测量组件在合理工作空间中的位姿调整,以便加载或测量不同方向、不同作用点的空间六维力。空间六维力作用点的位姿可控且工作空间大;操作简易、测量准确。结构简单,装拆方便;更加有利于对发动机推力的测量或模拟加载。In order to overcome the complex force measurement structure and limited working space in the existing six-dimensional force loading measurement in space, the invention invented a device for measuring the six-dimensional force in space by using a cable-driven mechanism. Or measure the space six-dimensional force, and use the wire rope to suspend the loading measurement component inside the cable-driven space six-dimensional force loading measuring mechanism. The device combines the advantages and disadvantages of different cable-driven parallel mechanisms, such as redundancy, structural characteristics, working space, etc., to carry out a new design. The structure is simple and the working space is moderate. The number of cables, that is, the redundancy is appropriate, and the calculation of cable force is convenient. By studying the dynamic relationship of the mechanism, the position and attitude adjustment of the loading and measuring components in a reasonable working space can be realized, so as to load or measure the spatial six-dimensional force in different directions and different action points. The position and posture of the action point of the six-dimensional force in space are controllable and the working space is large; the operation is simple and the measurement is accurate. The structure is simple and the assembly and disassembly are convenient; it is more conducive to the measurement or simulated loading of the engine thrust.
本发明采用的技术方案是一种采用索驱机构进行空间六维力加载和实时测量的装置,其特征是,该装置采用对称分布八索驱动并联机构加载或测量空间六维力,将加载测量组件利用钢丝绳悬挂于索驱空间六维力加载测量机构内部;该装置由机架组件、驱动组件、加载测量组件三部分组成;The technical scheme adopted in the present invention is a device for loading and real-time measurement of space six-dimensional force by using a cable-driven mechanism. The component is suspended inside the six-dimensional force loading measuring mechanism in the cable drive space by using the wire rope; the device consists of three parts: the frame component, the driving component, and the loading measuring component;
所述机架组件中,装置总体结构框架呈长方体形,方形空心型钢架4由八个横梁4a、四个竖梁4b、上下两个十字空心型钢架14构成,其中,横梁4a、竖梁4b采用方形空心型钢;在横梁4a、竖梁4b各端面焊接方形底板8,在上下十字空心型钢架14的各个端面上焊接方形底板8,并安装十字空心型钢架连接板20;方形空心型钢架4的上下四个角上分别装有上转接块3和下转接块9;四个具有加强筋的筋板2分别装在上转接块3上;横梁4a、竖梁4b上的方形底板8分别通过螺栓安装在上转接块3和下转接块9上;每个十字空心型钢架连接板20通过螺栓与导向滑轮支座21连接,十字空心型钢架14与两个交叉横梁4a成45°安装;每块具有加强筋的筋板2分别焊接在上转接块3上;伺服驱动模块底座13分别与十字空心型钢架14通过双头螺柱进行连接,导向滑轮支座21通过螺栓安装在上转接块3和下转接块9的底板上,共八组;In the frame assembly, the overall structural frame of the device is in the shape of a cuboid, and the square
所述驱动组件中的驱动系统由钢丝绳6、导向滑轮7、伺服驱动模块10、吊环螺栓11、伺服驱动模块底座13、伺服电机15、联轴器16、丝杠17、伺服系统支撑座18和丝杠螺母滑块19组成;丝杠螺母滑块19上安装有吊环螺栓11,驱动组件中的导向滑轮7通过内六角圆柱头螺钉安装在导向滑轮支座21上,共八组;伺服电机15安装在伺服系统支撑座18上,联轴器16一端与伺服电机15连接,另一端与丝杠17连接,丝杠17安装在伺服系统支撑座18上,并与丝杠螺母滑块19配合连接;伺服系统支撑座18通过螺栓与伺服驱动模块底座13连接,共八组;The drive system in the drive assembly consists of
所述加载测量组件由动模拟平台1、S型拉力传感器5、钢丝绳6、吊环螺栓11、六维力传感器12组成;用八个吊环螺栓11将前后两动模拟平台法兰面板1a与四件动模拟平台支撑梁1b连接固定,构成动模拟平台1;两个六维力传感器12分别通过螺栓与动模拟平台前后法兰面板1a连接,六维力传感器12上还可连接用于加载空间六维力的模拟推杆或在测量空间六维力时的受力结构,两种零件应根据实际试验情况设计其结构、尺度等;八个S型拉力传感器5的两端分别连接了吊环螺栓11,每个吊环螺栓11分别与钢丝绳6相连接;其中,一条钢丝绳6与动模拟平台1的顶点处连接,另一条的钢丝绳6穿过导向滑轮7与丝杠螺母滑块19上的吊环螺栓11相连接,共八组钢丝绳组件;通过钢丝绳组件使动模拟平台1悬挂于索驱空间六维力加载与测量机构的内部。The loading measurement assembly is composed of a
本发明的有益效果是:空间六维力加载与测量装置采用了对称分布八索驱动并联机构,可实现对空间六维力的实时连续测量与加载。装置结构形式简单,可将其提前装配为多个组件,故试验前后的装卸操作很方便。被测空间六维力作用点的位姿可控,且工作空间较大。可实现在可控工作空间内控制加载测量组件,通过动平台在可控工作空间内的运动来调整加载或测量时的位置与角度,以适应多变的试验环境,更加有利于对发动机推力的测量与加载校准。The beneficial effects of the present invention are that: the space six-dimensional force loading and measuring device adopts a symmetrically distributed eight-cable-driven parallel mechanism, which can realize real-time continuous measurement and loading of the space six-dimensional force. The structure of the device is simple, and it can be assembled into multiple components in advance, so the loading and unloading operations before and after the test are very convenient. The pose of the six-dimensional force action point in the measured space is controllable, and the working space is large. The loading and measuring components can be controlled in the controllable working space, and the position and angle of loading or measuring can be adjusted by the movement of the moving platform in the controllable working space, so as to adapt to the changeable test environment, which is more conducive to the control of engine thrust. Measure and load calibration.
附图说明Description of drawings
图1为八索驱动空间六维力加载与测量装置的三维结构轴测图;图2为局部单索驱动示意图;图3为动模拟平台三维结构轴测图。Figure 1 is a three-dimensional axonometric view of the six-dimensional force loading and measuring device in an eight-cable drive space; Figure 2 is a schematic diagram of a local single-cable drive; Figure 3 is a three-dimensional structure axonometric view of a dynamic simulation platform.
其中:1-动模拟平台,1a-动模拟平台法兰面板,1b-动模拟平台支撑梁,2-筋板,3-上转接块,4-方形空心型钢架,4a-横梁,4b-竖梁,5-S型拉力传感器,6-钢丝绳,7-导向滑轮,8-方形底板,9-下转接块,10-伺服驱动模块,11-吊环螺栓,12-六维力传感器,13-伺服驱动模块底座,14-十字空心型钢架,15-伺服电机,16-联轴器,17-丝杠,18-伺服系统支撑座,19-丝杠螺母滑块,20-十字空心型钢架连接板,21-导向滑轮支座。Among them: 1- Dynamic simulation platform, 1a- Dynamic simulation platform flange panel, 1b- Dynamic simulation platform support beam, 2- Rib plate, 3- Upper adapter block, 4- Square hollow steel frame, 4a- Beam, 4b -Vertical beam, 5-S type tension sensor, 6-wire rope, 7-guide pulley, 8-square bottom plate, 9-lower adapter block, 10-servo drive module, 11-eye bolt, 12-six-dimensional force sensor, 13- Servo drive module base, 14- Cross hollow steel frame, 15- Servo motor, 16- Coupling, 17- Lead screw, 18- Servo system support seat, 19- Lead screw nut slider, 20- Cross hollow Steel frame connecting plate, 21-guide pulley support.
具体实施方式Detailed ways
以下结合附图和技术方案,详细说明本发明的具体实施方式。The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings and technical solutions.
本发明为一种用于加载或测量空间六维力的对称分布八索驱动并联机构装置,该装置的三维结构轴测图如图1所示。机构在具体设计时,可根据不同的应用场合,被测对象的大小、方向等因素对整体尺度进行调整,以提高空间六维力加载或测量的准确性与实效性。The present invention is a symmetrical distribution eight-cable-driven parallel mechanism device for loading or measuring space six-dimensional force, and the three-dimensional structure axonometric view of the device is shown in FIG. 1 . During the specific design of the mechanism, the overall scale can be adjusted according to different application occasions, the size and direction of the measured object, etc., to improve the accuracy and effectiveness of the six-dimensional force loading or measurement in space.
该装置通过螺栓连接的方式将上转接块3、方形空心型钢架4、下转接块9、机架组件以及驱动组件装配成总体索驱空间六维力测量机构框架,将加载测量组件利用钢丝绳6悬挂于索驱空间六维力测量机构内部。机构的刚度较大,系统稳定,可加载或测量的空间六维力值范围较大。不同的应用场合下,空间六维力的方向、作用点可能具有很大差别,利用本装置可实现对加载测量组件在较大可控工作空间中的位姿调控。The device assembles the
一种对称分布八索驱动空间六维力测量装置由机架组件、驱动组件、加载测量组件三部分组成,安装步骤如下:A six-dimensional force measurement device for symmetrically distributed eight-cable drive space is composed of a frame assembly, a drive assembly, and a load measurement assembly. The installation steps are as follows:
一、安装六维力加载与测量装置中的机架组件1. Install the rack assembly in the six-dimensional force loading and measuring device
在已切割好的方形空心型钢的八个横梁4a和四个竖梁4b两端中心对称焊接方形底板8,组成长方形钢架4。再将上下两件四端中心对称焊接了方形底板8的十字空心型钢架14分别与两个交叉横梁4a成45°夹角安装螺栓固定,将十字空心型钢架连接板20通过螺栓安装在十字空心型钢架14上,导向滑轮支座21通过螺栓连接安装在上转接块3与下转接块9的对应位置上。每个上转接块3上焊接了具有加强筋的筋板2来增加机构刚度。八件伺服驱动模块底座13分别与十字空心型钢架14通过双头螺柱进行连接,用于安装伺服驱动系统组件,参见图1、图2。The
二、安装六维力测量装置中的驱动组件2. Install the drive components in the six-dimensional force measurement device
八组导向滑轮7分别沿装置总体框架各顶点内侧通过内六角圆柱头螺钉连接于导向滑轮支座21上,并尽可能的减小了钢丝绳6与导向滑轮7内表面的接触点位置偏移带来的摩擦力影响。将八组对称分布的伺服驱动模块10分别通过螺栓连接在伺服驱动模块底座13上,伺服驱动模块10由吊环螺栓11、伺服电机15、联轴器16、丝杠与导轨17、伺服系统支撑座18、丝杠螺母滑块19组成。吊环螺栓11连接在丝杠螺母滑块19上,八组钢丝绳6的一端分别与其连接,并穿过导向滑轮。另一端与加载测量组件中S型拉力传感器5一端的吊环螺栓连接;伺服电机15安装在伺服系统支撑座18上,联轴器16一端与伺服电机15连接,另一端与丝杠17连接,丝杠17安装在伺服系统支撑座18上,并与丝杠螺母滑块19配合连接。伺服系统支撑座18通过螺栓与伺服驱动模块底座13连接,共八组,参见图1、图2。The eight groups of guide pulleys 7 are respectively connected to the
三、安装六维力测量装置中的加载测量组件3. Install the load measurement component in the six-dimensional force measurement device
利用八个吊环螺栓11将动模拟平台1上的前后两法兰面板1a与四件动模拟平台支撑梁1b连接固定,构成动模拟平台1。六维力传感器12可通过螺栓与动模拟平台前后法兰面板1a连接。六维力传感器12上还可连接用于加载空间六维力的模拟推杆或在测量空间六维力时的受力结构,两种零件应根据实际试验情况设计其结构、尺度等;每个S型拉力传感器5的两端分别与吊环螺栓11相连接,每个吊环螺栓11与钢丝绳6相连接。其中,一条钢丝绳6的一端与动模拟平台1上的吊环螺栓11连接,另一条钢丝绳6的一端穿过导向滑轮7与丝杠螺母滑块19上的吊环螺栓11相连接,共八组钢丝绳组件。使动模拟平台1悬挂于索驱空间六维力加载与测量机构的内部几何中心处,参见图1、图2、图3。The front and rear two flange panels 1a on the
本发明合理利用了冗余索驱并联机构具有良好的运动性能、较高的负载能力、结构简单、惯性小以及较大的工作空间。本八索驱动空间六维力加载与测量装置结构对称,形式简单,可以将其提前装配为多个组件,进一步提高在加载或测量试验前后装卸的方便性,机构的可控工作空间较大,可实现对被测空间六维力作用点,即加载测量组件受力点一定位姿的调控,有利于对发动机推力等不同应用场合空间六维力的测量与加载校准。The invention reasonably utilizes the redundant cable-driven parallel mechanism, which has good motion performance, high load capacity, simple structure, small inertia and large working space. The six-dimensional force loading of the eight-cable driving space is symmetrical in structure with the measuring device, and the form is simple. It can be assembled into multiple components in advance, which further improves the convenience of loading and unloading before and after the loading or measurement test, and the controllable working space of the mechanism is large. It can realize the adjustment of the six-dimensional force action point in the measured space, that is, a certain orientation of the force point of the loading measurement component, which is beneficial to the measurement and loading calibration of the six-dimensional force in different applications such as engine thrust.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210717008.4A CN115096594B (en) | 2022-06-23 | 2022-06-23 | A device that uses a cable drive mechanism to load and measure six-dimensional forces in space |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210717008.4A CN115096594B (en) | 2022-06-23 | 2022-06-23 | A device that uses a cable drive mechanism to load and measure six-dimensional forces in space |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115096594A true CN115096594A (en) | 2022-09-23 |
CN115096594B CN115096594B (en) | 2023-09-19 |
Family
ID=83293006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210717008.4A Active CN115096594B (en) | 2022-06-23 | 2022-06-23 | A device that uses a cable drive mechanism to load and measure six-dimensional forces in space |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115096594B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118329611A (en) * | 2024-02-26 | 2024-07-12 | 大连理工大学 | A dynamic loading test device for electric spindle using cable drive mechanism |
CN118346704A (en) * | 2024-06-18 | 2024-07-16 | 大连理工大学 | A spherical joint for adaptive force loading |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103728072A (en) * | 2013-12-12 | 2014-04-16 | 燕山大学 | Large-span space rope traction parallel six-dimensional force platform |
CN104443448A (en) * | 2014-10-27 | 2015-03-25 | 清华大学 | Cable drive robot device for simulating zero-gravity and low-gravity environment |
CN107009348A (en) * | 2017-04-18 | 2017-08-04 | 中国科学技术大学 | A kind of multi-configuration rope driving parallel robot and its spatial pose method for solving |
US20180193217A1 (en) * | 2015-07-03 | 2018-07-12 | Ecole Polytechnique Federale De Lausanne (Epfl) | Apparatus to apply forces in a three-dimensional space |
CN111360793A (en) * | 2020-03-31 | 2020-07-03 | 合肥工业大学 | A flexible cable-driven hybrid spraying robot mechanism and its operation method |
CN113117942A (en) * | 2021-04-16 | 2021-07-16 | 合肥工业大学 | Rigid-flexible coupling parallel robot multicolor spraying experimental device and spraying method |
CN113305809A (en) * | 2021-05-27 | 2021-08-27 | 哈尔滨工业大学 | Force sense simulation control method of fully-constrained space rope driving parallel mechanism |
CN114141097A (en) * | 2021-11-13 | 2022-03-04 | 东北电力大学 | Rigid-flexible coupling type microgravity environment simulation training device |
-
2022
- 2022-06-23 CN CN202210717008.4A patent/CN115096594B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103728072A (en) * | 2013-12-12 | 2014-04-16 | 燕山大学 | Large-span space rope traction parallel six-dimensional force platform |
CN104443448A (en) * | 2014-10-27 | 2015-03-25 | 清华大学 | Cable drive robot device for simulating zero-gravity and low-gravity environment |
US20180193217A1 (en) * | 2015-07-03 | 2018-07-12 | Ecole Polytechnique Federale De Lausanne (Epfl) | Apparatus to apply forces in a three-dimensional space |
CN107009348A (en) * | 2017-04-18 | 2017-08-04 | 中国科学技术大学 | A kind of multi-configuration rope driving parallel robot and its spatial pose method for solving |
CN111360793A (en) * | 2020-03-31 | 2020-07-03 | 合肥工业大学 | A flexible cable-driven hybrid spraying robot mechanism and its operation method |
CN113117942A (en) * | 2021-04-16 | 2021-07-16 | 合肥工业大学 | Rigid-flexible coupling parallel robot multicolor spraying experimental device and spraying method |
CN113305809A (en) * | 2021-05-27 | 2021-08-27 | 哈尔滨工业大学 | Force sense simulation control method of fully-constrained space rope driving parallel mechanism |
CN114141097A (en) * | 2021-11-13 | 2022-03-04 | 东北电力大学 | Rigid-flexible coupling type microgravity environment simulation training device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118329611A (en) * | 2024-02-26 | 2024-07-12 | 大连理工大学 | A dynamic loading test device for electric spindle using cable drive mechanism |
CN118346704A (en) * | 2024-06-18 | 2024-07-16 | 大连理工大学 | A spherical joint for adaptive force loading |
Also Published As
Publication number | Publication date |
---|---|
CN115096594B (en) | 2023-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102650563B (en) | Ground testing system for on-track micro vibration of spacecraft | |
CN115096594B (en) | A device that uses a cable drive mechanism to load and measure six-dimensional forces in space | |
CN101726401B (en) | Scale measuring device for pitching dynamic derivative experiment | |
CN103514792B (en) | Space six degree of freedom air supporting follow-up motion platform | |
CN108382616B (en) | Suspension gravity compensation device based on magnetic suspension follow-up | |
CN107867414B (en) | Twelve-degree-of-freedom spacecraft simulator docking performance test device | |
CN104443448A (en) | Cable drive robot device for simulating zero-gravity and low-gravity environment | |
CN109115510B (en) | Six-component force test bed and error determination method thereof | |
CN107030732A (en) | Parallel/hybrid mechanism and robot performance's parameter test system | |
WO2015017806A2 (en) | Two-axis sensor body for a load transducer and platform balance with the same | |
CN108897239B (en) | A two-stage attitude control simulation system for spacecraft | |
JP7248361B1 (en) | Planetary rover magnetic levitation gravity compensation experimental platform based on parallel-connected attitude adjustment | |
CN103471706A (en) | Micro-vibration test system of solar array drive mechanism | |
CN113071721A (en) | Three-dimensional motion gravity compensation system of space manipulator | |
CN109323834B (en) | Six-dimensional dynamic force generating device | |
CN106017663A (en) | Flexible support micro-vibration testing device for simulating whole satellite | |
CN113063538A (en) | Distributed multi-dimensional force sensor | |
CN216815843U (en) | Comparison type multi-component force sensor calibration device | |
WO2007112074A2 (en) | Counterbalance for a platform balance | |
CN115096496B (en) | A method for decoupling measurement of spatial six-dimensional force using cable drive mechanism | |
CN114427963A (en) | A high-size and large-load adjustable load-bearing platform and test method for static test | |
CN102519702B (en) | Sea surface gust wind power loader | |
CN114112186B (en) | Six-dimensional force sensor calibration device | |
CN118687804B (en) | Flight aerodynamic performance testing device for simulating unmanned platform in near-different constraint environments | |
CN218724985U (en) | A six-dimensional force/torque sensor calibration platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |