CN115084232B - Heterojunction transverse double-diffusion field effect transistor, manufacturing method, chip and circuit - Google Patents
Heterojunction transverse double-diffusion field effect transistor, manufacturing method, chip and circuit Download PDFInfo
- Publication number
- CN115084232B CN115084232B CN202210858457.0A CN202210858457A CN115084232B CN 115084232 B CN115084232 B CN 115084232B CN 202210858457 A CN202210858457 A CN 202210858457A CN 115084232 B CN115084232 B CN 115084232B
- Authority
- CN
- China
- Prior art keywords
- gallium nitride
- region
- layer
- metal electrode
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005669 field effect Effects 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 238000009792 diffusion process Methods 0.000 title abstract description 9
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 236
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 198
- 229910052751 metal Inorganic materials 0.000 claims abstract description 87
- 239000002184 metal Substances 0.000 claims abstract description 87
- 230000004888 barrier function Effects 0.000 claims abstract description 76
- 210000000746 body region Anatomy 0.000 claims abstract description 62
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 27
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000005468 ion implantation Methods 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 abstract description 19
- 239000004065 semiconductor Substances 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 230000005684 electric field Effects 0.000 description 9
- 230000010287 polarization Effects 0.000 description 9
- 230000005533 two-dimensional electron gas Effects 0.000 description 9
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 230000002269 spontaneous effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 208000032750 Device leakage Diseases 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0281—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
- H10D62/235—Channel regions of field-effect devices of FETs of IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/824—Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本发明提供一种异质结横向双扩散场效应晶体管、制作方法、芯片及电路,涉及半导体技术领域。晶体管包括:衬底;氮化镓缓冲层,形成于衬底上;并排形成在氮化镓缓冲层上的源区掺杂区、氮化镓体区、氮化镓漂移区和漏区掺杂区;铝镓氮阻挡层,形成于部分氮化镓漂移区上;栅氧介质层,形成于氮化镓体区、铝镓氮阻挡层和部分未被铝镓氮阻挡层覆盖的氮化镓漂移区上;源极金属电极,形成于源区掺杂区上;漏极金属电极,形成于漏区掺杂区上;栅极金属电极,形成于部分栅氧介质层上。通过本发明提供的晶体管能够提高晶体管的击穿电压,提升电子迁移率,保证器件的速度,减少复杂的场板结构,降低制作难度,减少生产成本。
The invention provides a heterojunction lateral double-diffusion field effect transistor, a manufacturing method, a chip and a circuit, and relates to the technical field of semiconductors. The transistor includes: a substrate; a gallium nitride buffer layer formed on the substrate; a source doped region, a gallium nitride body region, a gallium nitride drift region, and a drain doped region formed side by side on the gallium nitride buffer layer region; AlGaN barrier layer, formed on part of the GaN drift region; gate oxide dielectric layer, formed on the GaN body region, AlGaN barrier layer and part of the GaN not covered by the AlGaN barrier layer On the drift region; the source metal electrode is formed on the source doped region; the drain metal electrode is formed on the drain doped region; the gate metal electrode is formed on part of the gate oxide dielectric layer. The transistor provided by the invention can increase the breakdown voltage of the transistor, improve the electron mobility, ensure the speed of the device, reduce the complex field plate structure, reduce the manufacturing difficulty, and reduce the production cost.
Description
技术领域technical field
本发明涉及半导体技术领域,具体地,涉及一种异质结横向双扩散场效应晶体管、一种异质结横向双扩散场效应晶体管制作方法、一种芯片和一种电路。The invention relates to the technical field of semiconductors, in particular to a heterojunction lateral double-diffusion field effect transistor, a manufacturing method of the heterojunction lateral double-diffusion field effect transistor, a chip and a circuit.
背景技术Background technique
横向双扩散场效应晶体管(Lateral Double-Diffused MOSFET,LDMOS)作为一种横向功率器件,其电极均位于器件表面,易于通过内部连接实现与低压信号电路以及其它器件的单片集成,同时又具有耐压高、增益大、线性度好、效率高、宽带匹配性能好等优点,如今已被广泛应用于功率集成电路中,尤其是低功耗和高频电路。As a lateral power device, the Lateral Double-Diffused MOSFET (LDMOS) has its electrodes located on the surface of the device, and is easy to achieve monolithic integration with low-voltage signal circuits and other devices through internal connections. With the advantages of high voltage, large gain, good linearity, high efficiency, and good broadband matching performance, it has been widely used in power integrated circuits, especially low power consumption and high frequency circuits.
现有技术中,横向双扩散场效应晶体管的击穿电压较低,电子迁移率较低,影响了器件速度,而且漂移区表面电场大,也降低了横向双扩散场效应晶体管的击穿电压。场板可以使漂移区的表面电场增加,减小电场峰值,从而达到抑制热载流子效应,提高击穿电压,因此横向双扩散场效应晶体管通常会设计场板结构,但是场板结构工艺复杂,制作难度大,生产成本高,且对击穿电压以及器件速度的提高效果较低。In the prior art, the breakdown voltage of the lateral double diffused field effect transistor is low, and the electron mobility is low, which affects the device speed, and the surface electric field in the drift region is large, which also reduces the breakdown voltage of the lateral double diffused field effect transistor. The field plate can increase the surface electric field in the drift region and reduce the peak value of the electric field, thereby suppressing the hot carrier effect and increasing the breakdown voltage. Therefore, the field plate structure is usually designed for lateral double-diffused field effect transistors, but the field plate structure process is complicated. , it is difficult to manufacture, the production cost is high, and the improvement effect on the breakdown voltage and the speed of the device is relatively low.
发明内容Contents of the invention
针对现有技术中横向双扩散场效应晶体管的击穿电压小、电子迁移率低,影响器件速度,且场板结构工艺复杂,制作难度大,生产成本高,对击穿电压以及器件速度的提高效果较低的技术问题,本发明提供了一种异质结横向双扩散场效应晶体管制作方法、一种异质结横向双扩散场效应晶体管、一种芯片和一种电路,采用该方法制备出的异质结横向双扩散场效应晶体管能够提高横向双扩散场效应晶体管的击穿电压,提升电子迁移率,保证器件的速度,减少复杂的场板结构,降低制作难度,减少生产成本。In view of the low breakdown voltage and low electron mobility of the lateral double-diffused field effect transistor in the prior art, which affects the device speed, and the field plate structure process is complex, the production is difficult, the production cost is high, and the breakdown voltage and device speed are improved. The technical problem of low effect, the present invention provides a kind of manufacturing method of heterojunction lateral double diffusion field effect transistor, a kind of heterojunction lateral double diffusion field effect transistor, a kind of chip and a kind of circuit, adopt this method to prepare The heterojunction lateral double diffused field effect transistor can improve the breakdown voltage of the lateral double diffused field effect transistor, improve the electron mobility, ensure the speed of the device, reduce the complex field plate structure, reduce the difficulty of manufacturing, and reduce the production cost.
为实现上述目的,本发明第一方面提供一种异质结横向双扩散场效应晶体管,该异质结横向双扩散场效应晶体管包括:衬底;氮化镓缓冲层,形成于所述衬底上;并排形成在所述氮化镓缓冲层上的源区掺杂区、氮化镓体区、氮化镓漂移区和漏区掺杂区;其中,所述氮化镓体区具有第一导电类型,所述源区掺杂区、所述氮化镓漂移区和所述漏区掺杂区具有第二导电类型;铝镓氮阻挡层,形成于部分氮化镓漂移区上;栅氧介质层,形成于所述氮化镓体区、所述铝镓氮阻挡层和部分未被所述铝镓氮阻挡层覆盖的氮化镓漂移区上;源极金属电极,形成于所述源区掺杂区上;漏极金属电极,形成于所述漏区掺杂区上;栅极金属电极,形成于部分栅氧介质层上。In order to achieve the above object, the first aspect of the present invention provides a heterojunction lateral double diffused field effect transistor, the heterojunction lateral double diffused field effect transistor comprises: a substrate; a gallium nitride buffer layer formed on the substrate above; a source doped region, a gallium nitride body region, a gallium nitride drift region, and a drain doped region are formed side by side on the gallium nitride buffer layer; wherein, the gallium nitride body region has a first conductivity type, the source doped region, the gallium nitride drift region and the drain doped region have a second conductivity type; an aluminum gallium nitride barrier layer is formed on part of the gallium nitride drift region; gate oxide a dielectric layer formed on the gallium nitride body region, the aluminum gallium nitride barrier layer and a part of the gallium nitride drift region not covered by the aluminum gallium nitride barrier layer; a source metal electrode formed on the source On the region doping region; the drain metal electrode is formed on the drain region doping region; the gate metal electrode is formed on part of the gate oxide dielectric layer.
进一步地,所述栅极金属电极和所述氮化镓体区之间的栅氧介质层的厚度介于50~150nm。Further, the thickness of the gate oxide dielectric layer between the gate metal electrode and the gallium nitride body region is between 50nm and 150nm.
进一步地,所述铝镓氮阻挡层的厚度介于20~50nm。Further, the thickness of the AlGaN barrier layer is between 20nm and 50nm.
进一步地,所述源区掺杂区和所述漏区掺杂区为第二导电类型重掺杂。Further, the doped source region and the doped drain region are heavily doped with the second conductivity type.
进一步地,所述源极金属电极和所述漏极金属电极由Ti/Al/Ti/Au金属制成。Further, the source metal electrode and the drain metal electrode are made of Ti/Al/Ti/Au metal.
进一步地,所述栅极金属电极由Ni/Au金属制成。Further, the gate metal electrode is made of Ni/Au metal.
本发明第二方面提供一种异质结横向双扩散场效应晶体管制作方法,所述异质结横向双扩散场效应晶体管制作方法包括:形成衬底;在所述衬底上形成氮化镓缓冲层;形成氮化镓漂移区、氮化镓体区、铝镓氮阻挡层、栅氧介质层、源区掺杂区和漏区掺杂区;其中,所述源区掺杂区、所述氮化镓漂移区、所述氮化镓体区和所述漏区掺杂区并排形成于所述氮化镓缓冲层上,所述铝镓氮阻挡层形成于部分氮化镓漂移区上,所述栅氧介质层形成于所述氮化镓体区、所述铝镓氮阻挡层和部分未被所述铝镓氮阻挡层覆盖的氮化镓漂移区上;所述氮化镓体区具有第一导电类型,所述源区掺杂区、所述氮化镓漂移区和所述漏区掺杂区具有第二导电类型;在所述源区掺杂区上形成源极金属电极;在所述漏区掺杂区上形成漏极金属电极;在部分栅氧介质层上形成栅极金属电极。The second aspect of the present invention provides a method for manufacturing a heterojunction lateral double-diffused field effect transistor. The method for manufacturing a heterojunction lateral double-diffused field effect transistor includes: forming a substrate; forming a gallium nitride buffer on the substrate layer; forming a gallium nitride drift region, a gallium nitride body region, an aluminum gallium nitride barrier layer, a gate oxide dielectric layer, a source doped region and a drain doped region; wherein, the source doped region, the a gallium nitride drift region, the gallium nitride body region and the drain doped region are formed side by side on the gallium nitride buffer layer, and the aluminum gallium nitride barrier layer is formed on part of the gallium nitride drift region, The gate oxide dielectric layer is formed on the GaN body region, the AlGaN barrier layer, and a part of the GaN drift region not covered by the AlGaN barrier layer; the GaN body region having a first conductivity type, the source doped region, the gallium nitride drift region and the drain doped region having a second conductivity type; forming a source metal electrode on the source doped region; A drain metal electrode is formed on the drain doped region; a gate metal electrode is formed on part of the gate oxide dielectric layer.
进一步地,所述形成氮化镓漂移区、氮化镓体区、铝镓氮阻挡层、栅氧介质层、源区掺杂区和漏区掺杂区,包括:在所述氮化镓缓冲层上形成并排设置的第一导电类型氮化镓层和第二导电类型氮化镓层;在部分第二导电类型氮化镓层上形成所述铝镓氮阻挡层;在所述铝镓氮阻挡层、部分第一导电类型氮化镓层以及部分未被所述铝镓氮阻挡层覆盖的第二导电类型氮化镓层上形成所述栅氧介质层;通过离子注入在未被所述栅氧介质层覆盖的第一导电类型氮化镓层形成所述源区掺杂区,在未被所述栅氧介质层覆盖的第二导电类型氮化镓层形成所述漏区掺杂区,其中,未被离子注入的第一导电类型氮化镓层为所述氮化镓体区,未被离子注入的第二导电类型氮化镓层为所述氮化镓漂移区。Further, the formation of the gallium nitride drift region, the gallium nitride body region, the aluminum gallium nitride barrier layer, the gate oxide dielectric layer, the source region doped region and the drain region doped region includes: A first conductive type gallium nitride layer and a second conductive type gallium nitride layer arranged side by side are formed on the layer; the aluminum gallium nitride barrier layer is formed on a part of the second conductive type gallium nitride layer; on the aluminum gallium nitride layer The gate oxide dielectric layer is formed on the barrier layer, part of the first conductivity type gallium nitride layer and part of the second conductivity type gallium nitride layer not covered by the aluminum gallium nitride barrier layer; by ion implantation The first conductive type gallium nitride layer covered by the gate oxide dielectric layer forms the source doped region, and the second conductive type gallium nitride layer not covered by the gate oxide dielectric layer forms the drain region doped region , wherein the gallium nitride layer of the first conductivity type that has not been ion-implanted is the gallium nitride body region, and the gallium nitride layer of the second conductivity type that has not been ion-implanted is the gallium nitride drift region.
进一步地,所述栅极金属电极和所述氮化镓体区之间的栅氧介质层的厚度介于50~150nm。Further, the thickness of the gate oxide dielectric layer between the gate metal electrode and the gallium nitride body region is between 50nm and 150nm.
进一步地,所述铝镓氮阻挡层的厚度介于20~50nm。Further, the thickness of the AlGaN barrier layer is between 20nm and 50nm.
进一步地,所述源区掺杂区和所述漏区掺杂区为第二导电类型重掺杂。Further, the doped source region and the doped drain region are heavily doped with the second conductivity type.
进一步地,所述源极金属电极和所述漏极金属电极由Ti/Al/Ti/Au金属制成。Further, the source metal electrode and the drain metal electrode are made of Ti/Al/Ti/Au metal.
进一步地,所述栅极金属电极由Ni/Au金属制成。Further, the gate metal electrode is made of Ni/Au metal.
本发明第三方面提供一种芯片,该芯片包括上文所述的异质结横向双扩散场效应晶体管。A third aspect of the present invention provides a chip, which includes the above-mentioned heterojunction lateral double-diffused field effect transistor.
本发明第四方面提供一种电路,该电路包括上文所述的异质结横向双扩散场效应晶体管。A fourth aspect of the present invention provides a circuit, which includes the above-mentioned heterojunction lateral double-diffused field effect transistor.
通过本发明提供的技术方案,本发明至少具有如下技术效果:Through the technical solution provided by the present invention, the present invention has at least the following technical effects:
本发明的异质结横向双扩散场效应晶体管包括一衬底,衬底上形成有氮化镓缓冲层,在氮化镓缓冲层上并排形成有源区掺杂区、氮化镓体区、氮化镓漂移区和漏区掺杂区,氮化镓体区具有第一导电类型,源区掺杂区、氮化镓漂移区和漏区掺杂区具有第二导电类型,在部分氮化镓漂移区上形成有铝镓氮阻挡层,栅氧介质层形成在氮化镓体区、铝镓氮阻挡层和部分未被铝镓氮阻挡层覆盖的氮化镓漂移区上,源极金属电极形成于源区掺杂区上,漏极金属电极,形成于漏区掺杂区上,栅极金属电极形成于部分栅氧介质层上。铝镓氮阻挡层和下方的氮化镓漂移区形成的异质结产生二维电子气,利用二维电子气的电子浓度能够提高电子迁移率,提高横向双扩散场效应晶体管的器件速度,同时利用了氮化镓宽禁带与临界击穿电场高的优势提高了横向双扩散场效应晶体管的击穿电压,避免横向双扩散场效应晶体管漂移区表面电场引起的击穿电压低的问题,而且不需要添加复杂的场板结构,降低制作难度,减少生产成本。The heterojunction lateral double-diffused field effect transistor of the present invention comprises a substrate, on which a gallium nitride buffer layer is formed, and on the gallium nitride buffer layer, an active region doped region, a gallium nitride body region, The gallium nitride drift region and the drain region doped region, the gallium nitride body region has the first conductivity type, the source region doped region, the gallium nitride drift region and the drain region doped region have the second conductivity type, and the partially nitrided An aluminum gallium nitride barrier layer is formed on the gallium drift region, a gate oxide dielectric layer is formed on the gallium nitride body region, the aluminum gallium nitride barrier layer and a part of the gallium nitride drift region not covered by the aluminum gallium nitride barrier layer, and the source metal The electrode is formed on the source doped region, the drain metal electrode is formed on the drain doped region, and the gate metal electrode is formed on part of the gate oxide dielectric layer. The heterojunction formed by the aluminum gallium nitride barrier layer and the underlying gallium nitride drift region generates a two-dimensional electron gas. Using the electron concentration of the two-dimensional electron gas can improve electron mobility and improve the device speed of the lateral double-diffused field effect transistor. At the same time Utilizing the advantages of gallium nitride's wide bandgap and high critical breakdown electric field improves the breakdown voltage of the lateral double-diffused field effect transistor, avoiding the problem of low breakdown voltage caused by the surface electric field in the drift region of the lateral double-diffused field effect transistor, and There is no need to add a complicated field plate structure, which reduces manufacturing difficulty and production cost.
附图说明Description of drawings
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:The accompanying drawings are used to provide a further understanding of the embodiments of the present invention, and constitute a part of the specification, and are used together with the following specific embodiments to explain the embodiments of the present invention, but do not constitute limitations to the embodiments of the present invention. In the attached picture:
图1为本发明实施例提供的异质结横向双扩散场效应晶体管制作方法中形成的氮化镓缓冲层的剖面图;1 is a cross-sectional view of a gallium nitride buffer layer formed in a method for manufacturing a heterojunction lateral double-diffused field-effect transistor according to an embodiment of the present invention;
图2为本发明实施例提供的异质结横向双扩散场效应晶体管制作方法中形成的第二导电类型氮化镓层的剖面图;2 is a cross-sectional view of a second conductivity type gallium nitride layer formed in the method for manufacturing a heterojunction lateral double-diffused field effect transistor according to an embodiment of the present invention;
图3为本发明实施例提供的异质结横向双扩散场效应晶体管制作方法中形成的第一导电类型氮化镓层的剖面图;3 is a cross-sectional view of the first conductivity type gallium nitride layer formed in the method for manufacturing the heterojunction lateral double-diffused field effect transistor provided by the embodiment of the present invention;
图4为本发明实施例提供的异质结横向双扩散场效应晶体管制作方法中形成的铝镓氮阻挡层的剖面图;4 is a cross-sectional view of an AlGaN barrier layer formed in a method for manufacturing a heterojunction lateral double-diffused field-effect transistor according to an embodiment of the present invention;
图5为本发明实施例提供的异质结横向双扩散场效应晶体管制作方法中形成的栅氧介质层的剖面图;5 is a cross-sectional view of a gate oxide dielectric layer formed in a method for manufacturing a heterojunction lateral double-diffused field-effect transistor according to an embodiment of the present invention;
图6为本发明实施例提供的异质结横向双扩散场效应晶体管制作方法中形成的源区掺杂区、漏区掺杂区、氮化镓体区和氮化镓漂移区的剖面图;6 is a cross-sectional view of a source doped region, a drain doped region, a gallium nitride body region, and a gallium nitride drift region formed in the method for manufacturing a heterojunction lateral double-diffused field effect transistor according to an embodiment of the present invention;
图7为本发明实施例提供的异质结横向双扩散场效应晶体管制作方法中形成的源极金属电极和漏极金属电极的剖面图;7 is a cross-sectional view of a source metal electrode and a drain metal electrode formed in the method for manufacturing a heterojunction lateral double-diffused field effect transistor according to an embodiment of the present invention;
图8为本发明实施例提供的异质结横向双扩散场效应晶体管制作方法中形成的异质结横向双扩散场效应晶体管的剖面图;8 is a cross-sectional view of a heterojunction lateral double-diffused field-effect transistor formed in the method for manufacturing a heterojunction lateral double-diffused field-effect transistor according to an embodiment of the present invention;
图9为本发明实施例提供的异质结横向双扩散场效应晶体管制作方法的流程图。FIG. 9 is a flowchart of a method for manufacturing a heterojunction lateral double-diffused field effect transistor according to an embodiment of the present invention.
附图标记说明Explanation of reference signs
1-衬底;2-氮化镓缓冲层;3-第二导电类型氮化镓层;4-第一导电类型氮化镓层;5-铝镓氮阻挡层;6-栅氧介质层;7-源区掺杂区;8-漏区掺杂区;9-氮化镓体区;10-氮化镓漂移区;11-源极金属电极;12-漏极金属电极;13-栅极金属电极。1-substrate; 2-gallium nitride buffer layer; 3-second conductivity type gallium nitride layer; 4-first conductivity type gallium nitride layer; 5-aluminum gallium nitride barrier layer; 6-gate oxide dielectric layer; 7-source doped region; 8-drain doped region; 9-gallium nitride body region; 10-gallium nitride drift region; 11-source metal electrode; 12-drain metal electrode; 13-gate metal electrodes.
具体实施方式detailed description
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。The specific implementation manners of the embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. It should be understood that the specific implementation manners described here are only used to illustrate and explain the embodiments of the present invention, and are not intended to limit the embodiments of the present invention.
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。It should be noted that, in the case of no conflict, the embodiments of the present invention and the features in the embodiments can be combined with each other.
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的或者是针对竖直、垂直或重力方向上而言的各部件相互位置关系描述用词。In the present invention, unless stated to the contrary, the used orientation words such as "up, down, top, bottom" generally refer to the directions shown in the drawings or refer to the vertical, perpendicular or gravitational directions The terms used to describe the mutual positional relationship of the various components mentioned above.
下面将参考附图并结合实施例来详细说明本发明。The present invention will be described in detail below with reference to the accompanying drawings and examples.
请参考图8,本发明第一方面提供一种异质结横向双扩散场效应晶体管,该异质结横向双扩散场效应晶体管包括:衬底1;氮化镓缓冲层2,形成于所述衬底1上;并排形成在所述氮化镓缓冲层2上的源区掺杂区7、氮化镓体区9、氮化镓漂移区10和漏区掺杂区8;其中,所述氮化镓体区9具有第一导电类型,所述源区掺杂区7、所述氮化镓漂移区10和所述漏区掺杂区8具有第二导电类型;铝镓氮阻挡层5,形成于部分氮化镓漂移区10上;栅氧介质层6,形成于所述氮化镓体区9、所述铝镓氮阻挡层5和未被所述铝镓氮阻挡层5覆盖的氮化镓漂移区10上;源极金属电极11,形成于所述源区掺杂区7上;漏极金属电极12,形成于所述漏区掺杂区8上;栅极金属电极13,形成于部分栅氧介质层6上。Please refer to FIG. 8, the first aspect of the present invention provides a heterojunction lateral double-diffused field effect transistor, the heterojunction lateral double-diffused field effect transistor includes: a
具体地,本发明实施方式中,衬底1为硅衬底或碳化硅衬底。在本实施例中,衬底1为碳化硅衬底。本领域的技术人员可以根据待形成的半导体器件性能选择衬底的类型,因此衬底的类型不应过分限制本发明的保护范围。衬底1上形成有氮化镓缓冲层2,氮化镓缓冲层2为第一导电类型轻掺杂。在氮化镓缓冲层2上并排形成有源区掺杂区7、氮化镓体区9、氮化镓漂移区10和漏区掺杂区8,氮化镓体区9具有第一导电类型,源区掺杂区7、氮化镓漂移区10和漏区掺杂区8具有第二导电类型,第一导电类型轻掺杂的氮化镓缓冲层2能够与源区掺杂区7和漏区掺杂区8构成反向PN结,避免器件漏电。Specifically, in the embodiment of the present invention, the
在部分氮化镓体区9上靠近漏区掺杂区8和氮化镓体区9相接处的位置形成有铝镓氮阻挡层5,氮化镓漂移区10远厚于铝镓氮阻挡层5,只存在自发极化;而铝镓氮阻挡层5较薄且铝镓氮(AlGaN)材料的晶格常数大于氮化镓(GaN)材料,二者的晶格失配使铝镓氮阻挡层5受到拉应力,铝镓氮阻挡层5具有压电极化和自发极化。则此时铝镓氮阻挡层5的总极化强度与氮化镓漂移区10的自发极化强度会相互抵消一部分,而二者的极化强度均为负值,即会在各自下界面产生正的极化电荷,上界面产生负的极化电荷,最终由于铝镓氮阻挡层5的自发极化强度和压力极化强度均强于氮化镓漂移区10,在二者的界面经过电荷抵消之后会留下形成净的正极化电荷。根据电荷平衡原理,在氮化镓漂移区10和铝镓氮阻挡层5的界面处会感应产生出跟正的极化电荷密度同样大小的带负电荷的电子。An AlGaN
因为氮化镓漂移区10与铝镓氮阻挡层5的材料的禁带宽度不同,铝镓氮的禁带宽度高于氮化镓,使二者的导带底存在一个带阶差,这个导带的带阶差加上界面处的大量正电荷会使导带底能带弯曲,能带弯曲使异质结结面处形成一个二维势阱。这个二维势阱将会把极化诱生电子限制其中,这些电子在势阱中只能沿着平行于突变结界面的平面内作二维运动,形成二维电子气。二维电子气结构的电子迁移率为体电子迁移率的2倍以上,利用二维电子气的电子浓度能够提高电子迁移率,提高横向双扩散场效应晶体管的器件速度。在铝镓氮/氮化镓异质结结构中,即使不对铝镓氮势垒层进行任何掺杂,凭借数量巨大的极化正电荷,所感应得到的二维电子气的面密度也能高达2×1013cm-2以上。Because GaN drift
同时氮化镓体区9和氮化镓漂移区10的禁带宽,临界击穿电场高,提高了横向双扩散场效应晶体管的击穿电压,能够避免横向双扩散场效应晶体管漂移区表面电场引起的击穿电压低的问题,因此不需要添加复杂的场板结构,只需要制作栅极,即在氮化镓体区9、铝镓氮阻挡层5和未被铝镓氮阻挡层5覆盖的氮化镓漂移区10上形成栅氧介质层6,在部分栅氧介质层6上形成栅极金属电极13即可,降低了制作难度,减少了生产成本。栅氧介质层6形成在氮化镓体区9和铝镓氮阻挡层5上方,以及氮化镓漂移区10未被铝镓氮阻挡层5覆盖且与氮化镓体区9相接触的位置的上方。栅极金属电极13形成在部分栅氧介质层6上。At the same time, the
源极金属电极11形成于源区掺杂区7上,与源极金属电极11构成源极,漏极金属电极12形成于漏区掺杂区8上,与漏极金属电极12构成漏极。铝镓氮阻挡层5与下方的氮化镓体区9之间的二维电子气为横向的,源极、漏极分别设置在氮化镓体区9和氮化镓漂移区10一侧能够减小横向双扩散场效应晶体管的导通电阻,进一步提高器件的导通速度,提升器件的导通特性。The
根据本发明提供的异质结横向双扩散场效应晶体管,通过铝镓氮阻挡层和下方的氮化镓漂移区10形成的异质结产生二维电子气,利用二维电子气的电子浓度能够提高电子迁移率,提高横向双扩散场效应晶体管的器件速度,同时利用了氮化镓宽禁带与临界击穿电场高的优势提高了横向双扩散场效应晶体管的击穿电压,避免横向双扩散场效应晶体管漂移区表面电场引起的击穿电压低的问题,而且不需要添加复杂的场板结构,降低制作难度,减少生产成本。According to the heterojunction lateral double-diffused field effect transistor provided by the present invention, the heterojunction formed by the AlGaN barrier layer and the underlying
进一步地,所述栅极金属电极13和所述氮化镓体区9之间的栅氧介质层6的厚度介于50~150nm。Further, the gate
具体地,本发明实施方式中,栅极金属电极13和所述氮化镓体区9之间的栅氧介质层6的厚度介于50~150nm,如果栅氧介质层6的过厚,则阈值电压较大,降低开关速度;如果栅氧介质层6的过薄,则化学气相沉积时容易产生缺陷,容易击穿,且化学气相沉积工艺不易控制,影响栅氧介质层6的均匀性。优选地,栅极金属电极13和所述氮化镓体区9之间的栅氧介质层6的厚度为100nm。Specifically, in the embodiment of the present invention, the thickness of the gate
进一步地,所述铝镓氮阻挡层5的厚度介于20~50nm。Further, the thickness of the
具体地,本发明实施方式中,铝镓氮阻挡层5的厚度介于20~50nm,如果铝镓氮阻挡层5过厚,则不易控制栅氧介质层6的厚度;如果铝镓氮阻挡层5过薄,则形成的铝镓氮阻挡层5缺陷较多,器件容易击穿。优选地,铝镓氮阻挡层5的厚度为30nm。Specifically, in the embodiment of the present invention, the thickness of the
进一步地,氮化镓缓冲层2的厚度介于1~2um,如果氮化镓缓冲层2过厚,会增加器件的制造成本;如果氮化镓缓冲层2过薄,则不具有缓冲作用。Furthermore, the thickness of the gallium
进一步地,氮化镓体区9和氮化镓漂移区10的厚度介于50~100nm,如果氮化镓体区9和氮化镓漂移区10过厚,会提高生产成本,影响表面的平整度,且掺杂的均匀性也较差;如果氮化镓体区9和氮化镓漂移区10过薄,则外延工艺不好控制,氮化镓体区9和氮化镓漂移区10容易有缺陷,且工作时的导通电阻过大,增加器件的损耗,影响器件特性。Further, the thickness of the
进一步地,所述源区掺杂区7和所述漏区掺杂区8为第二导电类型重掺杂。Further, the
进一步地,所述源极金属电极11和所述漏极金属电极12由Ti/Al/Ti/Au金属制成。Further, the
具体地,本发明实施方式中,源极金属电极11和漏极金属电极12能够分别于源区掺杂区7和漏区掺杂区8形成欧姆接触,屏蔽部分高压的影响,减小了源端欧姆接触的漏电流注入,从而提高了横向双扩散场效应晶体管的关态击穿电压。Specifically, in the embodiment of the present invention, the
进一步地,所述栅极金属电极13由Ni/Au金属制成。Further, the
请参考图1-图9,本发明第二方面提供一种异质结横向双扩散场效应晶体管制作方法,所述异质结横向双扩散场效应晶体管制作方法包括:S101:形成衬底1;S102:在所述衬底1上形成氮化镓缓冲层2;S103:形成氮化镓漂移区10、氮化镓体区9、铝镓氮阻挡层5、栅氧介质层6、源区掺杂区7和漏区掺杂区8;其中,所述源区掺杂区7、所述氮化镓漂移区10、所述氮化镓体区9和所述漏区掺杂区8并排形成于所述氮化镓缓冲层2上,所述铝镓氮阻挡层5形成于部分氮化镓漂移区10上,所述栅氧介质层6形成于所述氮化镓体区9、所述铝镓氮阻挡层5和未被所述铝镓氮阻挡层5覆盖的氮化镓漂移区10上;所述氮化镓体区9具有第一导电类型,所述源区掺杂区7、所述氮化镓漂移区10和所述漏区掺杂区8具有第二导电类型;S104:在所述源区掺杂区7上形成源极金属电极11;S105:在所述漏区掺杂区8上形成漏极金属电极12;S106:在部分栅氧介质层6上形成栅极金属电极13。Please refer to FIG. 1-FIG. 9. The second aspect of the present invention provides a method for manufacturing a heterojunction lateral double-diffused field-effect transistor. The method for manufacturing a heterojunction lateral double-diffused field-effect transistor includes: S101: forming a substrate 1; S102: Form a GaN buffer layer 2 on the substrate 1; S103: Form a GaN drift region 10, a GaN body region 9, an AlGaN barrier layer 5, a gate oxide dielectric layer 6, a doped source region impurity region 7 and drain region doped region 8; wherein, the source region doped region 7, the gallium nitride drift region 10, the gallium nitride body region 9 and the drain region doped region 8 are formed side by side On the gallium nitride buffer layer 2, the aluminum gallium nitride barrier layer 5 is formed on a part of the gallium nitride drift region 10, and the gate oxide dielectric layer 6 is formed on the gallium nitride body region 9, the On the AlGaN barrier layer 5 and the GaN drift region 10 not covered by the AlGaN barrier layer 5; the GaN body region 9 has the first conductivity type, and the source region doped region 7, The gallium nitride drift region 10 and the drain doped region 8 have a second conductivity type; S104: form a source metal electrode 11 on the source doped region 7; S105: dope the drain region Forming a drain metal electrode 12 on the impurity region 8 ; S106 : forming a gate metal electrode 13 on part of the gate oxide dielectric layer 6 .
首先执行步骤S101:形成衬底1。Step S101 is first performed: forming a
请参考图1,具体地,本发明实施方式中,提供的横向双扩散场效应晶体管即能为N型横向双扩散场效应晶体管,也能为P型横向双扩散场效应晶体管。当该横向双扩散场效应晶体管为N型横向双扩散场效应晶体管时,第一导电类型为P型,第二导电类型为N型;当该横向双扩散场效应晶体管为P型横向双扩散场效应晶体管时,第一导电类型为N型,第二导电类型为P型,本发明对此不作限制,下文本实施例中仅以N型横向双扩散场效应晶体管为例进行说明。Please refer to FIG. 1 , specifically, in the embodiment of the present invention, the lateral double-diffused field effect transistor provided can be either an N-type lateral double-diffused field-effect transistor or a P-type lateral double-diffused field effect transistor. When the lateral double diffused field effect transistor is an N type lateral double diffused field effect transistor, the first conductivity type is P type, and the second conductive type is N type; when the lateral double diffused field effect transistor is a P type lateral double diffused field effect transistor In the case of an effect transistor, the first conductivity type is N-type, and the second conductivity type is P-type, which is not limited in the present invention. In the following embodiments, only an N-type lateral double-diffused field effect transistor is used as an example for illustration.
接着执行步骤S102:在所述衬底1上形成氮化镓缓冲层2。Step S102 is then performed: forming a gallium
具体地,本发明实施方式中,通过外延工艺在衬底1上形成氮化镓缓冲层2。Specifically, in the embodiment of the present invention, the gallium
接着执行步骤S103:形成氮化镓漂移区10、氮化镓体区9、铝镓氮阻挡层5、栅氧介质层6、源区掺杂区7和漏区掺杂区8;其中,所述源区掺杂区7、所述氮化镓漂移区10、所述氮化镓体区9和所述漏区掺杂区8并排形成于所述氮化镓缓冲层2上,所述铝镓氮阻挡层5形成于部分氮化镓漂移区10上,所述栅氧介质层6形成于所述氮化镓体区9、所述铝镓氮阻挡层5和未被所述铝镓氮阻挡层5覆盖的氮化镓漂移区10上;所述氮化镓体区9具有第一导电类型,所述源区掺杂区7、所述氮化镓漂移区10和所述漏区掺杂区8具有第二导电类型。Then step S103 is performed: forming the
进一步地,所述形成氮化镓漂移区10、氮化镓体区9、铝镓氮阻挡层5、栅氧介质层6、源区掺杂区7和漏区掺杂区8,包括:在所述氮化镓缓冲层2上形成并排设置的第一导电类型氮化镓层4和第二导电类型氮化镓层3;在部分第二导电类型氮化镓层3上形成所述铝镓氮阻挡层5;在所述铝镓氮阻挡层5、部分第一导电类型氮化镓层4以及部分未被所述铝镓氮阻挡层5覆盖的第二导电类型氮化镓层3上形成所述栅氧介质层6;通过离子注入在未被所述栅氧介质层6覆盖的第一导电类型氮化镓层4形成所述源区掺杂区7,在未被所述栅氧介质层6覆盖的第二导电类型氮化镓层3形成所述漏区掺杂区8,其中,未被离子注入的第一导电类型氮化镓层4为所述氮化镓体区9,未被离子注入的第二导电类型氮化镓层3为所述氮化镓漂移区10。Further, the formation of the gallium nitride drift region 10, the gallium nitride body region 9, the aluminum gallium nitride barrier layer 5, the gate oxide dielectric layer 6, the source region doped region 7 and the drain region doped region 8 includes: A gallium nitride layer 4 of the first conductivity type and a gallium nitride layer 3 of the second conductivity type arranged side by side are formed on the gallium nitride buffer layer 2; the aluminum gallium is formed on part of the gallium nitride layer of the second conductivity type 3 Nitrogen barrier layer 5; formed on the aluminum gallium nitride barrier layer 5, part of the first conductivity type gallium nitride layer 4 and part of the second conductivity type gallium nitride layer 3 not covered by the aluminum gallium nitride barrier layer 5 The gate oxide dielectric layer 6; the source region doped region 7 is formed in the first conductivity type gallium nitride layer 4 not covered by the gate oxide dielectric layer 6 by ion implantation, The second conductivity type gallium nitride layer 3 covered by the layer 6 forms the drain doped region 8, wherein the first conductivity type gallium nitride layer 4 that has not been ion-implanted is the gallium nitride body region 9, not The ion-implanted gallium nitride layer 3 of the second conductivity type is the gallium nitride drift region 10 .
进一步地,所述源区掺杂区7和所述漏区掺杂区8为第二导电类型重掺杂。Further, the
具体地,本发明实施方式中,形成氮化镓缓冲层2后,接着外延一层N型氮化镓,形成第二导电类型氮化镓层3,在第二导电类型氮化镓层3上表面化学气相沉积一层二氧化硅,在二氧化硅表面形成光刻胶,对光刻胶进行刻蚀形成第一刻蚀窗口,通过第一刻蚀窗口干法刻蚀二氧化硅和第二导电类型氮化镓层3,形成图2所示的结构。接着在选择外延P型氮化镓,去除第二导电类型氮化镓层3表面的二氧化硅,化学机械抛光多余的P型氮化镓,形成图3中的第一导电类型氮化镓层4。然后外延一层铝镓氮,并对铝镓氮进行刻蚀,得到图4中的铝镓氮阻挡层5,铝镓氮阻挡层5形成于部分氮化镓体区9上靠近漏区掺杂区8和氮化镓体区9相接处的位置。接着再在表面化学气相沉积一层二氧化硅,干法刻蚀二氧化硅,在铝镓氮阻挡层5、部分第一导电类型氮化镓层4以及未被铝镓氮阻挡层5覆盖的第二导电类型氮化镓层3上形成栅氧介质层6,如图5所示。然后进行N型离子重掺杂,在未被栅氧介质层6覆盖的第一导电类型氮化镓层4形成源区掺杂区7,在未被栅氧介质层6覆盖的第二导电类型氮化镓层3形成漏区掺杂区8,而未被离子注入的第一导电类型氮化镓层4形成氮化镓体区9,未被离子注入的第二导电类型氮化镓层3形成氮化镓漂移区10,如图6所示。Specifically, in the embodiment of the present invention, after the gallium
接着执行步骤S104:在所述源区掺杂区7上形成源极金属电极11。Step S104 is then performed: forming a
接着执行步骤S105:在所述漏区掺杂区8上形成漏极金属电极12。Step S105 is then performed: forming a
进一步地,所述源极金属电极11和所述漏极金属电极12由Ti/Al/Ti/Au金属制成。Further, the
请参考图7,具体地,本发明实施方式中,形成源区掺杂区7和漏区掺杂区8之后,物理气相沉积一层Ti/Al/Ti/Au金属,并对Ti/Al/Ti/Au金属进行刻蚀,保留源区掺杂区7和漏区掺杂区8上的金属材料,在源区掺杂区7上形成源极金属电极11,在漏区掺杂区8上形成漏极金属电极12。Please refer to FIG. 7. Specifically, in the embodiment of the present invention, after forming the source doped
最后执行步骤S106:在部分栅氧介质层6上形成栅极金属电极13。Finally, step S106 is executed: forming the
进一步地,所述栅极金属电极13由Ni/Au金属制成。Further, the
请参考图8,具体地,本发明实施方式中,在器件表面物理气相沉积一层Ni/Au金属,并通过刻蚀去除源极金属电极11和漏极金属电极12附近的Ni/Au金属,在部分栅氧介质层6上形成栅极金属电极13。Please refer to FIG. 8. Specifically, in an embodiment of the present invention, a layer of Ni/Au metal is physically vapor deposited on the surface of the device, and the Ni/Au metal near the
进一步地,所述栅极金属电极13和所述氮化镓体区9之间的栅氧介质层6的厚度介于50~150nm。Further, the gate
进一步地,所述铝镓氮阻挡层5的厚度介于20~50nm。Further, the thickness of the
本发明第三方面提供一种芯片,该芯片包括上文所述的异质结横向双扩散场效应晶体管。A third aspect of the present invention provides a chip, which includes the above-mentioned heterojunction lateral double-diffused field effect transistor.
本发明第四方面提供一种电路,该电路包括上文所述的异质结横向双扩散场效应晶体管。A fourth aspect of the present invention provides a circuit, which includes the above-mentioned heterojunction lateral double-diffused field effect transistor.
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。The preferred embodiment of the present invention has been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the specific details of the above embodiment, within the scope of the technical concept of the present invention, various simple modifications can be made to the technical solution of the present invention, These simple modifications all belong to the protection scope of the present invention.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。In addition, it should be noted that the various specific technical features described in the above specific embodiments can be combined in any suitable way if there is no contradiction. The combination method will not be described separately.
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。In addition, various combinations of different embodiments of the present invention can also be combined arbitrarily, as long as they do not violate the idea of the present invention, they should also be regarded as the disclosed content of the present invention.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210858457.0A CN115084232B (en) | 2022-07-21 | 2022-07-21 | Heterojunction transverse double-diffusion field effect transistor, manufacturing method, chip and circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210858457.0A CN115084232B (en) | 2022-07-21 | 2022-07-21 | Heterojunction transverse double-diffusion field effect transistor, manufacturing method, chip and circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115084232A CN115084232A (en) | 2022-09-20 |
CN115084232B true CN115084232B (en) | 2023-01-17 |
Family
ID=83242538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210858457.0A Active CN115084232B (en) | 2022-07-21 | 2022-07-21 | Heterojunction transverse double-diffusion field effect transistor, manufacturing method, chip and circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115084232B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115528117B (en) * | 2022-11-16 | 2023-06-27 | 北京智芯微电子科技有限公司 | Lateral double diffused field effect transistor, manufacturing method, chip and circuit |
CN115863397B (en) * | 2023-01-19 | 2023-04-21 | 北京智芯微电子科技有限公司 | Lateral double-diffusion field effect transistor, manufacturing method, chip and circuit |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102194819A (en) * | 2011-04-26 | 2011-09-21 | 电子科技大学 | Enhanced GaN heterojunction field effect transistor based on metal oxide semiconductor (MOS) control |
CN108447913A (en) * | 2018-05-21 | 2018-08-24 | 电子科技大学 | A LDMOS Device Integrated Schottky Diode |
CN109390399A (en) * | 2017-08-04 | 2019-02-26 | 无锡华润上华科技有限公司 | A kind of LDMOS device and its manufacturing method and electronic device |
CN109888009A (en) * | 2019-01-28 | 2019-06-14 | 西安电子科技大学 | Lateral transistor with AlGaN/GaN heterojunction and method of making the same |
CN110544722A (en) * | 2019-08-14 | 2019-12-06 | 西安电子科技大学 | A gate-controlled bipolar-field-effect compound gallium nitride lateral double-diffused metal-oxide-semiconductor transistor |
CN110649096A (en) * | 2019-10-08 | 2020-01-03 | 电子科技大学 | High-voltage n-channel HEMT device |
CN111200006A (en) * | 2018-11-19 | 2020-05-26 | 无锡华润上华科技有限公司 | Lateral double-diffused metal oxide semiconductor field effect transistor and preparation method thereof |
CN114175219A (en) * | 2019-08-06 | 2022-03-11 | 三菱电机株式会社 | Semiconductor device and method of manufacturing the same |
CN114361244A (en) * | 2022-03-18 | 2022-04-15 | 北京芯可鉴科技有限公司 | LDMOSFET device, manufacturing method and chip |
CN114420760A (en) * | 2022-03-28 | 2022-04-29 | 北京芯可鉴科技有限公司 | Transverse double-diffusion field effect transistor, manufacturing method, chip and circuit |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150255547A1 (en) * | 2012-03-29 | 2015-09-10 | Agency For Science, Technology And Research | III-Nitride High Electron Mobility Transistor Structures and Methods for Fabrication of Same |
CN110797406A (en) * | 2018-08-01 | 2020-02-14 | 无锡华润上华科技有限公司 | Lateral diffusion metal oxide semiconductor device and manufacturing method thereof |
CN109817711B (en) * | 2019-01-28 | 2020-06-26 | 西安电子科技大学 | Gallium nitride transverse transistor with AlGaN/GaN heterojunction and manufacturing method thereof |
CN111653621A (en) * | 2020-05-25 | 2020-09-11 | 华虹半导体(无锡)有限公司 | LDMOS device and method of making the same |
CN114664943A (en) * | 2020-12-23 | 2022-06-24 | 南通尚阳通集成电路有限公司 | planar high electron mobility transistor |
CN114447102A (en) * | 2022-01-25 | 2022-05-06 | 电子科技大学 | Gallium Nitride Heterojunction Field Effect Transistor with Compound Semiconductor Layer on Substrate |
-
2022
- 2022-07-21 CN CN202210858457.0A patent/CN115084232B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102194819A (en) * | 2011-04-26 | 2011-09-21 | 电子科技大学 | Enhanced GaN heterojunction field effect transistor based on metal oxide semiconductor (MOS) control |
CN109390399A (en) * | 2017-08-04 | 2019-02-26 | 无锡华润上华科技有限公司 | A kind of LDMOS device and its manufacturing method and electronic device |
CN108447913A (en) * | 2018-05-21 | 2018-08-24 | 电子科技大学 | A LDMOS Device Integrated Schottky Diode |
CN111200006A (en) * | 2018-11-19 | 2020-05-26 | 无锡华润上华科技有限公司 | Lateral double-diffused metal oxide semiconductor field effect transistor and preparation method thereof |
CN109888009A (en) * | 2019-01-28 | 2019-06-14 | 西安电子科技大学 | Lateral transistor with AlGaN/GaN heterojunction and method of making the same |
CN114175219A (en) * | 2019-08-06 | 2022-03-11 | 三菱电机株式会社 | Semiconductor device and method of manufacturing the same |
CN110544722A (en) * | 2019-08-14 | 2019-12-06 | 西安电子科技大学 | A gate-controlled bipolar-field-effect compound gallium nitride lateral double-diffused metal-oxide-semiconductor transistor |
CN110649096A (en) * | 2019-10-08 | 2020-01-03 | 电子科技大学 | High-voltage n-channel HEMT device |
CN114361244A (en) * | 2022-03-18 | 2022-04-15 | 北京芯可鉴科技有限公司 | LDMOSFET device, manufacturing method and chip |
CN114420760A (en) * | 2022-03-28 | 2022-04-29 | 北京芯可鉴科技有限公司 | Transverse double-diffusion field effect transistor, manufacturing method, chip and circuit |
Also Published As
Publication number | Publication date |
---|---|
CN115084232A (en) | 2022-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10103219B2 (en) | Power semiconductor device and method for manufacturing the same | |
CN112331719B (en) | Semiconductor device and method of manufacturing semiconductor device | |
US9660048B2 (en) | High electron mobility transistors exhibiting dual depletion and methods of manufacturing the same | |
CN107359196B (en) | Semiconductor device with a plurality of semiconductor chips | |
CN102332469B (en) | Vertical conduction GaN normally-off MISFET device and manufacturing method thereof | |
CN113169228A (en) | Lateral III-nitride devices including vertical gate modules | |
TW202213770A (en) | Semiconductor device | |
CN103972284A (en) | Semiconductor device | |
CN102239550A (en) | Field effect transistor | |
CN102769034A (en) | Normally Off High Electron Mobility Transistor | |
CN109524460B (en) | High Hole Mobility Transistor | |
CN115084232B (en) | Heterojunction transverse double-diffusion field effect transistor, manufacturing method, chip and circuit | |
WO2014134490A1 (en) | Improving linearity in semiconductor devices | |
TW202228285A (en) | Normally-off device and manufacturing method therefor | |
WO2020107754A1 (en) | Epitaxial layer structure for increasing threshold voltage of gan-enhanced mosfet and device fabrication method | |
CN114402442A (en) | Nitride-based semiconductor device and method for manufacturing the same | |
CN112993007A (en) | Super junction structure and super junction device | |
TWI732813B (en) | Semiconductor device, electronic part, electronic apparatus, and method for fabricating semiconductor device | |
CN110518067A (en) | Heterojunction field effect transistor based on channel array and preparation method thereof and application | |
JP7170940B2 (en) | semiconductor equipment | |
CN114843337A (en) | Gallium nitride high electron mobility transistor with double-gate structure and manufacturing method thereof | |
TW202228296A (en) | Normally-off device and manufacturing method therefor | |
CN113707708A (en) | Junction accumulation layer enhanced AlGaN/GaN high electron mobility transistor and manufacturing method thereof | |
US8421182B2 (en) | Field effect transistor having MOS structure made of nitride compound semiconductor | |
CN118136679B (en) | Dual-gate LDMOS device based on heterojunction two-dimensional electron gas and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |