CN115045778A - Measurement method for simulating acoustic-solid coupling response characteristic of solid rocket engine - Google Patents
Measurement method for simulating acoustic-solid coupling response characteristic of solid rocket engine Download PDFInfo
- Publication number
- CN115045778A CN115045778A CN202210726441.4A CN202210726441A CN115045778A CN 115045778 A CN115045778 A CN 115045778A CN 202210726441 A CN202210726441 A CN 202210726441A CN 115045778 A CN115045778 A CN 115045778A
- Authority
- CN
- China
- Prior art keywords
- shell
- solid
- spring
- rocket engine
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007787 solid Substances 0.000 title claims abstract description 32
- 238000010168 coupling process Methods 0.000 title claims abstract description 20
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 20
- 230000004044 response Effects 0.000 title claims abstract description 20
- 230000008878 coupling Effects 0.000 title claims abstract description 19
- 238000000691 measurement method Methods 0.000 title claims abstract description 8
- 238000012360 testing method Methods 0.000 claims abstract description 36
- 238000002485 combustion reaction Methods 0.000 claims abstract description 25
- 230000010355 oscillation Effects 0.000 claims abstract description 20
- 239000003380 propellant Substances 0.000 claims abstract description 17
- 238000012546 transfer Methods 0.000 claims abstract description 8
- 230000001133 acceleration Effects 0.000 claims description 12
- 238000000429 assembly Methods 0.000 claims description 12
- 230000000712 assembly Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 6
- 229910000746 Structural steel Inorganic materials 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 6
- 239000011257 shell material Substances 0.000 description 18
- 238000002474 experimental method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K9/00—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
- F02K9/96—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by specially adapted arrangements for testing or measuring
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Testing Of Engines (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
本发明提供一种模拟固体火箭发动机声固耦合响应特性的测量方法,采用橡胶材料模拟推进剂,可以在保证试验的安全的前提下,有效研究火箭发动机声固耦合响应特性,并且具有试验成本低的特点;通过设计主体固定组件,采用支撑框架和弹簧组件将壳体吊装在试验台架上,减小支撑框架的约束作用对试验模型振动特性的影响,壳体被“相对自由”的吊起,精确模拟火箭发动机在工作时的自由边界条件,从而可以从实验上验证结构振荡在条件合适的情况下的确能够引发燃烧室内部的压力振荡,获得更精确的结构振荡到燃烧室内部压强的传递函数以及燃烧室内压力振荡到发动机结构振荡的传递函数。
The invention provides a measurement method for simulating the sound-structure coupling response characteristics of a solid rocket motor. The rubber material is used to simulate the propellant, so that the sound-structure coupling response characteristics of the rocket motor can be effectively studied on the premise of ensuring the safety of the test, and the test cost is low. Features; by designing the main body fixing component, the support frame and spring components are used to hoist the shell on the test bench to reduce the influence of the restraint of the support frame on the vibration characteristics of the test model, and the shell is "relatively free" hoisted , to accurately simulate the free boundary conditions of the rocket engine at work, so that it can be verified experimentally that structural oscillations can indeed cause pressure oscillations inside the combustion chamber under suitable conditions, and a more accurate transfer of structural oscillations to the internal pressure of the combustion chamber can be obtained. function and the transfer function of the pressure oscillations in the combustion chamber to the engine structure oscillations.
Description
技术领域technical field
本发明属于固体火箭发动机技术领域,具体涉及一种模拟固体火箭发动机声固耦合响应特性的测量方法。The invention belongs to the technical field of solid rocket motors, and particularly relates to a measurement method for simulating the acoustic-structure coupling response characteristics of solid rocket motors.
背景技术Background technique
近年来固体火箭发动机在多发的不稳定燃烧现象,多为在发动机工作的中后期,尤其是当燃烧室内的药柱厚度变得较小和发动机壳体厚度在一个量级上时,就突发不稳燃烧,而在工作的前期则,表现得较为稳定。这很可能是由于在工作的后期推进剂变少导致燃烧室中燃气的压力振荡和壳体振动直接耦合相互影响,起到了共振作用,从而形成正反馈,进一步加强了燃烧室内压强的振荡,进而在工作末期出现了严重的不稳定燃烧现象,导致任务的失败。因此急需要使用实验的方法确定燃烧室声腔和结构固体之间耦合作用的情况。In recent years, the multiple unstable combustion phenomena of solid rocket motors are mostly in the middle and late stages of engine operation, especially when the thickness of the grain in the combustion chamber becomes smaller and the thickness of the engine shell is on the same order of magnitude, it suddenly occurs. Unstable combustion, but in the early stage of work, it is more stable. This is probably due to the fact that the pressure oscillation of the gas in the combustion chamber and the shell vibration are directly coupled to each other due to the reduction of propellant in the later stage of the work, which plays a resonance effect, thus forming a positive feedback, which further strengthens the oscillation of the pressure in the combustion chamber, and then Severe unstable combustion occurred at the end of the work, leading to the failure of the mission. Therefore, it is urgent to use an experimental method to determine the coupling effect between the acoustic cavity of the combustion chamber and the structural solid.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的是提供一种模拟固体火箭发动机声固耦合响应特性的测量方法,可以精确模拟火箭发动机在工作时的自由边界条件。In view of this, the purpose of the present invention is to provide a measurement method for simulating the sound-structure coupling response characteristics of a solid rocket motor, which can accurately simulate the free boundary conditions of the rocket motor during operation.
一种模拟固体火箭发动机声固耦合响应特性的测量方法,包括:A measurement method for simulating the sound-structure coupling response characteristics of a solid rocket motor, comprising:
将固体火箭发动机燃烧室简化为两端开口的圆柱形管腔,作为壳体(4);根据固体火箭发动机燃烧室中的推进剂的浇筑形式,在壳体(4)内表面设置相同结构及相同厚度的橡胶,用于模拟推进剂(8);The solid rocket motor combustion chamber is simplified into a cylindrical tube cavity with both ends open as the casing (4); according to the pouring form of the propellant in the solid rocket motor combustion chamber, the same structure and the same structure are arranged on the inner surface of the casing (4). Rubber of the same thickness to simulate propellant (8);
将壳体(4)安装到试验台架(10)上,壳体(4)两端各设置一个声源;The housing (4) is installed on the test bench (10), and a sound source is provided at each end of the housing (4);
在壳体(4)内部沿轴向设置多个声压传感器,在壳体(4)的内外侧各设置多个加速度传感器;A plurality of sound pressure sensors are arranged along the axial direction inside the casing (4), and a plurality of acceleration sensors are respectively arranged on the inner and outer sides of the casing (4);
打开声源,加速度传感器会记录壳体(4)的振动信息和声压传感器记录的声压信号作为此次试验的输出信号;Turn on the sound source, the acceleration sensor will record the vibration information of the casing (4) and the sound pressure signal recorded by the sound pressure sensor as the output signal of this test;
将壳体(4)两端开口封闭,用信号发生器产生白噪声信号,作用在壳体(4)的一端外壁上,作为输入信号;加速度传感器记录的壳体(4)的振动信息和声压传感器记录的声压信号作为此次试验的输出信号;The openings at both ends of the casing (4) are closed, and a signal generator is used to generate a white noise signal, which acts on the outer wall of one end of the casing (4) as an input signal; the vibration information and sound of the casing (4) recorded by the acceleration sensor The sound pressure signal recorded by the pressure sensor is used as the output signal of this test;
将上述两次试验收集的数据进行处理,分别得到结构振荡到燃烧室内部压强的传递函数以及燃烧室内压力振荡到发动机结构振荡的传递函数,用以分析固体火箭发动机声固耦合响应特性。The data collected from the above two tests are processed to obtain the transfer function from the structure oscillation to the internal pressure of the combustion chamber and the transfer function from the pressure oscillation in the combustion chamber to the engine structure oscillation, which are used to analyze the acoustic-structure coupling response characteristics of the solid rocket motor.
较佳的,采用两个主体固定组件(5)将壳体(4)安装在试验台架(10)上;Preferably, two main body fixing assemblies (5) are used to install the housing (4) on the test bench (10);
主体固定组件(5)包括支撑框架(51)、两组弹簧组件以及两个第二弹簧(57);The main body fixing assembly (5) includes a support frame (51), two sets of spring assemblies and two second springs (57);
支撑框架(51)为中空结构,壳体(4)可从支撑框架(51)中间穿过;壳体(4)外壁的同一圆周上设置有4个均布的吊点;The support frame (51) is a hollow structure, and the casing (4) can pass through the middle of the support frame (51); four evenly distributed hanging points are arranged on the same circumference of the outer wall of the casing (4);
弹簧组件包括调节螺杆(52)、螺母(53)、拉力传感器(54)以及第一弹簧(55);调节螺杆(52)上端穿过支撑框架(51)的过孔,由螺母(53)拧紧,下端连接拉力传感器(54)的一端,拉力传感器(54)的另一端连接第一弹簧(55)的一端,第一弹簧(55)的另一端连接到壳体(4)的吊点上;两个弹簧组件的两个第一弹簧(55)分别连接到壳体(4)上位于上部的吊点上;The spring assembly includes an adjusting screw (52), a nut (53), a tension sensor (54) and a first spring (55); the upper end of the adjusting screw (52) passes through the through hole of the support frame (51) and is tightened by the nut (53) , the lower end is connected to one end of the tension sensor (54), the other end of the tension sensor (54) is connected to one end of the first spring (55), and the other end of the first spring (55) is connected to the hanging point of the housing (4); The two first springs (55) of the two spring assemblies are respectively connected to the upper suspension points on the housing (4);
两个第二弹簧(57)的一端连接在撑框架(51)的内壁上,另一端连接在壳体(4)下部的两个吊点上;One end of the two second springs (57) is connected to the inner wall of the support frame (51), and the other end is connected to the two hanging points at the lower part of the housing (4);
两个弹簧组件中的第一弹簧(55)与各自相对的第二弹簧(57)的拉力在同一直线上,且形成的两条直线互相垂直。The pulling forces of the first spring (55) and the respective opposite second springs (57) in the two spring assemblies are on the same straight line, and the two formed straight lines are perpendicular to each other.
较佳的,支撑框架(51)的内壁上固定两个安装支架(56),第二弹簧(57)通过安装支架(56)连接到支撑框架(51)上。Preferably, two mounting brackets (56) are fixed on the inner wall of the support frame (51), and the second spring (57) is connected to the support frame (51) through the mounting brackets (56).
较佳的,主体固定组件(5)相对于壳体(4)中心对称固定在试验台架(10)上。Preferably, the main body fixing assembly (5) is symmetrically fixed on the test bench (10) with respect to the center of the casing (4).
较佳的,主体固定组件(5)由三角支撑架(6)固定并支撑。Preferably, the main body fixing assembly (5) is fixed and supported by a triangular support frame (6).
较佳的,所述壳体(4)采用结构钢加工。Preferably, the shell (4) is made of structural steel.
本发明具有如下有益效果:The present invention has the following beneficial effects:
本发明提供一种模拟固体火箭发动机声固耦合响应特性的测量方法,采用橡胶材料模拟推进剂,可以在保证试验的安全的前提下,有效研究火箭发动机声固耦合响应特性,并且具有试验成本低的特点;The invention provides a measurement method for simulating the sound-structure coupling response characteristics of a solid rocket motor. The rubber material is used to simulate the propellant, which can effectively study the sound-structure coupling response characteristics of the rocket motor under the premise of ensuring the safety of the test, and has the advantages of low test cost. specialty;
通过设计主体固定组件,采用支撑框架和弹簧组件将壳体吊装在试验台架上,减小支撑框架的约束作用对试验模型振动特性的影响,壳体被“相对自由”的吊起,精确模拟火箭发动机在工作时的自由边界条件,从而可以从实验上验证结构振荡在条件合适的情况下的确能够引发燃烧室内部的压力振荡,获得更精确的结构振荡到燃烧室内部压强的传递函数以及燃烧室内压力振荡到发动机结构振荡的传递函数。By designing the main body fixing component, the support frame and spring components are used to hoist the shell on the test bench to reduce the influence of the restraint of the support frame on the vibration characteristics of the test model. The free boundary conditions of the rocket engine during operation, so that it can be verified experimentally that the structural oscillation can indeed cause the pressure oscillation inside the combustion chamber under suitable conditions, and a more accurate transfer function from the structural oscillation to the pressure inside the combustion chamber and combustion can be obtained. Transfer function of chamber pressure oscillations to engine structural oscillations.
附图说明Description of drawings
图1(a)为本发明的一种模拟固体火箭发动机声固耦合响应特性的测量装置的示意图;Figure 1(a) is a schematic diagram of a measuring device for simulating the sound-structure coupling response characteristics of a solid rocket motor according to the present invention;
图1(b)为支撑结构和弹簧吊装壳体的结构示意图;Figure 1(b) is a schematic structural diagram of the support structure and the spring hoisting housing;
图2为声压传感器在壳体内分布示意图;Figure 2 is a schematic diagram of the distribution of the sound pressure sensor in the housing;
图3为测量方法的示意图。FIG. 3 is a schematic diagram of the measurement method.
其中,1-三坐标滑台;2-音箱外壳;3-高低音喇叭;4-壳体;5-主体固定组件;6-三角支撑架;7-活动支架;8-推进剂;10-试验台架;51-支撑框架;52-调节螺杆;53-螺母;54-拉力传感器;55-弹簧组件;56-安装支架;57-第二弹簧组件。Among them, 1- three-coordinate sliding table; 2- speaker shell; 3- tweeter and woofer; 4- shell; 5- main body fixed component; 6- triangle support frame; 7- movable support; 8- propellant; 10- test 51-support frame; 52-adjustment screw; 53-nut; 54-tension sensor; 55-spring assembly; 56-installation bracket; 57-second spring assembly.
具体实施方式Detailed ways
下面结合附图并举实施例,对本发明进行详细描述。The present invention will be described in detail below with reference to the accompanying drawings and embodiments.
根据固体火箭发动机的实际情况,将燃烧室简化为两端开口的圆柱管腔,作为壳体4,并将壳体4两端开口处进行密封。为模拟真实的固体火箭发动机,根据固体火箭发动机燃烧室中的推进剂的浇筑形式,在壳内4表面设置相同结构及相同厚度的橡胶,用于模拟推进剂8,然后再搭建出用于声固耦合实验的装置。According to the actual situation of the solid rocket motor, the combustion chamber is simplified into a cylindrical tube cavity with openings at both ends as the
本发明采用橡胶材料模拟推进剂8,因为实际的推进剂为火工品,具有易燃易爆的特点,为了试验的安全需要采用物性参数相近的橡胶材料进行替代。虽然市面上销售的橡胶的物性参数和实际推进剂的参数不相同,但是两者的弹性模量整体还是在一个数量级上,同发动机的外壳的弹性模量相比仍然保持几个数量级的差别,因此使用市面上销售的橡胶进行替代推进剂。同时本实验的目的在于探究振动激励在经过两层具有较大力学属性差别的材料后的传递规律,而固体火箭发动机的燃烧室正是属于这种情况。因此实验中使用的材料只要保持弹性模量的差别在数量级上没有同实际的固体火箭发动机燃烧室没有明显差别就能够保证得到相同的规律。故实验将用结构钢加工壳体,用橡胶来代替推进剂。The present invention uses rubber material to simulate the
具体的试验步骤如下:The specific test steps are as follows:
(1)试验件的安置(1) Placement of the test piece
如图1(a)和1(b)所示,壳体4由两个主体固定组件5安装在试验台架10上,两个主体固定组件5相对于壳体4中心对称固定在试验台架10上,并分别由一个三角支撑架6固定并支撑,主体固定组件5包括支撑框架51、两组弹簧组件以及两个第二弹簧57;As shown in FIGS. 1( a ) and 1 ( b ), the
支撑框架51为中空结构,壳体4可从支撑框架51中间穿过;壳体4外壁的同一圆周上设置有4个均布的吊点;The
弹簧组件包括调节螺杆52、螺母53、拉力传感器54以及第一弹簧55;调节螺杆52上端穿过支撑框架51的过孔,由螺母53拧紧,下端连接拉力传感器54的一端,拉力传感器54的另一端连接第一弹簧55的一端,第一弹簧55的另一端连接到壳体4的吊点上;两个弹簧组件的两个第一弹簧55分别连接到壳体4上位于上部的吊点上;The spring assembly includes an
两个第二弹簧57的一端连接在撑框架51的内壁上,另一端连接在壳体4下部的两个吊点上;其中,撑框架51的内壁上固定两个安装支架56,第二弹簧57通过安装支架56连接到支撑框架51上。One end of the two
两个弹簧组件中的第一弹簧55与各自相对的第二弹簧57的拉力在同一直线上,且形成的两条直线互相垂直,弹簧可以有效减小支撑框架51对壳体4的刚性约束,减小支撑框架51的约束作用对试验模型振动特性的影响。由此壳体4被“相对自由”的吊起,模拟火箭发动机在工作时的自由边界条件,但在地面上做不到完全自由边界,故称为“相对自由”边界条件。The pulling forces of the
(2)传感器的布置。(2) The arrangement of the sensor.
在壳体4内部沿轴向安放一定数量的声压传感器,以测定由声源振动激励起的压强振荡数据,图2为声压传感器的位置分布(传感器的数量和布置将在后期实验中根据实际需求进行修改)。声压传感器的灵敏度为50mv/pa,量程为20~146db;以2m长的壳体4为例,在壳体4的内外侧沿母线各设置一定数量加速度传感器,传感器的数量和布置将在后期实验中根据实际需求进行调整。可通过驻波方程的计算放置加速度传感器的位置,测点位置应避免放在振动的波节所在位置上,尽量选在变形量较大的位置,否则测量出的结果会很小,从而使测量结果的精度降低。A certain number of sound pressure sensors are placed inside the
(3)声腔压强扰动作用下的结构响应实验(3) Structural response experiment under acoustic cavity pressure disturbance
在声固耦合测量试验中,在壳体4两端安置一个规格相同的高低音喇叭3作为声源,用以发射指定频率和振幅的声波,以在壳体4的腔体中产生持续的声压振动,声压信号通过声压传感器测得。高低音喇叭3的音响外壳2固定在三坐标滑台1上,三坐标滑台1设置在试验台架10上,并可带动高低音喇叭3前后移动,以适应不同尺寸的外壳4。In the sound-structure coupling measurement test, a
在内部驻波声场作用下,壳体4会产生振动,加速度传感器会记录壳体4的振动信息,加速度信号和声压信号作为该系统的输出信号,信号经由数据采集系统传给电脑,此时记录试验数据。Under the action of the internal standing wave sound field, the
(4)结构振动作用下的声腔声压响应实验(4) Acoustic cavity sound pressure response experiment under the action of structural vibration
先去除声腔壳体4两端的声源,采用与壳体材料一致的圆盘封闭两端开口。然后用信号发生器产生白噪声信号,再经功率放大器增幅,作用在壳体4的一端外壁上,作为系统的输入信号。壳体4的结构振动通过加速度传感器测得,再由数据采集系统分析采集声源信号、加速度信号、声压信号。最后通过计算机中的软件进行记录和响应的分析处理。First, remove the sound sources at both ends of the
(5)将收集的数据进行处理,做出两种试验下的压力振荡频率、结构振动频率图,进行数值分析研究,得出结论。(5) Process the collected data, make the pressure oscillation frequency and structural vibration frequency graph under the two tests, carry out numerical analysis and research, and draw conclusions.
为了在试验中使用圆柱空腔体来模拟实际的固体火箭发动机的实际的情况,本发明设计的试验,将使用不同厚度的橡胶,模拟不同肉厚(即不同工作时间)的推进剂8。还可以进行两组不同长度(2m和3m)的声腔的声固耦合试验,每组不同长度的声腔模拟4种不同橡胶厚度的推进剂4的试验,因此预计将进行8组试验,每组试验都采用两种不同的固定方式进行测量。因此,试验加工了8组带有不同长度、厚度的试验器材。In order to use the cylindrical cavity in the test to simulate the actual situation of the actual solid rocket motor, the test designed by the present invention will use different thickness of rubber to simulate the
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。To sum up, the above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210726441.4A CN115045778B (en) | 2022-06-24 | 2022-06-24 | A measurement method for simulating the acoustic-solid coupling response characteristics of solid rocket motors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210726441.4A CN115045778B (en) | 2022-06-24 | 2022-06-24 | A measurement method for simulating the acoustic-solid coupling response characteristics of solid rocket motors |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115045778A true CN115045778A (en) | 2022-09-13 |
CN115045778B CN115045778B (en) | 2025-04-18 |
Family
ID=83163541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210726441.4A Active CN115045778B (en) | 2022-06-24 | 2022-06-24 | A measurement method for simulating the acoustic-solid coupling response characteristics of solid rocket motors |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115045778B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115560804A (en) * | 2022-09-28 | 2023-01-03 | 清华大学 | System and method for monitoring, simulating and demonstrating verification of structural integrity of solid rocket engine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100886942B1 (en) * | 2007-11-01 | 2009-03-09 | 한국항공우주연구원 | Ground tester for sloshing analysis of rocket fuel |
CN104502127A (en) * | 2014-11-19 | 2015-04-08 | 哈尔滨工程大学 | Outfield acoustically-driven ship vibration noise transmission path analysis method |
CN106979097A (en) * | 2017-05-03 | 2017-07-25 | 湖北航天技术研究院总体设计所 | A kind of Solid Rocket Motor combustion chamber housing water test unit |
CN113686580A (en) * | 2021-08-25 | 2021-11-23 | 西北工业大学 | Standing wave oscillation experimental device for simulating nonlinear acoustic vibration mode of engine combustion chamber |
CN217582325U (en) * | 2022-06-24 | 2022-10-14 | 哈尔滨工程大学 | Measuring device for acoustic-solid coupling response characteristic of solid rocket engine |
-
2022
- 2022-06-24 CN CN202210726441.4A patent/CN115045778B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100886942B1 (en) * | 2007-11-01 | 2009-03-09 | 한국항공우주연구원 | Ground tester for sloshing analysis of rocket fuel |
CN104502127A (en) * | 2014-11-19 | 2015-04-08 | 哈尔滨工程大学 | Outfield acoustically-driven ship vibration noise transmission path analysis method |
CN106979097A (en) * | 2017-05-03 | 2017-07-25 | 湖北航天技术研究院总体设计所 | A kind of Solid Rocket Motor combustion chamber housing water test unit |
CN113686580A (en) * | 2021-08-25 | 2021-11-23 | 西北工业大学 | Standing wave oscillation experimental device for simulating nonlinear acoustic vibration mode of engine combustion chamber |
CN217582325U (en) * | 2022-06-24 | 2022-10-14 | 哈尔滨工程大学 | Measuring device for acoustic-solid coupling response characteristic of solid rocket engine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115560804A (en) * | 2022-09-28 | 2023-01-03 | 清华大学 | System and method for monitoring, simulating and demonstrating verification of structural integrity of solid rocket engine |
Also Published As
Publication number | Publication date |
---|---|
CN115045778B (en) | 2025-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gabrielson et al. | A simple neutrally buoyant sensor for direct measurement of particle velocity and intensity in water | |
CN106908205A (en) | A kind of test device of engine mounting dynamic stiffness | |
CN217582325U (en) | Measuring device for acoustic-solid coupling response characteristic of solid rocket engine | |
CN115045778B (en) | A measurement method for simulating the acoustic-solid coupling response characteristics of solid rocket motors | |
CN106644337A (en) | Vibration experimental platform for thin-walled member fatigue test | |
CN107144435B (en) | A kind of dynamic vibration absorber frequency test method | |
CN106053106A (en) | Sound fatigue testing apparatus using electric loudspeaker for realizing high sound pressure level | |
CN106248332B (en) | Test the test-bed and method of clamped Vibration of Rectangular Plates and acoustic radiation | |
CN100533164C (en) | Modal Verification Method and System for Vacuum Electronic Devices | |
FARINA | Measurements of loudspeakers with a laser doppler vibrometer and the exponential sine sweep excitation technique | |
CN205175696U (en) | Measurement device for be used for aeroengine structure spare natural frequency | |
CN107941526B (en) | Abnormal sound detection equipment for automobile instrument panel assembly of assembly line | |
CN102818686A (en) | Modal test method for metal grid of grid-control traveling wave tube | |
CN112857553A (en) | Noise reduction performance experimental device and method for acoustic cavity of coupling film nonlinear energy trap | |
RU2682582C1 (en) | Device of contactless excitation of the mechanical vibrations | |
Liu et al. | Numerical study on the low frequency sensitivity variation of the microphone in laser-pistonphone based primary calibrations | |
RU178307U1 (en) | VIBROSTEND FOR CALIBRATING PIE-SENSORS | |
CN110022522A (en) | The loudspeaker vibration component resonant frequency measuring system and measurement method motivated using vibration excitor | |
Vadassery | Design, calibration and testing of a force balance for a hypersonic shock tunnel | |
CN207730453U (en) | A kind of automobile instrument disc assembly abnormal sound detection device for assembly line | |
Yang et al. | Simulation analysis and experiment validation of vibration and noise of oil-immersed transformer | |
Holster et al. | The measurement and finite element analysis of the dynamic stiffness of nonuniform clearance, gas, thrust bearings | |
CN206161263U (en) | A vibration experiment platform for thin -walled member fatigue test | |
Gosain et al. | Development of an Air Intake System for NVH Performance by Combining Numerical and Experimental Techniques | |
Walter | Accelerometer limitations for pyroshock measurements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |