CN115092012A - Equivalent state-of-charge estimation method considering multiple working modes of hybrid power supply system - Google Patents
Equivalent state-of-charge estimation method considering multiple working modes of hybrid power supply system Download PDFInfo
- Publication number
- CN115092012A CN115092012A CN202210857107.2A CN202210857107A CN115092012A CN 115092012 A CN115092012 A CN 115092012A CN 202210857107 A CN202210857107 A CN 202210857107A CN 115092012 A CN115092012 A CN 115092012A
- Authority
- CN
- China
- Prior art keywords
- state
- mode
- battery pack
- bat
- soc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000002131 composite material Substances 0.000 claims abstract description 58
- 239000003990 capacitor Substances 0.000 claims description 25
- 230000008859 change Effects 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 9
- 101100229738 Mus musculus Gpank1 gene Proteins 0.000 claims description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000004422 calculation algorithm Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/12—Recording operating variables ; Monitoring of operating variables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/40—Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/52—Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本发明提供了一种考虑车用复合电源系统多工作模式的等效荷电状态估计方法,其具体通过基于综合权重因子的方法来完成。包括步骤:S1.获取电池组和超级电容的最大放电容量,以及电池组和超级电容的输出功率;S2.根据电池组和超级电容的输出功率确定出车辆的工作模式状态;S3.计算出电池组的荷电状态SOCbat和超级电容的荷电状态SOCuc在等效荷电状态ESOC权重因子λbat和λuc在所处工作模式状态下的取值;S4.计算等效荷电状态ESOC,其中:ESOC=λbatSOCbat+λucSOCuc。该方法的流程简单,算法不复杂,便于嵌入车用复合电源管理系统中,实现车用复合电源系统在不同工作模式下的等效荷电状态估计,同时可以为电动汽车行驶距离的精确预测提供数据支撑,从而具有了现有技术中所不具备的诸多有益效果。
The present invention provides a method for estimating an equivalent state of charge considering multiple operating modes of a vehicle composite power supply system, which is specifically completed by a method based on a comprehensive weight factor. Including steps: S1. Obtain the maximum discharge capacity of the battery pack and the supercapacitor, as well as the output power of the battery pack and the supercapacitor; S2. Determine the working mode state of the vehicle according to the output power of the battery pack and the supercapacitor; S3. Calculate the battery The value of the state of charge SOC bat of the group and the state of charge SOC uc of the supercapacitor in the equivalent state of charge ESOC weighting factors λ bat and λ uc in the working mode state; S4. Calculate the equivalent state of charge ESOC , where: ESOC=λ bat SOC bat +λ uc SOC uc . The process of the method is simple, the algorithm is not complicated, and it is easy to be embedded in the vehicle composite power management system to realize the equivalent state of charge estimation of the vehicle composite power system in different working modes, and at the same time, it can provide accurate prediction of the driving distance of electric vehicles. Data support, thereby having many beneficial effects that are not available in the prior art.
Description
技术领域technical field
本发明涉及车用复合电源系统管理技术领域,尤其涉及一种考虑复合电源你系统多工作模式的等效荷电状态估计方法。The invention relates to the technical field of vehicle composite power supply system management, in particular to an equivalent state-of-charge estimation method considering multiple operating modes of a composite power supply and a system.
背景技术Background technique
由锂离子电池和超级电容组成的复合电源系统能够满足电动汽车对高比能量和高比功率的双重需求,成为了汽车行业的重要发展方向之一。现有技术中,针对单一储能系统尤其是动力电池/超级电容的荷电状态(State of Charge,SOC)估计方法已相对成熟。但是,将复合电源系统视为一个整体进行等效荷电状态ESOC估计的技术仍比较匮乏。ESOC同样是一个重要的参数,该值可以为电动汽车行驶距离的精确预测提供数据支撑,同时驾驶员能够根据该值的大小合理安排出行。如果ESOC估算不准确,有可能导致车辆因供能不足而在路上抛锚,甚至有可能引发交通事故。The composite power system composed of lithium-ion batteries and supercapacitors can meet the dual requirements of electric vehicles for high specific energy and high specific power, and has become one of the important development directions of the automotive industry. In the prior art, the state of charge (State of Charge, SOC) estimation method for a single energy storage system, especially a power battery/supercapacitor, is relatively mature. However, the technology to estimate the equivalent state of charge (ESOC) of the composite power system as a whole is still lacking. ESOC is also an important parameter. This value can provide data support for the accurate prediction of the driving distance of electric vehicles. At the same time, drivers can reasonably arrange travel according to the value of this value. If the ESOC estimation is inaccurate, it may cause the vehicle to break down on the road due to insufficient energy supply, and may even cause a traffic accident.
