[go: up one dir, main page]

CN115078956A - Test circuit - Google Patents

Test circuit Download PDF

Info

Publication number
CN115078956A
CN115078956A CN202110260858.1A CN202110260858A CN115078956A CN 115078956 A CN115078956 A CN 115078956A CN 202110260858 A CN202110260858 A CN 202110260858A CN 115078956 A CN115078956 A CN 115078956A
Authority
CN
China
Prior art keywords
flip
circuit
flop
normal
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110260858.1A
Other languages
Chinese (zh)
Inventor
许烱发
黄振国
陆美娟
卓暐中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Realtek Semiconductor Corp
Original Assignee
Realtek Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Realtek Semiconductor Corp filed Critical Realtek Semiconductor Corp
Priority to CN202110260858.1A priority Critical patent/CN115078956A/en
Publication of CN115078956A publication Critical patent/CN115078956A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

一种测试电路,包括多个常态正反器以及一改良式正反器。该多个常态正反器各自包括一第一输入脚位、一第二输入脚位以及一第一输出脚位,并用以根据一扫描致能信号选择性地暂存该第一输入脚位的输入值或该第二输入脚位的输入值。该改良式正反器包括分别耦接于一黑盒子电路、该多个常态正反器与多个组合逻辑电路的一第三输入脚位、一第四输入脚位以及一第二输出脚位,并用以根据一扫描测试模式信号选择性地暂存该第三输入脚位的输入值或者该第四输入脚位的输入值。

Figure 202110260858

A test circuit includes a plurality of normal flip-flops and an improved flip-flop. Each of the plurality of normal flip-flops includes a first input pin, a second input pin and a first output pin, and is used for selectively temporarily storing the first input pin according to a scan enable signal The input value or the input value of the second input pin. The improved flip-flop includes a third input pin, a fourth input pin and a second output pin respectively coupled to a black box circuit, the plurality of normal flip-flops and a plurality of combinational logic circuits , and is used to selectively temporarily store the input value of the third input pin or the input value of the fourth input pin according to a scan test mode signal.

Figure 202110260858

Description

测试电路test circuit

技术领域technical field

本公开内容系有关于一种集成电路的测试电路,特别是指一种用于测试包括内存的集成电路的测试电路。The present disclosure relates to a test circuit for an integrated circuit, and more particularly, to a test circuit for testing an integrated circuit including a memory.

背景技术Background technique

随着半导体制程技术的发展,集成电路(IC,Integrated Circuit)上包含了数字逻辑电路以及许多的嵌入式内存(例如:TCAM/TCM、RAM、SRAM)。一般来说,集成电路上还会包含用于测试嵌入式内存的内存内建自测(MBIST,Memory Build-in Self-test)电路以及用于测试数字逻辑电路的扫描炼测试(scan chain test)电路。With the development of semiconductor process technology, an integrated circuit (IC, Integrated Circuit) includes digital logic circuits and many embedded memories (eg, TCAM/TCM, RAM, SRAM). Generally speaking, the integrated circuit also includes a memory built-in self-test (MBIST, Memory Build-in Self-test) circuit for testing embedded memory and a scan chain test (scan chain test) for testing digital logic circuits. circuit.

然而,传统的扫描炼测试电路包含了用于旁通内存的旁通电路(by-passcircuit)以及用于选择性地输出内存的输出信号或旁通电路的输出信号的多任务器,旁通电路常常导致集成电路有电路面积增加以及绕线拥塞(routing congestion)的问题,而多任务电路则容易使得内存的输出信号发生延迟,进而导致时序违规(timing violation)的问题。However, the conventional scan chain test circuit includes a by-pass circuit for bypassing the memory and a multiplexer for selectively outputting the output signal of the memory or the output signal of the bypass circuit, the bypass circuit This often leads to problems of increased circuit area and routing congestion in integrated circuits, while multitasking circuits are prone to delay the output signal of the memory, thereby causing timing violations.

发明内容SUMMARY OF THE INVENTION

本公开内容的一态样为一测试电路。该测试电路用于测试一集成电路,其中该集成电路包括一黑盒子电路以及多个组合逻辑电路,该测试电路包括多个常态正反器以及一改良式正反器。该多个常态正反器各自包括一第一输入脚位、一第二输入脚位以及一第一输出脚位,并用以根据一扫描致能信号选择性地暂存该第一输入脚位的输入值或者该第二输入脚位的输入值。该改良式正反器包括分别耦接于该黑盒子电路、该多个常态正反器与该多个组合逻辑电路的一第三输入脚位、一第四输入脚位以及一第二输出脚位,并用以根据一扫描测试模式信号选择性地暂存该第三输入脚位的输入值或者该第四输入脚位的输入值。One aspect of the present disclosure is a test circuit. The test circuit is used for testing an integrated circuit, wherein the integrated circuit includes a black box circuit and a plurality of combinational logic circuits, and the test circuit includes a plurality of normal flip-flops and an improved flip-flop. Each of the plurality of normal flip-flops includes a first input pin, a second input pin and a first output pin, and is used for selectively temporarily storing the first input pin according to a scan enable signal The input value or the input value of the second input pin. The improved flip-flop includes a third input pin, a fourth input pin and a second output pin respectively coupled to the black box circuit, the plurality of normal flip-flops and the plurality of combinational logic circuits bit, and is used to selectively temporarily store the input value of the third input pin or the input value of the fourth input pin according to a scan test mode signal.

综上,通过将接收扫描测试模式信号的改良式正反器耦接于内存的输出端,本公开内容的测试电路得以省略公知的旁通电路以及耦接于内存的输出端的多任务器。如此一来,电路面积得以缩减,绕线拥塞的问题不易发生,且内存的输出信号得以减少延迟(避免时序违规的问题)。此外,由于测试电路在组件数量减少的情况下仍可完成扫描测试,集成电路的测试良率能提高,且扫描测试的成本能降低。In conclusion, by coupling the improved flip-flop that receives the scan test mode signal to the output end of the memory, the test circuit of the present disclosure can omit the conventional bypass circuit and the multiplexer coupled to the output end of the memory. As a result, the circuit area can be reduced, the problem of routing congestion is less likely to occur, and the delay of the output signal of the memory can be reduced (avoiding the problem of timing violation). In addition, since the test circuit can still complete the scan test when the number of components is reduced, the test yield of the integrated circuit can be improved, and the cost of the scan test can be reduced.

附图说明Description of drawings

图1是根据本公开内容的部分实施例示出一种经由自动测试设备测试的集成电路的示意图。1 is a schematic diagram illustrating an integrated circuit tested via automatic test equipment in accordance with some embodiments of the present disclosure.

图2是根据本公开内容的部分实施例示出一种包含测试电路的集成电路的示意图。2 is a schematic diagram illustrating an integrated circuit including a test circuit according to some embodiments of the present disclosure.

图3是根据本公开内容的部分实施例示出一种内存内建自测电路的示意图。FIG. 3 is a schematic diagram illustrating a built-in self-test circuit of a memory according to some embodiments of the present disclosure.

图4是根据本公开内容的部分其他实施例示出另一种包含测试电路的集成电路的示意图。4 is a schematic diagram illustrating another integrated circuit including a test circuit according to some other embodiments of the present disclosure.

图5是根据本公开内容的部分其他实施例示出另一种包含测试电路的集成电路的示意图。5 is a schematic diagram illustrating another integrated circuit including a test circuit according to some other embodiments of the present disclosure.

具体实施方式Detailed ways

下文系举实施例配合所附图式作详细说明,但所描述的具体实施例仅用以解释本案,并不用来限定本案,而结构操作的描述非用以限制其执行的顺序,任何由组件重新组合的结构,所产生具有均等功效的装置,皆为本公开内容所涵盖的范围。The following is a detailed description of the embodiments in conjunction with the accompanying drawings, but the specific embodiments described are only used to explain the present case, and are not used to limit the present case, and the description of the structural operations is not used to limit the order of its execution. The recombined structures, resulting in devices with equal efficacy, are within the scope of the present disclosure.

在全篇说明书与申请专利范围所使用的用词(terms),除有特别注明外,通常具有每个用词使用在此领域中、在此公开的内容中与特殊内容中的平常意义。Terms used throughout the specification and the scope of the patent application, unless otherwise specified, generally have the ordinary meaning of each term used in the field, in the content of this disclosure and in the specific content.

关于本文中所使用的“耦接”或“连接”,均可指二或多个组件相互直接作实体或电性接触,或是相互间接作实体或电性接触,亦可指二或多个组件相互操作或动作。As used herein, "coupling" or "connection" may refer to two or more components in direct physical or electrical contact with each other, or in indirect physical or electrical contact with each other, and may also refer to two or more components Components interact or act on each other.

另外,本文中所使用的“组合逻辑电路”是指由各种逻辑闸组成的电路,而本文中所使用的“常态正反器”以及“改良式正反器”则是指不同于组合逻辑电路的“序向逻辑电路”。In addition, the "combinational logic circuit" used herein refers to a circuit composed of various logic gates, and the "normal flip-flop" and "modified flip-flop" used herein refer to a circuit different from the combinational logic The "sequential logic circuit" of the circuit.

请参阅图1,图1描述了芯片(图中未示)上的集成电路1可通过位于芯片外部的自动测试设备ATE来被测试。如图1所示,集成电路1包含一内存10、多个组合逻辑电路(为简化说明,图1中仅示出一个组合逻辑电路CL)以及根据本公开内容的其中部分实施例的一测试电路50,其中内存10、组合逻辑电路CL和测试电路50耦接于彼此。在测试集成电路1时,自动测试设备ATE产生已知的测试向量TV,经由芯片上的扫描输入端SI将测试向量TV输入至集成电路1,并通过芯片上的扫描输出端SO接收测试电路50的扫描输出值SOV,以判断组合逻辑电路CL是否正常。此外,测试电路50还可测试内存10是否正常。Please refer to FIG. 1, which depicts that an integrated circuit 1 on a chip (not shown) can be tested by automatic test equipment ATE located outside the chip. As shown in FIG. 1 , the integrated circuit 1 includes a memory 10 , a plurality of combinational logic circuits (to simplify the description, only one combinational logic circuit CL is shown in FIG. 1 ) and a test circuit according to some embodiments of the present disclosure 50, wherein the memory 10, the combinational logic circuit CL and the test circuit 50 are coupled to each other. When testing the integrated circuit 1, the automatic test equipment ATE generates a known test vector TV, inputs the test vector TV to the integrated circuit 1 through the scan input terminal SI on the chip, and receives the test circuit 50 through the scan output terminal SO on the chip The scan output value SOV is used to judge whether the combinational logic circuit CL is normal. In addition, the test circuit 50 can also test whether the memory 10 is normal.

请参阅图2,于部分实施例中,测试电路50包括多个常态正反器(为简化说明,图2中仅示出五个常态正反器FF1~FF5)、至少一个改良式正反器MFF、一内存内建自测电路20、一多任务器MUX以及一反馈电路FB。测试电路50根据一扫描测试模式信号Ms以及一内建自测模式信号Mb可选择性地操作于一扫描测试模式(以测试集成电路1上的组合逻辑电路)或者一内存内建自测模式(以测试集成电路1上的内存10)。Referring to FIG. 2 , in some embodiments, the test circuit 50 includes a plurality of normal flip-flops (to simplify the description, only five normal flip-flops FF1 - FF5 are shown in FIG. 2 ), at least one modified flip-flop MFF, a built-in self-test circuit 20 in memory, a multiplexer MUX, and a feedback circuit FB. The test circuit 50 can selectively operate in a scan test mode (to test the combinational logic circuits on the integrated circuit 1 ) or a memory built-in self test mode ( to test the memory 10 on the integrated circuit 1).

如图2所示,常态正反器FF1~FF5各自包含第一输入脚位D1、第二输入脚位SI1、第一致能脚位SE1以及第一输出脚位Q1,且各自用以根据一扫描致能信号Sen(与第一致能脚位SE1相连接)选择性地暂存第一输入脚位D1的输入值或者第二输入脚位SI1的输入值。改良式正反器MFF包含第三输入脚位D2、第四输入脚位SI2、第二致能脚位SE2以及第二输出脚位Q2,且用以根据扫描测试模式信号Ms(与第二致能脚位SE2相连接)选择性地暂存第三输入脚位D2的输入值或者第四输入脚位SI2的输入值。当测试电路50操作于扫描测试模式时,扫描测试模式信号Ms会一直保持为第一准位(例如:高准位)。但扫描致能信号Sen会根据目前测试电路50是处于一位移(shift)或一获取(capture)阶段来设为第一准位或第二准位(例如:低准位)。As shown in FIG. 2 , the normal flip-flops FF1 ˜ FF5 each include a first input pin D1 , a second input pin SI1 , a first enable pin SE1 and a first output pin Q1 , and are respectively used for according to a The scan enable signal Sen (connected to the first enable pin SE1 ) selectively temporarily stores the input value of the first input pin D1 or the input value of the second input pin SI1 . The improved flip-flop MFF includes a third input pin D2, a fourth input pin SI2, a second enable pin SE2 and a second output pin Q2, and is used for the scan test mode signal Ms (consistent with the second can be connected to pin SE2) to selectively temporarily store the input value of the third input pin D2 or the input value of the fourth input pin SI2. When the test circuit 50 operates in the scan test mode, the scan test mode signal Ms will always be kept at the first level (eg, a high level). However, the scan enable signal Sen is set to a first level or a second level (eg, a low level) according to whether the test circuit 50 is currently in a shift or capture stage.

结构上,常态正反器FF1的第一输入脚位D1耦接于组合逻辑电路CL2,常态正反器FF1的第二输入脚位SI1耦接于常态正反器FF3的第一输出脚位Q1(为简化说明,图2中常态正反器FF3仅标示出第一输出脚位Q1),常态正反器FF1的第一致能脚位SE1用以接收扫描致能信号Sen,而常态正反器FF1的第一输出脚位Q1耦接于改良式正反器MFF的第四输入脚位SI2。Structurally, the first input pin D1 of the normal flip-flop FF1 is coupled to the combinational logic circuit CL2, and the second input pin SI1 of the normal flip-flop FF1 is coupled to the first output pin Q1 of the normal flip-flop FF3 (To simplify the description, the normal flip-flop FF3 in FIG. 2 only shows the first output pin Q1 ), the first enable pin SE1 of the normal flip-flop FF1 is used to receive the scan enable signal Sen, and the normal flip-flop FF1 is used to receive the scan enable signal Sen. The first output pin Q1 of the device FF1 is coupled to the fourth input pin SI2 of the improved flip-flop MFF.

常态正反器FF2的第一输入脚位D1耦接于组合逻辑电路CL3,常态正反器FF2的第二输入脚位SI1耦接于改良式正反器MFF的第二输出脚位Q2,常态正反器FF2的第一致能脚位SE1用以接收扫描致能信号Sen,而常态正反器FF2的第一输出脚位Q1耦接于其他组合逻辑电路(图中未示)。The first input pin D1 of the normal flip-flop FF2 is coupled to the combinational logic circuit CL3, and the second input pin SI1 of the normal flip-flop FF2 is coupled to the second output pin Q2 of the improved flip-flop MFF. The first enable pin SE1 of the flip-flop FF2 is used for receiving the scan enable signal Sen, and the first output pin Q1 of the normal flip-flop FF2 is coupled to other combinational logic circuits (not shown).

于其他部分实施例中,常态正反器FF2的第一输出脚位Q1可同时耦接于其他组合逻辑电路(图中未示)以及后一级的常态正反器(图中未示)。In other embodiments, the first output pin Q1 of the normal flip-flop FF2 can be coupled to other combinational logic circuits (not shown in the figure) and the normal flip-flop (not shown in the figure) at the same time.

改良式正反器MFF的第三输入脚位D2耦接于内存10的输出端,改良式正反器MFF的第四输入脚位SI2耦接于常态正反器FF1的第一输出脚位Q1,改良式正反器MFF的第二致能脚位SE2用以接收扫描测试模式信号Ms,而改良式正反器MFF的第二输出脚位Q2耦接于常态正反器FF2的第二输入脚位SI1以及组合逻辑电路CL1。The third input pin D2 of the modified flip-flop MFF is coupled to the output end of the memory 10 , and the fourth input pin SI2 of the modified flip-flop MFF is coupled to the first output pin Q1 of the normal flip-flop FF1 , the second enable pin SE2 of the modified flip-flop MFF is used to receive the scan test mode signal Ms, and the second output pin Q2 of the modified flip-flop MFF is coupled to the second input of the normal flip-flop FF2 Pin SI1 and combinational logic circuit CL1.

于图2所示的实施例中,内存内建自测电路20耦接于改良式正反器MFF的第二输出脚位Q2以及多任务器MUX。请参阅图3,内存内建自测电路20包含一比较逻辑电路210、一处理电路220以及一测试向量产生器230。具体而言,比较逻辑电路210耦接于改良式正反器MFF的第二输出脚位Q2,处理电路220耦接于比较逻辑电路210,而测试向量产生器230耦接于处理电路220以及多任务器MUX。In the embodiment shown in FIG. 2 , the built-in self-test circuit 20 is coupled to the second output pin Q2 of the improved flip-flop MFF and the multiplexer MUX. Referring to FIG. 3 , the built-in self-test circuit 20 includes a comparison logic circuit 210 , a processing circuit 220 and a test vector generator 230 . Specifically, the comparison logic circuit 210 is coupled to the second output pin Q2 of the improved flip-flop MFF, the processing circuit 220 is coupled to the comparison logic circuit 210, and the test vector generator 230 is coupled to the processing circuit 220 and multiple Tasker MUX.

又如图2所示,多任务器MUX的第一输入端耦接于内存内建自测电路20,多任务器MUX的第二输入端耦接于组合逻辑电路CL4,而多任务器MUX的输出端耦接于内存10的输入端以及反馈电路FB。As shown in FIG. 2, the first input terminal of the multiplexer MUX is coupled to the built-in self-test circuit 20, the second input terminal of the multiplexer MUX is coupled to the combinational logic circuit CL4, and the The output terminal is coupled to the input terminal of the memory 10 and the feedback circuit FB.

常态正反器FF4的第一输入脚位D1耦接于反馈电路FB,常态正反器FF4的第二输入脚位SI1耦接于常态正反器FF5的第一输出脚位Q1(为简化说明,图2中常态正反器FF5仅标示出第一输出脚位Q1),常态正反器FF4的第一致能脚位SE1用以接收扫描致能信号Sen,而常态正反器FF4的第一输出脚位Q1耦接于组合逻辑电路CL4。The first input pin D1 of the normal flip-flop FF4 is coupled to the feedback circuit FB, and the second input pin SI1 of the normal flip-flop FF4 is coupled to the first output pin Q1 of the normal flip-flop FF5 (for simplicity of description) 2, the normal state flip-flop FF5 only indicates the first output pin Q1), the first enable pin SE1 of the normal state flip-flop FF4 is used to receive the scan enable signal Sen, and the first enable pin of the normal state flip-flop FF4 An output pin Q1 is coupled to the combinational logic circuit CL4.

在另一实施例中,图2中的组合逻辑电路CL4也可以不存在。此时,常态正反器FF4的第一输出脚位Q1直接耦接于多任务器MUX的一输入端(例如:上述多任务器MUX的第二输入端),此状况并不影响本发明运作。In another embodiment, the combinational logic circuit CL4 in FIG. 2 may not exist. At this time, the first output pin Q1 of the normal flip-flop FF4 is directly coupled to an input terminal of the multiplexer MUX (for example, the second input terminal of the multiplexer MUX), which does not affect the operation of the present invention. .

因为内存旁通(by-pass)电路已被拿掉,为了测试组合逻辑电路CL4和多任务器MUX,通过加上反馈电路FB将多任务器MUX的输出反馈到任一常态正反器(例如:常态正反器FF4)的第一输入脚位。反馈电路FB耦接于多任务器MUX的输出端、常态正反器FF4的第一输入脚位D1以及一逻辑电路(图中未示),其中,所述逻辑电路可为组合逻辑电路或者常态正反器。具体而言,反馈电路FB包含一第一逻辑闸L1以及一第二逻辑闸L2。第一逻辑闸L1的第一输入端用以接收扫描测试模式信号Ms,第一逻辑闸L1的第二输入端耦接于多任务器MUX的输出端以及内存10的输入端之间。第二逻辑闸L2的第一输入端耦接于第一逻辑闸L1的输出端,第二逻辑闸L2的第二输入端耦接于所述逻辑电路,第二逻辑闸L2的输出端耦接于常态正反器FF4的第一输入脚位D1。Since the memory bypass (by-pass) circuit has been removed, in order to test the combinational logic circuit CL4 and the multiplexer MUX, the output of the multiplexer MUX is fed back to any normal flip-flop by adding a feedback circuit FB (eg : The first input pin of the normal flip-flop FF4). The feedback circuit FB is coupled to the output end of the multiplexer MUX, the first input pin D1 of the normal state flip-flop FF4 and a logic circuit (not shown in the figure), wherein the logic circuit can be a combinational logic circuit or a normal state flip-flop. Specifically, the feedback circuit FB includes a first logic gate L1 and a second logic gate L2. The first input terminal of the first logic gate L1 is used for receiving the scan test mode signal Ms, and the second input terminal of the first logic gate L1 is coupled between the output terminal of the multiplexer MUX and the input terminal of the memory 10 . The first input end of the second logic gate L2 is coupled to the output end of the first logic gate L1, the second input end of the second logic gate L2 is coupled to the logic circuit, and the output end of the second logic gate L2 is coupled to On the first input pin D1 of the normal flip-flop FF4.

关于实施例中所使用的“常态正反器”,其第一个输入脚位(例如:第一输入脚位D1)通常耦接于前一级的组合逻辑电路,其第二个输入脚位(例如:第二输入脚位SI1)通常耦接于前一级的正反器的输出脚位,其致能脚位(例如:第一致能脚位SE1)通常用以接收扫描致能信号Sen,而其输出脚位(例如:第一输出脚位Q1)通常耦接于后一级的组合逻辑电路或/及后一级的正反器的输入脚位以形成一个扫描炼(scan chain)。Regarding the "normal flip-flop" used in the embodiment, its first input pin (eg, the first input pin D1) is usually coupled to the combinational logic circuit of the previous stage, and its second input pin (For example: the second input pin SI1) is usually coupled to the output pin of the flip-flop of the previous stage, and its enable pin (for example: the first enable pin SE1) is usually used to receive the scan enable signal Sen, and its output pin (for example: the first output pin Q1) is usually coupled to the input pin of the combinational logic circuit or/and the flip-flop of the next stage to form a scan chain ).

关于实施例中所使用的“改良式正反器”,其第一个输入脚位(例如:第三输入脚位D2)通常耦接于内存10的输出端,其第二个输入脚位(例如:第四输入脚位SI2)通常耦接于前一级的正反器的输出脚位,其致能脚位(例如:第二致能脚位SE2)通常用以接收扫描测试模式信号Ms,而其输出脚位(例如:第二输出脚位Q2)通常耦接于后一级的组合逻辑电路、后一级的正反器的输入脚位或/及内存内建自测电路20。Regarding the "improved flip-flop" used in the embodiment, the first input pin (eg, the third input pin D2) is usually coupled to the output end of the memory 10, and the second input pin ( For example, the fourth input pin SI2) is usually coupled to the output pin of the flip-flop of the previous stage, and its enable pin (for example, the second enable pin SE2) is usually used to receive the scan test mode signal Ms , and its output pin (eg: the second output pin Q2 ) is usually coupled to the combinational logic circuit of the next stage, the input pin of the flip-flop of the latter stage or/and the built-in self-test circuit 20 of the memory.

在测试初期,测试电路50先操作于扫描测试模式,以测试集成电路1中的所有组合逻辑电路。当测试电路50操作于扫描测试模式时,扫描测试模式信号Ms具有第一准位(例如:高准位)。由于内存内建自测电路20中也有可被测试的组合逻辑电路,内建自测模式信号Mb的准位无需特别限制。In the initial stage of the test, the test circuit 50 operates in the scan test mode to test all the combinational logic circuits in the integrated circuit 1 . When the test circuit 50 operates in the scan test mode, the scan test mode signal Ms has a first level (eg, a high level). Since the built-in self-test circuit 20 also has combinatorial logic circuits that can be tested, the level of the built-in self-test mode signal Mb does not need to be particularly limited.

在通过扫描链技术进行扫描测试(scan test)时,检测过程包含位移(shift)及获取(capture)阶段(phase)。自动测试设备ATE产生的测试向量TV于位移阶段时被输入至测试电路50中的一个第一级的常态正反器(图中未示)。于部分实施例中,测试向量TV由预设数量的“0(逻辑零)”及“1(逻辑壹)”排列组成,自动测试设备ATE根据测试电路50中的各个正反器将被设定的数值决定“0”及“1”的排列方式。During the scan test performed by the scan chain technology, the detection process includes a shift and a capture phase. The test vector TV generated by the automatic test equipment ATE is input to a first-stage normal flip-flop (not shown) in the test circuit 50 during the displacement phase. In some embodiments, the test vector TV consists of a preset number of "0 (logical zero)" and "1 (logical one)" arrangements, and the automatic test equipment ATE will be set according to each flip-flop in the test circuit 50. The value of determines the arrangement of "0" and "1".

首先,测试电路50操作于扫描测试模式中的位移阶段。此时,扫描测试模式信号Ms具有第一准位,且扫描致能信号Sen具有第一准位。如此一来,集成电路1上的常态正反器FF1~FF5各自根据第一准位的扫描致能信号Sen读取第二输入脚位SI1的输入值(即为前一级正反器的输出值)。改良式正反器MFF根据第一准位的扫描测试模式信号Ms读取第四输出脚位SI2的输入值(即为前一级正反器的输出值)。又如图2所示,常态正反器FF1~FF5与改良式正反器MFF均接收频率信号CLK。随着频率信号CLK中各周期脉冲的触发,常态正反器FF1~FF5与改良式正反器MFF各自会不断地读取前一级正反器的输出值,同时又将原先所储存的值输出至后一级正反器。在位移阶段结束时,测试向量TV中针对测试电路50中的各个正反器的数值便会设定至测试电路50中的各个正反器上。此阶段动作便是为了初始化所有正反器的值。First, the test circuit 50 operates in the displacement phase in the scan test mode. At this time, the scan test mode signal Ms has a first level, and the scan enable signal Sen has a first level. In this way, the normal flip-flops FF1-FF5 on the integrated circuit 1 each read the input value of the second input pin SI1 according to the scan enable signal Sen of the first level (that is, the output of the previous stage of flip-flops). value). The improved flip-flop MFF reads the input value of the fourth output pin SI2 (ie, the output value of the previous-stage flip-flop) according to the scan test mode signal Ms of the first level. Also as shown in FIG. 2 , the normal flip-flops FF1 to FF5 and the improved flip-flop MFF both receive the frequency signal CLK. With the triggering of each periodic pulse in the frequency signal CLK, the normal flip-flops FF1 to FF5 and the improved flip-flop MFF will each continuously read the output value of the previous stage of flip-flops, and at the same time store the previously stored values. Output to the next-stage flip-flop. At the end of the displacement phase, the values in the test vector TV for each flip-flop in the test circuit 50 will be set to each flip-flop in the test circuit 50 . The action at this stage is to initialize the values of all flip-flops.

举例来说,自动测试设备ATE产生的测试向量TV中针对改良式正反器MFF与常态正反器FF2的数值可能为[0,1]。假设于频率信号CLK的其中一周期中,常态正反器FF3与常态正反器FF1所储存的值分别为“0”与“1”。于下一个周期中,常态正反器FF1将储存常态正反器FF3先前所暂存的值“0”,且改良式正反器MFF将储存常态正反器FF1先前所暂存的值“1”。此外,常态正反器FF2将储存改良式正反器MFF先前所暂存的值(例如:“0”)。于下下一个周期中,也就是位移阶段结束时,改良式正反器MFF将储存常态正反器FF1先前所暂存的值“0”,常态正反器FF2将储存改良式正反器MFF先前所暂存的值“1”。For example, the values for the modified flip-flop MFF and the normal flip-flop FF2 in the test vector TV generated by the automatic test equipment ATE may be [0, 1]. It is assumed that in one cycle of the clock signal CLK, the values stored in the normal flip-flop FF3 and the normal flip-flop FF1 are "0" and "1", respectively. In the next cycle, the normal flip-flop FF1 will store the previously temporarily stored value "0" of the normal flip-flop FF3, and the modified flip-flop MFF will store the previously temporarily stored value of the normal flip-flop FF1 "1" ". In addition, the normal flip-flop FF2 will store the previously temporarily stored value (eg "0") of the modified flip-flop MFF. In the next cycle, that is, at the end of the displacement phase, the modified flip-flop MFF will store the previously temporarily stored value "0" of the normal flip-flop FF1, and the normal flip-flop FF2 will store the modified flip-flop MFF. The previously buffered value "1".

接着,测试电路50操作于扫描测试模式中的获取阶段。在获取阶段的初期,集成电路1中的各个组合逻辑电路会根据前一级的正反器在位移阶段中所设定好的数值进行运算,并产生输出值。当测试电路50操作于扫描测试模式中的获取阶段时,扫描测试模式信号Ms仍具有第一准位,而扫描致能信号Sen则具有第二准位(例如:低准位)。与位移阶段不同的是,集成电路1上的常态正反器FF1~FF5各自根据第二准位的扫描致能信号Sen读取第一输入脚位D1的输入值(即为前一级组合逻辑电路的输出值)。随着频率信号CLK中脉冲的触发,常态正反器FF1~FF5各自会获取记录前一级组合逻辑电路的输出值,而改良式正反器MFF仍根据第一准位的扫描测试模式信号Ms读取常态正反器FF1的输出值。若此时改良式正反器MFF如公知技术通过第三输入脚位D2读取内存10的输出值,则会得到不可预测的内存数据,使得测试错误涵盖率(fault coverage)下降。故本发明将改良式正反器MFF的致能脚位改为耦接扫描测试模式信号Ms来提高测试错误涵盖率。Next, the test circuit 50 operates in the acquisition phase in the scan test mode. At the beginning of the acquisition stage, each combinational logic circuit in the integrated circuit 1 will perform operations according to the values set by the flip-flop of the previous stage in the displacement stage, and generate output values. When the test circuit 50 operates in the acquisition stage in the scan test mode, the scan test mode signal Ms still has the first level, and the scan enable signal Sen has the second level (eg, low level). Different from the displacement stage, the normal flip-flops FF1-FF5 on the integrated circuit 1 each read the input value of the first input pin D1 according to the scan enable signal Sen of the second level (that is, the combinational logic of the previous stage). output value of the circuit). With the triggering of the pulse in the frequency signal CLK, the normal flip-flops FF1 to FF5 will each obtain and record the output value of the previous stage combinational logic circuit, while the improved flip-flop MFF is still based on the scan test mode signal Ms of the first level. Read the output value of the normal flip-flop FF1. At this time, if the improved flip-flop MFF reads the output value of the memory 10 through the third input pin D2 as in the prior art, unpredictable memory data will be obtained, which reduces the test fault coverage. Therefore, in the present invention, the enable pin of the improved flip-flop MFF is changed to be coupled to the scan test mode signal Ms to improve the test error coverage.

由于内存旁通电路已被移除,耦接于内存10的输入端的组合逻辑电路(例如:图2中所示的组合逻辑电路CL4或者内存内建自测电路20中的组合逻辑电路)的输出值无法经由旁通电路传递至后一级的正反器(亦即改良式正反器MFF),进而导致自动测试设备ATE无法测试到所有的组合逻辑电路。值得注意的是,测试电路50可通过反馈电路FB将耦接于内存10的输入端的组合逻辑电路的输出值反馈至常态正反器FF4,因而自动测试设备ATE能通过常态正反器FF4测试耦接于内存10的输入端的组合逻辑电路。Since the memory bypass circuit has been removed, the output of the combinational logic circuit (eg, the combinational logic circuit CL4 shown in FIG. 2 or the combinational logic circuit in the memory built-in self-test circuit 20 ) coupled to the input terminal of the memory 10 The value cannot be transmitted to the next-stage flip-flop (ie, the modified flip-flop MFF) through the bypass circuit, so that the automatic test equipment ATE cannot test all the combinational logic circuits. It is worth noting that the test circuit 50 can feed back the output value of the combinational logic circuit coupled to the input end of the memory 10 to the normal flip-flop FF4 through the feedback circuit FB, so that the automatic test equipment ATE can test the coupling through the normal flip-flop FF4. A combinational logic circuit connected to the input end of the memory 10 .

具体而言,当测试电路50操作于获取阶段时,多任务器MUX根据第一准位或第二准位的内建自测模式信号Mb选择性地输出内存内建自测电路20中的组合逻辑电路的输出值或者组合逻辑电路CL4的输出值。于部分实施例中,第一逻辑闸L1为与门,且第二逻辑闸L2为或门。第一逻辑闸L1根据第一准位的扫描测试模式信号Ms输出多任务器MUX的输出值,而第二逻辑闸L2根据第一逻辑闸L1的输出值以及所述逻辑电路的输出值进行运算,以输出一反馈值(图中未示)至常态正反器FF4的第一输入脚位D1。Specifically, when the test circuit 50 operates in the acquisition stage, the multiplexer MUX selectively outputs the combination in the memory built-in self-test circuit 20 according to the built-in self-test mode signal Mb of the first level or the second level. The output value of the logic circuit or the output value of the combinational logic circuit CL4. In some embodiments, the first logic gate L1 is an AND gate, and the second logic gate L2 is an OR gate. The first logic gate L1 outputs the output value of the multiplexer MUX according to the scan test mode signal Ms of the first level, and the second logic gate L2 performs operation according to the output value of the first logic gate L1 and the output value of the logic circuit , to output a feedback value (not shown in the figure) to the first input pin D1 of the normal flip-flop FF4.

获取阶段接结束后,测试电路50又会操作于位移阶段。如此一来,集成电路1中的各个组合逻辑电路的输出值可依序传递于测试电路50中的各个正反器,最终经由扫描输出端SO输出,并被自动测试设备ATE接收,以判断集成电路1中的各个组合逻辑电路是否能正常操作。此外,所述反馈值可从常态正反器FF4依序传递于后面几级的正反器,进而使自动测试设备ATE可通过接收所述反馈值来判断耦接于内存10的输入端的组合逻辑电路是否正常。After the acquisition phase is completed, the test circuit 50 operates in the displacement phase again. In this way, the output values of each combinational logic circuit in the integrated circuit 1 can be sequentially transmitted to each flip-flop in the test circuit 50, and finally output through the scan output SO, and received by the automatic test equipment ATE to judge the integration. Whether each combinational logic circuit in circuit 1 can operate normally. In addition, the feedback value can be sequentially transmitted from the normal flip-flop FF4 to the following stages of flip-flops, so that the automatic test equipment ATE can determine the combinational logic coupled to the input end of the memory 10 by receiving the feedback value Is the circuit normal.

于部分实施例中,在集成电路1中的各个组合逻辑电路的输出值被输出的同时,由自动测试设备ATE产生的另一测试向量TV中的另一组数值也可自扫描输入端SI依序储存至集成电路1中的各个正反器,以进行另一次测试。换言之,在测试完集成电路1中的所有组合逻辑电路以前,测试电路50可交替地操作于位移阶段以及获取阶段。In some embodiments, while the output values of each combinational logic circuit in the integrated circuit 1 are output, another set of values in another test vector TV generated by the automatic test equipment ATE can also be obtained from the scan input terminal SI according to The sequence is stored to each flip-flop in the integrated circuit 1 for another test. In other words, the test circuit 50 can alternately operate in the displacement phase and the acquisition phase until all the combinational logic circuits in the integrated circuit 1 are tested.

在测试完集成电路1中的所有组合逻辑电路后,测试电路50接着操作于一内存内建自测模式,以测试内存10。当测试电路50操作于内存内建自测模式时,扫描测试模式信号Ms具有第二准位,且内建自测模式信号Mb具有第一准位。如图3所示,处理电路220控制测试向量产生器230产生一内存测试样型TP。多任务器MUX根据第一准位的内建自测模式信号Mb接收并输出内存测试样型TP。内存10接收内存测试样型TP,以输出一内存输出值MOV。改良式正反器MFF根据第二准位的扫描测试模式信号Ms读取第三输入脚位D2的输入值(即为内存10的输出值),以输出内存输出值MOV至内存内建自测电路20。After testing all combinational logic circuits in the integrated circuit 1 , the test circuit 50 then operates in a memory built-in self-test mode to test the memory 10 . When the test circuit 50 operates in the memory built-in self-test mode, the scan test mode signal Ms has a second level, and the built-in self-test mode signal Mb has a first level. As shown in FIG. 3 , the processing circuit 220 controls the test vector generator 230 to generate a memory test pattern TP. The multiplexer MUX receives and outputs the memory test pattern TP according to the built-in self-test mode signal Mb of the first level. The memory 10 receives the memory test pattern TP to output a memory output value MOV. The improved flip-flop MFF reads the input value of the third input pin D2 (ie, the output value of the memory 10 ) according to the scan test mode signal Ms of the second level, to output the memory output value MOV to the built-in self-test of the memory circuit 20.

又如图3所示,比较逻辑电路210接收内存输出值MOV,并比对内存输出值MOV以及一预期值(图中未示),以产生一比对结果。处理电路220根据所述比对结果选择性地控制测试向量产生器230产生另一内存测试样型TP或直接输出一错误信号Err。具体而言,当所述比对结果表示内存输出值MOV等同于所述预期值时,处理电路220控制测试向量产生器230产生另一内存测试样型TP,以进一步地测试内存10。当所述比对结果表示内存输出值MOV不同于所述预期值时,处理电路220直接输出错误信号Err至芯片内部缓存器(图中未示),而自动测试设备ATE可经由I/O总线(图中未示)读取芯片内部缓存器内容得知错误的测试结果,来判断内存10有不正常的状况发生。Also as shown in FIG. 3 , the comparison logic circuit 210 receives the memory output value MOV, and compares the memory output value MOV with an expected value (not shown in the figure) to generate a comparison result. The processing circuit 220 selectively controls the test vector generator 230 to generate another memory test pattern TP or directly outputs an error signal Err according to the comparison result. Specifically, when the comparison result indicates that the memory output value MOV is equal to the expected value, the processing circuit 220 controls the test vector generator 230 to generate another memory test pattern TP to further test the memory 10 . When the comparison result indicates that the memory output value MOV is different from the expected value, the processing circuit 220 directly outputs the error signal Err to the internal register of the chip (not shown in the figure), and the automatic test equipment ATE can use the I/O bus (Not shown in the figure) Read the content of the internal register of the chip to obtain the wrong test result, so as to judge that the memory 10 has an abnormal condition.

请参阅图4,图4描述了另一集成电路2的示意图。集成电路2与集成电路1具有相似的结构,且同样可通过位于芯片外部的自动测试设备ATE来被测试。与集成电路1不同的是,集成电路2上的测试电路50并未包含反馈电路FB,但还包含了常态正反器FF6。为了解决前述耦接于内存10的输入端的组合逻辑电路无法被测试到的问题,常态正反器FF6被耦接于多任务器MUX的输出端以及内存10的输入端之间。结构上,常态正反器FF6的第一致能脚位SE1耦接于扫描致能信号Sen,常态正反器FF6的第一输入脚位D1耦接于多任务器MUX的输出端,且常态正反器FF6的第二输入脚位SI1耦接于另一常态正反器(图中未示)的第一输出脚位Q1。如此一来,耦接于内存10的输入端的组合逻辑电路的输出值可于获取阶段时暂存于常态正反器FF6(通过第一输入脚位D1),并于位移阶段时依序传递于后面串联的正反器,最终传递到扫描输出端SO使自动测试设备ATE可接收到耦接于内存10的输入端的组合逻辑电路的输出值。自动测试设备ATE根据此输出值可以判定组合逻辑电路CL4和多任务器MUX是否运作正常。图4所示实施例的其余结构与操作与前述实施例相同或类似,在此不赘述。Please refer to FIG. 4 , which depicts a schematic diagram of another integrated circuit 2 . The integrated circuit 2 has a similar structure to the integrated circuit 1 and can likewise be tested by automatic test equipment ATE located outside the chip. Different from the integrated circuit 1, the test circuit 50 on the integrated circuit 2 does not include the feedback circuit FB, but also includes a normal-state flip-flop FF6. In order to solve the problem that the combinational logic circuit coupled to the input end of the memory 10 cannot be tested, the normal flip-flop FF6 is coupled between the output end of the multiplexer MUX and the input end of the memory 10 . Structurally, the first enable pin SE1 of the normal flip-flop FF6 is coupled to the scan enable signal Sen, the first input pin D1 of the normal flip-flop FF6 is coupled to the output end of the multiplexer MUX, and the normal state The second input pin SI1 of the flip-flop FF6 is coupled to the first output pin Q1 of another normal-state flip-flop (not shown). In this way, the output value of the combinational logic circuit coupled to the input end of the memory 10 can be temporarily stored in the normal flip-flop FF6 (through the first input pin D1) during the acquisition stage, and sequentially transmitted to the shift stage during the shift stage. The flip-flops connected in series are finally transmitted to the scan output terminal SO so that the automatic test equipment ATE can receive the output value of the combinational logic circuit coupled to the input terminal of the memory 10 . The automatic test equipment ATE can determine whether the combinational logic circuit CL4 and the multiplexer MUX operate normally according to the output value. The remaining structures and operations of the embodiment shown in FIG. 4 are the same as or similar to the foregoing embodiments, and are not repeated here.

在另一实施例中,内存内建自测电路20并不需要存在,且耦接于内存10的输入端的多任务器MUX也不需要存在或是可视为并入组合逻辑电路CL4内来看待。上面这两种变形应用并不影响本发明图2所提的改良式正反器MFF、反馈电路FB及图4中的常态正反器FF6的运作。本领域人士能理解相关技术的实施细节,故在此不再赘述。In another embodiment, the memory built-in self-test circuit 20 does not need to exist, and the multiplexer MUX coupled to the input end of the memory 10 does not need to exist or can be regarded as being incorporated into the combinational logic circuit CL4. . The above two modified applications do not affect the operations of the improved flip-flop MFF, the feedback circuit FB and the normal-state flip-flop FF6 in FIG. 4 in the present invention. Those skilled in the art can understand the implementation details of the related art, so they are not repeated here.

在另一实施例中,前述实施例中的内存10可以是无法应用扫描炼测试(scanchain test)的任何电路(即,黑盒子电路),例如内存10可以是模拟电路或无法串成扫描炼(scan chain)的数字电路。In another embodiment, the memory 10 in the foregoing embodiments may be any circuit (ie, black box circuit) that cannot apply scanchain tests, for example, the memory 10 may be an analog circuit or a scanchain that cannot be chained ( scan chain) digital circuits.

请参阅图5,图5描述了又另一集成电路3的示意图。集成电路3与集成电路1具有相似的结构,且同样可通过位于芯片外部的自动测试设备ATE来被测试。与集成电路1不同的是,集成电路3上的测试电路50除了包含改良式正反器MFF1(相当于图2所示的改良式正反器MFF)以外,还包含另一改良式正反器MFF2与常态正反器FF7。结构上,改良式正反器MFF2的第三输入脚位D2耦接于内存10的输出端,改良式正反器MFF2的第四输入脚位SI2耦接于常态正反器FF7的第一输出脚位Q1,改良式正反器MFF2的第二致能脚位SE2用以接收扫描测试模式信号Ms。此外,内存内建自测电路20变更为耦接于改良式正反器MFF2的第二输出脚位Q2,而非耦接于改良式正反器MFF1的第二输出脚位Q2。图5所示实施例的其余结构与操作与前述实施例相同或类似,在此不赘述。Please refer to FIG. 5 , which depicts a schematic diagram of yet another integrated circuit 3 . The integrated circuit 3 has a similar structure to the integrated circuit 1 and can likewise be tested by automatic test equipment ATE located outside the chip. Different from the integrated circuit 1, the test circuit 50 on the integrated circuit 3 includes another modified flip-flop besides the modified flip-flop MFF1 (equivalent to the modified flip-flop MFF shown in FIG. 2 ). MFF2 and normal flip-flop FF7. Structurally, the third input pin D2 of the modified flip-flop MFF2 is coupled to the output end of the memory 10, and the fourth input pin SI2 of the modified flip-flop MFF2 is coupled to the first output of the normal flip-flop FF7 The pin Q1, the second enable pin SE2 of the improved flip-flop MFF2 is used to receive the scan test mode signal Ms. In addition, the memory built-in self-test circuit 20 is changed to be coupled to the second output pin Q2 of the modified flip-flop MFF2 instead of being coupled to the second output pin Q2 of the modified flip-flop MFF1. The remaining structures and operations of the embodiment shown in FIG. 5 are the same as or similar to those of the foregoing embodiments, and are not repeated here.

综上,通过将接收扫描测试模式信号Ms的改良式正反器MFF耦接于内存10的输出端,本公开内容的测试电路50得以省略公知的旁通电路以及耦接于内存的输出端的多任务电路。如此一来,集成电路1~3的电路面积得以缩减,绕线拥塞的问题不易发生,且内存10的输出信号得以减少延迟(避免时序违规的问题)。此外,由于测试电路50在组件数量减少的情况下仍可完成扫描测试,集成电路的测试良率能提高,且扫描测试的成本能降低。To sum up, by coupling the improved flip-flop MFF that receives the scan test mode signal Ms to the output end of the memory 10, the test circuit 50 of the present disclosure can omit the conventional bypass circuit and many more coupled to the output end of the memory. task circuit. In this way, the circuit area of the integrated circuits 1 to 3 is reduced, the problem of routing congestion is less likely to occur, and the delay of the output signal of the memory 10 is reduced (a timing violation problem is avoided). In addition, since the test circuit 50 can still complete the scan test when the number of components is reduced, the test yield of the integrated circuit can be improved, and the cost of the scan test can be reduced.

虽然本公开内容已以实施方式揭露如上,然其并非用以限定本公开内容,所属技术领域具有通常知识者在不脱离本公开内容的精神和范围内,当可作各种更动与润饰,因此本公开内容的保护范围当视后附的申请专利范围所界定者为准。Although the present disclosure has been disclosed as above in embodiments, it is not intended to limit the present disclosure. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present disclosure should be determined by the scope of the appended patent application.

【符号说明】【Symbol Description】

1、2、3:集成电路1, 2, 3: integrated circuits

10:内存10: memory

20:内存内建自测电路20: Memory built-in self-test circuit

50:测试电路50: Test circuit

210:比较逻辑电路210: Compare Logic Circuits

220:处理电路220: Processing Circuits

230:测试向量产生器230: Test Vector Generator

ATE:自动测试设备ATE: Automatic Test Equipment

CL、CL1、CL2、CL3、CL4、CL5:组合逻辑电路CL, CL1, CL2, CL3, CL4, CL5: Combinational logic circuits

CLK:频率信号CLK: frequency signal

D1:第一输入脚位D1: the first input pin

D2:第三输入脚位D2: The third input pin

Err:错误信号Err: Error signal

FF1、FF2、FF3、FF4、FF5、FF6、FF7:常态正反器FF1, FF2, FF3, FF4, FF5, FF6, FF7: normal flip-flops

FB:反馈电路FB: Feedback Circuit

L1:第一逻辑闸L1: first logic gate

L2:第二逻辑闸L2: second logic gate

MFF、MFF1、MFF2:改良式正反器MFF, MFF1, MFF2: Improved flip-flops

Ms:扫描测试模式信号Ms: scan test mode signal

Mb:内建自测模式信号Mb: Built-in self-test mode signal

MOV:内存输出值MOV: memory output value

MUX:多任务器MUX: Multitasker

SE1:第一致能脚位SE1: The first enable pin

SE2:第二致能脚位SE2: The second enable pin

Sen:扫描致能信号Sen: scan enable signal

SI:扫描输入端SI: scan input

SI1:第二输入脚位SI1: The second input pin

SI2:第四输入脚位SI2: the fourth input pin

SO:扫描输出端SO: scan output

SOV:扫描输出值SOV: Scan Out Value

TV:测试向量TV: test vector

TP:内存测试样型TP: Memory Test Pattern

Q1:第一输出脚位Q1: The first output pin

Q2:第二输出脚位。Q2: The second output pin.

Claims (10)

1.一种测试电路,用于测试一集成电路,其中该集成电路包括一黑盒子电路以及多个组合逻辑电路,且该测试电路包括:1. A test circuit for testing an integrated circuit, wherein the integrated circuit comprises a black box circuit and a plurality of combinational logic circuits, and the test circuit comprises: 多个常态正反器,其中该多个常态正反器各自包括一第一输入脚位、一第二输入脚位以及一第一输出脚位,并用以根据一扫描致能信号选择性地暂存该第一输入脚位的输入值或者该第二输入脚位的输入值;以及A plurality of normal flip-flops, wherein the plurality of normal flip-flops respectively include a first input pin, a second input pin and a first output pin, and are used for selectively temporarily temporarily according to a scan enable signal storing the input value of the first input pin or the input value of the second input pin; and 一改良式正反器,包括分别耦接于该黑盒子电路、该多个常态正反器与该多个组合逻辑电路的一第三输入脚位、一第四输入脚位以及一第二输出脚位,并用以根据一扫描测试模式信号选择性地暂存该第三输入脚位的输入值或者该第四输入脚位的输入值。An improved flip-flop includes a third input pin, a fourth input pin and a second output respectively coupled to the black box circuit, the plurality of normal flip-flops and the plurality of combinational logic circuits The pin is used for selectively temporarily storing the input value of the third input pin or the input value of the fourth input pin according to a scan test mode signal. 2.根据权利要求1所述的测试电路,其中该第三输入脚位耦接于该黑盒子电路的输出端,该第四输入脚位耦接于该多个常态正反器中的一第一常态正反器的该第一输出脚位,该第二输出脚位耦接于该多个组合逻辑电路中的一第一组合逻辑电路以及该多个常态正反器中的一第二常态正反器的该第二输入脚位。2. The test circuit of claim 1, wherein the third input pin is coupled to an output end of the black box circuit, and the fourth input pin is coupled to a first one of the plurality of normal flip-flops The first output pin of a normal state flip-flop, the second output pin is coupled to a first combinational logic circuit of the plurality of combinational logic circuits and a second normal state of the plurality of normal state flip-flops the second input pin of the flip-flop. 3.根据权利要求2所述的测试电路,其中当该测试电路操作于一扫描测试模式中的一位移阶段时,该扫描致能信号具有一第一准位,该扫描测试模式信号具有一第三准位,该第一常态正反器根据该第一准位的该扫描致能信号暂存并输出该多个常态正反器中的一第三常态正反器的输出值,该改良式正反器根据该第三准位的该扫描测试模式信号暂存并输出该第一常态正反器的输出值,而该第二常态正反器根据该第一准位的该扫描致能信号暂存并输出该改良式正反器的输出值。3. The test circuit of claim 2, wherein when the test circuit operates in a displacement stage in a scan test mode, the scan enable signal has a first level, and the scan test mode signal has a first level Three-level, the first normal flip-flop temporarily stores and outputs the output value of a third normal flip-flop among the plurality of normal flip-flops according to the scan enable signal of the first level. The improved formula The flip-flop temporarily stores and outputs the output value of the first normal-state flip-flop according to the scan test mode signal of the third level, and the second normal-state flip-flop is based on the scan enable signal of the first level The output value of the improved flip-flop is temporarily stored and output. 4.根据权利要求3所述的测试电路,其中当该测试电路操作于该扫描测试模式中的一获取阶段时,该扫描致能信号具有不同于该第一准位的一第二准位,该扫描测试模式信号具有该第三准位,该第一常态正反器根据该第二准位的该扫描致能信号暂存该多个组合逻辑电路中的一第二组合逻辑电路的输出值,该改良式正反器根据该第三准位的该扫描测试模式信号暂存该第一常态正反器的输出值,而该第二常态正反器根据该第二准位的该扫描致能信号暂存该多个组合逻辑电路中的一第三组合逻辑电路的输出值。4. The test circuit of claim 3, wherein when the test circuit operates in an acquisition stage in the scan test mode, the scan enable signal has a second level different from the first level, The scan test mode signal has the third level, and the first normal flip-flop temporarily stores an output value of a second combinational logic circuit among the plurality of combinational logic circuits according to the scan enable signal of the second level , the improved flip-flop temporarily stores the output value of the first normal state flip-flop according to the scan test mode signal of the third level, and the second normal state flip-flop according to the scan test mode signal of the second level The enable signal temporarily stores an output value of a third combinational logic circuit among the plurality of combinational logic circuits. 5.根据权利要求2所述的测试电路,其中该多个组合逻辑电路中的一第四组合逻辑电路耦接于该黑盒子电路的输入端以及该多个常态正反器中的一第四常态正反器之间;5. The test circuit of claim 2, wherein a fourth combinational logic circuit in the plurality of combinational logic circuits is coupled to the input end of the black box circuit and a fourth combinational logic circuit in the plurality of normal flip-flops Between normal flip-flops; 其中该第四组合逻辑电路包含一多任务器。The fourth combinational logic circuit includes a multiplexer. 6.根据权利要求5所述的测试电路,其还包括一反馈电路,其中该反馈电路耦接于该第四组合逻辑电路的输出端、该第四常态正反器的该第一输入脚位以及一逻辑电路;6. The test circuit according to claim 5, further comprising a feedback circuit, wherein the feedback circuit is coupled to the output end of the fourth combinational logic circuit and the first input pin of the fourth normal-state flip-flop and a logic circuit; 当该测试电路操作于一扫描测试模式时,该反馈电路根据该第四组合逻辑电路的输出值以及该逻辑电路的输出值运算出一反馈值,且将该反馈值输出至该第四常态正反器的该第一输入脚位;When the test circuit operates in a scan test mode, the feedback circuit calculates a feedback value according to the output value of the fourth combinational logic circuit and the output value of the logic circuit, and outputs the feedback value to the fourth normal positive state the first input pin of the inverter; 当该测试电路未操作于该扫描测试模式时,该反馈电路输出该逻辑电路的输出值至该第四常态正反器的该第一输入脚位。When the test circuit is not operating in the scan test mode, the feedback circuit outputs the output value of the logic circuit to the first input pin of the fourth normal-state flip-flop. 7.根据权利要求6所述的测试电路,其中该反馈电路包括一第一逻辑闸以及一第二逻辑闸,该第一逻辑闸的第一输入端接收该扫描测试模式信号,该第一逻辑闸的第二输入端耦接于该第四组合逻辑电路的输出端以及该黑盒子电路的输入端之间,该第二逻辑闸的第一输入端耦接于该第一逻辑闸的输出端,该第二逻辑闸的第二输入端耦接于该逻辑电路,该第二逻辑闸的输出端耦接于该第四常态正反器的该第一输入脚位。7. The test circuit of claim 6, wherein the feedback circuit comprises a first logic gate and a second logic gate, a first input terminal of the first logic gate receives the scan test mode signal, the first logic gate The second input end of the gate is coupled between the output end of the fourth combinational logic circuit and the input end of the black box circuit, and the first input end of the second logic gate is coupled to the output end of the first logic gate , the second input end of the second logic gate is coupled to the logic circuit, and the output end of the second logic gate is coupled to the first input pin of the fourth normal state flip-flop. 8.根据权利要求5所述的测试电路,其中该多个常态正反器中的该第四常态正反器的该第一输出脚位耦接于该第四组合逻辑电路,该多个常态正反器中的一第五常态正反器耦接于该第四组合逻辑电路的输出端以及该黑盒子电路的输入端之间;8. The test circuit of claim 5, wherein the first output pin of the fourth normal-state flip-flop in the plurality of normal-state flip-flops is coupled to the fourth combinational logic circuit, the plurality of normal-state flip-flops A fifth normal-state flip-flop in the flip-flops is coupled between the output end of the fourth combinational logic circuit and the input end of the black box circuit; 当该测试电路操作于一扫描测试模式的一获取阶段时,该扫描致能信号具有一第二准位,该第五常态正反器根据该第二准位的该扫描致能信号暂存该第四组合逻辑电路的输出值;When the test circuit operates in an acquisition stage of a scan test mode, the scan enable signal has a second level, and the fifth normal-state flip-flop temporarily stores the scan enable signal according to the scan enable signal of the second level the output value of the fourth combinational logic circuit; 当该测试电路操作于一扫描测试模式的一位移阶段时,该扫描致能信号具有不同于该第二准位的一第一准位,该多个常态正反器中的一第六常态正反器耦接于该第五常态正反器的第二输入脚位,该第五常态正反器根据该第一准位的该扫描致能信号暂存并输出该第六常态正反器的输出值。When the test circuit operates in a displacement stage of a scan test mode, the scan enable signal has a first level different from the second level, and a sixth normal state of the plurality of normal state flip-flops The inverter is coupled to the second input pin of the fifth normal state flip-flop, and the fifth normal state flip-flop temporarily stores and outputs the sixth normal state flip-flop according to the scan enable signal of the first level. output value. 9.根据权利要求2所述的测试电路,其中该黑盒子电路为内存;9. The test circuit according to claim 2, wherein the black box circuit is a memory; 其中该测试电路还包含一内存内建自测电路,用以输出用来测试该内存的一测试样型,且耦接于该改良式正反器;Wherein the test circuit further includes a built-in self-test circuit for the memory, which is used for outputting a test pattern for testing the memory, and is coupled to the improved flip-flop; 其中该测试电路还包括另一改良式正反器,包括一第五输入脚位、一第六输入脚位以及一第三输出脚位,并用以根据该扫描测试模式信号选择性地暂存该第五输入脚位的输入值或者该第六输入脚位的输入值。Wherein the test circuit further includes another improved flip-flop including a fifth input pin, a sixth input pin and a third output pin, and is used for selectively temporarily storing the test signal according to the scan test mode signal The input value of the fifth input pin or the input value of the sixth input pin. 10.根据权利要求9所述的测试电路,其中该第五输入脚位耦接于该内存的输出端以及该改良式正反器的该第三输入脚位之间,该第六输入脚位耦接于该多个常态正反器中的一第七常态正反器的该第一输出脚位,该第三输出脚位耦接于该内存内建自测电路;10. The test circuit of claim 9, wherein the fifth input pin is coupled between the output end of the memory and the third input pin of the improved flip-flop, and the sixth input pin coupled to the first output pin of a seventh normal flip-flop among the plurality of normal flip-flops, the third output pin is coupled to the memory built-in self-test circuit; 其中该测试电路还包括一多任务器,其中该多任务器的第一输入端耦接于该内存内建自测电路,以接收该测试样型,该多任务器的第二输入端耦接于该多个组合逻辑电路中的一第四组合逻辑电路。The test circuit further includes a multiplexer, wherein a first input terminal of the multiplexer is coupled to the memory built-in self-test circuit to receive the test pattern, and a second input terminal of the multiplexer is coupled to a fourth combinational logic circuit among the plurality of combinational logic circuits.
CN202110260858.1A 2021-03-10 2021-03-10 Test circuit Pending CN115078956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110260858.1A CN115078956A (en) 2021-03-10 2021-03-10 Test circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110260858.1A CN115078956A (en) 2021-03-10 2021-03-10 Test circuit

Publications (1)

Publication Number Publication Date
CN115078956A true CN115078956A (en) 2022-09-20

Family

ID=83241342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110260858.1A Pending CN115078956A (en) 2021-03-10 2021-03-10 Test circuit

Country Status (1)

Country Link
CN (1) CN115078956A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240103066A1 (en) * 2022-09-27 2024-03-28 Infineon Technologies Ag Circuit and method for testing a circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838693A (en) * 1995-12-05 1998-11-17 Atg Technology, Inc. Partial scan logic
US20050204232A1 (en) * 2004-02-27 2005-09-15 Markus Seuring Technique for combining scan test and memory built-in self test
JP2006162490A (en) * 2004-12-09 2006-06-22 Sanyo Electric Co Ltd Scan test circuit
CN101788645A (en) * 2009-01-22 2010-07-28 扬智科技股份有限公司 Test circuit and method for increasing scanning coverage rate of chip circuit
US7949916B1 (en) * 2009-01-20 2011-05-24 Altera Corporation Scan chain circuitry for delay fault testing of logic circuits
CN102800364A (en) * 2011-05-27 2012-11-28 瑞昱半导体股份有限公司 Test system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838693A (en) * 1995-12-05 1998-11-17 Atg Technology, Inc. Partial scan logic
US20050204232A1 (en) * 2004-02-27 2005-09-15 Markus Seuring Technique for combining scan test and memory built-in self test
JP2006162490A (en) * 2004-12-09 2006-06-22 Sanyo Electric Co Ltd Scan test circuit
US7949916B1 (en) * 2009-01-20 2011-05-24 Altera Corporation Scan chain circuitry for delay fault testing of logic circuits
CN101788645A (en) * 2009-01-22 2010-07-28 扬智科技股份有限公司 Test circuit and method for increasing scanning coverage rate of chip circuit
CN102800364A (en) * 2011-05-27 2012-11-28 瑞昱半导体股份有限公司 Test system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240103066A1 (en) * 2022-09-27 2024-03-28 Infineon Technologies Ag Circuit and method for testing a circuit
US20240103067A1 (en) * 2022-09-27 2024-03-28 Infineon Technologies Ag Circuit and method for testing a circuit

Similar Documents

Publication Publication Date Title
US5867409A (en) Linear feedback shift register
US7007215B2 (en) Test circuit capable of testing embedded memory with reliability
US20090300448A1 (en) Scan flip-flop device
US6853212B2 (en) Gated scan output flip-flop
US20220099740A1 (en) Circuit and testing circuit thereof
US5677916A (en) Semiconductor integrated circuit and its application device
CN115078956A (en) Test circuit
TWI739716B (en) Test circuit
US6594789B2 (en) Input data capture boundary cell connected to target circuit output
US20020162064A1 (en) RAM functional test facilitation circuit with reduced scale
JP3363691B2 (en) Semiconductor logic integrated circuit
US9666301B2 (en) Scannable memories with robust clocking methodology to prevent inadvertent reads or writes
JP2003121497A (en) Scan path circuit for logic circuit test and integrated circuit device having the same
US20060041806A1 (en) Testing method for semiconductor device and testing circuit for semiconductor device
US20060085707A1 (en) High speed energy conserving scan architecture
CN118633029A (en) High throughput scanning architecture
JP3469294B2 (en) Linear feedback shift register and semiconductor integrated circuit device
TWI831399B (en) Semiconductor chip and sequence checking circuit
US20030188214A1 (en) Method and system for efficient clock signal generation
TWI805469B (en) Semiconductor chip and sequence checking circuit
US20240418776A1 (en) Integrated-circuit chip for retention cell testing
JP5442522B2 (en) Test circuit for semiconductor integrated circuit
KR100769041B1 (en) Integrated circuit device for testing
JP4272898B2 (en) Semiconductor test circuit and test method thereof
JP3221592B2 (en) Scan test circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination