CN115051171A - Dual-frequency dual-polarization integrated phased array and multi-beam array antenna and design method thereof - Google Patents
Dual-frequency dual-polarization integrated phased array and multi-beam array antenna and design method thereof Download PDFInfo
- Publication number
- CN115051171A CN115051171A CN202210958139.1A CN202210958139A CN115051171A CN 115051171 A CN115051171 A CN 115051171A CN 202210958139 A CN202210958139 A CN 202210958139A CN 115051171 A CN115051171 A CN 115051171A
- Authority
- CN
- China
- Prior art keywords
- frequency
- array
- antenna
- dielectric sheet
- dual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q25/00—Antennas or antenna systems providing at least two radiating patterns
- H01Q25/002—Antennas or antenna systems providing at least two radiating patterns providing at least two patterns of different beamwidth; Variable beamwidth antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/002—Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/521—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
- H01Q1/523—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0075—Stripline fed arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0087—Apparatus or processes specially adapted for manufacturing antenna arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
技术领域technical field
本发明涉及天线领域,特别涉及一种双频双极化的集成相控阵与多波束阵列天线及其设计方法。The invention relates to the field of antennas, in particular to a dual-frequency dual-polarized integrated phased array and multi-beam array antenna and a design method thereof.
背景技术Background technique
阵列天线由多个相同的天线单元组成,可以实现方向图波束赋形。现有双频阵列天线的方向图的种类较为单一,存在增益低,方向图波束覆盖范围窄的缺点。同时,由于双频阵列天线由数量众多的异频天线单元通过错位分布的形式实现,同频或异频天线单元之间的隔离度差,难以实现方向图波束与天线面的竖直轴的夹角形成大角度偏移,因此传统双频阵列天线不会设计为相控阵天线。此外,双频阵列天线在同一水平面布满了异频的天线单元,会存在馈电难的问题,由于布线空间不足,该类双频阵列天线通常只能实现单极化工作。The array antenna consists of multiple identical antenna elements, which can realize pattern beamforming. The types of patterns of the existing dual-frequency array antennas are relatively single, and have the disadvantages of low gain and narrow beam coverage of the pattern. At the same time, since the dual-frequency array antenna is realized by a large number of different-frequency antenna units in the form of dislocation distribution, the isolation between the same-frequency or different-frequency antenna units is poor, and it is difficult to achieve the clamping of the pattern beam and the vertical axis of the antenna surface. The corners form a large angular offset, so conventional dual-frequency array antennas are not designed as phased array antennas. In addition, the dual-frequency array antenna is covered with different-frequency antenna units on the same horizontal plane, which will cause the problem of difficult feeding. Due to the lack of wiring space, this type of dual-frequency array antenna can usually only achieve single-polarization operation.
阵列天线主要分为天线阵列和馈电网络两部分。现有阵列天线,一般采用连接电缆线将馈电网络与天线阵列连接,这种设计会导致天线阵列与馈电网络分离,并且引入很多连接电缆。特别是相控阵天线,由于接入移相器器件,线路更为复杂。这种双频阵列天线体积大、线路多,不利于集成一体化。The array antenna is mainly divided into two parts: the antenna array and the feeding network. In the existing array antennas, connecting cables are generally used to connect the feeding network to the antenna array. This design will cause the antenna array to be separated from the feeding network and introduce many connecting cables. Especially for the phased array antenna, the circuit is more complicated due to the access to the phase shifter device. This dual-frequency array antenna is bulky and has many lines, which is not conducive to integration.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的第一个目的在于提供一种双频双极化的集成相控阵与多波束阵列天线,通过采用两种异频双极化天线单元,将天线阵列与馈电网络集成一体化。In view of this, the first object of the present invention is to provide a dual-frequency dual-polarization integrated phased array and multi-beam array antenna, by using two different frequency dual-polarization antenna units, the antenna array and the feed network are connected. Integrated integration.
基于同样的发明构思,本发明的第二个目的在于提供一种双频双极化的集成相控阵与多波束阵列天线的设计方法。Based on the same inventive concept, the second object of the present invention is to provide a design method of a dual-frequency dual-polarized integrated phased array and multi-beam array antenna.
本发明的第一个目的可以通过采取如下技术方案实现:一种双频双极化的集成相控阵与多波束阵列天线,包括天线阵列和馈电网络,天线阵列设置于第一介质片上,馈电网络设置在第二介质片、第三介质片及第四介质片上,其中:The first object of the present invention can be achieved by adopting the following technical solutions: a dual-frequency dual-polarized integrated phased array and multi-beam array antenna, including an antenna array and a feeding network, the antenna array is arranged on the first dielectric sheet, The feeding network is arranged on the second dielectric sheet, the third dielectric sheet and the fourth dielectric sheet, wherein:
天线阵列包括毫米波天线阵列和低频天线阵列,并以预设排列形式设置于第一介质片的第一面,毫米波天线阵列交错分布于低频天线阵列的行列间距内;低频天线阵列为双极化相控阵天线;毫米波天线阵列为双极化多波束阵列天线,包括第一毫米波天线阵列、第二毫米波天线阵列,其中第一毫米波天线阵列的行间距为第二毫米波天线阵列的列间距,第一毫米波天线阵列的列间距为第二毫米波天线阵列的行间距,第一毫米波天线阵列的行间距与其列间距为整数倍关系,第二毫米波天线阵列的列间距与其行间距为整数倍关系;The antenna array includes a millimeter-wave antenna array and a low-frequency antenna array, and is arranged on the first surface of the first dielectric sheet in a preset arrangement. The millimeter-wave antenna array is staggered and distributed within the row and column spacing of the low-frequency antenna array; the low-frequency antenna array is a dipole Phased array antenna; the millimeter-wave antenna array is a dual-polarized multi-beam array antenna, including a first millimeter-wave antenna array and a second millimeter-wave antenna array, wherein the row spacing of the first millimeter-wave antenna array is the second millimeter-wave antenna The column spacing of the array, the column spacing of the first millimeter-wave antenna array is the row spacing of the second millimeter-wave antenna array, the row spacing of the first millimeter-wave antenna array is an integer multiple of its column spacing, and the column spacing of the second millimeter-wave antenna array The spacing is an integer multiple of the line spacing;
第一毫米波天线阵列垂直极化,且在水平方向产生单波束,在垂直方向产生多波束;第二毫米波天线阵列水平极化,且在水平方向产生多波束,在垂直方向产生单波束;The first millimeter-wave antenna array is vertically polarized, and generates a single beam in the horizontal direction, and generates multiple beams in the vertical direction; the second millimeter-wave antenna array is horizontally polarized, and generates multiple beams in the horizontal direction, and generates a single beam in the vertical direction;
馈电网络包括毫米波馈电层、第一低频馈电层、第二低频馈电层,其中:毫米波馈电层设置于第二介质片的第一面,第一低频馈电层设置于第三介质片的第一面,第二低频馈电层设置于第四介质片的第一面;第一介质片、第二介质片、第三介质片、第四介质片的第二面覆盖金属层作为馈电网络的金属地板;The feeding network includes a millimeter-wave feeding layer, a first low-frequency feeding layer, and a second low-frequency feeding layer, wherein: the millimeter-wave feeding layer is arranged on the first surface of the second dielectric sheet, and the first low-frequency feeding layer is arranged on the first surface of the second dielectric sheet. On the first surface of the third dielectric sheet, the second low-frequency feed layer is disposed on the first surface of the fourth dielectric sheet; the second surfaces of the first dielectric sheet, the second dielectric sheet, the third dielectric sheet, and the fourth dielectric sheet cover The metal layer serves as the metal floor for the feeding network;
第一介质片与第二介质片的第二面压合,设置穿过第一介质片和第二介质片的馈电孔,毫米波馈电层通过馈电孔对毫米波天线阵列进行馈电;The first dielectric sheet is press-fitted with the second surface of the second dielectric sheet, and feeding holes passing through the first dielectric sheet and the second dielectric sheet are arranged, and the millimeter-wave feeding layer feeds the millimeter-wave antenna array through the feeding holes ;
第三介质片与第一介质片通过第一金属丝相连接,第一低频馈电层通过第一金属丝对低频天线阵列进行馈电;The third dielectric sheet is connected with the first dielectric sheet through a first wire, and the first low-frequency feeding layer feeds the low-frequency antenna array through the first wire;
第四介质片与第一介质片通过第二金属丝相连接,第二低频馈电层通过第二金属丝对低频天线阵列进行馈电。The fourth dielectric sheet is connected to the first dielectric sheet through a second metal wire, and the second low-frequency feeding layer feeds the low-frequency antenna array through the second metal wire.
进一步的,低频天线阵列包括多个低频天线单元;多个低频天线单元以预设间隔d作为单元间距,以矩阵平面阵列分布形式排列在第一介质片上;Further, the low-frequency antenna array includes a plurality of low-frequency antenna units; the plurality of low-frequency antenna units are arranged on the first dielectric sheet in the form of a matrix plane array distribution with a preset interval d as the unit spacing;
毫米波天线阵列包括多个毫米波天线单元;多个毫米波天线单元分别以两种不同的矩阵平面阵列分布形式排列在第一介质片上,构成第一毫米波天线阵列、第二毫米波天线阵列,其中:The millimeter-wave antenna array includes a plurality of millimeter-wave antenna units; the plurality of millimeter-wave antenna units are respectively arranged on the first dielectric sheet in two different matrix plane array distribution forms to form a first millimeter-wave antenna array and a second millimeter-wave antenna array ,in:
第一毫米波天线阵列的毫米波天线单元以行间隔为d,列间隔为d/3垂直放置;The millimeter-wave antenna units of the first millimeter-wave antenna array are vertically placed with a row interval of d and a column interval of d/3;
第二毫米波天线阵列的毫米波天线单元以行间隔为d/3,列间隔为d水平放置。The millimeter-wave antenna elements of the second millimeter-wave antenna array are arranged horizontally with a row interval of d/3 and a column interval of d.
在本发明中,第一毫米波天线阵列的行间距与第一毫米波天线阵列的列间距为整数倍关系,第二毫米波天线阵列的列间距与第二毫米波天线阵列的行间距为整数倍关系,从而使得垂直极化的第一毫米波天线阵列在水平方向产生单波束、在垂直方向产生多波束,水平极化的第二毫米波天线阵列在水平方向产生多波束、在垂直方向产生单波束,其中整数倍关系并不限于最优选择的3倍关系,也可以是4倍或更大的整数倍关系。In the present invention, the row spacing of the first millimeter-wave antenna array and the column spacing of the first millimeter-wave antenna array are integer multiples, and the column spacing of the second millimeter-wave antenna array and the row spacing of the second millimeter-wave antenna array are integers Therefore, the vertically polarized first mmWave antenna array generates a single beam in the horizontal direction and multiple beams in the vertical direction, and the second horizontally polarized mmWave antenna array generates multiple beams in the horizontal direction and vertical direction. For a single beam, the integer multiple relationship is not limited to the optimally selected 3-fold relationship, but may also be a 4-fold or larger integer multiple relationship.
进一步的,毫米波馈电层包括:Further, the millimeter wave feed layer includes:
用于对第一毫米波天线阵列进行馈电的垂直极化毫米波馈电微带线结构;以及a vertically polarized millimeter-wave feed microstrip line structure for feeding the first millimeter-wave antenna array; and
用于对第二毫米波天线阵列进行馈电的水平极化毫米波馈电微带线结构。A horizontally polarized millimeter-wave feed microstrip line structure for feeding a second millimeter-wave antenna array.
进一步的,还包括设置于第二介质片与第三介质片之间的绝缘支撑件,和设置于第三介质片与第四介质片之间的绝缘支撑件。所设置的绝缘支撑件为在介质片边缘设置的塑料垫片,并使用塑料螺钉和塑料螺母进行固定。Further, it also includes an insulating support member disposed between the second dielectric sheet and the third dielectric sheet, and an insulating support member disposed between the third dielectric sheet and the fourth dielectric sheet. The set insulating support is a plastic gasket set on the edge of the dielectric sheet, and is fixed with plastic screws and plastic nuts.
进一步的,第三介质片和第四介质片的金属地板上设有增厚介质片。Further, thickened dielectric sheets are provided on the metal floors of the third dielectric sheet and the fourth dielectric sheet.
进一步优选地,所述第一金属丝、第二金属丝均为铜丝,第一介质片、第二介质片、第三介质片、第四介质片的第二面覆盖铜层作为馈电网络的铜片地板;所述馈电孔为金属化孔;铜片地板以金属化孔为中心设置第一隔离环,以第一金属丝或第二金属丝为中心设置第二隔离环。Further preferably, the first metal wire and the second metal wire are both copper wires, and the second surfaces of the first dielectric sheet, the second dielectric sheet, the third dielectric sheet, and the fourth dielectric sheet are covered with a copper layer as a feeding network. The copper sheet floor; the feeding hole is a metallized hole; the copper sheet floor is provided with a first isolation ring with the metallized hole as the center, and a second isolation ring with the first metal wire or the second metal wire as the center.
本发明的第二个目的可以通过采取如下技术方案实现:The second object of the present invention can be realized by adopting the following technical solutions:
上述的双频双极化的集成相控阵与多波束阵列天线的设计方法,包括以下步骤:The above-mentioned dual-frequency dual-polarization integrated phased array and multi-beam array antenna design method includes the following steps:
在第一介质片上设计多个相同的低频微带贴片天线单元和多个毫米波微带贴片天线单元;Design multiple identical low-frequency microstrip patch antenna units and multiple millimeter-wave microstrip patch antenna units on the first dielectric sheet;
设计天线阵列排列形式,将多个相同的低频微带贴片天线单元和多个相同的毫米波微带贴片天线单元组成双频天线阵列;Design the antenna array arrangement, and combine multiple identical low-frequency microstrip patch antenna units and multiple identical millimeter-wave microstrip patch antenna units to form a dual-frequency antenna array;
根据天线阵列排列形式,设计天线阵列的馈电网络,包括毫米波馈电层、第一低频馈电层、第二低频馈电层,并将天线阵列和天线阵列的馈电网络组成双频双极化的集成相控阵与多波束阵列天线。According to the arrangement form of the antenna array, the feeding network of the antenna array is designed, including the millimeter wave feeding layer, the first low frequency feeding layer and the second low frequency feeding layer, and the antenna array and the feeding network of the antenna array are formed into a dual-frequency dual Polarized integrated phased array and multi-beam array antennas.
进一步的,设计天线阵列排列形式,将多个相同的低频微带贴片天线单元和多个相同的毫米波微带贴片天线单元组成双频天线阵列,具体包括:Further, the antenna array arrangement form is designed, and a plurality of identical low-frequency microstrip patch antenna units and a plurality of identical millimeter-wave microstrip patch antenna units are formed into a dual-frequency antenna array, which specifically includes:
设计低频微带贴片天线单元、毫米波微带贴片天线单元的排列形式为矩阵平面阵列分布形式;The low-frequency microstrip patch antenna unit and the millimeter-wave microstrip patch antenna unit are designed to be arranged in a matrix plane array distribution form;
根据阵列天线方向图增益,设计低频微带贴片天线的间隔d,并根据低频微带贴片天线的间隔d设计低频微带贴片天线的矩阵平面阵列分布形式;According to the gain of the array antenna pattern, the interval d of the low frequency microstrip patch antenna is designed, and the matrix plane array distribution form of the low frequency microstrip patch antenna is designed according to the interval d of the low frequency microstrip patch antenna;
根据低频微带贴片天线的矩阵平面阵列分布形式,设计毫米波微带贴片天线单元的排列形式;其中,第一毫米波天线阵列的毫米波天线单元的行间隔为d,列间隔为d/3;第二毫米波天线阵列的毫米波天线单元的行间隔为d/3,列间隔为d。According to the matrix plane array distribution form of the low-frequency microstrip patch antenna, the arrangement form of the millimeter-wave microstrip patch antenna unit is designed; wherein, the row interval of the millimeter-wave antenna unit of the first millimeter-wave antenna array is d, and the column interval is d /3; the row interval of the millimeter wave antenna units of the second millimeter wave antenna array is d/3, and the column interval is d.
本发明相对于现有技术具有如下的有益效果:The present invention has the following beneficial effects with respect to the prior art:
(1)本发明中双频双极化天线阵列与毫米波馈电层压合后,采用金属化孔将毫米波天线阵列与毫米波馈电层连接;低频馈电层采用塑料柱子和铜丝与天线阵列固定在一起,采用铜丝将低频天线阵列与低频馈电层连接。金属化孔便于毫米波天线阵列与毫米波馈电层在双层PCB内部完成连接,铜丝在起到低频馈电网络与低频天线阵列连接作用的同时,还能够实现一定程度的结构固定效果。(1) After the dual-frequency dual-polarization antenna array and the millimeter-wave feed layer are laminated in the present invention, metallized holes are used to connect the millimeter-wave antenna array to the millimeter-wave feed layer; the low-frequency feed layer is made of plastic posts and copper wires It is fixed with the antenna array, and the low-frequency antenna array is connected with the low-frequency feeding layer by copper wires. The metallized holes facilitate the connection between the millimeter-wave antenna array and the millimeter-wave feed layer inside the double-layer PCB. The copper wire can not only play the role of connecting the low-frequency feed network and the low-frequency antenna array, but also achieve a certain degree of structural fixing effect.
(2)本发明设计的双频双极化馈电网络,其包括毫米波馈电层和两层低频馈电层;毫米波馈电层使用T型微带线功分器,低频馈电层使用威尔金森微带线功分器和移相器芯片,而不是封装起来的单独器件和设备。本发明还对双频双极化天线阵列部分进行了设计,将天线阵列和馈电网络合并在一起,天线阵列的尺寸与馈电网络的边长尺寸一致,没有占用任何多余位置。天线阵列与毫米波馈电层两部分通过双层PCB内部金属化孔连接,天线阵列与两层低频馈电层通过铜丝连接起来,各部分之间没有任何连接电缆,双频双极化馈电网络分为毫米波馈电层和低频馈电层分别采用不同的馈电方式。毫米波馈电层和低频馈电层的馈电结构设计分别与所设计的毫米波天线阵列排布和低频天线阵列排布相匹配,并通过使用微带线馈电方式,实现馈电网络的小型化,并且有利于实现阵列天线的一体化。(2) The dual-frequency dual-polarization feeding network designed by the present invention includes a millimeter-wave feeding layer and two low-frequency feeding layers; the millimeter-wave feeding layer uses a T-type microstrip line power divider, and the low-frequency feeding layer Use Wilkinson microstrip power divider and phase shifter chips instead of packaged individual devices and devices. The invention also designs the dual-frequency dual-polarized antenna array part, combining the antenna array and the feeding network, the size of the antenna array is consistent with the side length of the feeding network, and does not occupy any redundant position. The two parts of the antenna array and the millimeter-wave feed layer are connected through metallized holes inside the double-layer PCB. The antenna array and the two layers of low-frequency feed layers are connected by copper wires. There is no connecting cable between each part. The dual-frequency dual-polarization feeder The electrical network is divided into a millimeter-wave feed layer and a low-frequency feed layer with different feeding methods. The feeding structure design of the millimeter-wave feeding layer and the low-frequency feeding layer is matched with the designed millimeter-wave antenna array arrangement and the low-frequency antenna array arrangement respectively. Miniaturization, and is conducive to the integration of the array antenna.
(3)本发明在小型化和集成一体化设计以后,仍能保持很好的低频相控阵与毫米波多波束阵列天线的性能。该双频阵列天线可以工作于4.9GHz和26GHz,在4.9GHz作为双极化相控阵天线,第一层低频馈电层馈电端口S11和第二层低频馈电层馈电端口S22均小于-20dB,S21和S12隔离度均大于20dB;第一层低频馈电层馈电端口可以实现-45度极化方式,增益方向图的主波束能在水平面二维平面实现-60至60度波束扫描,最大增益达到20.8dB;第二层低频馈电层馈电端口可以实现45度极化方式,增益方向图的主波束能在垂直二维平面实现-60至60度波束扫描,最大增益达到20.8dB,主极化与交叉极化隔离度大于19dB;在26GHz作为双极化多波束阵列天线,垂直极化毫米波馈电微带线的馈电端口S11小于-20dB,水平极化毫米波馈电微带线的馈电端口S22小于-20dB,毫米波双端口隔离度S21大于40dB;垂直极化的增益方向图在垂直面有5个波束,最大增益为21.5dB;水平极化的增益方向图在水平面有5个波束,最大增益为20.7dB;两个平面内5个波束与中心轴Z轴的俯仰角分别为-49、-22、0、22和49度,两个平面的增益方向图的主极化和交叉极化隔离度均大于20dB。(3) After the miniaturized and integrated design of the present invention, the performance of the low-frequency phased array and the millimeter-wave multi-beam array antenna can still be maintained very well. The dual-frequency array antenna can work at 4.9GHz and 26GHz, and is used as a dual-polarized phased array antenna at 4.9GHz. -20dB, the isolation of S21 and S12 is greater than 20dB; the feed port of the first layer of low-frequency feed layer can realize -45 degree polarization mode, and the main beam of the gain pattern can realize -60 to 60 degree beam in the horizontal two-dimensional plane Scanning, the maximum gain reaches 20.8dB; the feed port of the second-layer low-frequency feed layer can realize 45 degree polarization mode, and the main beam of the gain pattern can achieve -60 to 60 degree beam scanning in the vertical two-dimensional plane, and the maximum gain reaches 20.8dB, the main polarization and cross-polarization isolation is greater than 19dB; as a dual-polarized multi-beam array antenna at 26GHz, the feed port S11 of the vertically polarized millimeter-wave feed microstrip line is less than -20dB, and the horizontally polarized millimeter-wave The feed port S22 of the feeding microstrip line is less than -20dB, and the millimeter-wave dual-port isolation S21 is greater than 40dB; the gain pattern of vertical polarization has 5 beams in the vertical plane, and the maximum gain is 21.5dB; the gain of horizontal polarization The pattern has 5 beams in the horizontal plane, and the maximum gain is 20.7dB; the pitch angles of the 5 beams in the two planes and the central axis Z axis are -49, -22, 0, 22 and 49 degrees respectively, and the gain of the two planes The main polarization and cross polarization isolation of the pattern are both greater than 20dB.
附图说明Description of drawings
图1为金属化孔、第一铜丝和第二铜丝的连接结构的整体剖面图;1 is an overall cross-sectional view of a connection structure of a metallized hole, a first copper wire and a second copper wire;
图2为本发明实施例中低频微带贴片天线单元的结构示意图;2 is a schematic structural diagram of a low-frequency microstrip patch antenna unit in an embodiment of the present invention;
图3为本发明实施例中毫米波微带贴片天线单元的结构示意图;3 is a schematic structural diagram of a millimeter-wave microstrip patch antenna unit in an embodiment of the present invention;
图4为低频天线单元S11和S21参数随频率变化曲线图;FIG. 4 is a graph showing the variation of the parameters of the low-frequency antenna units S11 and S21 with frequency;
图5为低频天线单元增益方向图的主极化与交叉极化图;Fig. 5 is the main polarization and cross polarization diagram of low frequency antenna unit gain pattern;
图6为毫米波天线单元S11随频率变化曲线图;FIG. 6 is a graph showing the variation of the millimeter wave antenna unit S11 with frequency;
图7为毫米波天线单元增益方向图的主极化与交叉极化图;Fig. 7 is the main polarization and cross polarization diagram of the unit gain pattern of millimeter wave antenna;
图8为本发明实施例中的双频天线阵列示意图;8 is a schematic diagram of a dual-frequency antenna array in an embodiment of the present invention;
图9为本发明实施例中的毫米波馈电微带线结构示意图;9 is a schematic structural diagram of a millimeter-wave feeding microstrip line in an embodiment of the present invention;
图10为双频天线阵列与毫米波馈电层的地板压合一体化后的透视图;FIG. 10 is a perspective view of the dual-frequency antenna array and the floor of the millimeter-wave feed layer after being pressed and integrated;
图11为金属化孔的连接结构的剖面图;11 is a cross-sectional view of a connection structure of a metallized hole;
图12为本发明实施例中低频相控阵天线的馈电层结构示意图;12 is a schematic diagram of the structure of the feed layer of the low-frequency phased array antenna in the embodiment of the present invention;
图13为第一层低频馈电层的馈电微带线结构和移相器的结构示意图;13 is a schematic structural diagram of the feed microstrip line structure and the phase shifter of the first low-frequency feed layer;
图14为第一铜丝的连接结构剖面图;14 is a cross-sectional view of the connection structure of the first copper wire;
图15为第二层低频馈电层的馈电微带线结构和移相器的结构示意图;15 is a schematic structural diagram of the feed microstrip line structure and the phase shifter of the second low-frequency feed layer;
图16为第二铜丝的连接结构剖面图;16 is a cross-sectional view of the connection structure of the second copper wire;
图17为双频天线阵列与双层低频馈电层结合在一起后的透视图;Figure 17 is a perspective view of a dual-frequency antenna array combined with a double-layer low-frequency feed layer;
图18为双频天线阵列、毫米波馈电层与双层低频馈电层结合在一起后的透视图;Figure 18 is a perspective view of a dual-frequency antenna array, a millimeter-wave feed layer, and a double-layer low-frequency feed layer combined;
图19为安装塑料螺柱、垫片和螺母组合后的整体剖面图;Figure 19 is an overall cross-sectional view of the assembled plastic stud, washer and nut;
图20为低频馈电层与双频天线阵列结合后的输入回波损耗与隔离度图;Figure 20 is the input return loss and isolation diagram after the combination of the low-frequency feed layer and the dual-frequency antenna array;
图21为从第一层低频馈电层馈电的主极化与交叉极化增益方向图;Figure 21 is the main polarization and cross polarization gain patterns fed from the first low frequency feed layer;
图22为从第二层低频馈电层馈电的主极化与交叉极化增益方向图;Figure 22 is the main polarization and cross polarization gain patterns fed from the second low frequency feed layer;
图23为从第一层低频馈电层馈电的增益方向图在水平面的波束扫描情况图;Fig. 23 is a beam scanning situation diagram on the horizontal plane of the gain pattern fed from the first-layer low-frequency feed layer;
图24为从第二层低频馈电层馈电的增益方向图在垂直面的波束扫描情况图;Fig. 24 is the beam scanning situation diagram on the vertical plane of the gain pattern fed from the second-layer low-frequency feed layer;
图25为毫米波馈电层与双频天线阵列压合后的输入回波损耗与隔离度图;Figure 25 is the input return loss and isolation diagram after the millimeter-wave feed layer and the dual-frequency antenna array are pressed together;
图26为从垂直极化毫米波馈电微带线馈电的主极化与交叉极化增益方向图;Figure 26 is the main polarization and cross polarization gain patterns fed from the vertically polarized millimeter-wave fed microstrip line;
图27为从水平极化毫米波馈电微带线馈电的主极化与交叉极化增益方向图。Figure 27 is a graph of the main polarization and cross polarization gain patterns fed from a horizontally polarized millimeter-wave fed microstrip line.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work are protected by the present invention. scope.
实施例1:Example 1:
如图1所示,本实施例提供了一种双频双极化的集成相控阵与多波束阵列天线,包括天线阵列和馈电网络,天线阵列和馈电网络分别设置于第一介质片1、第二介质片6、第三介质片10、第四介质片15上,其中:天线阵列包括128个毫米波天线单元5、64个低频天线单元2,并以预设排列形式设置于第一介质片1第一面;馈电网络包括毫米波馈电层7、第一低频馈电层111、第二低频馈电层112,其中,毫米波馈电层7设置于第二介质片6的第一面,第一低频馈电层111设置于第三介质片10的第一面,第二低频馈电层112设置于第四介质片15的第一面;第一介质片的第二面覆铜作为铜片地板91,第二介质片的第二面覆铜作为铜片地板92,第三介质片的第二面覆铜作为铜片地板93;第四介质片的第二面覆铜作为铜片地板94;As shown in FIG. 1 , this embodiment provides a dual-frequency dual-polarized integrated phased array and multi-beam array antenna, including an antenna array and a feed network, and the antenna array and feed network are respectively set on the
第一介质片1与第二介质片6的第二面面对面压合,金属化孔4穿过第一介质片1和第二介质片6,毫米波馈电层7通过金属化孔4对毫米波天线单元5进行馈电;The
第三介质片10与第一介质片1通过第一铜丝31相连接,第一低频馈电层111通过第一铜丝31对低频天线单元2进行馈电;The
第四介质片15与第一介质片1通过第二铜丝32相连接,第二低频馈电层112通过第二铜丝32对低频天线单元2进行馈电。The
本实施例中,两种频段的天线单元均为微带贴片天线,双频段的天线单元都可以实现双极化工作,在低频段为双极化相控阵天线,在毫米波频段为双极化多波束阵列天线;第一介质片采用F4BM板材,该板材相对介电常数为2.2,损耗正切角为0.001,厚度为1.5mm。In this embodiment, the antenna units of the two frequency bands are microstrip patch antennas, and the antenna units of the dual frequency bands can realize dual polarization operation. Polarized multi-beam array antenna; the first dielectric sheet adopts F4BM plate, the relative permittivity of the plate is 2.2, the loss tangent angle is 0.001, and the thickness is 1.5mm.
如图3所示,毫米波天线单元5印刷在第一介质片1的第一面,毫米波天线单元5的一边上设有金属化孔4,用于毫米波天线单元5馈电。As shown in FIG. 3 , the millimeter-
本实施例中,毫米波天线单元5的边长f为3.5mm,金属化孔4的圆心和毫米波天线单元5中心的距离j为1.8mm,金属化孔4的直径i为0.38mm。毫米波微带贴片天线单元能工作于26GHz频段,毫米波天线单元的增益S11随频率变化曲线如图6所示。可见该天线单元在26GHz的增益S11=-19dB。图7为毫米波天线单元增益方向图在Phi=0和Phi=90度平面的主极化与交叉极化图,可见,最大增益为7.2dB,在Phi=0平面-9至9度范围,主极化与交叉极化隔离度大于20dB,在Phi=90度平面-60至60度范围内主极化与交叉极化隔离度均大于22dB。In this embodiment, the side length f of the millimeter-
如图2所示,低频天线单元2印刷在第一介质片1的第一面,低频天线单元2上设置有第一铜丝31的馈电点和第二铜丝32的馈电点。As shown in FIG. 2 , the low-
本实施例中,第一铜丝31的馈电点和第二铜丝32的馈电点到低频天线单元2中心的距离e为2.2mm,图2中天线阵列边长a、天线单元边长b、天线单元之间的间距c为影响低频天线单元性能的主要参数,其中a=16.44mm,b=5.6mm,c=1.4mm。低频微带贴片天线单元能工作于4.9GHz频段,天线单元的增益S11和隔离度S21随频率变化的曲线图如图4所示。可见该天线单元在4.9GHz的增益S11≤-20dB,两个馈电点之间的隔离度S21≥25dB。图5为低频天线单元增益方向图在Phi=0和Phi=90度平面的主极化与交叉极化图,可见,天线的最大增益为7dB,在两个平面内-60至60度范围内主极化与交叉极化隔离度均大于20dB。In this embodiment, the distance e from the feeding point of the
本实施例中,设计的低频相控阵要求增益方向图波束扫描范围为-60至60度,毫米波多波束阵列要求增益方向图在一个平面内有5个波束,为避免低频相控阵天线方向图出现明显旁瓣,毫米波多波束阵列的方向图在平面内外出现其他波束,也为了避免天线单元间距过小而导致较强的耦合,因此双频双极化天线阵列如图8所示,64个低频天线单元2以预设间隔d作为单元间距,以8×8矩阵平面阵列分布形式排列在第一介质片1上,构成低频天线阵列;毫米波天线单元分别以两种不同的矩阵平面阵列分布形式排列在第一介质片上,构成第一毫米波天线阵列、第二毫米波天线阵列,其中:In this embodiment, the designed low-frequency phased array requires the gain pattern beam scanning range to be -60 to 60 degrees, and the millimeter-wave multi-beam array requires the gain pattern to have 5 beams in one plane. In order to avoid the low-frequency phased array antenna direction There are obvious side lobes in the figure, and the pattern of the millimeter-wave multi-beam array has other beams in and out of the plane. In order to avoid the strong coupling caused by the too small spacing of the antenna elements, the dual-frequency dual-polarized antenna array is shown in Figure 8, 64 The low-
第一毫米波天线阵列的毫米波天线单元51以行间隔为d,列间隔为d/3垂直放置,形成8×8矩阵平面阵列,分布双频阵列的左半部分;The millimeter-
第二毫米波天线阵列的毫米波天线单元52以行间隔为d/3,列间隔为d水平放置,形成4×16矩阵平面阵列,分布双频阵列的右半部分。The millimeter-
其中,第一毫米波天线阵列的毫米波天线单元采用列间距d/3,可以使第一毫米波天线阵列的增益方向图的水平面(即水平方向)Phi=0度内只有一个主波束,保持低副瓣电平;采用行间距d,增益方向图的垂直面Phi=90度内有5个主波束;Among them, the millimeter-wave antenna unit of the first millimeter-wave antenna array adopts the column spacing d/3, so that there is only one main beam in the horizontal plane (ie the horizontal direction) Phi=0 degree of the gain pattern of the first millimeter-wave antenna array, keeping the Low sidelobe level; using line spacing d, there are 5 main beams within the vertical plane of the gain pattern Phi=90 degrees;
同样地,第二毫米波天线阵列的毫米波天线单元采用行间距d/3,可以使第二毫米波天线阵列的增益方向图的垂直面(即垂直方向)Phi=90度内只有一个主波束,保持低副瓣电平;采用列间距d,增益方向图的水平面Phi=0度内有5个主波束;Similarly, the millimeter-wave antenna unit of the second millimeter-wave antenna array adopts the row spacing d/3, so that there is only one main beam in the vertical plane (ie the vertical direction) of the gain pattern of the second millimeter-wave antenna array Phi=90 degrees , keep low sidelobe level; with column spacing d, there are 5 main beams within the horizontal plane of the gain pattern Phi=0 degrees;
第一毫米波天线阵列的毫米波天线单元垂直放置,可以实现垂直极化;第二毫米波天线阵列的毫米波天线单元水平放置,可以实现水平极化。The millimeter-wave antenna units of the first millimeter-wave antenna array are placed vertically to realize vertical polarization; the millimeter-wave antenna units of the second millimeter-wave antenna array are placed horizontally to realize horizontal polarization.
本实施例中,预设间隔d为31mm,在上述预设间隔下,同频或异频天线单元之间有不小于20dB隔离度,避免了天线单元之间的强耦合而恶化双频天线性能,同时低频相控阵天线能实现-60至60度宽角域方向图波束扫描,毫米波天线能实现平面内有5个波束。In this embodiment, the preset interval d is 31mm. Under the above preset interval, the isolation between the same-frequency or different-frequency antenna units is not less than 20dB, which avoids the strong coupling between the antenna units and deteriorates the performance of the dual-frequency antenna. At the same time, the low-frequency phased array antenna can achieve -60 to 60 degrees wide-angle pattern beam scanning, and the millimeter-wave antenna can achieve 5 beams in the plane.
本实施例中,由于低频微带贴片天线采用双端口双极化馈电,自身即可实现双极化工作,因此64个单元以8×8矩形平面阵列分布形式,即可实现双极化;而毫米波微带贴片天线采用单端口馈电,自身只可以实现单极化工作,但是采用相互垂直放置的两个毫米波微带贴片天线,便可实现双极化工作。64个水平极化的毫米波微带贴片天线以4×16矩形平面阵列分布形式,实现毫米波天线阵列水平极化工作;64个垂直极化的毫米波微带贴片天线以8×8矩形平面阵列分布形式,实现毫米波天线阵列垂直极化工作。In this embodiment, since the low-frequency microstrip patch antenna adopts dual-port dual-polarization feeding, it can realize dual-polarization operation by itself. Therefore, 64 elements are distributed in the form of an 8×8 rectangular planar array, and dual-polarization can be realized. The millimeter-wave microstrip patch antenna uses a single-port feed, and can only achieve single-polarization work by itself, but dual-polarization can be achieved by using two millimeter-wave microstrip patch antennas placed perpendicular to each other. 64 horizontally polarized millimeter-wave microstrip patch antennas are distributed in a 4×16 rectangular planar array to realize horizontal polarization operation of the millimeter-wave antenna array; 64 vertically polarized millimeter-wave microstrip patch antennas are arranged in 8×8 The rectangular planar array distribution form realizes the vertical polarization operation of the millimeter-wave antenna array.
如图9所示,毫米波馈电层包括垂直极化毫米波馈电微带线结构和水平极化毫米波馈电微带线结构,并印刷于第二介质片6上,其中:As shown in FIG. 9 , the millimeter-wave feeding layer includes a vertically polarized millimeter-wave feeding microstrip line structure and a horizontally polarized millimeter-wave feeding microstrip line structure, and is printed on the
水平极化毫米波馈电微带线结构72为1分64的T型微带线功分结构,并对第二毫米波天线阵列进行馈电;The horizontally polarized millimeter-wave feeding
垂直极化毫米波馈电微带线结构71为1分64的T型微带线功分结构,并对第一毫米波天线阵列进行馈电。The vertically polarized millimeter-wave feeding
本实施例中,第二介质片采用F4BM板材,该板材相对介电常数为2.2,损耗正切角为0.001,厚度为0.25mm,整体尺寸为L×L=323mm×323mm,根据介质片与微带线宽度的关系,在该介质片厚度下,微带线欧姆特性阻抗的宽度较小,有利于降低电磁波在微带线中的损耗。同时,该板材种类有较低的损耗正切角,也能减少1分64的T型微带线功分器的插入损耗。1分64的T型微带线功分器输出端口之间的行列间距为d和d/3,与毫米波天线阵列的毫米波微带贴片天线单元之间的行列间距一致,便于通过金属化孔连接馈电。In this embodiment, the second dielectric sheet adopts F4BM sheet, the relative dielectric constant of the sheet is 2.2, the loss tangent angle is 0.001, the thickness is 0.25mm, and the overall size is L×L=323mm×323mm. The relationship between the line width, under the thickness of the dielectric sheet, the width of the ohmic characteristic impedance of the microstrip line is small, which is beneficial to reduce the loss of electromagnetic waves in the microstrip line. At the same time, this plate type has a lower loss tangent angle, which can also reduce the insertion loss of the 1:64 T-type microstrip line power divider. The row-column spacing between the output ports of the T-type microstrip line power divider of 1:64 is d and d/3, which is consistent with the row-column spacing between the millimeter-wave microstrip patch antenna units of the millimeter-wave antenna array, which is convenient for passing metal The hole is connected to the feed.
本实施例中,水平极化毫米波馈电微带线结构与垂直极化毫米波馈电微带线结构的具体参数存在差异。In this embodiment, the specific parameters of the horizontally polarized millimeter-wave feeding microstrip line structure and the vertically polarized millimeter-wave feeding microstrip line structure are different.
如图10和图11所示,第一介质片1与第二介质片6的第二面面对面地直接压合,金属化孔4穿过第一介质片1和第二介质片6,毫米波馈电层7通过金属化孔4对毫米波天线单元5进行馈电;在第一介质片的铜片地板91、第二面的铜片地板92上,以金属化孔4为中心设置第一隔离环8,使金属化孔与第一介质片的铜片地板91、第二介质片的铜片地板92均无接触。As shown in FIG. 10 and FIG. 11 , the
毫米波馈电层7中,包括水平极化毫米波馈电微带线结构和垂直极化毫米波馈电微带线结构,其中水平极化毫米波馈电微带线结构的64个馈电接口与第二毫米波天线阵列的64个毫米波天线单元通过金属化孔一一对应相连,垂直极化毫米波馈电微带线结构的64个馈电接口与第一毫米波天线阵列的64个毫米波天线单元通过金属化孔一一对应相连。The millimeter-
本实施例中,第一介质片1与第二介质片6的第二面面对面进行PCB压合,第一隔离环8的直径为0.84mm。In this embodiment, the second surface of the
如图12、13所示,第一低频馈电层111设置于第三介质片10的第一面,第一低频馈电层包括9个1分8威尔金森微带线功分器和8个移相器芯片12。能量由端口1输入馈电网络,通过1分8微带线结构将输入的能量均等分配到8个端口,这8个端口分别接入电压控制型移相器芯片的输入端,每个移相器芯片12的输出端再接入相同结构的1分8功分器,将输入馈电网络的能量均分至64个端口。As shown in FIGS. 12 and 13 , the first low-
本实施例中,第一低频馈电层的威尔金森微带线功分器采用150欧姆的0402型号贴片电阻,64个输出端口的间距d,与低频天线阵列的低频微带贴片天线单元之间的间距一致,便于通过铜丝连接馈电。移相器芯片12是一种输出相位可调、尺寸很小的芯片,其尺寸仅5mm×5mm,与微带线功分器集成以后,仅需调节芯片的供电电压,就可以实现移相器芯片所在支路的相位,移相器芯片的相位移动范围在0至360度之间,满足波束宽角域连续扫描要求。在集成移相器芯片与多路功分器后,最终表现为端口1的能量均等分配到64个端口,每个移相器芯片控制同一列的8个天线单元相位。在电压改变的情况下,移相器相位随之变化,实现增益方向图波束扫描。In this embodiment, the Wilkinson microstrip line power divider of the first low-frequency feed layer adopts a 150-ohm 0402 type chip resistor, the spacing d of 64 output ports, and the low-frequency microstrip patch antenna of the low-frequency antenna array. Units are spaced uniformly to facilitate feeding via copper wire connections. The
如图14所示,在第三介质片10的铜片地板93上贴一片增厚介质片13后,第一铜丝31依次穿过第一介质片1、第二介质片6、第三介质片10,第三介质片10与第一介质片1通过第一铜丝31相连接,使第一低频馈电层111通过第一铜丝31对低频天线单元2进行馈电;在第一介质片的铜片地板、第二介质片的铜片地板以及第三介质片的铜片地板93 上,以第一铜丝为中心设置第二隔离环14,使得第一铜丝与第一介质片的铜片地板、第二介质片的铜片地板和第三介质片的铜片地板均无接触。As shown in FIG. 14 , after a thickened
本实施例中,第三介质片采用F4BM板材,增厚介质片采用FR-4板材,该FR-4板材相对介电常数为4.3,厚度为0.8mm,尺寸与第三介质片一致。增厚介质片用于增厚第一层低频馈电层,因此采用硬度性能好、价格便宜的FR-4板材。第一铜丝直径为0.6mm。In this embodiment, the third dielectric sheet is made of F4BM sheet, and the thickened dielectric sheet is made of FR-4 sheet. The thickened dielectric sheet is used to thicken the first low-frequency feed layer, so the FR-4 sheet with good hardness and low price is used. The diameter of the first copper wire is 0.6mm.
本实施例中,第三介质片增厚介质片13与第二介质片的间距为h1=0.6mm,第二隔离环14的直径为1.08mm。In this embodiment, the distance between the third dielectric sheet thickening
如图15所示,第二低频馈电层112设置于第四介质片15的第一面,第二低频馈电层包括9个1分8威尔金森微带线功分器和8个移相器芯片12。As shown in FIG. 15 , the second low-
本实施例中,第二低频馈电层的威尔金森微带线功分器采用150欧姆的0402型号贴片电阻,64个输出端口的间距d,与低频天线阵列的低频微带贴片天线单元之间的间距一致,便于通过铜丝连接馈电。移相器芯片12是一种输出相位可调、尺寸很小的芯片,其尺寸仅5mm×5mm,与微带线功分器集成以后,仅需调节芯片的供电电压,就可以实现移相器芯片所在支路的相位,移相器芯片的相位移动范围在0至360度之间,满足波束宽角域连续扫描要求。在集成移相器芯片与多路功分器后,最终表现为端口1的能量均等分配到64个端口,每个移相器芯片控制同一列的8个天线单元相位。在电压改变的情况下,移相器相位随之变化,实现增益方向图波束扫描。In this embodiment, the Wilkinson microstrip line power divider of the second low-frequency feed layer adopts a 150-ohm 0402 type chip resistor, the spacing d of 64 output ports, and the low-frequency microstrip patch antenna of the low-frequency antenna array. Units are spaced uniformly to facilitate feeding via copper wire connections. The
如图16所示,在第四介质片15的铜片地板94上贴一片增厚介质片13后,第二铜丝32依次穿过第一介质片1、第二介质片6、第三介质片10、第四介质片15,第四介质片15与第一介质片1通过第二铜丝32相连接,使第二低频馈电层112通过第二铜丝32对低频天线单元2进行馈电;在第一介质片的铜片地板、第二介质片、第三介质片的铜片地板以及第四介质片的铜片地板94上,以第二铜丝为中心设置第二隔离环14,使得第二铜丝与第一介质片的铜片地板、第二介质片的铜片地板、第三介质片的铜片地板和第四介质片的铜片地板均无接触。As shown in FIG. 16 , after a thickened
本实施例中,第四介质片采用F4BM板材,增厚介质片采用FR-4板材,该FR-4板材相对介电常数为4.3,厚度为0.8mm,尺寸与第三介质片一致。增厚介质片用于增厚第二层低频馈电层,因此采用硬度和性能好、价格便宜的FR-4板材。第二铜丝直径为0.6mm。In this embodiment, the fourth dielectric sheet is made of F4BM sheet, and the thickened dielectric sheet is made of FR-4 sheet. The thickened dielectric sheet is used to thicken the second low-frequency feeding layer, so the FR-4 sheet with good hardness and performance and low price is used. The diameter of the second copper wire is 0.6mm.
本实施例中,第四介质片的增厚介质片13与第三介质片的间距为h2=0.8mm,第二隔离环14的直径为1.08mm。In this embodiment, the distance between the thickened
如图17所示,本实施例中,第一低频馈电层的64个输出端口和第二低频馈电层的64个输出端口分别与64个低频天线单元一一对应相连,实现低频天线单元的不同极化方式工作。As shown in FIG. 17 , in this embodiment, the 64 output ports of the first low-frequency feeding layer and the 64 output ports of the second low-frequency feeding layer are respectively connected to 64 low-frequency antenna units in a one-to-one correspondence, so as to realize the low-frequency antenna unit. work in different polarizations.
图18为本实施例中,双频天线阵列、毫米波馈电层与双层低频馈电层结合在一起后的透视图。FIG. 18 is a perspective view of a dual-frequency antenna array, a millimeter-wave feed layer, and a double-layer low-frequency feed layer combined together in this embodiment.
如图19所示,本实施例中,在双频双极化的集成相控阵与多波束阵列天线的结构基础上,还包括设置于第二介质片与第三介质片之间的绝缘支撑件,和设置于第三介质片与第四介质片之间的绝缘支撑件,用于将双频双极化的集成相控阵与多波束阵列天线的结构进行进一步固定。本实施例中,在介质片边缘设置塑料垫片进行固定,第二介质片与第三介质片之间设有塑料垫片17,第三介质片与第四介质片之间设有塑料垫片18,并使用塑料螺钉16和塑料螺母19进行固定。本实施例中,塑料垫片17的高度为0.6mm,塑料垫片18的高度为0.8mm。As shown in FIG. 19 , in this embodiment, based on the structure of the dual-frequency dual-polarized integrated phased array and multi-beam array antenna, an insulating support disposed between the second dielectric sheet and the third dielectric sheet is further included. A component, and an insulating support member disposed between the third dielectric sheet and the fourth dielectric sheet are used to further fix the structure of the dual-frequency dual-polarized integrated phased array and the multi-beam array antenna. In this embodiment, a plastic gasket is arranged on the edge of the medium sheet for fixing, a
本实施例的天线结构、参数除了上述所提及的之外,还能做如下变换:异频天线单元可以改换天线图案形状、工作频段,工作频段并不局限于4.9GHz和26GHz频段;毫米波T型微带线可以更换为威尔金森微带线,低频威尔金森微带线也可以更换为低频T型微带线,双频馈电微带线只要与双频天线单元的工作频段一致即可;介质片可以更换其他板材;双频天线阵列与毫米波馈电层的铜片地板面对面压合的方式,可以采用半固化片粘合;双频天线阵列与双层低频馈电层固定在一起,除了可以用塑料螺柱、垫片和螺母这种组合,也可以直接使用双面粘贴的塑料垫片,只要起到固定作用即可。In addition to the above mentioned, the antenna structure and parameters of this embodiment can also be transformed as follows: the inter-frequency antenna unit can change the shape of the antenna pattern and the working frequency band, and the working frequency band is not limited to the 4.9GHz and 26GHz frequency bands; millimeter wave The T-type microstrip line can be replaced with a Wilkinson microstrip line, and the low-frequency Wilkinson microstrip line can also be replaced with a low-frequency T-type microstrip line. As long as the dual-frequency feed microstrip line is consistent with the working frequency band of the dual-frequency antenna unit The dielectric sheet can be replaced with other plates; the dual-frequency antenna array and the copper sheet floor of the millimeter-wave feed layer are pressed face-to-face, and the prepreg can be used for bonding; the dual-frequency antenna array and the double-layer low-frequency feed layer are fixed together , in addition to the combination of plastic studs, washers and nuts, you can also directly use double-sided plastic gaskets, as long as they play a fixed role.
综上所述,本实施例中双频双极化天线阵列与毫米波馈电层压合后,采用金属化孔将毫米波天线阵列与毫米波馈电层连接;低频馈电层采用塑料柱子和铜丝与天线阵列固定在一起,采用铜丝将低频天线阵列与低频馈电层连接。金属化孔便于毫米波天线阵列与毫米波馈电层在双层PCB内部完成连接,铜丝在起到低频馈电网络与低频天线阵列连接作用的同时,还能够实现一定程度的结构固定效果。同时,本实施例中双频双极化馈电网络分为毫米波馈电层和低频馈电层,并分别采用不同的馈电方式。毫米波馈电层和低频馈电层的馈电结构设计分别与所设计的毫米波天线阵列排布和低频天线阵列排布相匹配,并通过使用微带线馈电方式,实现馈电网络的小型化,并且有利于实现阵列天线的一体化,整个双频双极化的集成相控阵与多波束阵列天线尺寸为L×L=323mm×323mm,剖面高度H为5.72mm,64单元的低频双极化天线单元最终有两个馈电端口,128单元组成的双极化阵列天线,最终也有两个馈电端口,这四个馈电端口采用SMA连接器连接,连接器内导体与馈电端口微带线连接,连接器外导体与各自馈电层的金属地板连接。To sum up, in this embodiment, after the dual-frequency dual-polarization antenna array is combined with the millimeter-wave feed layer, metallized holes are used to connect the millimeter-wave antenna array to the millimeter-wave feed layer; the low-frequency feed layer is made of plastic posts. and copper wires are fixed together with the antenna array, and copper wires are used to connect the low-frequency antenna array to the low-frequency feeding layer. The metallized holes facilitate the connection between the millimeter-wave antenna array and the millimeter-wave feed layer inside the double-layer PCB. The copper wire can not only play the role of connecting the low-frequency feed network and the low-frequency antenna array, but also achieve a certain degree of structural fixing effect. Meanwhile, in this embodiment, the dual-frequency dual-polarization feeding network is divided into a millimeter-wave feeding layer and a low-frequency feeding layer, and different feeding modes are adopted respectively. The feeding structure design of the millimeter-wave feeding layer and the low-frequency feeding layer is matched with the designed millimeter-wave antenna array arrangement and the low-frequency antenna array arrangement respectively. Miniaturized and conducive to the integration of array antennas, the size of the entire dual-frequency dual-polarized integrated phased array and multi-beam array antenna is L×L=323mm×323mm, the section height H is 5.72mm, and the 64-element low frequency The dual-polarized antenna unit finally has two feeding ports, and the dual-polarized array antenna composed of 128 elements also has two feeding ports. These four feeding ports are connected by SMA connectors, and the inner conductor of the connector is connected to the feeding port. The ports are connected with microstrip lines, and the outer conductors of the connectors are connected with the metal floors of the respective feeding layers.
本实施例采用九个1分8微带线功分器结构级联,功能上等同于1分64微带线功分器,实现了一个馈电端口可以给64个低频微带贴片天线单元馈电;在威尔金森微带线结构加入体积小和集成化的移相器芯片,移相器芯片的输出相位可调节,完成了相控阵天线的波束扫描控制部件,避免了功分器与移相器分离,实现了双频双极化馈电网络的集成一体化和小型化。低频馈电微带线包括多个1分8的威尔金森微带线结构,其中一个1分8的威尔金森微带线结构的输出与移相器芯片的输入一一对应连接,剩余1分8的威尔金森微带线结构的输入与移相器芯片的输出一一对应连接。In this embodiment, nine 1-point 8-microstrip line power dividers are used in a cascade structure, which is functionally equivalent to a 1-point 64-microstrip line power divider, and realizes that one feed port can supply 64 low-frequency microstrip patch antenna units. Feeding; adding a small and integrated phase shifter chip to the Wilkinson microstrip line structure, the output phase of the phase shifter chip can be adjusted, completing the beam scanning control part of the phased array antenna, avoiding the power divider Separated from the phase shifter, the integration and miniaturization of the dual-frequency dual-polarization feed network are realized. The low-frequency feeding microstrip line includes multiple 1:8 Wilkinson microstrip line structures, of which the output of one 1:8 Wilkinson microstrip line structure is connected to the input of the phase shifter chip in one-to-one correspondence, and the remaining 1 The input of the Wilkinson microstrip line structure divided into 8 is connected with the output of the phase shifter chip in one-to-one correspondence.
本实施例的天线阵列与馈电网络的铜片地板是一样的,都以金属化孔或铜丝为中心设置一个孔作为隔离环,通过双频天线阵列与毫米波馈电层压合,还有塑料柱子将两层低频馈电层固定在一起,实现了集成化和低剖面小型化设计,也完成了相控阵天线的集成一体化设计。其中,第一隔离环8以金属化孔为中心,金属化孔直径只有0.38mm,所以隔离环采用0.84mm直径就可以了;第二隔离环14以铜丝作为中心,铜丝的直径为0.6mm,为了避免铜片地板与铜丝接触,因此第二隔离环14要大一些,1.08mm足够了。The antenna array of this embodiment is the same as the copper sheet floor of the feeding network, and a hole is set with a metallized hole or copper wire as the center as an isolation ring. There are plastic pillars to fix the two low-frequency feed layers together, which realizes the integrated and low-profile miniaturization design, and also completes the integrated design of the phased array antenna. Among them, the
本实施例中,在4.9GHz作为双极化相控阵天线,第一层低频馈电层馈电端口S11和第二层低频馈电层馈电端口S22均小于-20dB,S21和S12隔离度均大于20dB, 如图20所示。如图21和图22所示,双端口的增益方向图的主极化与交叉极化隔离度大于19dB,最大增益达到20.8dB。如图23所示,第一层低频馈电层馈电端口可以实现-45度极化方式,增益方向图的主波束能在水平面二维平面实现-60至60度波束扫描;如图24所示,第二层低频馈电层馈电端口可以实现45度极化方式,增益方向图的主波束能在垂直二维平面实现-60至60度波束扫描;在26GHz作为双极化多波束阵列天线,垂直极化毫米波馈电微带线的馈电端口S11小于-20dB,水平极化毫米波馈电微带线的馈电端口S22小于-20dB,毫米波双端口隔离度S21大于40dB,如图25所示;如图26所示,垂直极化的增益方向图在垂直面有5个波束,最大增益为21.5dB;如图27所示,水平极化的增益方向图在水平面有5个波束,最大增益为20.7dB;两个平面内5个波束与中心轴Z轴的俯仰角分别为-49、-22、0、22和49度,两个平面的增益方向图的主极化和交叉极化隔离度均大于20dB。In this embodiment, as a dual-polarized phased array antenna at 4.9 GHz, the first-layer low-frequency feed layer feed port S11 and the second-layer low-frequency feed layer feed port S22 are both less than -20dB, and the isolation between S21 and S12 is are greater than 20dB, as shown in Figure 20. As shown in Figures 21 and 22, the main polarization and cross-polarization isolation of the dual-port gain pattern is greater than 19dB, and the maximum gain reaches 20.8dB. As shown in Figure 23, the feed port of the first layer of the low-frequency feed layer can achieve -45 degree polarization, and the main beam of the gain pattern can achieve -60 to 60 degree beam scanning in the horizontal two-dimensional plane; as shown in Figure 24 As shown, the feed port of the second-layer low-frequency feed layer can realize a 45-degree polarization mode, and the main beam of the gain pattern can achieve -60 to 60-degree beam scanning in a vertical two-dimensional plane; at 26 GHz, it can be used as a dual-polarized multi-beam array. Antenna, the feed port S11 of the vertically polarized millimeter-wave feed microstrip line is less than -20dB, the feed port S22 of the horizontally polarized millimeter-wave feed microstrip line is less than -20dB, and the millimeter-wave dual-port isolation S21 is greater than 40dB. As shown in Figure 25; as shown in Figure 26, the gain pattern of vertical polarization has 5 beams in the vertical plane, and the maximum gain is 21.5dB; as shown in Figure 27, the gain pattern of horizontal polarization has 5 beams in the horizontal plane beams, the maximum gain is 20.7dB; the pitch angles of the five beams in the two planes and the central axis Z axis are -49, -22, 0, 22 and 49 degrees, respectively, and the main polarization of the gain pattern of the two planes and cross-polarization isolation are greater than 20dB.
实施例2Example 2
本实施例提供了一种双频双极化的集成相控阵与多波束阵列天线的设计方法,包括以下步骤:This embodiment provides a design method for a dual-frequency dual-polarization integrated phased array and multi-beam array antenna, including the following steps:
S10、在第一介质片上设计多个相同的低频微带贴片天线单元和多个毫米波微带贴片天线单元;S10. Design multiple identical low-frequency microstrip patch antenna units and multiple millimeter-wave microstrip patch antenna units on the first dielectric sheet;
本实施例设计了64个相同的低频微带贴片天线单元,128个相同的毫米波微带贴片天线单元。对于每个天线单元,都在第一介质片的双面覆铜,即在第一介质片的顶层和底层分别覆铜,其中顶层覆铜作为辐射天线,底层覆铜作为铜片地板,介质片采用F4BM板材;对每个低频微带贴片天线单元使用两根铜丝进行双极化馈电,将铜丝顶端与第一介质片的低频微带贴片天线的顶层覆铜连接,并穿过第一介质片,最后到达底层铜片地板,在铜片地板上以铜丝为中心设置一个圆孔作为第二隔离环,使馈电探针与底层铜片地板无接触;对每个毫米波微带贴片天线单元使用金属化孔进行馈电,将金属化孔顶端与第一介质片的毫米波微带贴片天线的顶层覆铜连接,并穿过第一介质片,最后到达底层铜片地板,在铜片地板上以金属化孔为中心设置一个圆孔作为第一隔离环,使金属化孔与底层铜片地板无接触。In this embodiment, 64 identical low-frequency microstrip patch antenna units and 128 identical millimeter-wave microstrip patch antenna units are designed. For each antenna unit, copper is clad on both sides of the first dielectric sheet, that is, copper is clad on the top and bottom layers of the first dielectric sheet, where the top layer is copper-clad as a radiating antenna, the bottom layer is copper-clad as the copper floor, and the dielectric sheet is clad with copper on both sides. F4BM board is used; two copper wires are used for dual-polarized feeding for each low-frequency microstrip patch antenna unit, and the top of the copper wire is connected to the top layer of the low-frequency microstrip patch antenna of the first dielectric sheet. After passing through the first dielectric sheet and finally reaching the bottom copper sheet floor, a circular hole is set on the copper sheet floor with the copper wire as the center as the second isolation ring, so that the feeding probe has no contact with the bottom copper sheet floor; The wave microstrip patch antenna unit uses a metallized hole for feeding, and the top of the metallized hole is connected to the top layer of copper cladding of the millimeter-wave microstrip patch antenna of the first dielectric sheet, and passes through the first dielectric sheet, and finally reaches the bottom layer For the copper sheet floor, a circular hole is set on the copper sheet floor with the metallized hole as the center as the first isolation ring, so that the metallized hole is not in contact with the underlying copper sheet floor.
S20、设计天线阵列排列形式,将多个相同的低频微带贴片天线单元和多个相同的毫米波微带贴片天线单元组成双频天线阵列,具体包括:S20. Design the arrangement of the antenna array, and combine multiple identical low-frequency microstrip patch antenna units and multiple identical millimeter-wave microstrip patch antenna units to form a dual-frequency antenna array, specifically including:
S21、设计低频微带贴片天线单元、毫米波微带贴片天线单元的排列形式为矩阵平面阵列分布形式;S21. The low-frequency microstrip patch antenna unit and the millimeter-wave microstrip patch antenna unit are designed to be arranged in a matrix plane array distribution form;
本实施例中,设计64个相同的低频微带贴片天线单元为8×8矩阵平面阵列分布形式,设计128个相同的低频微带贴片天线单元分为两组,其中一组为8×8矩阵平面阵列分布形式,组成第一毫米波天线阵列;另一组为4×16矩阵平面阵列分布形式,组成第二毫米波天线阵列;In this embodiment, 64 identical low-frequency microstrip patch antenna units are designed in the form of an 8×8 matrix planar array, and 128 identical low-frequency microstrip patch antenna units are designed to be divided into two groups, one of which is 8×8 8 matrix plane array distribution form, forming the first millimeter wave antenna array; the other group is 4×16 matrix plane array distribution form, forming the second millimeter wave antenna array;
S22、根据阵列天线方向图增益,设计低频微带贴片天线的间隔d,并根据低频微带贴片天线的间隔d设计低频微带贴片天线的矩阵平面阵列分布形式;S22. Design the interval d of the low-frequency microstrip patch antenna according to the pattern gain of the array antenna, and design the matrix plane array distribution form of the low-frequency microstrip patch antenna according to the interval d of the low-frequency microstrip patch antenna;
天线阵列由多个天线单元组成,本实施例中,双频双极化天线阵列由64个低频天线单元和128个毫米波天线单元组成。天线单元按照合适的间距进行二维矩阵形式排列分布。根据方向图乘积原理,阵列天线最终的方向图参数E(θ)由阵元方向图参数S(θ)与阵因子f(θ)共同决定,如式子(1)所示。阵元方向图参数即天线单元的方向图参数;阵因子由天线单元位置分布、馈电相位等共同决定。The antenna array is composed of multiple antenna units. In this embodiment, the dual-frequency dual-polarized antenna array is composed of 64 low-frequency antenna units and 128 millimeter-wave antenna units. The antenna elements are arranged and distributed in a two-dimensional matrix form with appropriate spacing. According to the principle of pattern product, the final pattern parameter E(θ) of the array antenna is jointly determined by the array element pattern parameter S(θ) and the array factor f(θ), as shown in equation (1). The array element pattern parameter is the pattern parameter of the antenna element; the array factor is jointly determined by the location distribution of the antenna element and the feeding phase.
(1) (1)
若阵列为N个阵元的均匀直线阵,馈电幅值相等,仅存在均匀变化的馈电相位差,归一化阵因子可用式子(2)表示。阵中,天线单元可以比拟为点源,点源之间直线分布,点源直线间距为d,点源的馈电相位差为φ,方向图波束指向与两点源所在直线的夹角为θ,K为电磁波传播常数。阵列方向图波束扫描公式如式子(3)所示,当ψ=0时,代表两点源方向图同相叠加,有最大增益。If the array is a uniform linear array with N array elements, the feeding amplitudes are equal, and there is only a uniformly varying feeding phase difference, the normalized array factor can be expressed by formula (2). In the array, the antenna elements can be compared to point sources. The point sources are distributed in a straight line. The distance between the point sources is d. The feed phase difference of the point sources is φ. , K is the electromagnetic wave propagation constant. The array pattern beam scanning formula is shown in equation (3), when ψ=0, it means that the two point source patterns are superimposed in phase and have the maximum gain.
(2) (2)
(3) (3)
相控阵天线需要合理设计天线单元的分布位置,以避免增益方向图出现旁瓣。在相控阵天线设计中,为避免旁瓣方向图出现,要求天线单元之间的间距满足如式子(4)所示的关系:Phased array antennas need to reasonably design the distribution positions of the antenna elements to avoid side lobes in the gain pattern. In the design of phased array antennas, in order to avoid the appearance of side lobe patterns, the spacing between antenna elements is required to satisfy the relationship shown in equation (4):
(4) (4)
其中λ为电磁波工作波长,代表增益方向图波束扫描角度最大值。where λ is the working wavelength of the electromagnetic wave, Represents the maximum beam scan angle of the gain pattern.
式子(4)表达的间距d是一个上限值,而下限值不能太小。这是因为阵列天线需要考虑天线之间的耦合问题。在天线阵列中,两个相邻的天线单元,一个天线单元向空间辐射能量时,辐射出来的能量传播至相邻的另一个天线单元,使后者产生感应电流,改变了其原来的电流流向和阻抗。同理,另一个天线单元工作时,也会存在耦合问题。当阵列天线中所有辐射单元都互相耦合下,最终将产生巨大明显反射和恶化阵列天线的方向图,使之无法正常工作。因此相控阵天线单元间距d过小,将会导致阵列单元之间强耦合而无法正常工作。The distance d expressed by the formula (4) is an upper limit value, and the lower limit value cannot be too small. This is because the array antenna needs to consider the coupling problem between the antennas. In an antenna array, when two adjacent antenna units, one antenna unit radiates energy into space, the radiated energy propagates to another adjacent antenna unit, causing the latter to generate an induced current and changing its original current flow. and impedance. Similarly, when another antenna unit is working, there will also be a coupling problem. When all the radiating elements in the array antenna are coupled with each other, it will eventually produce huge and obvious reflections and deteriorate the pattern of the array antenna, making it unable to work normally. Therefore, the phased array antenna unit spacing d is too small, which will cause strong coupling between the array units and cannot work normally.
本实施例中,设定低频天线单元间距d为31mm。In this embodiment, the spacing d of the low-frequency antenna elements is set to be 31 mm.
S23、根据低频微带贴片天线的矩阵平面阵列分布形式,设计毫米波微带贴片天线单元的排列形式。S23, according to the matrix plane array distribution form of the low-frequency microstrip patch antenna, design the arrangement form of the millimeter-wave microstrip patch antenna units.
本实施例中,毫米波天线单元采用d/3和d两种间距,其中第一毫米波天线阵列的毫米波天线单元以行间隔为d,列间隔为d/3垂直放置;第二毫米波天线阵列的毫米波天线单元以行间隔为d/3,列间隔为d水平放置。In this embodiment, the millimeter-wave antenna units adopt two spacings of d/3 and d, wherein the millimeter-wave antenna units of the first millimeter-wave antenna array are vertically placed with a row interval of d and a column interval of d/3; The mmWave antenna elements of the antenna array are placed horizontally with a row spacing of d/3 and a column spacing of d.
该天线间距下,天线单元之间的隔离度大于20dB、低频双极化相控阵天线的增益方向图波束扫描范围为-60至60度,毫米波多波束阵列天线的增益方向图在平面内有5个波束。Under this antenna spacing, the isolation between the antenna units is greater than 20dB, the gain pattern beam scanning range of the low-frequency dual-polarized phased array antenna is -60 to 60 degrees, and the gain pattern of the millimeter-wave multi-beam array antenna is in the plane. 5 beams.
S30、根据天线阵列排列形式,设计天线阵列的馈电网络,包括毫米波馈电层、第一低频馈电层、第二低频馈电层,并将天线阵列和天线阵列的馈电网络组成双频双极化的集成相控阵与多波束阵列天线,具体包括:S30. Design a feeding network of the antenna array according to the arrangement form of the antenna array, including a millimeter-wave feeding layer, a first low-frequency feeding layer, and a second low-frequency feeding layer, and form a dual feed network of the antenna array and the antenna array Integrated phased array and multi-beam array antennas with dual-frequency polarization, including:
S31、第二介质片上设计毫米波馈电层。在第二介质片的双面覆铜,其中顶层覆铜作为1分64的T型毫米波馈电微带线结构,底层覆铜作为铜片地板;毫米波馈电微带线分为水平极化毫米波馈电微带线和垂直极化毫米波馈电微带线;水平极化毫米波馈电微带线为水平极化的毫米波微带贴片天线馈电,垂直极化毫米波馈电微带线为垂直极化的毫米波微带贴片天线馈电。S31. Design a millimeter-wave feed layer on the second dielectric sheet. On the double-sided copper cladding of the second dielectric sheet, the top layer of copper cladding is used as a 1:64 T-type millimeter-wave feed microstrip line structure, and the bottom layer of copper cladding is used as a copper floor; the millimeter-wave feed microstrip line is divided into horizontal poles The millimeter-wave feeding microstrip line and the vertically polarized millimeter-wave feeding microstrip line; the horizontally polarized millimeter-wave feeding microstrip line feeds the horizontally polarized millimeter-wave microstrip patch antenna, and the vertically polarized millimeter-wave The feed microstrip line feeds a vertically polarized millimeter-wave microstrip patch antenna.
接着,将双频天线阵列的铜片地板与毫米波馈电层的铜片地板面对面压合起来,延长每个毫米波微带贴片天线单元中的金属化孔,使金属化孔穿过天线单元的铜片地板,再穿过毫米波馈电层的铜片地板和第二介质片,到达毫米波馈电微带线结构,并与微带线结构接触;并以金属化孔为中心在毫米波馈电层的铜片地板设置一个孔作为第一隔离环,金属化孔与双频天线阵列的铜片地板、馈电网络的铜片地板均无接触。其中毫米波微带贴片天线有两种,毫米波馈电微带线也有两种,通过金属化孔,水平极化的毫米波微带贴片天线与水平极化的毫米波馈电微带线结构接触,垂直极化的毫米波微带贴片天线与垂直极化的毫米波馈电微带线结构接触。Next, press the copper sheet floor of the dual-band antenna array face-to-face with the copper sheet floor of the millimeter-wave feed layer, extend the metallized holes in each millimeter-wave microstrip patch antenna unit, and make the metallized holes pass through the antenna The copper sheet floor of the unit passes through the copper sheet floor of the millimeter-wave feeding layer and the second dielectric sheet, reaches the millimeter-wave feeding microstrip line structure, and contacts with the microstrip line structure; A hole is set on the copper sheet floor of the millimeter wave feeding layer as a first isolation ring, and the metallized hole has no contact with the copper sheet floor of the dual-frequency antenna array and the copper sheet floor of the feeding network. There are two types of millimeter-wave microstrip patch antennas, and two types of millimeter-wave feed microstrip lines. Through metallized holes, horizontally polarized millimeter-wave microstrip patch antennas and horizontally polarized millimeter-wave feed microstrips The line structure is in contact, and the vertically polarized millimeter-wave microstrip patch antenna is in contact with the vertically polarized millimeter-wave feed microstrip line structure.
S32、设计第一低频馈电层。在第三介质片的顶面覆铜,形成第一层低频馈电微带线,在第三介质片的底面覆铜作为铜片地板,并将一片增厚介质片贴于第三介质片的铜片地板,并放置于第二介质片下方,增厚介质片朝上方;第一层低频馈电层由多个1分8的威尔金森微带线结构和多个移相器芯片组成;其中一个1分8的威尔金森微带线结构的多个输出端与所述多个移相器芯片的输入端一一对应连接,所述多个移相器芯片的输出端分别与其余一分8的威尔金森微带线结构的输入端一一对应连接,从而将从所述一个1分8的威尔金森微带线结构的输入端输入馈电网络的能量均等分配至所述其余一分8的威尔金森微带线结构的输出端口。第一层低频馈电层设计完成以后,放置于第二介质片下方,增厚介质片朝内,然后将低频微带贴片天线单元的第一铜丝延长至第一层低频馈电微带线,铜丝依次穿过第二介质片、增厚介质片和第三介质片。以第一铜丝为中心在毫米波馈电层的铜片地板和第一低频馈电层的铜片地板,分别设置一个孔作为第二隔离环,第一铜丝与双频天线阵列的铜片地板、毫米波馈电层的铜片地板和第一低频馈电层的铜片地板均无接触。S32 , designing a first low-frequency feeding layer. Clad copper on the top surface of the third dielectric sheet to form the first layer of low-frequency feeding microstrip lines, coat copper on the bottom surface of the third dielectric sheet as a copper floor, and attach a thickened dielectric sheet to the bottom of the third dielectric sheet The copper sheet floor is placed under the second dielectric sheet, and the thickened dielectric sheet faces upward; the first low-frequency feed layer is composed of multiple 1:8 Wilkinson microstrip line structures and multiple phase shifter chips; One of the multiple output terminals of the 1:8 Wilkinson microstrip line structure is connected to the input terminals of the multiple phase shifter chips in a one-to-one correspondence, and the output terminals of the multiple phase shifter chips are respectively connected with the other one The input ends of the 8-point Wilkinson microstrip line structure are connected in a one-to-one correspondence, so that the energy input to the feeding network from the input end of the one 1-
S33、设计第二低频馈电层。第二低频馈电层的设计思路与第一低频馈电层一致,采用第四介质片,区别在于第二层低频馈电层的9个1分8威尔金森微带线功分器位置改变了。第二层低频馈电层设计完成以后,放置于第一层馈电层下方,增厚介质片朝内。然后将低频微带贴片天线单元的第二铜丝延长至第二层低频馈电微带线,铜丝依次穿过第二介质片、第一层增厚介质片、第三介质片、第二层增厚介质片和第四介质片。以第二铜丝为中心在毫米波馈电层的铜片地板、第一低频馈电层的铜片地板和第二低频馈电层的铜片地板,分别设置一个孔作为第二隔离环,第二铜丝与双频天线阵列的铜片地板、毫米波馈电层的铜片地板、第一低频馈电层的铜片地板和第二低频馈电层的铜片地板均无接触。S33, designing a second low-frequency feeding layer. The design idea of the second low-frequency feeding layer is the same as that of the first low-frequency feeding layer, and the fourth dielectric sheet is used. The difference is that the positions of the nine 1-point 8-Wilkinson microstrip line power dividers in the second-layer low-frequency feeding layer are changed. . After the design of the second low-frequency feeding layer is completed, it is placed under the first feeding layer with the thickened dielectric sheet facing inward. Then extend the second copper wire of the low-frequency microstrip patch antenna unit to the second layer of low-frequency feeding microstrip lines, and the copper wire passes through the second dielectric sheet, the first thickened dielectric sheet, the third dielectric sheet, the Two layers of thickened dielectric sheets and a fourth dielectric sheet. With the second copper wire as the center, a hole is set on the copper sheet floor of the millimeter wave feeding layer, the copper sheet floor of the first low frequency feeding layer and the copper sheet floor of the second low frequency feeding layer, respectively, and a hole is set as the second isolation ring, The second copper wire has no contact with the copper floor of the dual-frequency antenna array, the copper floor of the millimeter wave feed layer, the copper floor of the first low frequency feed layer, and the copper floor of the second low frequency feed layer.
S34、两层低频馈电层设计完成以后,在双频阵列天线、毫米波馈电层和双层低频馈电层的边缘部分,打几个洞,插入塑料螺柱、塑料垫片和塑料螺母,即可将双频天线阵列、毫米波馈电层与低频馈电层进一步固定在一起,使双频双极化的集成相控阵与多波束阵列天线成为一个牢固的整体。两层低频馈电层可以实现低频微带贴片天线不同极化方式工作,即双极化工作;毫米波馈电层也有两种极化的馈电微带线。最终双频双极化的集成相控阵与多波束阵列天线完成设计。S34. After the design of the two-layer low-frequency feed layer is completed, punch a few holes in the edge of the dual-frequency array antenna, the millimeter-wave feed layer and the double-layer low-frequency feed layer, and insert plastic studs, plastic spacers and plastic nuts. , the dual-frequency antenna array, the millimeter-wave feeding layer and the low-frequency feeding layer can be further fixed together, so that the dual-frequency dual-polarized integrated phased array and the multi-beam array antenna become a solid whole. The two-layer low-frequency feeding layer can realize the low-frequency microstrip patch antenna to work in different polarization modes, that is, dual-polarization operation; the millimeter-wave feeding layer also has two-polarized feeding microstrip lines. Finally, a dual-frequency dual-polarization integrated phased array and multi-beam array antenna are designed.
显然,上述所述的实施例只是本发明的一部分实施例,而不是全部实施例,本发明不限于上述实施例的细节,任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆视为不脱离本发明的专利范畴。Obviously, the above-mentioned embodiments are only a part of the embodiments of the present invention, rather than all the embodiments, and the present invention is not limited to the details of the above-mentioned embodiments, any suitable changes or modifications made by those of ordinary skill in the art, All are regarded as not departing from the patent scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210958139.1A CN115051171A (en) | 2022-08-11 | 2022-08-11 | Dual-frequency dual-polarization integrated phased array and multi-beam array antenna and design method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210958139.1A CN115051171A (en) | 2022-08-11 | 2022-08-11 | Dual-frequency dual-polarization integrated phased array and multi-beam array antenna and design method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115051171A true CN115051171A (en) | 2022-09-13 |
Family
ID=83167067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210958139.1A Pending CN115051171A (en) | 2022-08-11 | 2022-08-11 | Dual-frequency dual-polarization integrated phased array and multi-beam array antenna and design method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115051171A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117317619A (en) * | 2023-12-01 | 2023-12-29 | 成都恪赛科技有限公司 | + -45 DEG dual-polarized four-feed tile type phased array antenna |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6366244B1 (en) * | 1993-03-11 | 2002-04-02 | Southern California Edison Company | Planar dual band microstrip or slotted waveguide array antenna for all weather applications |
KR100922180B1 (en) * | 2008-05-07 | 2009-10-19 | 서강대학교산학협력단 | Optimal Design Method of Periodic Lean Array in Ultrasound Imaging System |
CN106410396A (en) * | 2016-10-26 | 2017-02-15 | 华南理工大学 | Compact multi-beam antenna array with high and low frequencies of filtering oscillators in interlacing arrangement |
CN108872970A (en) * | 2018-06-14 | 2018-11-23 | 苏州桑泰海洋仪器研发有限责任公司 | Graing lobe method of discrimination suitable for general equidistant thinned array simple signal Wave beam forming |
CN110011076A (en) * | 2019-03-13 | 2019-07-12 | 成都聚利中宇科技有限公司 | A kind of thinned array antenna and aligning method of periodic arrangement |
CN110994165A (en) * | 2019-11-21 | 2020-04-10 | 东南大学 | A dual-polarized broadband antenna array with balanced feeding of suspended microstrip lines with high isolation |
CN113437534A (en) * | 2021-07-02 | 2021-09-24 | 成都锐芯盛通电子科技有限公司 | Ku/Ka dual-frequency dual-polarization phased-array antenna radiation array |
CN114336043A (en) * | 2022-01-13 | 2022-04-12 | 广东分数维无线科技有限公司 | Miniaturized integrated phased-array antenna and design method thereof |
-
2022
- 2022-08-11 CN CN202210958139.1A patent/CN115051171A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6366244B1 (en) * | 1993-03-11 | 2002-04-02 | Southern California Edison Company | Planar dual band microstrip or slotted waveguide array antenna for all weather applications |
KR100922180B1 (en) * | 2008-05-07 | 2009-10-19 | 서강대학교산학협력단 | Optimal Design Method of Periodic Lean Array in Ultrasound Imaging System |
CN106410396A (en) * | 2016-10-26 | 2017-02-15 | 华南理工大学 | Compact multi-beam antenna array with high and low frequencies of filtering oscillators in interlacing arrangement |
CN108872970A (en) * | 2018-06-14 | 2018-11-23 | 苏州桑泰海洋仪器研发有限责任公司 | Graing lobe method of discrimination suitable for general equidistant thinned array simple signal Wave beam forming |
CN110011076A (en) * | 2019-03-13 | 2019-07-12 | 成都聚利中宇科技有限公司 | A kind of thinned array antenna and aligning method of periodic arrangement |
CN110994165A (en) * | 2019-11-21 | 2020-04-10 | 东南大学 | A dual-polarized broadband antenna array with balanced feeding of suspended microstrip lines with high isolation |
CN113437534A (en) * | 2021-07-02 | 2021-09-24 | 成都锐芯盛通电子科技有限公司 | Ku/Ka dual-frequency dual-polarization phased-array antenna radiation array |
CN114336043A (en) * | 2022-01-13 | 2022-04-12 | 广东分数维无线科技有限公司 | Miniaturized integrated phased-array antenna and design method thereof |
Non-Patent Citations (1)
Title |
---|
XIAOXIONG GU ET AL.: "A Multilayer Organic Package with 64 Dual-Polarized Antennas for 28GHz 5G Communication", 《IEEE ECTC》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117317619A (en) * | 2023-12-01 | 2023-12-29 | 成都恪赛科技有限公司 | + -45 DEG dual-polarized four-feed tile type phased array antenna |
CN117317619B (en) * | 2023-12-01 | 2024-04-12 | 成都恪赛科技有限公司 | + -45 DEG dual-polarized four-feed tile type phased array antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6239762B1 (en) | Interleaved crossed-slot and patch array antenna for dual-frequency and dual polarization, with multilayer transmission-line feed network | |
US20050156802A1 (en) | Antenna arrays using long slot apertures and balanced feeds | |
US9318811B1 (en) | Methods and designs for ultra-wide band(UWB) array antennas with superior performance and attributes | |
KR20030091383A (en) | Planar antenna with circular and linear polarization. | |
JPH04503133A (en) | antenna array | |
JP2018502515A (en) | Antenna array using sandwiched radiating elements on the ground plane and supplied by stripline | |
CN114069219B (en) | Microstrip phased array antenna unit and array thereof | |
CN113851833B (en) | Grating lobe suppression wide-angle scanning phased array based on directional diagram reconfigurable subarray technology | |
US11996629B2 (en) | Beam steering antenna structure and electronic device comprising said structure | |
CN110061353A (en) | A kind of miniaturization Ku full frequency band satellite antenna arrays | |
CN110970740B (en) | Antenna system | |
TWI679803B (en) | Antenna system | |
CN115528424A (en) | Wide-beam dual circularly polarized metasurface antenna unit, implementation method and phased array antenna | |
CN106785360A (en) | The dual polarization broadband element antenna and aerial array of a kind of large-angle scanning | |
CN110504527B (en) | L and X wave band common-caliber antenna with novel structure | |
Kasemodel et al. | Dual polarized ultrawideband coincident phase center TCDA with 15: 1 bandwidth | |
CN114498048B (en) | Broadband wide-angle scanning low-profile dual-polarized phased array antenna | |
CN115051171A (en) | Dual-frequency dual-polarization integrated phased array and multi-beam array antenna and design method thereof | |
CN112186369B (en) | Three-beam dual-polarized array antenna | |
CN220753757U (en) | K-band high-gain broadband microstrip antenna and antenna unit | |
CN114336043B (en) | Miniaturized integrated phased-array antenna and design method thereof | |
CN217768783U (en) | Dual-frequency dual-polarization integrated phased array and multi-beam array antenna | |
CN116130981A (en) | Dual-polarized horn common-caliber planar array antenna | |
CN111900537B (en) | S-band low-sidelobe array antenna and design method thereof | |
CN117981169A (en) | Antenna calibration plate with non-uniform coupler sections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220913 |