同时,面对复杂的汽车运行工况,复合电源系统中的各储能元件需根据不同的优化目标选择处于开启或关闭状态,复合电源系统也将处于不同的工作模式,以充分发挥电池与超级电容的优势,满足系统的功率需求。然而,复合电源系统这种灵活的工作模式使得现有的针对电池/超级电容的荷电状态估计技术难以反映复合电源系统整体在当前工作模式下的剩余能量和功率输出能力。At the same time, in the face of complex vehicle operating conditions, each energy storage element in the composite power system needs to be turned on or off according to different optimization goals, and the composite power system will also be in different working modes to give full play to the battery and super power. The advantages of capacitors meet the power requirements of the system. However, the flexible working mode of the composite power system makes it difficult for the existing battery/supercapacitor state-of-charge estimation techniques to reflect the remaining energy and power output capability of the composite power system as a whole in the current working mode.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供了一种考虑复合电源系统多工作模式的等效荷电状态估计方法,该方法的流程简单,算法不复杂,便于嵌入车用复合电源管理系统中,实现复合电源系统在不同工作模式下的等效荷电状态估计,同时可以为电动汽车行驶距离的精确预测提供数据支撑,从而具有了现有技术中所不具备的诸多有益效果,适用于电池组和超级电容组成的复合电源车辆。该方法包括步骤:In view of this, the present invention provides an equivalent state-of-charge estimation method considering multiple operating modes of a composite power system. The method has a simple process and an uncomplicated algorithm, and is easy to embed into a vehicle composite power management system to realize a composite power system. Equivalent state-of-charge estimation in different working modes can provide data support for accurate prediction of the driving distance of electric vehicles, which has many beneficial effects that are not available in the prior art, and is suitable for the composition of battery packs and super capacitors of composite power vehicles. The method includes the steps:
S1.获取电池组和超级电容的最大放电容量,以及电池组和超级电容的输出功率;S1. Obtain the maximum discharge capacity of the battery pack and supercapacitor, as well as the output power of the battery pack and supercapacitor;
S2.根据电池组和超级电容的输出功率确定出车辆的工作模式状态;S2. Determine the working mode state of the vehicle according to the output power of the battery pack and the super capacitor;
S3.计算出电池组的荷电状态SOCbat和超级电容的荷电状态SOCuc在等效荷电状态ESOC权重因子λbat和λuc在所处工作模式状态下的取值;S3. Calculate the value of the state of charge SOC bat of the battery pack and the state of charge SOC uc of the supercapacitor in the equivalent state of charge ESOC weighting factors λ bat and λ uc in the working mode state;
S4.计算等效荷电状态ESOC,其中:S4. Calculate the equivalent state of charge ESOC, where:
ESOC=λbatSOCbat+λucSOCuc。ESOC=λ bat SOC bat +λ uc SOC uc .
进一步,所述步骤S2中具体包括:Further, the step S2 specifically includes:
S21.定义符号函数m1、m2、m3和m4,具体为:S21. Define symbolic functions m 1 , m 2 , m 3 and m 4 , specifically:
其中,Pave和Pbatmax分别表示电池组平均输出功率和最大输出功率;Pbat和Puc分别表示电池组和超级电容组的输出功率;Among them, P ave and P batmax represent the average output power and maximum output power of the battery pack, respectively; P bat and P uc represent the output power of the battery pack and super capacitor pack, respectively;
S22.根据符号函数,判断复合电源系统当前所处的工作模式状态,具体为:S22. According to the sign function, determine the current working mode state of the composite power supply system, specifically:
如果m1=1、m2=0、m3≤0且m4<0,则处于工作模式1;If m 1 =1, m 2 =0, m 3 ≤ 0 and m 4 <0, it is in
如果0<m1<1、0<m2<1、m3=0且m4<0,则处于工作模式2;If 0<m 1 <1, 0<m 2 <1, m 3 =0 and m 4 <0, it is in working
如果0<m1<1、0<m2<1、m3>0且m4=0,则处于工作模式3;If 0<m 1 <1, 0<m 2 <1, m 3 >0 and m 4 =0, it is in working
如果m1≤0、m2≤0、m3<0且m4<0,则处于工作模式4;If m 1 ≤ 0, m 2 ≤ 0, m 3 <0 and m 4 <0, it is in
其他,则处于工作模式5。Others are in working mode 5.
进一步,所述步骤S3,具体包括:Further, the step S3 specifically includes:
若车辆复合电源系统的工作状态处于模式1,则:If the working state of the vehicle composite power system is in
式中,λbat1和λuc1分别表示复合电源系统处于工作模式1时,SOCbat和超级SOCuc的权重大小;In the formula, λ bat1 and λ uc1 respectively represent the weights of SOC bat and super SOC uc when the composite power system is in
若车辆复合电源系统的工作状态处于模式2,则:If the working state of the vehicle composite power system is in
式中,λbat2和λuc2分别表示复合电源系统处于工作模式2时,SOCbat和SOCuc的权重大小;CC为电池组最大可用容量与复合电源系统最大可用总容量的比值;i表示车辆驾驶工况,i=1表示处于驾驶工况1;ni为驾驶工况i下的容量变化概率函数。In the formula, λ bat2 and λ uc2 respectively represent the weight of SOC bat and SOC uc when the composite power system is in
若车辆复合电源系统的工作状态处于模式3,计算方法与模式2的计算方法相同;If the working state of the vehicle composite power system is in
若车辆复合电源系统的工作状态处于模式4,则:If the working state of the vehicle composite power system is in
式中,λbat4和λuc4分别表示复合电源系统处于工作模式4时,SOCbat和SOCuc的权重大小;Cbat和Cuc分别表示电池组和超级电容组的最大可用容量;In the formula, λ bat4 and λ uc4 represent the weights of SOC bat and SOC uc when the composite power system is in
若车辆复合电源系统的工作状态处于模式5,计算方法与模式4的计算方法相同。If the working state of the vehicle composite power system is in mode 5, the calculation method is the same as that in
进一步,所述车辆复合电源系统的工作状态处于模式2时,所述电池组最大可用容量与复合电源系统最大可用总容量的比值CC、驾驶工况i下的容量变化概率函数ni的计算方法为:Further, when the working state of the vehicle composite power system is in
t2=t21+t22+...+t2i,i=1,2,3,4,....t 2 =t 21 +t 22 +...+t 2i , i=1, 2, 3, 4,....
其中,Cbat和Cuc分别表示电池组和超级电容组的最大可用容量;t2i、Ca2i和Cb2i分别表示车辆在驾驶工况i下复合电源系统处于模式2时持续的时长、电池组的容量变化率和超级电容组的容量变化率;t2为所有工况在模式2时持续的总时长。Among them, C bat and C uc represent the maximum usable capacity of the battery pack and supercapacitor pack, respectively; t 2i , C a2i and C b2i respectively represent the duration of the composite power system in
附图说明Description of drawings
下面结合附图和实施例对本发明作进一步描述:Below in conjunction with accompanying drawing and embodiment, the present invention is further described:
图1为考虑复合电源系统多工作模式的等效荷电状态估计方法流程图;Fig. 1 is a flowchart of an equivalent state-of-charge estimation method considering multiple operating modes of a composite power system;
图2为建立的车用复合电源系统的等效电路模型;Figure 2 is the equivalent circuit model of the established vehicle composite power system;
图3为车用复合电源系统具体的工作模式及其运行状态转换路径;Figure 3 shows the specific working mode of the vehicle composite power system and its operating state transition path;
图4为车辆处于综合驾驶工况时复合电源系统在不同工作模式下等效荷电状态ESOC指标的仿真验真效果图。Fig. 4 is a simulation verification effect diagram of the ESOC index of the equivalent state of charge of the composite power system in different working modes when the vehicle is in a comprehensive driving condition.
具体实施方式Detailed ways
本发明提供了一种考虑复合电源系统多工作模式的等效荷电状态估计方法,适用于电池组和超级电容组成的复合电源车辆,包括步骤:The present invention provides an equivalent state-of-charge estimation method considering multiple operating modes of a composite power system, which is suitable for a composite power vehicle composed of a battery pack and a super capacitor, comprising the steps of:
S1.获取电池组和超级电容的最大放电容量,以及电池组和超级电容的输出功率;S1. Obtain the maximum discharge capacity of the battery pack and supercapacitor, as well as the output power of the battery pack and supercapacitor;
S2.根据电池组和超级电容的输出功率确定出车辆的工作模式状态;S2. Determine the working mode state of the vehicle according to the output power of the battery pack and the super capacitor;
S3.计算出电池组的荷电状态SOCbat和超级电容的荷电状态SOCuc在等效荷电状态ESOC权重因子λbat和λuc在所处工作模式状态下的取值;S3. Calculate the value of the state of charge SOC bat of the battery pack and the state of charge SOC uc of the supercapacitor in the equivalent state of charge ESOC weighting factors λ bat and λ uc in the working mode state;
S4.计算等效荷电状态ESOC,其中:S4. Calculate the equivalent state of charge ESOC, where:
ESOC=λbatSOCbat+λucSOCuc。ESOC=λ bat SOC bat +λ uc SOC uc .
本实施例中,建立了车用复合电源系统的等效电路模型,如图2所示,该等效电路由一个电压源Uoc、一个欧姆内阻R0以及并联的极化电阻Rb和极化电容Cb依次串联构成,具体表现为以下形式:In this embodiment, an equivalent circuit model of the vehicle composite power supply system is established. As shown in FIG. 2 , the equivalent circuit consists of a voltage source U oc , an ohmic internal resistance R 0 , and a parallel polarization resistance R b and The polarized capacitors C b are formed in series in sequence, and the specific performance is as follows:
式中,i0代表充放电电流;Uoc、Ub和Ut分别表示开路电压、极化电压和输出电压;In the formula, i 0 represents the charging and discharging current; U oc , U b and U t represent the open-circuit voltage, polarization voltage and output voltage, respectively;
本实施例中,建立了车辆的传动模型,其具体表现为以下形式:In this embodiment, the transmission model of the vehicle is established, and its specific expression is as follows:
式中,Preq表示车辆的需求功率;va表示车辆的行驶速度,其单位为km/h;α代表车辆行驶路面的坡度;η、m、f、Car、A和δ分别表示车辆的传动系统效率、满载质量、滚动阻力系数、空气阻力系数、迎风面积和旋转质量修正系数;g代表重力加速度。In the formula, Preq represents the required power of the vehicle ; va represents the driving speed of the vehicle, the unit of which is km/h; α represents the slope of the road surface of the vehicle; Drivetrain efficiency, full-load mass, rolling resistance coefficient, air resistance coefficient, windward area, and rotating mass correction coefficient; g stands for gravitational acceleration.
本实施例中,所述步骤S2中具体包括:In this embodiment, the step S2 specifically includes:
S21.定义符号函数m1、m2、m3和m4,具体为:S21. Define symbolic functions m 1 , m 2 , m 3 and m 4 , specifically:
其中,Pave和Pbatmax分别表示电池组平均输出功率和最大输出功率;Pbat和Puc分别表示电池组和超级电容组的输出功率;Among them, P ave and P batmax represent the average output power and maximum output power of the battery pack, respectively; P bat and P uc represent the output power of the battery pack and super capacitor pack, respectively;
S22.根据符号函数,判断复合电源系统当前所处的工作模式状态,具体为:S22. According to the sign function, determine the current working mode state of the composite power supply system, specifically:
如果m1=1、m2=0、m3≤0且m4<0,则处于工作模式1;If m 1 =1, m 2 =0, m 3 ≤ 0 and m 4 <0, it is in working
如果0<m1<1、0<m2<1、m3=0且m4<0,则处于工作模式2;If 0<m 1 <1, 0<m 2 <1, m 3 =0 and m 4 <0, it is in working
如果0<m1<1、0<m2<1、m3>0且m4=0,则处于工作模式3;If 0<m 1 <1, 0<m 2 <1, m 3 >0 and m 4 =0, it is in working
如果m1≤0、m2≤0、m3<0且m4<0,则处于工作模式4;If m 1 ≤ 0, m 2 ≤ 0, m 3 <0 and m 4 <0, it is in working
其他,则处于工作模式5。Others are in working mode 5.
本实施例中,具体的工作模式及其运行状态转换路径如图3,所述的模式1指:0<Preq≤Pave,此时Preq较小,电池组能够独立持续地满足驱动电机功率和能量需求,即Pbat=Preq、Puc=0;In this embodiment, the specific working mode and its operating state transition path are shown in Figure 3. The
所述的模式2指:0<Pave<Preq≤Pbatmax,Preq被分为两部分,其中,电池组持续输出Pave,超级电容组则输出其余功率,即Pbat=Pave、Puc=Preq-Pbat;The
所述的模式3指:0<Pbatmax<Preq,电池组输出Pbatmax,超额部分则由超级电容组承担,即Pbat=Pbatmax、Puc=Preq-Pbat;The
所述的模式4指:Preq<0;在这种情况下,车辆制动产生的回馈电能优先被超级电容组吸收直至SOCuc达到其上限值,然后,电池组根据其峰值充电功率对剩余能量进行回收;The
所述的模式5指:Preq=0;在该模式下,车辆处于待机状态,此时电池组和超级电容组均不向驱动电机输出/回收任何功率和能量,即Pbat=0、Puc=0;The mode 5 refers to: Preq = 0; in this mode, the vehicle is in a standby state, at this time, neither the battery pack nor the super capacitor pack outputs/recovers any power and energy to the drive motor, that is, P bat =0, P uc = 0;
本实施例中,所述步骤S3,具体包括:In this embodiment, the step S3 specifically includes:
若车辆复合电源系统的工作状态处于模式1,则:If the working state of the vehicle composite power system is in
式中,λbat1和λuc1分别表示复合电源系统处于工作模式1时,SOCbat和超级SOCuc的权重大小;In the formula, λ bat1 and λ uc1 respectively represent the weights of SOC bat and super SOC uc when the composite power system is in working
若车辆复合电源系统的工作状态处于模式2,则:If the working state of the vehicle composite power system is in
式中,λbat2和λuc2分别表示复合电源系统处于工作模式2时,SOCbat和SOCuc的权重大小;CC为电池组最大可用容量与复合电源系统最大可用总容量的比值;i表示车辆驾驶工况,i=1表示处于驾驶工况1;ni为驾驶工况i下的容量变化概率函数。In the formula, λ bat2 and λ uc2 respectively represent the weight of SOC bat and SOC uc when the composite power system is in working
若车辆复合电源系统的工作状态处于模式3,此时Preq同样由电池组和超级电容组共同承担,因此,计算方法与模式2的计算方法相同;If the working state of the vehicle composite power system is in
若车辆复合电源系统的工作状态处于模式4,则:If the working state of the vehicle composite power system is in
式中,λbat4和λuc4分别表示复合电源系统处于工作模式4时,SOCbat和SOCuc的权重大小;Cbat和Cuc分别表示电池组和超级电容组的最大可用容量;In the formula, λ bat4 and λ uc4 represent the weights of SOC bat and SOC uc when the composite power system is in working
若车辆复合电源系统的工作状态处于模式5,此时,车辆处于待机状态,计算方法与模式4的计算方法相同。If the working state of the vehicle composite power supply system is in mode 5, at this time, the vehicle is in a standby state, and the calculation method is the same as that in
本实施例中,所述车辆复合电源系统的工作状态处于模式2时,所述电池组最大可用容量与复合电源系统最大可用总容量的比值CC、驾驶工况i下的容量变化概率函数ni的计算方法为:In this embodiment, when the working state of the vehicle composite power system is in
t2=t21+t22+...+t2i,i=1,2,3,4,....t 2 =t 21 +t 22 +...+t 2i , i=1, 2, 3, 4,....
其中,Cbat和Cuc分别表示电池组和超级电容组的最大可用容量;t2i、Ca2i和Cb2i分别表示车辆在驾驶工况i下复合电源系统处于模式2时持续的时长、电池组的容量变化率和超级电容组的容量变化率;t2为所有工况在模式2时持续的总时长。Among them, C bat and C uc represent the maximum usable capacity of the battery pack and supercapacitor pack, respectively; t 2i , C a2i and C b2i respectively represent the duration of the composite power system in
本实施例中,所述的车辆在不同驾驶工况下复合电源系统处于模式2时的持续时长t2i,以及电池组的容量变化率Ca2i和超级电容组的容量变化率Cb2i是通过仿真软件获取的;本实施例中选择了3种不同的典型车辆驾驶工况:UDDS(城市工况)、WVUSUB(郊区工况)、HWFET(高速工况)。In this embodiment, the duration t 2i of the composite power system in
本实施例中,所述步骤S4中,SOCbat和SOCuc的估算方法采用的是安时积分法,计算公式如下:In this embodiment, in the step S4, the ampere-hour integration method is adopted as the estimation method of SOC bat and SOC uc , and the calculation formula is as follows:
式中,SOC0为电池组/超级电容组的初始核电状态;Cn为电池组/超级电容组的最大可用容量;it为电池组/超级电容组的当前时刻电流值。In the formula, SOC 0 is the initial nuclear power state of the battery pack/supercapacitor pack; Cn is the maximum available capacity of the battery pack/ supercapacitor pack; it is the current value of the battery pack/supercapacitor pack at the current moment.
本实施例中,车辆处于综合驾驶工况时复合电源系统在不同工作模式下的仿真运行数据如图4;等效荷电状态ESOC的总体变化趋势与电池组荷电状态SOCbat是一致的,并且,当只有电池组输出功率时,车辆复合电源系统处于工作模式1,等效荷电状态ESOC和电池组荷电状态SOCbat曲线呈下降趋势,超级电容荷电状态SOCuc不发生变化;需求功率由电池组和超级电容组共同提供时,复电源系统处于模式2或模式3状态时,此时电池组荷电状态SOCbat、超级电容荷电状态SOCuc和等效荷电状态ESOC曲线均呈下降趋势;需求功率为负时复合电源系统处于模式4,超级电容组回收制动能量,超级电容荷电状态SOCuc曲线迅速上升,而等效荷电状态ESOC增加速度缓慢,因为超级电容组的工作原则是辅助电池组完成负载的功率需求。因此,本发明提供的方法获得的等效荷电状态ESOC指标能够反映复合电源系统整体在切换不同的工作模式时带来的实际可用容量的变化,同时可进行电动车辆行驶距离的预测,对复合电源系统的稳定运行非常有意义。In this embodiment, the simulated operation data of the composite power system in different working modes when the vehicle is in a comprehensive driving condition is shown in Figure 4; Moreover, when only the battery pack outputs power, the vehicle composite power system is in working
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be Modifications or equivalent substitutions without departing from the spirit and scope of the technical solutions of the present invention should be included in the scope of the claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210857107.2A CN115092012B (en) | 2022-07-20 | 2022-07-20 | Equivalent state of charge estimation method considering multiple operating modes of composite power system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210857107.2A CN115092012B (en) | 2022-07-20 | 2022-07-20 | Equivalent state of charge estimation method considering multiple operating modes of composite power system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115092012A true CN115092012A (en) | 2022-09-23 |
CN115092012B CN115092012B (en) | 2024-04-12 |
Family
ID=83298383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210857107.2A Active CN115092012B (en) | 2022-07-20 | 2022-07-20 | Equivalent state of charge estimation method considering multiple operating modes of composite power system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115092012B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11707987B1 (en) * | 2022-12-06 | 2023-07-25 | Mercedes-Benz Group AG | Vehicle simulating method and system |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006017544A (en) * | 2004-06-30 | 2006-01-19 | Fuji Heavy Ind Ltd | Remaining capacity computing device for electricity accumulating device |
DE102011104320A1 (en) * | 2010-06-22 | 2011-12-22 | Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) | Adaptive Battery Parameter Extraction and SOC Estimation for a Lithium Ion Battery |
US20120109556A1 (en) * | 2010-10-29 | 2012-05-03 | GM Global Technology Operations LLC | Band select state of charge weighted scaling method |
CN102540081A (en) * | 2010-12-29 | 2012-07-04 | 上海汽车集团股份有限公司 | Method for determining charge state of vehicle-mounted storage battery |
CN104071033A (en) * | 2013-12-07 | 2014-10-01 | 西南交通大学 | Method for matching and optimizing parameters of mixed power locomotive with fuel cell and super capacitor |
US20150231986A1 (en) * | 2014-02-20 | 2015-08-20 | Ford Global Technologies, Llc | Battery Capacity Estimation Using State of Charge Initialization-On-The-Fly Concept |
US20170259688A1 (en) * | 2016-03-09 | 2017-09-14 | Ford Global Technologies, Llc | Battery Capacity Estimation Based on Open-Loop And Closed-Loop Models |
CN107402353A (en) * | 2017-06-30 | 2017-11-28 | 中国电力科学研究院 | A kind of state-of-charge to lithium ion battery is filtered the method and system of estimation |
US20190036356A1 (en) * | 2017-07-31 | 2019-01-31 | Robert Bosch Gmbh | Method and System for Estimating Battery Open Cell Voltage, State of Charge, and State of Health During Operation of the Battery |
CN110208703A (en) * | 2019-04-24 | 2019-09-06 | 南京航空航天大学 | The method that compound equivalent-circuit model based on temperature adjustmemt estimates state-of-charge |
CN110303945A (en) * | 2019-07-15 | 2019-10-08 | 福州大学 | A self-adaptive optimal balance control method for battery power |
WO2020129478A1 (en) * | 2018-12-18 | 2020-06-25 | パナソニックIpマネジメント株式会社 | Battery state estimation device, battery state estimation method, and battery system |
CN112345940A (en) * | 2020-10-27 | 2021-02-09 | 中北大学 | Fuzzy logic control method for vehicle composite power system based on SOC estimation |
AU2020103886A4 (en) * | 2020-12-04 | 2021-02-11 | Nanjing Forestry University | A Method for Estimating SOC of a Fractional-Order Kinetic Battery Considering Temperature and Hysteresis Effect |
CN112421745A (en) * | 2020-10-27 | 2021-02-26 | 武汉大学 | A kind of energy management method of electric vehicle composite power system |
CN112434463A (en) * | 2020-10-27 | 2021-03-02 | 中北大学 | Energy management system for vehicle hybrid power supply |
CN113495214A (en) * | 2021-05-25 | 2021-10-12 | 四川轻化工大学 | Super capacitor charge state estimation method based on temperature change model |
CN114572053A (en) * | 2022-03-04 | 2022-06-03 | 中南大学 | Electric automobile energy management method and system based on working condition identification |
US20220212545A1 (en) * | 2021-01-07 | 2022-07-07 | Ford Global Technologies, Llc | Electrified vehicle control using battery electrochemical equilibrium based state of charge and power capability estimates |
-
2022
- 2022-07-20 CN CN202210857107.2A patent/CN115092012B/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006017544A (en) * | 2004-06-30 | 2006-01-19 | Fuji Heavy Ind Ltd | Remaining capacity computing device for electricity accumulating device |
DE102011104320A1 (en) * | 2010-06-22 | 2011-12-22 | Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) | Adaptive Battery Parameter Extraction and SOC Estimation for a Lithium Ion Battery |
US20120109556A1 (en) * | 2010-10-29 | 2012-05-03 | GM Global Technology Operations LLC | Band select state of charge weighted scaling method |
CN102540081A (en) * | 2010-12-29 | 2012-07-04 | 上海汽车集团股份有限公司 | Method for determining charge state of vehicle-mounted storage battery |
CN104071033A (en) * | 2013-12-07 | 2014-10-01 | 西南交通大学 | Method for matching and optimizing parameters of mixed power locomotive with fuel cell and super capacitor |
US20150231986A1 (en) * | 2014-02-20 | 2015-08-20 | Ford Global Technologies, Llc | Battery Capacity Estimation Using State of Charge Initialization-On-The-Fly Concept |
US20170259688A1 (en) * | 2016-03-09 | 2017-09-14 | Ford Global Technologies, Llc | Battery Capacity Estimation Based on Open-Loop And Closed-Loop Models |
CN107402353A (en) * | 2017-06-30 | 2017-11-28 | 中国电力科学研究院 | A kind of state-of-charge to lithium ion battery is filtered the method and system of estimation |
US20190036356A1 (en) * | 2017-07-31 | 2019-01-31 | Robert Bosch Gmbh | Method and System for Estimating Battery Open Cell Voltage, State of Charge, and State of Health During Operation of the Battery |
WO2020129478A1 (en) * | 2018-12-18 | 2020-06-25 | パナソニックIpマネジメント株式会社 | Battery state estimation device, battery state estimation method, and battery system |
CN110208703A (en) * | 2019-04-24 | 2019-09-06 | 南京航空航天大学 | The method that compound equivalent-circuit model based on temperature adjustmemt estimates state-of-charge |
CN110303945A (en) * | 2019-07-15 | 2019-10-08 | 福州大学 | A self-adaptive optimal balance control method for battery power |
CN112345940A (en) * | 2020-10-27 | 2021-02-09 | 中北大学 | Fuzzy logic control method for vehicle composite power system based on SOC estimation |
CN112421745A (en) * | 2020-10-27 | 2021-02-26 | 武汉大学 | A kind of energy management method of electric vehicle composite power system |
CN112434463A (en) * | 2020-10-27 | 2021-03-02 | 中北大学 | Energy management system for vehicle hybrid power supply |
AU2020103886A4 (en) * | 2020-12-04 | 2021-02-11 | Nanjing Forestry University | A Method for Estimating SOC of a Fractional-Order Kinetic Battery Considering Temperature and Hysteresis Effect |
US20220212545A1 (en) * | 2021-01-07 | 2022-07-07 | Ford Global Technologies, Llc | Electrified vehicle control using battery electrochemical equilibrium based state of charge and power capability estimates |
CN114714974A (en) * | 2021-01-07 | 2022-07-08 | 福特全球技术公司 | Electric vehicle control using battery state of charge and power capacity estimation |
CN113495214A (en) * | 2021-05-25 | 2021-10-12 | 四川轻化工大学 | Super capacitor charge state estimation method based on temperature change model |
CN114572053A (en) * | 2022-03-04 | 2022-06-03 | 中南大学 | Electric automobile energy management method and system based on working condition identification |
Non-Patent Citations (6)
Title |
---|
CHEN, L (CHEN, LIN) [1] ; WANG, ZZ (WANG, ZENGZHENG) ; LÜ, ZQ (LU, ZHIQIANG) ; LI, JZ (LI, JUNZI) ; JI, B (JI, BING) ; WEI, HY (: "A Novel State-of-Charge Estimation Method of Lithium-Ion Batteries Combining the Grey Model and Genetic Algorithms", 《IEEE TRANSACTIONS ON POWER ELECTRONICS 》, 1 October 2018 (2018-10-01), pages 8797 - 8807, XP011687270, DOI: 10.1109/TPEL.2017.2782721 * |
P. B. BOBBA AND K. R. RAJAGOPAL: "Modeling and analysis of hybrid energy storage systems used in Electric vehicles", 《IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS》, 19 December 2012 (2012-12-19) * |
尹其林: "基于粒子群算法的电动汽车混合储能系统能量管理策略研究", 《中国硕士学位论文全文数据库 工程科技II辑》, 6 June 2016 (2016-06-06) * |
王春,李强: "基于无迹卡尔曼滤波的超级电容SOC估计", 《电源技术》, 20 December 2021 (2021-12-20) * |
蒋玮,薛帅,严学庆,杨陈,朱程伟,张磊: "考虑多工作模式的链式混合储能系统广义等效模型及荷电状态估计技术研究", 《中国电机工程学报》, no. 2019, 5 January 2019 (2019-01-05), pages 182 - 191 * |
鲍慧;于洋;: "基于安时积分法的电池SOC估算误差校正", 计算机仿真, no. 11, 15 November 2013 (2013-11-15) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11707987B1 (en) * | 2022-12-06 | 2023-07-25 | Mercedes-Benz Group AG | Vehicle simulating method and system |
Also Published As
Publication number | Publication date |
---|---|
CN115092012B (en) | 2024-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102180169B (en) | Cost based method for optimizing external PHEV (Plug-in Hybrid Electric Vehicle) power assembly and application thereof | |
He et al. | Modeling and simulation for hybrid electric vehicles. I. Modeling | |
CN102355031B (en) | Active equalizing charging method and device for LiFePO4 power battery packs | |
CN110126813B (en) | An energy management method for a vehicle fuel cell hybrid power system | |
JP4567109B2 (en) | Secondary battery charge / discharge control method | |
CN102361100B (en) | Method for controlling balance of power lithium ion battery | |
CN106340926B (en) | Lithium battery Balance route policy optimization method | |
CN107054140B (en) | Fuel cell hybrid car energy-storage system and energy distributing method based on elastic energy storage | |
Ogura et al. | Battery technologies for electric vehicles | |
CN103682508B (en) | A kind of spacecraft lithium-ions battery group state-of-charge defining method | |
CN102167036A (en) | Control method of fuel cell hybrid vehicle | |
CN110450677B (en) | An energy management method for hybrid energy storage electric vehicles based on battery aging state estimation | |
CN101950001A (en) | Evaluation method of consistency of lithium ion battery pack for electric vehicle | |
CN107719132A (en) | A kind of evaluation method of braking energy of electric automobiles organic efficiency | |
CN113109716B (en) | Lithium battery SOP estimation method based on electrochemical model | |
CN108020791A (en) | A kind of hybrid power ship lithium iron phosphate dynamic battery group state-of-charge method of estimation | |
CN115092012B (en) | Equivalent state of charge estimation method considering multiple operating modes of composite power system | |
CN110481325A (en) | Electric car composite power source parameter optimization method | |
CN113602148B (en) | Balanced duration management method for full-time balancing | |
Cho et al. | A new power control strategy for hybrid fuel cell vehicles | |
Noga et al. | The application of NiMH batteries in a light-duty electric vehicle | |
Zhu et al. | Modelling aluminium energy storage systems comprising ionic liquid and aqueous electrolyte cells: Case studies in high-performance electric vehicles | |
Barresi et al. | Sizing and energy management strategy of a hybrid energy storage system for evs | |
CN104163115B (en) | Energy management method of vehicle composite energy storage system | |
CN116661296B (en) | Energy consumption management platform, method and system for extended-range electric ore card and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |