CN115047758A - Smith prediction correction-based time lag integral process prediction function control method - Google Patents
Smith prediction correction-based time lag integral process prediction function control method Download PDFInfo
- Publication number
- CN115047758A CN115047758A CN202210534645.8A CN202210534645A CN115047758A CN 115047758 A CN115047758 A CN 115047758A CN 202210534645 A CN202210534645 A CN 202210534645A CN 115047758 A CN115047758 A CN 115047758A
- Authority
- CN
- China
- Prior art keywords
- prediction
- correction
- smith
- time
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明属于工业自动化领域,公开了一种基于Smith预估校正的时滞积分过程预测函数控制方法,首先根据实时采集到的阶跃响应数据进行建模,找出对象的基本特性,之后对基于Smith预估校正的预测函数控制进行新的误差校正补偿,最后将得到的最优控制律实施于被控的积分过程。本发明针对传统的误差校正方法无法有效解决预测函数控制下时滞积分过程遭遇持续干扰带来的影响,提出一种对应的新型误差校正补偿方法,最终基于此误差校正方法,预测函数控制能有效解决各类持续的不确定干扰,提升了控制系统的稳定性,也进一步促进了先进控制算法在工业中的应用。The invention belongs to the field of industrial automation, and discloses a time-delay integral process prediction function control method based on Smith prediction and correction. The prediction function control of Smith's prediction correction performs new error correction and compensation, and finally the obtained optimal control law is implemented in the controlled integration process. Aiming at the fact that the traditional error correction method cannot effectively solve the influence of continuous interference in the time-delay integration process under the control of the prediction function, the invention proposes a corresponding new error correction and compensation method, and finally based on the error correction method, the prediction function control can be effectively controlled Solving all kinds of persistent uncertain disturbances improves the stability of the control system and further promotes the application of advanced control algorithms in the industry.
Description
技术领域technical field
本发明属于工业自动化领域,尤其涉及一种基于Smith预估校正的时滞积分过程预测函数控制方法。The invention belongs to the field of industrial automation, and in particular relates to a time-delay integral process prediction function control method based on Smith prediction and correction.
背景技术Background technique
对工业中的积分对象而言,普通的预测函数控制方法并不能有效地抵抗各类持续的干扰,在这些干扰下积分过程最终会偏离设定值,达不到预期的控制效果。与此同时,大时滞过程在工业中是很常见的,Smith预估校正被引入预测函数控制中来对时滞进行补偿是一种常用的方法,如果能给出对应的积分过程误差校正方法,这样将进一步促使基于Smith预估校正的预测函数控制方法的应用,从而进一步推动智能控制算法的发展。For the integration object in the industry, the ordinary predictive function control method cannot effectively resist various continuous disturbances. Under these disturbances, the integration process will eventually deviate from the set value, and the expected control effect cannot be achieved. At the same time, large time-delay processes are very common in the industry. Smith prediction correction is introduced into the prediction function control to compensate for the time delay. It is a common method. If the corresponding integral process error correction method can be given , which will further promote the application of the predictive function control method based on Smith prediction correction, thereby further promoting the development of intelligent control algorithms.
发明内容SUMMARY OF THE INVENTION
本发明目的在于提供一种基于Smith预估校正的时滞积分过程预测函数控制方法,以解决传统的误差校正方法无法有效解决预测函数控制下时滞积分过程遭遇持续干扰带来的影响的技术问题。The purpose of the present invention is to provide a time-delay integral process prediction function control method based on Smith prediction correction, so as to solve the technical problem that the traditional error correction method cannot effectively solve the technical problem that the time-delay integral process under the prediction function control encounters the influence of continuous disturbance. .
为解决上述技术问题,本发明的一种基于Smith预估校正的时滞积分过程预测函数控制方法的具体技术方案如下:In order to solve the above-mentioned technical problems, a specific technical scheme of a time-delay integral process prediction function control method based on Smith's prediction and correction of the present invention is as follows:
一种基于Smith预估校正的时滞积分过程预测函数控制方法,包括如下步骤:A time-delay integral process prediction function control method based on Smith prediction correction, comprising the following steps:
步骤1:采集积分过程的阶跃响应数据,计算出对应的对象模型;根据实时采集到的阶跃响应数据进行建模,找出对象的基本特性;Step 1: collect the step response data of the integration process, and calculate the corresponding object model; carry out modeling according to the step response data collected in real time, and find out the basic characteristics of the object;
步骤2:对基于Smith预估校正的预测函数控制进行新的误差校正补偿;Step 2: Perform new error correction compensation for the prediction function control based on Smith prediction correction;
建立积分过程对象的传递函数模型;Establish the transfer function model of the integral process object;
步骤3:得到的最优控制律实施于被控的积分过程;设计积分过程的基于Smith预估校正的预测函数控制方法。Step 3: The obtained optimal control law is implemented in the controlled integral process; a predictive function control method based on Smith prediction correction is designed for the integral process.
进一步地,所述步骤1包括如下具体步骤:Further, the step 1 includes the following specific steps:
步骤1.1:对积分过程的输入端加入一个阶跃信号,开始记录积分过程的阶跃响应信号;Step 1.1: Add a step signal to the input end of the integration process, and start recording the step response signal of the integration process;
步骤1.2:对获得的阶跃响应信号进行滤波处理,然后将滤波后的光滑曲线后面接近直线的部分拟合成一条直线,之后记录每个采样时刻光滑曲线上对应的阶跃响应数据值,采样间隔设置为Ts,记录的值为基于稳态部分增加的数值,分别为b1,b2,…,bd,bd+1,bd+2,…,其中b1,…,bd为时滞部分,即该区间的数据值基本尚未改变,bd+1,bd+2,…为采样数据值开始变化的部分,该区间数据采样值之间的差值可视作定值。Step 1.2: Filter the obtained step response signal, then fit the part close to the straight line behind the filtered smooth curve into a straight line, and then record the corresponding step response data value on the smooth curve at each sampling time, and sample The interval is set to T s , and the recorded values are incremented based on the steady state portion, b 1 ,b 2 ,…,b d ,b d+1 ,b d+2 ,…, where b 1 ,…,b d is the time delay part, that is, the data value in this interval has not changed basically, b d+1 , b d+2 ,… are the part where the sampled data value begins to change, and the difference between the data sampled values in this interval can be regarded as a fixed value. value.
进一步地,所述步骤2包括如下具体步骤:Further, the step 2 includes the following specific steps:
步骤2.1:根据阶跃采样数据可知,积分过程对象的滞后时间为τ=d*Ts;Step 2.1: According to the step sampling data, the lag time of the integral process object is τ=d*T s ;
步骤2.2:积分过程对象的增益为K=(bd+2-bd+1)/Ts;Step 2.2: the gain of the integral process object is K=(b d+2 -b d+1 )/T s ;
最终,得到的积分过程传递函数模型为Finally, the obtained integral process transfer function model is
其中,s为拉普拉斯算子。Among them, s is the Laplacian operator.
进一步地,所述步骤3包括如下具体步骤:Further, the step 3 includes the following specific steps:
步骤3.1:对建立的传递函数模型在采样时间Ts1下进行离散,得到离散方程模型:Step 3.1: Discrete the established transfer function model at the sampling time T s1 to obtain a discrete equation model:
步骤3.2:对步骤3.1中的离散方程模型去掉纯滞后,可得去掉纯滞后的方程;Step 3.2: Remove the pure lag from the discrete equation model in Step 3.1, and get the equation with the pure lag removed;
步骤3.3:基于步骤3.2中的模型计算积分过程模型的预测值;Step 3.3: Calculate the predicted value of the integral process model based on the model in Step 3.2;
步骤3.4:选择积分过程对象的基于Smith预估校正的预测函数控制目标函数;Step 3.4: Select the prediction function control objective function based on Smith prediction and correction of the integral process object;
步骤3.5:将步骤3.4中得到的基于Smith预估校正的预测函数最优控制律实施于积分过程对象。Step 3.5: Implement the optimal control law of the prediction function based on Smith prediction correction obtained in step 3.4 to the integration process object.
进一步地,所述步骤3.1得到离散方程模型如下:Further, the discrete equation model obtained in step 3.1 is as follows:
ym(k)=ym(k-1)+K*Ts1*u(k-1-τ/Ts1)y m (k)=y m (k-1)+K*T s1 *u(k-1-τ/T s1 )
其中,ym(k),u(k)分别为积分过程对象在k时刻的模型输出与输入值。Among them, y m (k), u (k) are the model output and input value of the integration process object at time k, respectively.
进一步地,所述步骤3.2包括如下具体步骤:Further, the step 3.2 includes the following specific steps:
对步骤3.1中的离散方程模型去掉纯滞后,可得下面的方程:Removing the pure lag from the discrete equation model in step 3.1 yields the following equation:
ymav(k)=ymav(k-1)+K*Ts1*u(k-1)y mav (k)=y mav (k-1)+K*T s1 *u(k-1)
其中,ymav(k)为k时刻去掉滞后的模型输出;Among them, y mav (k) is the model output with the lag removed at time k;
基于Smith预估校正,积分过程对象的实际校正输出为Based on the Smith prediction correction, the actual correction output of the integration process object is
ypav(k)=yp(k)+ymav(k)-ymav(k-τ/Ts1)y pav (k)=y p (k)+y mav (k)-y mav (k-τ/T s1 )
其中,ypav(k),yp(k)分别为积分过程经过Smith预估校正后的输出以及过程实际输出。Among them, y pav (k), y p (k) are the output of the integration process after Smith's prediction and correction and the actual output of the process, respectively.
进一步地,所述步骤3.3包括如下具体步骤:Further, the step 3.3 includes the following specific steps:
基于步骤3.2中的模型计算积分过程模型的预测值,基函数取阶跃函数,可得积分过程模型的预测值为:Based on the model in step 3.2, the predicted value of the integral process model is calculated, and the basis function is a step function, and the predicted value of the integral process model can be obtained:
ymav(k+H)=ymav(k)+H*K*Ts1*u(k)y mav (k+H)=y mav (k)+H*K*T s1 *u(k)
其中,H为预测时域;Among them, H is the prediction time domain;
基于Smith预估校正的情况下,模型误差e(k)计算如下:In the case of correction based on Smith's prediction, the model error e(k) is calculated as follows:
e(k)=ypav(k)-ymav(k)e(k)=y pav (k)-y mav (k)
对于引入的预测函数控制,采用如下的误差校正式子:For the introduced prediction function control, the following error correction formula is used:
err(k)=e(k)-err_sum(k-1)err(k)=e(k)-err_sum(k-1)
err_sum(k)=err_sum(k-1)+λ*err(k)err_sum(k)=err_sum(k-1)+λ*err(k)
其中,err_sum(k)的初始值为0,λ为误差校正系数,取值为0~1;Among them, the initial value of err_sum(k) is 0, and λ is the error correction coefficient, which ranges from 0 to 1;
考虑到积分过程的特性,最终经过误差补偿校正的模型预测输出为ymav_c(k+H)=ymav(k+H)+err_sum(k)+(H+τ/Ts1*λ)*err(k)Considering the characteristics of the integration process, the final model prediction output corrected by error compensation is y mav_c (k+H)=y mav (k+H)+err_sum(k)+(H+τ/T s1 *λ)*err (k)
其中,误差补偿校正的前部分为常规的补偿校正,后部分为针对于时滞积分特性的补偿校正,通过调节误差校正系数,对误差补偿的强弱进行调整。Among them, the former part of the error compensation correction is the conventional compensation correction, and the latter part is the compensation correction for the time-delay integral characteristic. By adjusting the error correction coefficient, the strength of the error compensation is adjusted.
进一步地,所述步骤3.4包括如下具体步骤:Further, the step 3.4 includes the following specific steps:
选择积分过程对象的基于Smith预估校正的预测函数控制目标函数如下:The prediction function control objective function based on Smith prediction correction for selecting the integral process object is as follows:
其中,yr(k)为积分过程对象k时刻的参考轨迹点,取如下计算式子:yr(k+H)=ηHy(k)+(1-ηH)c(k)Among them, y r (k) is the reference trajectory point of the integration process object at time k, and the following calculation formula is taken: y r (k+H)=η H y(k)+(1-η H )c(k)
η为参考轨迹的柔化系数,c(k)为积分过程对象k时刻的设定值,Q为跟踪误差的加权系数;η is the softening coefficient of the reference trajectory, c(k) is the set value of the integral process object at time k, and Q is the weighting coefficient of the tracking error;
对上述目标函数求导可得,基于Smith预估校正的预测函数控制律为: The derivation of the above objective function can be obtained, and the control law of the prediction function based on Smith prediction correction is:
进一步地,所述步骤3.5包括如下具体步骤:Further, the step 3.5 includes the following specific steps:
在下一个采样周期,按照步骤3.2~步骤3.4中的步骤求解最新的预测函数最优控制律作用于被控积分过程,后面依此循环。In the next sampling period, follow the steps in steps 3.2 to 3.4 to obtain the latest optimal control law of the prediction function to act on the controlled integration process, and the cycle follows.
本发明的一种基于Smith预估校正的时滞积分过程预测函数控制方法具有以下优点:本发明针对传统的误差校正方法无法有效解决预测函数控制下时滞积分过程遭遇持续干扰带来的影响,提出一种对应的新型误差校正补偿方法,最终基于此误差校正方法,预测函数控制能有效解决各类持续的不确定干扰,提升了控制系统的稳定性,也进一步促进了先进控制算法在工业中的应用。A time-delay integral process prediction function control method based on Smith's prediction and correction of the present invention has the following advantages: the present invention cannot effectively solve the influence of continuous interference encountered in the time-delay integral process under the prediction function control due to the traditional error correction method, A corresponding new error correction compensation method is proposed. Finally, based on this error correction method, predictive function control can effectively solve all kinds of continuous uncertain disturbances, improve the stability of the control system, and further promote the application of advanced control algorithms in the industry. Applications.
附图说明Description of drawings
无。none.
具体实施方式Detailed ways
为了更好地了解本发明的目的、结构及功能,下面结合附图,对本发明一种基于Smith预估校正的时滞积分过程预测函数控制方法做进一步详细的描述。In order to better understand the purpose, structure and function of the present invention, a method for controlling the prediction function of a time-delay integral process based on Smith prediction and correction of the present invention will be described in further detail below with reference to the accompanying drawings.
本发明方法首先根据实时采集到的阶跃响应数据进行建模,找出对象的基本特性,之后对基于Smith预估校正的预测函数控制进行新的误差校正补偿,最后将得到的最优控制律实施于被控的积分过程。The method of the invention first conducts modeling according to the step response data collected in real time, finds out the basic characteristics of the object, then performs new error correction and compensation for the prediction function control based on Smith's prediction and correction, and finally calculates the obtained optimal control law Implemented in the controlled integration process.
本发明的技术方案是通过过程数据采集、过程模型建立、Smith预估校正、误差补偿校正、目标函数求解等手段,建立一种基于Smith预估校正的预测函数积分过程控制方法,解决各类干扰给积分过程带来的影响,最终提高整体系统的稳定性。The technical scheme of the present invention is to establish a process control method of prediction function integration based on Smith's prediction and correction by means of process data acquisition, process model establishment, Smith prediction correction, error compensation correction, objective function solution, etc., so as to solve various disturbances. The impact on the integration process will ultimately improve the stability of the overall system.
本发明的步骤包括:The steps of the present invention include:
步骤1:采集积分过程的阶跃响应数据,计算出对应的对象模型,具体步骤如下:Step 1: Collect the step response data of the integration process, and calculate the corresponding object model. The specific steps are as follows:
步骤1.1:对积分过程的输入端加入一个阶跃信号,开始记录积分过程的阶跃响应信号。Step 1.1: Add a step signal to the input end of the integration process, and start recording the step response signal of the integration process.
步骤1.2:对获得的阶跃响应信号进行滤波处理,然后将滤波后的光滑曲线后面接近直线的部分拟合成一条直线,之后记录每个采样时刻(采样间隔设置为Ts)光滑曲线上对应的阶跃响应数据值(记录的值为基于稳态部分增加的数值),分别为b1,b2,…,bd,bd+1,bd+2,…。其中b1,…,bd为时滞部分,即该区间的数据值基本尚未改变。bd+1,bd+2,…为采样数据值开始变化的部分(由于过程系统的积分特性,该区间数据采样值之间的差值可视作定值)。Step 1.2: Filter the obtained step response signal, then fit the part close to the straight line behind the filtered smooth curve into a straight line, and then record each sampling time (the sampling interval is set to T s ) corresponding to the smooth curve. The step response data values of (recorded values are based on the increase in the steady state part), respectively b 1 , b 2 ,…, b d , b d+1 , b d+2 ,…. Among them, b 1 ,...,b d is the time-delay part, that is, the data value in this interval has basically not changed. b d+1 , b d+2 ,…are the parts where the sampled data values begin to change (due to the integral characteristics of the process system, the difference between the data sampled values in this interval can be regarded as a fixed value).
步骤2:建立积分过程对象的传递函数模型,具体如下:Step 2: Establish the transfer function model of the integral process object, as follows:
步骤2.1:根据阶跃采样数据可知,积分过程对象的滞后时间为τ=d*Ts。Step 2.1: According to the step sampling data, the lag time of the integration process object is τ=d*T s .
步骤2.2:积分过程对象的增益为K=(bd+2-bd+1)/Ts。Step 2.2: The gain of the integral process object is K=(b d+2 - b d+1 )/T s .
最终,得到的积分过程传递函数模型为Finally, the obtained integral process transfer function model is
其中,s为拉普拉斯算子。Among them, s is the Laplacian operator.
步骤3:设计积分过程的基于Smith预估校正的预测函数控制方法。Step 3: Design a prediction function control method based on Smith prediction correction for the integration process.
步骤3.1:对建立的传递函数模型在采样时间Ts1下进行离散,得到如下的离散方程模型:Step 3.1: Discrete the established transfer function model at the sampling time T s1 to obtain the following discrete equation model:
ym(k)=ym(k-1)+K*Ts1*u(k-1-τ/Ts1)y m (k)=y m (k-1)+K*T s1 *u(k-1-τ/T s1 )
其中,ym(k),u(k)分别为积分过程对象在k时刻的模型输出与输入值。Among them, y m (k), u (k) are the model output and input value of the integration process object at time k, respectively.
步骤3.2:对步骤3.1中的离散方程模型去掉纯滞后,可得下面的方程:Step 3.2: Remove the pure lag from the discrete equation model in Step 3.1 to get the following equation:
ymav(k)=ymav(k-1)+K*Ts1*u(k-1)y mav (k)=y mav (k-1)+K*T s1 *u(k-1)
其中,ymav(k)为k时刻去掉滞后的模型输出。Among them, y mav (k) is the model output with the lag removed at time k.
基于Smith预估校正,积分过程对象的实际校正输出为Based on the Smith prediction correction, the actual correction output of the integration process object is
ypav(k)=yp(k)+ymav(k)-ymav(k-τ/Ts1)y pav (k)=y p (k)+y mav (k)-y mav (k-τ/T s1 )
其中,ypav(k),yp(k)分别为积分过程经过Smith预估校正后的输出以及过程实际输出。Among them, y pav (k), y p (k) are the output of the integration process after Smith's prediction and correction and the actual output of the process, respectively.
步骤3.3:基于步骤3.2中的模型计算积分过程模型的预测值,这里为了计算方便,基函数取阶跃函数,可得积分过程模型的预测值为Step 3.3: Calculate the predicted value of the integral process model based on the model in step 3.2. Here, for the convenience of calculation, the basis function is a step function, and the predicted value of the integral process model can be obtained as
ymav(k+H)=ymav(k)+H*K*Ts1*u(k)y mav (k+H)=y mav (k)+H*K*T s1 *u(k)
其中,H为预测时域。Among them, H is the prediction time domain.
基于Smith预估校正的情况下,模型误差e(k)计算如下:In the case of correction based on Smith's prediction, the model error e(k) is calculated as follows:
e(k)=ypav(k)-ymav(k)e(k)=y pav (k)-y mav (k)
对于引入的预测函数控制,这里采用如下的误差校正式子:For the introduced prediction function control, the following error correction formula is used here:
err(k)=e(k)-err_sum(k-1)err(k)=e(k)-err_sum(k-1)
err_sum(k)=err_sum(k-1)+λ*err(k)err_sum(k)=err_sum(k-1)+λ*err(k)
其中,err_sum(k)的初始值为0,λ为误差校正系数,取值为0~1。Among them, the initial value of err_sum(k) is 0, and λ is the error correction coefficient, which ranges from 0 to 1.
考虑到积分过程的特性,最终经过误差补偿校正的模型预测输出为Considering the characteristics of the integration process, the final model prediction output corrected by error compensation is
ymav_c(k+H)=ymav(k+H)+err_sum(k)+(H+τ/Ts1*λ)*err(k)y mav_c (k+H)=y mav (k+H)+err_sum(k)+(H+τ/T s1 *λ)*err(k)
其中,误差补偿校正的前部分为常规的补偿校正,后部分为针对于时滞积分特性的补偿校正。通过调节误差校正系数,可以对误差补偿的强弱进行调整。Among them, the former part of the error compensation correction is the conventional compensation correction, and the latter part is the compensation correction for the time-delay integral characteristic. By adjusting the error correction coefficient, the strength of the error compensation can be adjusted.
步骤3.4:选择积分过程对象的基于Smith预估校正的预测函数控制目标函数如下:Step 3.4: Select the prediction function based on Smith prediction correction of the integral process object The control objective function is as follows:
其中,yr(k)为积分过程对象k时刻的参考轨迹点,可取如下计算式子:yr(k+H)=ηHy(k)+(1-ηH)c(k)Among them, y r (k) is the reference trajectory point of the integration process object at time k, and the following calculation formula can be taken: y r (k+H)=η H y(k)+(1-η H )c(k)
η为参考轨迹的柔化系数,c(k)为积分过程对象k时刻的设定值。Q为跟踪误差的加权系数。η is the softening coefficient of the reference trajectory, and c(k) is the set value of the integral process object at time k. Q is the weighting coefficient of the tracking error.
对上述目标函数求导可得,基于Smith预估校正的预测函数控制律为:The derivation of the above objective function can be obtained, and the control law of the prediction function based on Smith prediction correction is:
步骤3.5:将步骤3.4中得到的基于Smith预估校正的预测函数最优控制律实施于积分过程对象。在下一个采样周期,按照步骤3.2~步骤3.4中的步骤求解最新的预测函数最优控制律作用于被控积分过程,后面依此循环。Step 3.5: Implement the optimal control law of the prediction function based on Smith prediction correction obtained in step 3.4 to the integration process object. In the next sampling period, follow the steps in steps 3.2 to 3.4 to obtain the latest optimal control law of the prediction function to act on the controlled integration process, and the cycle follows.
实施例:Example:
具体的实施以锅炉汽包水位过程的控制为例:The specific implementation takes the control of the water level process of the boiler drum as an example:
锅炉汽包水位为典型的积分过程,其中给水量为调节手段。The boiler drum water level is a typical integral process, and the water supply is the adjustment method.
步骤1:采集锅炉汽包水位过程的阶跃响应数据,计算出锅炉汽包水位过程的对象模型,具体步骤如下:Step 1: Collect the step response data of the boiler drum water level process, and calculate the object model of the boiler drum water level process. The specific steps are as follows:
步骤1.1:对锅炉汽包水位过程的给水量加入一个阶跃信号,开始记录锅炉汽包水位过程的阶跃响应信号。Step 1.1: Add a step signal to the feed water in the boiler drum water level process, and start recording the step response signal of the boiler drum water level process.
步骤1.2:对获得的锅炉汽包水位过程阶跃响应信号进行滤波处理,然后将滤波后的光滑曲线后面接近直线的部分拟合成一条直线,之后记录每个采样时刻(采样间隔设置为Ts)光滑曲线上对应的锅炉汽包水位过程的阶跃响应数据值(记录的值为基于稳态部分增加的数值),分别记为b1,b2,…,bd,bd+1,bd+2,…。其中b1,…,bd为锅炉汽包水位过程的时滞部分,即该区间的锅炉汽包水位数据值基本尚未改变。bd+1,bd+2,…为锅炉汽包水位过程的采样数据值开始变化的部分(由于锅炉汽包水位过程的积分特性,该区间锅炉汽包水位的数据采样值之间的差值可视作定值)。Step 1.2: Filter the obtained step response signal of the boiler drum water level process, then fit the part close to the straight line behind the filtered smooth curve into a straight line, and then record each sampling time (the sampling interval is set to T s ) ) The step response data value of the boiler drum water level process corresponding to the smooth curve (the recorded value is based on the increased value of the steady-state part), respectively denoted as b 1 , b 2 ,…, b d , b d+1 , b d+2 ,…. Among them, b 1 ,...,b d is the time delay part of the boiler drum water level process, that is, the data value of the boiler steam drum water level in this interval has basically not changed. b d+1 , b d+2 ,…are the part where the sampling data values of the boiler drum water level process begin to change (due to the integral characteristic of the boiler drum water level process, the difference between the data sampling values of the boiler drum water level in this interval value can be regarded as a fixed value).
步骤2:建立锅炉汽包水位过程的传递函数模型,具体如下:Step 2: Establish the transfer function model of the boiler drum water level process, as follows:
步骤2.1:根据锅炉汽包水位过程的阶跃采样数据可知,锅炉汽包水位过程对象的滞后时间为τ=d*Ts。Step 2.1: According to the step sampling data of the boiler drum water level process, it can be known that the lag time of the boiler drum water level process object is τ=d*T s .
步骤2.2:锅炉汽包水位过程对象的增益为K=(bd+2-bd+1)/Ts。Step 2.2: The gain of the boiler drum water level process object is K=(b d+2 - b d+1 )/T s .
最终,得到的锅炉汽包水位过程的传递函数模型为Finally, the transfer function model of the boiler drum water level process is obtained as
其中,s为拉普拉斯算子。Among them, s is the Laplacian operator.
步骤3:设计锅炉汽包水位过程的基于Smith预估校正的预测函数控制方法。Step 3: Design a prediction function control method based on Smith prediction correction for the boiler drum water level process.
步骤3.1:对建立的锅炉汽包水位过程的传递函数模型在采样时间Ts1下进行离散,得到如下锅炉汽包水位过程的离散方程模型:Step 3.1: Discrete the established transfer function model of the boiler drum water level process at the sampling time T s1 , and obtain the following discrete equation model of the boiler drum water level process:
ym(k)=ym(k-1)+K*Ts1*u(k-1-τ/Ts1)y m (k)=y m (k-1)+K*T s1 *u(k-1-τ/T s1 )
其中,ym(k),u(k)分别为锅炉汽包水位过程在k时刻的模型输出与输入值。Among them, y m (k), u (k) are the model output and input values of the boiler drum water level process at time k, respectively.
步骤3.2:对步骤3.1中的离散方程模型去掉纯滞后,可得下面的方程:Step 3.2: Remove the pure lag from the discrete equation model in Step 3.1 to get the following equation:
ymav(k)=ymav(k-1)+K*Ts1*u(k-1)y mav (k)=y mav (k-1)+K*T s1 *u(k-1)
其中,ymav(k)为k时刻去掉滞后的锅炉汽包水位过程的模型输出。Among them, y mav (k) is the model output of the boiler drum water level process with the lag removed at time k.
基于Smith预估校正,锅炉汽包水位过程的实际校正输出为Based on Smith's prediction correction, the actual correction output of the boiler drum water level process is
ypav(k)=yp(k)+ymav(k)-ymav(k-τ/Ts1)y pav (k)=y p (k)+y mav (k)-y mav (k-τ/T s1 )
其中,ypav(k),yp(k)分别为锅炉汽包水位过程经过Smith预估校正后的输出以及过程实际输出。Among them, y pav (k), y p (k) are the output of the boiler drum water level process after Smith's prediction and correction and the actual output of the process, respectively.
步骤3.3:基于步骤3.2中的锅炉汽包水位过程模型计算对应的锅炉汽包水位预测值,这里为了计算方便,基函数取阶跃函数,可得锅炉汽包水位过程模型的预测值为Step 3.3: Calculate the corresponding predicted value of the boiler drum water level based on the boiler drum water level process model in step 3.2. Here, for the convenience of calculation, the basis function is a step function, and the predicted value of the boiler drum water level process model is
ymav(k+H)=ymav(k)+H*K*Ts1*u(k)y mav (k+H)=y mav (k)+H*K*T s1 *u(k)
其中,H为预测时域。Among them, H is the prediction time domain.
基于Smith预估校正的情况下,锅炉汽包水位过程的模型误差e(k)计算如下:Based on Smith's prediction and correction, the model error e(k) of the boiler drum water level process is calculated as follows:
e(k)=ypav(k)-ymav(k)e(k)=y pav (k)-y mav (k)
对于引入的预测函数控制,这里采用如下的误差校正式子:For the introduced prediction function control, the following error correction formula is used here:
err(k)=e(k)-err_sum(k-1)err(k)=e(k)-err_sum(k-1)
err_sum(k)=err_sum(k-1)+λ*err(k)err_sum(k)=err_sum(k-1)+λ*err(k)
其中,err_sum(k)的初始值为0,λ为误差校正系数,取值为0~1。Among them, the initial value of err_sum(k) is 0, and λ is the error correction coefficient, which ranges from 0 to 1.
考虑到锅炉汽包水位过程的积分特性,最终经过误差补偿校正的锅炉汽包水位过程的模型预测输出为Considering the integral characteristics of the boiler drum water level process, the final model prediction output of the boiler drum water level process corrected by error compensation is:
ymav_c(k+H)=ymav(k+H)+err_sum(k)+(H+τ/Ts1*λ)*err(k)y mav_c (k+H)=y mav (k+H)+err_sum(k)+(H+τ/T s1 *λ)*err(k)
其中,误差补偿校正的前部分为常规的补偿校正,后部分为针对于锅炉汽包水位过程的时滞积分特性的补偿校正。通过调节误差校正系数,可以对锅炉汽包水位过程误差补偿的强弱进行调整。Among them, the former part of the error compensation correction is the conventional compensation correction, and the latter part is the compensation correction for the time delay integral characteristic of the boiler drum water level process. By adjusting the error correction coefficient, the strength of the error compensation of the boiler drum water level process can be adjusted.
步骤3.4:选择锅炉汽包水位过程的基于Smith预估校正的预测函数控制目标函数如下:Step 3.4: Select the prediction function based on Smith prediction correction for the boiler drum water level process The control objective function is as follows:
其中,yr(k)为锅炉汽包水位过程k时刻的参考轨迹点,可取如下计算式子:Among them, y r (k) is the reference trajectory point of the boiler drum water level process at time k, which can be calculated as follows:
yr(k+H)=ηHy(k)+(1-ηH)c(k)y r (k+H)=η H y(k)+(1-η H )c(k)
η为锅炉汽包水位过程参考轨迹的柔化系数,c(k)为锅炉汽包水位k时刻的设定值。Q为锅炉汽包水位跟踪误差的加权系数。η is the softening coefficient of the reference trajectory of the boiler drum water level process, and c(k) is the set value of the boiler drum water level at time k. Q is the weighted coefficient of the boiler drum water level tracking error.
对上述锅炉汽包水位过程的目标函数求导可得,基于Smith预估校正的预测函数控制律为:The derivation of the objective function of the above boiler drum water level process can be obtained, and the control law of the prediction function based on Smith's prediction correction is:
步骤3.5:将步骤3.2中得到的基于Smith预估校正的预测函数最优给水量实施于锅炉汽包水位过程。在下一个采样周期,按照步骤3.2~步骤3.3中的步骤求解最新的最优给水量作用于被控锅炉汽包水位过程,后面依此循环。Step 3.5: Implement the optimal feed water amount of the prediction function based on Smith's prediction correction obtained in Step 3.2 into the boiler drum water level process. In the next sampling period, follow the steps in step 3.2 to step 3.3 to find out the process of the latest optimal feed water amount acting on the water level of the controlled boiler drum, and then follow this cycle.
可以理解,本发明是通过一些实施例进行描述的,本领域技术人员知悉的,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明所保护的范围内。It can be understood that the present invention is described by some embodiments, and those skilled in the art know that various changes or equivalent substitutions can be made to these features and embodiments without departing from the spirit and scope of the present invention. In addition, in the teachings of this invention, these features and embodiments may be modified to adapt a particular situation and material without departing from the spirit and scope of the invention. Therefore, the present invention is not limited by the specific embodiments disclosed herein, and all embodiments falling within the scope of the claims of the present application fall within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210534645.8A CN115047758B (en) | 2022-05-17 | 2022-05-17 | A predictive functional control method for time-delay integral processes based on Smith predictor correction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210534645.8A CN115047758B (en) | 2022-05-17 | 2022-05-17 | A predictive functional control method for time-delay integral processes based on Smith predictor correction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115047758A true CN115047758A (en) | 2022-09-13 |
CN115047758B CN115047758B (en) | 2025-03-18 |
Family
ID=83158732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210534645.8A Active CN115047758B (en) | 2022-05-17 | 2022-05-17 | A predictive functional control method for time-delay integral processes based on Smith predictor correction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115047758B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115891947A (en) * | 2023-02-22 | 2023-04-04 | 北京全路通信信号研究设计院集团有限公司 | Medium-low speed maglev train electro-hydraulic hybrid braking cooperative control method |
CN116048013A (en) * | 2022-11-22 | 2023-05-02 | 杭州司南智能技术有限公司 | Nonlinear prediction function control method for polyolefin process |
CN116088431A (en) * | 2022-11-22 | 2023-05-09 | 杭州司南智能技术有限公司 | Nonlinear Model Predictive Control Method for Chemical Process Based on Mechanism Model |
CN116088431B (en) * | 2022-11-22 | 2025-04-15 | 杭州司南智能技术有限公司 | Nonlinear model predictive control method for chemical process based on mechanism model |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5282130A (en) * | 1992-05-20 | 1994-01-25 | Elsag International B.V. | Method and apparatus for obtaining process characteristics in a self-tuning controller |
US5659667A (en) * | 1995-01-17 | 1997-08-19 | The Regents Of The University Of California Office Of Technology Transfer | Adaptive model predictive process control using neural networks |
CN103116283A (en) * | 2013-01-18 | 2013-05-22 | 杭州电子科技大学 | Method for controlling dynamic matrix of non-self-balance object |
CN103336437A (en) * | 2013-07-19 | 2013-10-02 | 杭州电子科技大学 | Predictive function control optimization-based integrating plant control method |
CN112213944A (en) * | 2019-07-12 | 2021-01-12 | 三菱电机(中国)有限公司 | Time-lag system control method based on Smith predictor and self-adaptive control |
US20210364388A1 (en) * | 2019-11-21 | 2021-11-25 | Dalian University Of Technology | Improved Smith Predictive Controller-Based Aero-engine H-Infinity Algorithm |
-
2022
- 2022-05-17 CN CN202210534645.8A patent/CN115047758B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5282130A (en) * | 1992-05-20 | 1994-01-25 | Elsag International B.V. | Method and apparatus for obtaining process characteristics in a self-tuning controller |
US5659667A (en) * | 1995-01-17 | 1997-08-19 | The Regents Of The University Of California Office Of Technology Transfer | Adaptive model predictive process control using neural networks |
CN103116283A (en) * | 2013-01-18 | 2013-05-22 | 杭州电子科技大学 | Method for controlling dynamic matrix of non-self-balance object |
CN103336437A (en) * | 2013-07-19 | 2013-10-02 | 杭州电子科技大学 | Predictive function control optimization-based integrating plant control method |
CN112213944A (en) * | 2019-07-12 | 2021-01-12 | 三菱电机(中国)有限公司 | Time-lag system control method based on Smith predictor and self-adaptive control |
US20210364388A1 (en) * | 2019-11-21 | 2021-11-25 | Dalian University Of Technology | Improved Smith Predictive Controller-Based Aero-engine H-Infinity Algorithm |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116048013A (en) * | 2022-11-22 | 2023-05-02 | 杭州司南智能技术有限公司 | Nonlinear prediction function control method for polyolefin process |
CN116088431A (en) * | 2022-11-22 | 2023-05-09 | 杭州司南智能技术有限公司 | Nonlinear Model Predictive Control Method for Chemical Process Based on Mechanism Model |
CN116088431B (en) * | 2022-11-22 | 2025-04-15 | 杭州司南智能技术有限公司 | Nonlinear model predictive control method for chemical process based on mechanism model |
CN115891947A (en) * | 2023-02-22 | 2023-04-04 | 北京全路通信信号研究设计院集团有限公司 | Medium-low speed maglev train electro-hydraulic hybrid braking cooperative control method |
US11981212B1 (en) | 2023-02-22 | 2024-05-14 | Crsc Research & Design Institute Group Co., Ltd. | Cooperative control method for electro-hydraulic hybrid braking of middle-low speed maglev train |
Also Published As
Publication number | Publication date |
---|---|
CN115047758B (en) | 2025-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115047758A (en) | Smith prediction correction-based time lag integral process prediction function control method | |
CN110101106B (en) | Moisture control method and system for dampening and humidifying process based on fuzzy feedforward feedback algorithm | |
JP2002523821A (en) | Controller for determining optimal tuning parameters used in a process control system and method of operating the controller | |
CN103336437B (en) | Based on the integrating plant control method that Predictive function control is optimized | |
CN109283844B (en) | A Smith Predictive Compensation Control Method Based on Pole Configuration | |
CN102360176A (en) | Method for controlling main steam temperature in power plant based on simplified second-order auto disturbance rejection controller | |
CN103116283A (en) | Method for controlling dynamic matrix of non-self-balance object | |
CN109946979B (en) | Self-adaptive adjusting method for sensitivity function of servo system | |
CN103345150B (en) | The waste plastic oil-refining pyrolysis furnace fire box temperature control method that Predictive function control is optimized | |
CN115336780A (en) | Loose moisture regain water adding control system based on neural network model and double parameter correction | |
CN108361688B (en) | Control method, system and terminal equipment for desulfurization in circulating fluidized bed boiler | |
CN112180737B (en) | A Control System Control Method Based on Active Disturbance Rejection Control and Smith-like Prediction | |
CN104456513A (en) | Main steam temperature estimation optimal control method for thermal power plant | |
CN107065541A (en) | A kind of system ambiguous network optimization PID PFC control methods of coking furnace furnace pressure | |
CN105652666B (en) | Large-scale drop press upper beam prediction of speed control method based on BP neural network | |
CN110347038B (en) | A two-degree-of-freedom Smith prediction control method for the cooling process of cement clinker | |
CN114275012A (en) | Self-adaptive control method for train control level | |
CN105318312B (en) | A kind of full working scope multistep advanced prediction control method of station boiler vapor (steam) temperature | |
CN116880219B (en) | Loose conditioning self-adaptive model prediction control system and method | |
CN110426957B (en) | Water plant dosing system self-adaptive sliding mode control method based on time delay observer | |
CN113359460A (en) | Integral object control method for constrained dynamic matrix control optimization | |
CN103363812B (en) | A control method for cement clinker grate cooler | |
JP2008001816A (en) | Combustion-controlling method in coke oven | |
CN116048013A (en) | Nonlinear prediction function control method for polyolefin process | |
CN114237035A (en) | A Predictive Function Control Method Based on Simplified Extended State Space Model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |