CN115037384B - A reconfigurable real-time underwater acoustic communication system and method - Google Patents
A reconfigurable real-time underwater acoustic communication system and method Download PDFInfo
- Publication number
- CN115037384B CN115037384B CN202210754979.6A CN202210754979A CN115037384B CN 115037384 B CN115037384 B CN 115037384B CN 202210754979 A CN202210754979 A CN 202210754979A CN 115037384 B CN115037384 B CN 115037384B
- Authority
- CN
- China
- Prior art keywords
- module
- data
- time
- signal
- underwater acoustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000012952 Resampling Methods 0.000 claims abstract description 38
- 238000007781 pre-processing Methods 0.000 claims abstract description 19
- 238000010219 correlation analysis Methods 0.000 claims description 19
- 230000000875 corresponding effect Effects 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 17
- 238000004088 simulation Methods 0.000 claims description 13
- 238000005070 sampling Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 230000002596 correlated effect Effects 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 230000005236 sound signal Effects 0.000 claims 5
- 230000005764 inhibitory process Effects 0.000 claims 2
- 230000008569 process Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000013524 data verification Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B13/00—Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
- H04B13/02—Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及水声通信领域,特别是涉及一种可重配置的实时水声通信系统及方法。The present invention relates to the field of underwater acoustic communication, and in particular to a reconfigurable real-time underwater acoustic communication system and method.
背景技术Background technique
早期商用水声调制解调系统基本上采用串行链路系统,通过水声通信提供远程的数据遥测遥控功能。早期的调制解调系统对于最终使用者来说几乎是不透明的,因其物理层算法已在固件中进行了硬编码,所以设备中的应用程序通常是不可配置的,目前已不太适合用于水声通信的研究和应用中,调制解调系统的可重配置通常受到限制。Early commercial underwater acoustic modem systems basically used serial link systems to provide remote data telemetry and remote control functions through underwater acoustic communications. Early modem systems were almost opaque to end users because their physical layer algorithms were hard-coded in the firmware, so the applications in the equipment were usually not configurable. Currently, they are not suitable for underwater acoustic communication research and applications, and the reconfiguration of modem systems is usually limited.
可重配置的软件定义自适应水声通信系统是水声通信网络的核心组件。随着软件定义无线电的概念被大家普遍接受以及相关系统的深入发展,水声通信系统的发展方向也是软件定义的开放式架构,即可重配置或用户可编程的调制解调系统。对可重配置水声调制解调系统的研究主要是由对自适应平台的需求驱动的,该自适应平台的特性(就物理层方案和网络层协议两方面而言)可以进行更改,以适应不同的水声通信场景。Reconfigurable software-defined adaptive underwater acoustic communication systems are the core components of underwater acoustic communication networks. With the widespread acceptance of the concept of software-defined radio and the in-depth development of related systems, the development direction of underwater acoustic communication systems is also software-defined open architecture, that is, reconfigurable or user-programmable modem systems. The research on reconfigurable underwater acoustic modem systems is mainly driven by the need for an adaptive platform whose characteristics (in terms of both physical layer schemes and network layer protocols) can be changed to adapt to different underwater acoustic communication scenarios.
水声通信和网络的科学研究与应用中要求一定的灵活性以应对水声信道的复杂性(如多径时延和多普勒效应)。近年来,由于缺乏水声通信协议的标准化,不同制造商所研发的调制解调系统之间的互操作性和适应性(即能够根据不同环境或不断变化的应用程序需求而切换协议或参数设置)是不足的。同时,调制解调系统的可重配置或可重编程选项通常受到限制,并且任何更改都需要对特定的硬件和软件体系架构有全面的了解。因此,引入开放式体系架构并具有适应性的水声通信系统十分必要,这也将促进水声通信标准的建立和推广。而现有系统或技术中参数设定往往互相耦合,不能灵活设定,或是修改参数需要对系统结构或程序进行修改或调整。现有技术中需要配置的参数往往互相耦合,不能灵活配置。The scientific research and application of underwater acoustic communication and network require a certain flexibility to cope with the complexity of underwater acoustic channels (such as multipath delay and Doppler effect). In recent years, due to the lack of standardization of underwater acoustic communication protocols, the interoperability and adaptability (i.e., the ability to switch protocols or parameter settings according to different environments or changing application requirements) between modem systems developed by different manufacturers are insufficient. At the same time, the reconfigurable or reprogrammable options of modem systems are usually limited, and any changes require a comprehensive understanding of the specific hardware and software architecture. Therefore, it is necessary to introduce an open architecture and adaptable underwater acoustic communication system, which will also promote the establishment and promotion of underwater acoustic communication standards. However, the parameter settings in existing systems or technologies are often coupled with each other and cannot be set flexibly, or modifying parameters requires modification or adjustment of the system structure or program. The parameters that need to be configured in the existing technology are often coupled with each other and cannot be flexibly configured.
发明内容Summary of the invention
本发明的目的是提供一种可重配置的实时水声通信系统及方法,以解决现有技术中需要配置的参数互相耦合,不能灵活配置的问题。The purpose of the present invention is to provide a reconfigurable real-time underwater acoustic communication system and method to solve the problem in the prior art that the parameters to be configured are coupled to each other and cannot be flexibly configured.
为实现上述目的,本发明提供了如下方案:To achieve the above object, the present invention provides the following solutions:
一种可重配置的实时水声通信系统,包括:水声收发模拟电路、FPGA电路和实时系统;A reconfigurable real-time underwater acoustic communication system, comprising: an underwater acoustic transceiver analog circuit, an FPGA circuit and a real-time system;
所述水声收发模拟电路包括水声模拟输出模块和水声模拟输入模块;其中,所述水声模拟输出模块用于将调制模块输出的调制信号发射到水声信道;所述水声模拟输入模块用于接收水声信号;The underwater acoustic transceiver analog circuit includes an underwater acoustic analog output module and an underwater acoustic analog input module; wherein the underwater acoustic analog output module is used to transmit the modulation signal output by the modulation module to the underwater acoustic channel; the underwater acoustic analog input module is used to receive the underwater acoustic signal;
所述实时系统包括数据预处理模块和数据解调模块;其中,所述数据预处理模块用于对待发射的数字信号进行预处理操作;所述数据解调模块用于根据解调参数对重采样信号进行解调,得到解调结果;The real-time system includes a data preprocessing module and a data demodulation module; wherein the data preprocessing module is used to perform preprocessing operations on the digital signal to be transmitted; the data demodulation module is used to demodulate the resampled signal according to the demodulation parameters to obtain a demodulation result;
所述FPGA电路包括数据调制模块、帧同步模块以及多路相关缩放估计和重采样模块;其中,所述数据调制模块用于根据调制参数对预处理后的数据进行多载波调制,得到调制信号;所述帧同步模块用于对所述水声模拟输入模块接收到的水声信号进行帧同步处理,得到数据帧信息;所述多路相关缩放估计和重采样模块用于:将所述数据帧信息分别与频移不同的多个预设多普勒频移信号进行相关性分析,并基于与所述数据帧信息相关性最大的多普勒频移信号对应的频移参数,对接收信号进行重采样,得到所述重采样信号。The FPGA circuit includes a data modulation module, a frame synchronization module, and a multi-channel correlation scaling estimation and resampling module; wherein the data modulation module is used to perform multi-carrier modulation on the pre-processed data according to the modulation parameters to obtain a modulated signal; the frame synchronization module is used to perform frame synchronization processing on the underwater acoustic signal received by the underwater acoustic simulation input module to obtain data frame information; the multi-channel correlation scaling estimation and resampling module is used to: perform correlation analysis on the data frame information with multiple preset Doppler frequency shift signals with different frequency shifts, and resample the received signal based on the frequency shift parameter corresponding to the Doppler frequency shift signal with the greatest correlation with the data frame information to obtain the resampled signal.
可选的,所述预处理操作包括对待发射的数字信号进行CRC编码、FEC编码以及交织。Optionally, the preprocessing operation includes performing CRC encoding, FEC encoding and interleaving on the digital signal to be transmitted.
可选的,所述FPGA电路还包括:基于数据分拣的Rake模块;所述实时系统还包括:数据校验和分拣模块;Optionally, the FPGA circuit further includes: a Rake module based on data sorting; the real-time system further includes: a data checking and sorting module;
所述基于数据分拣的Rake模块用于:基于设定的多个并行的时间窗对所述重采样信号进行截取处理,其中,各时间窗的起始位置不同;The Rake module based on data sorting is used to: intercept and process the resampled signal based on a plurality of set parallel time windows, wherein the starting position of each time window is different;
所述数据解调模块用于根据解调参数对截取处理后的重采样信号进行解调,得到解调结果;The data demodulation module is used to demodulate the resampled signal after the interception processing according to the demodulation parameters to obtain a demodulation result;
所述数据校验和分拣模块用于通过CRC校验得到每一所述解调结果的误码率,并分拣出误码率最小的解调结果作为最终数字信号。The data checking and sorting module is used to obtain the bit error rate of each demodulation result through CRC checking, and sort out the demodulation result with the smallest bit error rate as the final digital signal.
可选的,所述多路相关缩放估计和重采样模块包括:多路相关缩放估计单元和重采样单元;Optionally, the multi-path correlation scaling estimation and resampling module comprises: a multi-path correlation scaling estimation unit and a resampling unit;
其中,所述多路相关缩放估计单元,用于将所述数据帧信息分别与多个时间缩放信号s[(1+Δi)nTs]进行相关性分析,将相关性最大的时间缩放信号对应的时间缩放系数(1+Δ)确定为最佳时间缩放系数;其中,所述多个时间缩放信号为根据不同的时间缩放系数分别确定的多个多普勒频移信号,所述不同的时间缩放系数由不同的多普勒频移Δ确定,n为整数,Ts是采样周期。Wherein, the multi-path correlation scaling estimation unit is used to perform correlation analysis on the data frame information with multiple time scaling signals s[(1+Δ i )nT s ] respectively, and determine the time scaling coefficient (1+Δ) corresponding to the time scaling signal with the largest correlation as the optimal time scaling coefficient; wherein, the multiple time scaling signals are multiple Doppler frequency shift signals determined respectively according to different time scaling coefficients, the different time scaling coefficients are determined by different Doppler frequency shifts Δ, n is an integer, and T s is a sampling period.
可选的,所述相关性分析具体包括:Optionally, the correlation analysis specifically includes:
将所述数据帧信息的正交Chirp分复用中的子载波信号与所述时间缩放信号进行相关并取模平方的运算,得到相关性分析结果。The subcarrier signal in the orthogonal Chirp multiplexing of the data frame information is correlated with the time scaling signal and a modulus square operation is performed to obtain a correlation analysis result.
可选的,所述进行解调具体为:采用正交Chirp信号进行解调。Optionally, the demodulation specifically includes: using an orthogonal Chirp signal for demodulation.
可选的,所述水声模拟输出模块包括依次连接的模拟转换通道、匹配功放和水声换能器。所述水声模拟输入模块包括依次连接的水听器、放大滤波电路和模数转换通道。Optionally, the underwater acoustic simulation output module includes an analog conversion channel, a matching power amplifier and an underwater acoustic transducer connected in sequence. The underwater acoustic simulation input module includes a hydrophone, an amplifying and filtering circuit and an analog-to-digital conversion channel connected in sequence.
可选的,还包括DMAFIFO模块;所述DMAFIFO模块用于对所述实时系统和所述FPGA电路之间数据进行传输。Optionally, a DMAFIFO module is also included; the DMAFIFO module is used to transmit data between the real-time system and the FPGA circuit.
本发明还提供了一种可重配置的实时水声通信方法,包括:The present invention also provides a reconfigurable real-time underwater acoustic communication method, comprising:
获取接收到的水声信号;Acquiring received hydroacoustic signals;
将所述水声信号与频移不同的多个预设多普勒频移信号进行相关性分析,并确定与所述水声信号相关性最大的多普勒频移信号对应的频移参数;Performing correlation analysis on the underwater acoustic signal and a plurality of preset Doppler frequency shift signals with different frequency shifts, and determining a frequency shift parameter corresponding to the Doppler frequency shift signal with the greatest correlation with the underwater acoustic signal;
根据所述频移参数对所述水声信号进行重采样,得到重采样信号;Resampling the underwater acoustic signal according to the frequency shift parameter to obtain a resampled signal;
对所述重采样信号进行解调。The resampled signal is demodulated.
可选的,所述将所述水声信号与频移不同的多个预设多普勒频移信号进行相关性分析,并确定与所述数据帧信息相关性最大的多普勒频移信号对应的频移参数,具体包括:Optionally, performing correlation analysis on the underwater acoustic signal and a plurality of preset Doppler frequency shift signals with different frequency shifts, and determining a frequency shift parameter corresponding to the Doppler frequency shift signal having the greatest correlation with the data frame information, specifically includes:
将所述水声信号分别与多个时间缩放信号s[(1+Δi)nTs]进行相关性分析;Performing correlation analysis on the underwater acoustic signal and a plurality of time scaling signals s[(1+Δ i )nT s ] respectively;
将相关性最大的时间缩放信号对应的时间缩放系数(1+Δ)确定为最佳时间缩放系数;其中,所述多个时间缩放信号为根据不同的时间缩放系数分别确定的多个多普勒频移信号,所述不同的时间缩放系数由不同的多普勒频移Δ确定,n为整数,Ts是采样周期。The time scaling coefficient (1+Δ) corresponding to the time scaling signal with the largest correlation is determined as the optimal time scaling coefficient; wherein the multiple time scaling signals are multiple Doppler frequency shift signals determined respectively according to different time scaling coefficients, the different time scaling coefficients are determined by different Doppler frequency shifts Δ, n is an integer, and Ts is a sampling period.
根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects:
本发明提供了一种可重配置的实时水声通信系统及方法,包括:水声收发模拟电路、FPGA电路和实时系统;所述水声收发模拟电路包括水声模拟输出模块和水声模拟输入模块;其中,所述水声模拟输出模块用于将调制模块输出的调制信号发射到水声信道;所述水声模拟输入模块用于接收水声信号;所述实时系统包括数据预处理模块和数据解调模块;其中,所述数据预处理模块用于对待发射的数字信号进行预处理操作;所述数据解调模块用于根据解调参数对重采样信号进行解调,得到解调结果;所述FPGA电路包括数据调制模块、帧同步模块以及多路相关缩放估计和重采样模块;其中,所述数据调制模块用于根据调制参数对预处理后的数据进行多载波调制,得到调制信号;所述帧同步模块用于对所述水声模拟输入模块接收到的水声信号进行帧同步处理,得到数据帧信息;所述多路相关缩放估计和重采样模块用于:将所述数据帧信息分别与频移不同的多个预设多普勒频移信号进行相关性分析,并基于与所述数据帧信息相关性最大的多普勒频移信号对应的频移参数,对接收信号进行重采样,得到所述重采样信号。本发明对系统的实现进行合理的功能模块划分,使得多路相关缩放估计和重采样模块中预设多普勒频移信号的数量、数据调制模块中的调制参数以及数据解调模块中的解调参数实现了解耦,这些参数之间互不影响,进而实现了参数的灵活配置。The present invention provides a reconfigurable real-time underwater acoustic communication system and method, comprising: an underwater acoustic transceiver analog circuit, an FPGA circuit and a real-time system; the underwater acoustic transceiver analog circuit comprises an underwater acoustic analog output module and an underwater acoustic analog input module; wherein the underwater acoustic analog output module is used to transmit the modulated signal output by the modulation module to the underwater acoustic channel; the underwater acoustic analog input module is used to receive the underwater acoustic signal; the real-time system comprises a data preprocessing module and a data demodulation module; wherein the data preprocessing module is used to perform preprocessing operations on the digital signal to be transmitted; the data demodulation module is used to demodulate the resampled signal according to the demodulation parameter to obtain the demodulation result; the FPG Circuit A includes a data modulation module, a frame synchronization module, and a multi-channel correlation scaling estimation and resampling module; wherein the data modulation module is used to perform multi-carrier modulation on the pre-processed data according to the modulation parameters to obtain a modulation signal; the frame synchronization module is used to perform frame synchronization processing on the hydroacoustic signal received by the hydroacoustic simulation input module to obtain data frame information; the multi-channel correlation scaling estimation and resampling module is used to: respectively perform correlation analysis on the data frame information with a plurality of preset Doppler frequency shift signals with different frequency shifts, and resample the received signal based on the frequency shift parameter corresponding to the Doppler frequency shift signal with the greatest correlation with the data frame information to obtain the resampled signal. The present invention performs reasonable functional module division on the implementation of the system, so that the number of preset Doppler frequency shift signals in the multi-channel correlation scaling estimation and resampling module, the modulation parameters in the data modulation module, and the demodulation parameters in the data demodulation module are decoupled, and these parameters do not affect each other, thereby realizing flexible configuration of parameters.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1为本发明实施例1提供的可重配置的实时水声通信系统结构图;FIG1 is a structural diagram of a reconfigurable real-time underwater acoustic communication system provided in Example 1 of the present invention;
图2为本发明实施例1中的正交Chirp分复用多载波调制和解调过程示意图;FIG2 is a schematic diagram of a multi-carrier modulation and demodulation process using orthogonal Chirp division multiplexing in Embodiment 1 of the present invention;
图3为本发明实施例1中的正交Chirp分复用多路子载波信号示意图;FIG3 is a schematic diagram of orthogonal Chirp division multiplexing of multi-channel subcarrier signals in Embodiment 1 of the present invention;
图4为本发明实施例1中的多路相关缩放估计和重采样模块信号处理过程示意图;FIG4 is a schematic diagram of a signal processing process of a multi-path correlation scaling estimation and resampling module in Embodiment 1 of the present invention;
图5为本发明实施例1中的可重配置的实时水声通信系统发射流程图;FIG5 is a transmission flow chart of a reconfigurable real-time underwater acoustic communication system in Embodiment 1 of the present invention;
图6为本发明实施例1中的可重配置的实时水声通信系统接收流程图;FIG6 is a receiving flow chart of the reconfigurable real-time underwater acoustic communication system in Embodiment 1 of the present invention;
图7为本发明实施例1中的厦门港海试中可重配置的实时水声通信系统的BER/PER性能示意图。FIG7 is a schematic diagram of the BER/PER performance of the reconfigurable real-time underwater acoustic communication system in the Xiamen Port sea trial in Example 1 of the present invention.
附图标记:A1-数据预处理模块;A2-数据调制模块;A3-水声模拟输出模块;B1-水声模拟输入模块;B2-帧同步模块;B3-多路相关缩放估计和重采样模块;B4-基于数据分拣的Rake模块;B5-数据解调模块;B6-数据校验和分拣模块。Figure markings: A1-data preprocessing module; A2-data modulation module; A3-underwater acoustic simulation output module; B1-underwater acoustic simulation input module; B2-frame synchronization module; B3-multi-path correlation scaling estimation and resampling module; B4-Rake module based on data sorting; B5-data demodulation module; B6-data verification and sorting module.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
可重配置的调制解调系统使得用户可以通过发出系统固件可识别的指令来修改某些通信参数,例如物理层中数字调制的比特率和编码方案的动态调整。随着学术研究项目中水声调制解调系统硬件和软件的发展,可重编程特性为科研工作者提供了灵活性。可重编程调制解调系统引入了可自由替换主要通信模块的功能,主要通信模块包括如完备的调制解调方案,信号处理算法或网络层协议等。重新编程通常需要不同平台的编程能力,例如,针对物理层信号处理的方案对数字信号处理器(Digital Signal Processors,DSP)进行编程。软件定义的调制解调系统是可重编程调制解调系统的一种特殊情况,该系统的整个发送端和接收端功能都可以通过软件进行编程。开源或开放体系架构是水声调制解调系统的重要发展方向之一,使用开源或开放架构的调制解调系统,用户可以参考编程示例或模板,在物理层或网络层中开发自定义功能。开放式体系架构通过在的标准计算设备上运行软件和算法,使其架构更加易于理解和使用。Reconfigurable modem systems allow users to modify certain communication parameters by issuing commands that are recognizable by the system firmware, such as dynamic adjustment of the bit rate and coding scheme of digital modulation in the physical layer. As the hardware and software of underwater acoustic modem systems are developed in academic research projects, the reprogrammable feature provides researchers with flexibility. Reprogrammable modem systems introduce the ability to freely replace major communication modules, such as complete modem schemes, signal processing algorithms, or network layer protocols. Reprogramming usually requires programming capabilities for different platforms, such as programming digital signal processors (DSPs) for physical layer signal processing schemes. Software-defined modem systems are a special case of reprogrammable modem systems, in which the entire transmitter and receiver functions of the system can be programmed by software. Open source or open architecture is one of the important development directions of underwater acoustic modem systems. Using open source or open architecture modem systems, users can refer to programming examples or templates to develop custom functions in the physical layer or network layer. Open architecture makes its architecture easier to understand and use by running software and algorithms on standard computing devices.
本发明的目的是提供一种可重配置的实时水声通信系统及方法,以解决现有技术中需要配置的参数互相耦合,不能灵活配置的问题。The purpose of the present invention is to provide a reconfigurable real-time underwater acoustic communication system and method to solve the problem in the prior art that the parameters to be configured are coupled to each other and cannot be flexibly configured.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and easy to understand, the present invention is further described in detail below with reference to the accompanying drawings and specific embodiments.
实施例1Example 1
本发明提供了一种可重配置的实时水声通信系统,参见图1,所述系统包括:The present invention provides a reconfigurable real-time underwater acoustic communication system. Referring to FIG1 , the system comprises:
水声收发模拟电路、FPGA电路和实时系统;Underwater acoustic transceiver analog circuits, FPGA circuits and real-time systems;
所述水声收发模拟电路包括水声模拟输出模块A3和水声模拟输入模块B1;其中,所述水声模拟输出模块A3用于将调制模块输出的调制信号发射到水声信道;所述水声模拟输入模块B1用于接收水声信号;The underwater acoustic transceiver analog circuit includes an underwater acoustic analog output module A3 and an underwater acoustic analog input module B1; wherein the underwater acoustic analog output module A3 is used to transmit the modulation signal output by the modulation module to the underwater acoustic channel; the underwater acoustic analog input module B1 is used to receive the underwater acoustic signal;
在本实施例中,所述水声模拟输出模块A3包括依次连接的模拟转换通道、匹配功放和水声换能器。所述水声模拟输入模块B1包括依次连接的水听器、放大滤波电路和模数转换通道。In this embodiment, the underwater acoustic simulation output module A3 includes an analog conversion channel, a matching power amplifier and an underwater acoustic transducer connected in sequence. The underwater acoustic simulation input module B1 includes a hydrophone, an amplifying and filtering circuit and an analog-to-digital conversion channel connected in sequence.
所述实时系统包括数据预处理模块A1和数据解调模块B5;其中,所述数据预处理模块A1用于对待发射的数字信号进行预处理操作;所述数据解调模块B5用于根据解调参数对重采样信号进行解调,得到解调结果。The real-time system includes a data preprocessing module A1 and a data demodulation module B5; wherein the data preprocessing module A1 is used to perform preprocessing operations on the digital signal to be transmitted; and the data demodulation module B5 is used to demodulate the resampled signal according to the demodulation parameters to obtain a demodulation result.
所述FPGA电路包括数据调制模块A2、帧同步模块B2以及多路相关缩放估计和重采样模块B3;其中,所述数据调制模块A2用于根据调制参数对预处理的数据进行多载波调制,得到调制信号;所述帧同步模块B2用于对所述水声模拟输入模块B1接收到的水声信号进行帧同步处理,得到数据帧信息;所述多路相关缩放估计和重采样模块B3用于:将所述数据帧信息分别与频移不同的多个预设多普勒频移信号进行相关性分析,并基于与所述数据帧信息相关性最大的多普勒频移信号对应的频移参数,对接收信号进行重采样,得到所述重采样信号。The FPGA circuit includes a data modulation module A2, a frame synchronization module B2 and a multi-channel correlation scaling estimation and resampling module B3; wherein the data modulation module A2 is used to perform multi-carrier modulation on the pre-processed data according to the modulation parameters to obtain a modulated signal; the frame synchronization module B2 is used to perform frame synchronization processing on the underwater acoustic signal received by the underwater acoustic simulation input module B1 to obtain data frame information; the multi-channel correlation scaling estimation and resampling module B3 is used to: perform correlation analysis on the data frame information with multiple preset Doppler frequency shift signals with different frequency shifts, and resample the received signal based on the frequency shift parameter corresponding to the Doppler frequency shift signal with the greatest correlation with the data frame information to obtain the resampled signal.
数据预处理模块A1中的所述预处理以及数据校验和分拣模块B6;操作包括对待发射的数字信号进行CRC编码、FEC编码以及交织。The preprocessing in the data preprocessing module A1 and the data checking and sorting module B6; operations include CRC encoding, FEC encoding and interleaving of the digital signal to be transmitted.
在本实施例中,对待发射的数字信号二进制数据在前向纠错(Forward ErrorCorrecting,FEC)编码前插入循环冗余校验码(cyclic redundancy check,CRC),CRC的开销很小,通常采用16bit已足够(即CRC-16);CRC码后再经前向纠错编码和数据帧内的矩阵交织。考虑到复杂度和纠错性能的平衡,将前向纠错编码选取为卷积码。In this embodiment, a cyclic redundancy check (CRC) is inserted into the binary data of the digital signal to be transmitted before forward error correction (FEC) coding. The CRC overhead is very small, and 16 bits are usually sufficient (i.e., CRC-16). The CRC code is then interleaved with the matrix in the data frame after forward error correction coding. Considering the balance between complexity and error correction performance, the forward error correction coding is selected as a convolutional code.
数据调制模块A2采用正交Chirp信号对预处理的数据进行多载波调制,得到调制信号。The data modulation module A2 uses an orthogonal Chirp signal to perform multi-carrier modulation on the pre-processed data to obtain a modulated signal.
正交Chirp信号的多载波调制过程如图2中的(a)所示,图中ψn(t)表示一组相互正交的Chirp信号:The multi-carrier modulation process of orthogonal Chirp signals is shown in (a) of FIG2 , where ψ n (t) represents a set of mutually orthogonal Chirp signals:
其中,n为Chirp信号的序号,Chirp信号的周期设定为T,N为该组Chirp信号的数量。二进制信息经正交相移键控(Quadrature Phase ShiftKeying,QPSK)调制后的第k个符号为x(k),则经正交Chirp信号的多载波调制后的信号为s(t),如下公式:Where n is the serial number of the Chirp signal, the period of the Chirp signal is set to T, and N is the number of Chirp signals in the group. The kth symbol of binary information modulated by Quadrature Phase ShiftKeying (QPSK) is x(k), and the signal modulated by the multi-carrier of the orthogonal Chirp signal is s(t), as shown in the following formula:
所述水声模拟输入模块B1接收水声信号,经所述帧同步模块B2的帧同步处理,得到数据帧信息。数据帧信息每一帧的开头是一个由两个双曲调频(HyperbolicFrequencyModulation,HFM)信号(上扫频和下扫频)构成的前导序列,HFM信号因具有多普勒不变性,可用于通信中精确的帧同步。前导序列的保护间隔时长为TG,前导序列的保护间隔后则是一个已知的导频(pilot symbol)序列,主要用于信道估计;导频序列后则是传输信息的通信数据块,数据块的时长为T,相邻数据块之间插入循环前缀,循环前缀即为数据块之间的保护间隔,其时长TCP设定一般会大于信道的时延扩展(由于海面、海底和障碍物的反射以及海洋内部的不均匀性导致浅海水声信道的时延扩展比较大,可能达到几十甚至几百毫秒,典型浅海水声信道冲激响应的时延扩展τ约为80ms),但数据块之间过长的保护间隔显然会使得数据帧的时长显著加长,从而降低多载波水声通信的通信速率。The underwater acoustic simulation input module B1 receives the underwater acoustic signal, and obtains the data frame information after the frame synchronization processing of the frame synchronization module B2. The beginning of each frame of the data frame information is a leading sequence composed of two hyperbolic frequency modulation (HFM) signals (upward sweep frequency and downward sweep frequency). The HFM signal has Doppler invariance and can be used for accurate frame synchronization in communication. The guard interval of the preamble sequence is TG in length. After the guard interval of the preamble sequence is a known pilot symbol sequence, which is mainly used for channel estimation. After the pilot sequence is the communication data block for transmitting information. The duration of the data block is T. A cyclic prefix is inserted between adjacent data blocks. The cyclic prefix is the guard interval between data blocks. Its duration TCP is generally set to be greater than the delay spread of the channel (due to the reflection of the sea surface, seabed and obstacles and the heterogeneity of the ocean, the delay spread of the shallow water acoustic channel is relatively large, which may reach tens or even hundreds of milliseconds. The delay spread τ of the impulse response of a typical shallow water acoustic channel is about 80ms). However, an excessively long guard interval between data blocks will obviously significantly increase the duration of the data frame, thereby reducing the communication rate of multi-carrier underwater acoustic communication.
本实施例的多路相关缩放估计和重采样模块B3包括:多路相关缩放估计单元和重采样单元;其中,所述多路相关缩放估计单元,用于将所述数据帧信息分别与多个时间缩放信号s[(1+Δi)nTs]进行相关性分析,将相关性最大的时间缩放信号对应的时间缩放系数(1+Δ)确定为最佳时间缩放系数;其中,所述多个时间缩放信号为根据不同的时间缩放系数分别确定的多个多普勒频移信号,所述不同的时间缩放系数由不同的多普勒频移Δ确定,n为整数,Ts是采样周期。具体地:The multi-path correlation scaling estimation and resampling module B3 of this embodiment includes: a multi-path correlation scaling estimation unit and a resampling unit; wherein the multi-path correlation scaling estimation unit is used to perform correlation analysis on the data frame information and multiple time scaling signals s[(1+Δ i )nT s ] respectively, and determine the time scaling coefficient (1+Δ) corresponding to the time scaling signal with the largest correlation as the optimal time scaling coefficient; wherein the multiple time scaling signals are multiple Doppler frequency shift signals respectively determined according to different time scaling coefficients, the different time scaling coefficients are determined by different Doppler frequency shifts Δ, n is an integer, and T s is a sampling period. Specifically:
所述多路相关缩放估计和重采样模块B3可有效降低水声信道多普勒频移的影响。如图4所示:将上述数据帧信息的正交Chirp分复用中的子载波信号与FPGA内相应存储的各个时间缩放信号s[(1+Δi)nTs]进行相关并取模平方的运算,通过寻找能量谱峰值最大的分支作为时间缩放系数的最佳估计(1+Δ),根据最佳估计的时间缩放系数对接收信号进行单次重采样,即可得到多普勒频移抑制的宽带接收信号s′[nTs],其中,多普勒频移Δ定义为发射端和接收端之间的相对速度与水声传播速度之比。正交Chirp分复用中的多路子载波信号如图3所示,采用最后一路(N-1)子载波信号作为相关信号,有利于实时跟踪多普勒频移的帧内变化,以数据块为单位消除快速变化的多普勒频移。The multi-channel correlation scaling estimation and resampling module B3 can effectively reduce the influence of Doppler frequency shift in the underwater acoustic channel. As shown in FIG4 : the subcarrier signal in the orthogonal Chirp multiplexing of the above data frame information is correlated with each time scaling signal s[(1+Δ i )nT s ] stored in the FPGA, and the modulus square operation is performed. By finding the branch with the largest energy spectrum peak as the best estimate of the time scaling coefficient (1+Δ), the received signal is resampled once according to the best estimated time scaling coefficient, and the Doppler frequency shift suppressed broadband received signal s′[nT s ] can be obtained, wherein the Doppler frequency shift Δ is defined as the ratio of the relative speed between the transmitting end and the receiving end to the underwater acoustic propagation speed. The multi-channel subcarrier signal in the orthogonal Chirp multiplexing is shown in FIG3 , and the last (N-1) subcarrier signal is used as the correlation signal, which is conducive to real-time tracking of the intra-frame changes of the Doppler frequency shift and eliminating the rapidly changing Doppler frequency shift in units of data blocks.
重采样原理:假设s(t)和r(t)分别为发送信号和接收信号。用离散的时间对发射信号进行采样则可得到s[nTs],其中n为整数,Ts是采样周期,此时接收信号r[nTs]可表示为:Resampling principle: Assume that s(t) and r(t) are the transmitted signal and the received signal respectively. Sampling the transmitted signal with discrete time can obtain s[nTs], where n is an integer and Ts is the sampling period. At this time, the received signal r[ nTs ] can be expressed as:
r[nTs]=s[(1+Δ)nTs]r[nT s ]=s[(1+Δ)nT s ]
其中,多普勒频移为Δ,则重采样时的转换率应为1\(1+Δ),可通过以下公式进行重采样以消除固定的多普勒频移Δ:Where the Doppler frequency shift is Δ, the conversion rate during resampling should be 1\(1+Δ), and resampling can be performed using the following formula to eliminate the fixed Doppler frequency shift Δ:
经过上述步骤可得到所述重采样信号。所述FPGA电路还包括:基于数据分拣的Rake模块。所述基于数据分拣的Rake模块用于:基于设定的多个并行的时间窗对所述重采样信号进行截取处理,其中,各时间窗的起始位置不同。所述数据解调模块用于根据解调参数对截取处理后的重采样信号进行解调,得到解调结果。重采样信号包括多个通信数据块,通信数据块中包含目标通信信息,利用设定的多个并行的时间窗对重采样信号进行截取处理,得到多个时间窗下的信号,对每一时间窗下的信号进行解调,得到解调结果。The resampled signal can be obtained through the above steps. The FPGA circuit also includes: a Rake module based on data sorting. The Rake module based on data sorting is used to: intercept and process the resampled signal based on a set plurality of parallel time windows, wherein the starting position of each time window is different. The data demodulation module is used to demodulate the intercepted resampled signal according to the demodulation parameters to obtain a demodulation result. The resampled signal includes a plurality of communication data blocks, and the communication data blocks contain target communication information. The resampled signal is intercepted and processed using a set plurality of parallel time windows to obtain signals under a plurality of time windows, and the signal under each time window is demodulated to obtain a demodulation result.
通过基于数据分拣的Rake模块B4降低重采样信号水声信道多径时延扩展的影响。具体包括:The Rake module B4 based on data sorting is used to reduce the influence of multipath delay spread of the underwater acoustic channel of the resampled signal. Specifically, it includes:
浅海水声信道的多径时延扩展会引起块间干扰(Inter-Block Interference,IBI)是显而易见的,同时也会引入载波间干扰(Inter-Carrier Interference,ICI),可以通过选取合适的分析时间窗来消除ICI,但需要清楚的知道多径到达的时延信息,而多径中每一径的准确时延在实际的水声通信环境中通常是不清楚的,由此,因为多径的时延(τ1...τi)和对应的衰减系数(α1...αi)是未知的,所以需要设计多个并行的分析时间窗(Rake模块)用于解调,在系统中并行的分析时间窗的个数设定为K<64。It is obvious that the multipath delay spread of shallow water acoustic channels will cause inter-block interference (IBI) and inter-carrier interference (ICI). ICI can be eliminated by selecting an appropriate analysis time window, but the delay information of multipath arrival must be clearly known. The exact delay of each path in the multipath is usually unclear in the actual underwater acoustic communication environment. Therefore, because the multipath delay (τ 1 ...τ i ) and the corresponding attenuation coefficient (α 1 ...α i ) are unknown, it is necessary to design multiple parallel analysis time windows (Rake modules) for demodulation. The number of parallel analysis time windows in the system is set to K < 64.
所述数据解调模块B5根据解调参数对上述截取处理后的重采样信号进行解调,得到每一所述时间窗对应的解调结果,具体地:The data demodulation module B5 demodulates the resampled signal after the above-mentioned interception processing according to the demodulation parameters to obtain the demodulation result corresponding to each time window, specifically:
由于ψn(t)是相互正交的,则信息x(m)可方便的通过匹配滤波器提取出来,如图2中的(b)的正交Chirp信号的多载波解调过程:Since ψ n (t) are mutually orthogonal, the information x(m) can be easily extracted through a matched filter, as shown in the multi-carrier demodulation process of the orthogonal Chirp signal in (b) of Figure 2:
调制后的信号通过水声模拟输出模块A3发射到水声信道中去。The modulated signal is transmitted to the underwater acoustic channel through the underwater acoustic simulation output module A3.
在功能模块互相解耦的基础上,为满足可重配置的要求(以应对水声信道的复杂性),如图1所示,系统中重要的参数可灵活配置,主要包括:数据调制模块A2和数据解调模块B5中水声正交Chirp分复用调制解调参数可重配置(包括子载波数量、CP比率、保护间隔等参数);多路相关缩放估计和重采样模块B3以及基于数据分拣的Rake模块B4中多路相关缩放估计分支数和基于数据分拣的Rake接收分支数可重配置。On the basis of mutual decoupling of functional modules, in order to meet the requirements of reconfiguration (to cope with the complexity of the underwater acoustic channel), as shown in Figure 1, the important parameters in the system can be flexibly configured, mainly including: the underwater acoustic orthogonal Chirp multiplexing modulation and demodulation parameters in the data modulation module A2 and the data demodulation module B5 are reconfigurable (including parameters such as the number of subcarriers, CP ratio, and protection interval); the number of multi-path correlation scaling estimation branches and the number of Rake receiving branches based on data sorting in the multi-path correlation scaling estimation and resampling module B3 and the Rake module based on data sorting B4 are reconfigurable.
所述实时系统还包括:数据校验和分拣模块;所述数据校验和分拣模块用于通过CRC校验得到每一所述解调结果的误码率,并分拣出误码率最小的解调结果作为最终数字信号。The real-time system also includes: a data checking and sorting module; the data checking and sorting module is used to obtain the bit error rate of each demodulation result through CRC checking, and sort out the demodulation result with the smallest bit error rate as the final digital signal.
进一步地,所述数据校验和分拣模块B6用于通过CRC校验得到每一所述时间窗对应的解调结果的误码率,并分拣出误码率最小的解调结果作为最终数字信号。Furthermore, the data checking and sorting module B6 is used to obtain the bit error rate of the demodulation result corresponding to each time window through CRC checking, and sort out the demodulation result with the smallest bit error rate as the final digital signal.
并行多路的解调结果通过CRC校验检查其输出数据是否有错误发生,并通过数据分拣选择其中无错误的最佳分支得到最终的二进制信息。The demodulation results of parallel multiplexing are checked for errors in the output data through CRC check, and the best error-free branch is selected through data sorting to obtain the final binary information.
为满足实时性的要求,由于多路相关缩放估计和重采样模块B3、基于数据分拣的Rake模块B4与数据解调模块B5之间存在大量的数据交换,因此,在FPGA和实时系统之间采用DMAFIFO(DirectMemoryAccess,First InFirst Out)进行快速数据传输,如图1和图4所示,经DMAFIFO传输可构成FPGA和实时系统之间的快速处理结构,以减小CPU开销并加快数据处理。In order to meet the real-time requirements, since there is a large amount of data exchange between the multi-channel correlation scaling estimation and resampling module B3, the data sorting-based Rake module B4 and the data demodulation module B5, DMAFIFO (Direct Memory Access, First In First Out) is used for fast data transmission between the FPGA and the real-time system. As shown in Figures 1 and 4, DMAFIFO transmission can constitute a fast processing structure between the FPGA and the real-time system to reduce CPU overhead and speed up data processing.
本发明对系统的实现进行合理的功能模块划分,使得系统模块之间完全解耦,使得各模块需要配置的参数互不影响,因此本申请各模块中的参数可灵活配置。The present invention performs reasonable functional module division for the implementation of the system, so that the system modules are completely decoupled and the parameters that need to be configured in each module do not affect each other. Therefore, the parameters in each module of the present application can be flexibly configured.
为满足功能模块解耦和实时性的要求,系统采用ARM加可重配置FPGA的开放式架构,由图5发射端和图6接收端的流程图可看出系统的核心功能主要运行在FPGA内或实时系统(Linux RT)内,功能解耦和实时性要求对系统的实现进行合理的功能划分(如图1):实时系统(Linux RT)中运行A1,B5和B6模块,主要完成CRC编码和校验、FEC编码和解码、交织与解交织和最终数据选取等功能;由于多路相关缩放估计和重采样模块B3和基于数据分拣的Rake模块B4采用穷举搜索的方法,其中有大量高效并行运行和计算的需求(基于CPU的处理不能满足实时性要求),因此在FPGA中主要运行B3,B4这2个具有并行特性的核心模块和A2模块,通过FPGA的并行特性大大降低数据处理的时间,同时模块以软核的形式在FPGA中运行,有利于方便并实时的调整多路相关缩放估计分支数和基于数据分拣的Rake接收分支数。In order to meet the requirements of functional module decoupling and real-time performance, the system adopts an open architecture of ARM plus reconfigurable FPGA. It can be seen from the flowcharts of the transmitter in Figure 5 and the receiver in Figure 6 that the core functions of the system are mainly run in the FPGA or the real-time system (Linux RT). Functional decoupling and real-time performance require reasonable functional division of the system implementation (as shown in Figure 1): A1, B5 and B6 modules are run in the real-time system (Linux RT), mainly completing CRC encoding and verification, FEC encoding and decoding, interleaving and deinterleaving, and final data selection. Since the multi-channel correlation scaling estimation and resampling module B3 and the data sorting-based Rake module B4 adopt an exhaustive search method, there are a large number of requirements for efficient parallel operation and calculation (CPU-based processing cannot meet real-time requirements), the two core modules B3 and B4 with parallel characteristics and the A2 module are mainly run in the FPGA. The parallel characteristics of the FPGA greatly reduce the time of data processing. At the same time, the modules run in the FPGA in the form of soft cores, which is conducive to convenient and real-time adjustment of the number of multi-channel correlation scaling estimation branches and the number of Rake receiving branches based on data sorting.
在系统进行合理的功能模块划分的基础上,可见负责调制/解调部分的A2和B6模块以及B3、B4这两个核心模块完全在软件中运行(B3、B4运行以软核的形式运行于FPGA),通过这样的设计使得系统模块之间完全解耦。这种解耦分离对于调制解调器的灵活性和硬件(A3和B1模块)的验证和测试非常有帮助,例如,该系统甚至可用于发送/接收来自不同系统的调制信号,也可用于解调从不同系统发送的信号(例如,可以采用相同的硬件来验证OFDM调制方案的性能,并将其与JANUS标准调制的系统实现进行比较)。其次,通过解耦功能模块,使得重要参数之间是相互解耦的,从而提供了一个参数灵活可调的系统,通过调整不同的通信参数,可为用户提供了更好地适应不同水声信道场景的可能性,轻松适应不断变化的水声信道条件和可变的发射接收距离。Based on the reasonable functional module division of the system, it can be seen that the A2 and B6 modules responsible for the modulation/demodulation part and the two core modules B3 and B4 are completely run in software (B3 and B4 run in the form of soft cores on FPGA). This design makes the system modules completely decoupled. This decoupling separation is very helpful for the flexibility of the modem and the verification and testing of the hardware (A3 and B1 modules). For example, the system can even be used to send/receive modulated signals from different systems, and can also be used to demodulate signals sent from different systems (for example, the same hardware can be used to verify the performance of the OFDM modulation scheme and compare it with the system implementation of the JANUS standard modulation). Secondly, by decoupling the functional modules, the important parameters are decoupled from each other, thus providing a system with flexible and adjustable parameters. By adjusting different communication parameters, it can provide users with the possibility of better adapting to different underwater acoustic channel scenarios, and easily adapt to the changing underwater acoustic channel conditions and variable transmission and reception distances.
图7是本申请可配置的实时水声通信系统在厦门港海试实验中的BER(biterrorrate)和PER(packet errorrate)性能,由图7结果可以看出,PR-DP-Rake OCDM通过参数可重配置的信道适应能力强,其性能优于PR-DP-Rake OFDM;系统性能会受到浅海水声信道双扩展特性的影响,对于PR-DP-Rake OCDM系统而言,BER和PER的性能曲线趋势基本一致,当信噪比小于4.5dB时,系统BER高于10-2;当SNR大于7.9dB时,系统的误码率为0,由此可见,参数合理配置的PR-DP-Rake OCDM系统具有很好的抗多普勒和抗多径性能。FIG7 shows the BER (biterror rate) and PER (packet error rate) performance of the configurable real-time underwater acoustic communication system of the present application in the sea trial experiment of Xiamen Port. It can be seen from the results of FIG7 that the PR-DP-Rake OCDM has a strong channel adaptability through parameter reconfiguration, and its performance is better than that of the PR-DP-Rake OFDM; the system performance will be affected by the dual expansion characteristics of the shallow water acoustic channel. For the PR-DP-Rake OCDM system, the performance curve trends of BER and PER are basically the same. When the signal-to-noise ratio is less than 4.5dB, the system BER is higher than 10 -2 ; when the SNR is greater than 7.9dB, the system bit error rate is 0. It can be seen that the PR-DP-Rake OCDM system with reasonable parameter configuration has good anti-Doppler and anti-multipath performance.
通过上述步骤,本申请具有以下效果:Through the above steps, this application has the following effects:
(1)本申请通过对功能模块的合理划分和运行软核化使系统的重要模块之间是完全解耦的,进而使得多个模块中的重要参数可灵活配置,以应对水声通信中水声信道的多变性和复杂性,轻松适应不断变化的水声信道条件和可变的发射接收距离。同时,系统功能模块的解耦分离和参数可重配置对于调制解调器的灵活性和通信性能的验证和测试非常有帮助,有利于水声通信算法模块的开发、验证与实施。(1) This application completely decouples the important modules of the system through reasonable division of functional modules and soft-core operation, so that the important parameters in multiple modules can be flexibly configured to cope with the variability and complexity of underwater acoustic channels in underwater acoustic communications, and easily adapt to the changing underwater acoustic channel conditions and variable transmission and reception distances. At the same time, the decoupling and separation of system functional modules and the reconfigurable parameters are very helpful for the flexibility of the modem and the verification and testing of communication performance, which is conducive to the development, verification and implementation of underwater acoustic communication algorithm modules.
(2)本申请采用ARM加可重配置FPGA的开放式架构,在FPGA和实时系统之间采用DMAFIFO传输并构成FPGA和实时系统之间的快速处理结构以满足实时性的要求。(2) This application adopts an open architecture of ARM plus a reconfigurable FPGA, uses DMAFIFO transmission between the FPGA and the real-time system, and constructs a fast processing structure between the FPGA and the real-time system to meet the real-time requirements.
(3)本申请的可重配置的实时水声通信系统具有抗多普勒和抗多径的双重特性,能有效降低水声通信的误码率。系统中的多路相关缩放估计和重采样模块B3通过多路相关估计的算法搜寻对时间缩放系数的最佳估计,从而有效抑制宽带水声信号的多普勒频移;系统中的基于数据分拣的Rake模块B4通过多个并行的分析时间窗对正交Chirp信号的数据块进行分析处理从而找到最佳的分析时间窗来消除因多径时延导致的载波间干扰。(3) The reconfigurable real-time underwater acoustic communication system of the present application has the dual characteristics of anti-Doppler and anti-multipath, and can effectively reduce the bit error rate of underwater acoustic communication. The multi-path correlation scaling estimation and resampling module B3 in the system searches for the best estimate of the time scaling coefficient through the multi-path correlation estimation algorithm, thereby effectively suppressing the Doppler frequency shift of the broadband underwater acoustic signal; the data sorting-based Rake module B4 in the system analyzes and processes the data blocks of the orthogonal Chirp signal through multiple parallel analysis time windows to find the best analysis time window to eliminate the inter-carrier interference caused by multipath delay.
实施例2Example 2
本发明提供了一种可重配置的实时水声通信方法,所述方法包括:The present invention provides a reconfigurable real-time underwater acoustic communication method, the method comprising:
获取接收到的水声信号;Acquiring received hydroacoustic signals;
将所述水声信号与频移不同的多个预设多普勒频移信号进行相关性分析,并确定与所述水声信号相关性最大的多普勒频移信号对应的频移参数;Performing correlation analysis on the underwater acoustic signal and a plurality of preset Doppler frequency shift signals with different frequency shifts, and determining a frequency shift parameter corresponding to the Doppler frequency shift signal with the greatest correlation with the underwater acoustic signal;
根据所述频移参数对所述水声信号进行重采样,得到重采样信号;Resampling the underwater acoustic signal according to the frequency shift parameter to obtain a resampled signal;
对所述重采样信号进行解调。The resampled signal is demodulated.
其中,所述将所述水声信号与频移不同的多个预设多普勒频移信号进行相关性分析,并确定与所述数据帧信息相关性最大的多普勒频移信号对应的频移参数,具体包括:The step of performing correlation analysis on the underwater acoustic signal and a plurality of preset Doppler frequency shift signals with different frequency shifts, and determining a frequency shift parameter corresponding to the Doppler frequency shift signal having the greatest correlation with the data frame information, specifically includes:
将所述水声信号分别与多个时间缩放信号s[(1+Δi)nTs]进行相关性分析;Performing correlation analysis on the underwater acoustic signal and a plurality of time scaling signals s[(1+Δ i )nT s ] respectively;
将相关性最大的时间缩放信号对应的时间缩放系数(1+Δ)确定为最佳时间缩放系数;其中,所述多个时间缩放信号为根据不同的时间缩放系数分别确定的多个多普勒频移信号,所述不同的时间缩放系数由不同的多普勒频移Δ确定,n为整数,Ts是采样周期。The time scaling coefficient (1+Δ) corresponding to the time scaling signal with the largest correlation is determined as the optimal time scaling coefficient; wherein the multiple time scaling signals are multiple Doppler frequency shift signals determined respectively according to different time scaling coefficients, the different time scaling coefficients are determined by different Doppler frequency shifts Δ, n is an integer, and Ts is a sampling period.
具体地:specifically:
所述多路相关缩放估计和重采样模块可有效降低水声信道多普勒频移的影响。将上述数据帧信息的正交Chirp分复用中的子载波信号与FPGA内相应存储的各个时间缩放信号s[(1+Δi)nTs]进行相关并取模平方的运算,通过寻找能量谱峰值最大的分支作为时间缩放系数的最佳估计(1+Δ),根据最佳估计的时间缩放系数对接收信号进行单次重采样,即可得到多普勒频移抑制的宽带接收信号s′[nTs],其中,多普勒频移Δ定义为发射端和接收端之间的相对速度与水声传播速度之比。The multi-path correlation scaling estimation and resampling module can effectively reduce the influence of Doppler frequency shift in the underwater acoustic channel. The subcarrier signals in the orthogonal Chirp multiplexing of the above data frame information are correlated with the respective time scaling signals s[(1+Δ i )nT s ] stored in the FPGA and the modulus square operation is performed. By finding the branch with the largest energy spectrum peak as the best estimate of the time scaling coefficient (1+Δ), the received signal is resampled once according to the best estimated time scaling coefficient, and the Doppler frequency shift suppressed broadband received signal s′[nT s ] can be obtained, wherein the Doppler frequency shift Δ is defined as the ratio of the relative speed between the transmitting end and the receiving end to the underwater acoustic propagation speed.
重采样原理:假设s(t)和r(t)分别为发送信号和接收信号。用离散的时间对发射信号进行采样则可得到s[nTs],其中n为整数,Ts是采样周期,此时接收信号r[nTs]可表示为:Resampling principle: Assume that s(t) and r(t) are the transmitted signal and the received signal respectively. Sampling the transmitted signal with discrete time can obtain s[nTs], where n is an integer and Ts is the sampling period. At this time, the received signal r[ nTs ] can be expressed as:
r[nTs]=s[(1+Δ)nTs]r[nT s ]=s[(1+Δ)nT s ]
其中,多普勒频移为Δ,则重采样时的转换率应为1\(1+Δ),可通过以下公式进行重采样以消除固定的多普勒频移Δ:Where the Doppler frequency shift is Δ, the conversion rate during resampling should be 1\(1+Δ), and resampling can be performed using the following formula to eliminate the fixed Doppler frequency shift Δ:
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments. The same or similar parts between the various embodiments can be referenced to each other.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。This article uses specific examples to illustrate the principles and implementation methods of the present invention. The above examples are only used to help understand the method and core ideas of the present invention. At the same time, for those skilled in the art, according to the ideas of the present invention, there will be changes in the specific implementation methods and application scope. In summary, the content of this specification should not be understood as limiting the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210754979.6A CN115037384B (en) | 2022-06-29 | 2022-06-29 | A reconfigurable real-time underwater acoustic communication system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210754979.6A CN115037384B (en) | 2022-06-29 | 2022-06-29 | A reconfigurable real-time underwater acoustic communication system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115037384A CN115037384A (en) | 2022-09-09 |
CN115037384B true CN115037384B (en) | 2024-04-12 |
Family
ID=83126595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210754979.6A Active CN115037384B (en) | 2022-06-29 | 2022-06-29 | A reconfigurable real-time underwater acoustic communication system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115037384B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115426055B (en) * | 2022-11-07 | 2023-03-24 | 青岛科技大学 | Noise-containing underwater acoustic signal blind source separation method based on decoupling convolutional neural network |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101605000A (en) * | 2009-07-09 | 2009-12-16 | 中国人民解放军海军工程大学 | Mobile underwater acoustic communication signal processing method with strong anti-multipath capability |
CN109474304A (en) * | 2018-11-29 | 2019-03-15 | 中国海洋大学 | Adaptive multi-standard underwater acoustic communication system and method |
CN113078959A (en) * | 2021-03-26 | 2021-07-06 | 集美大学 | Anti-change Doppler frequency shift underwater acoustic communication method |
WO2022088563A1 (en) * | 2020-10-28 | 2022-05-05 | 鹏城实验室 | Ofdm-based underwater acoustic communication synchronization method, intelligent terminal, and storage medium |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8467269B2 (en) * | 2009-04-03 | 2013-06-18 | University Of Connecticut | Apparatus, systems and methods for enhanced detection, synchronization and online Doppler scale estimation for underwater acoustic communications |
-
2022
- 2022-06-29 CN CN202210754979.6A patent/CN115037384B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101605000A (en) * | 2009-07-09 | 2009-12-16 | 中国人民解放军海军工程大学 | Mobile underwater acoustic communication signal processing method with strong anti-multipath capability |
CN109474304A (en) * | 2018-11-29 | 2019-03-15 | 中国海洋大学 | Adaptive multi-standard underwater acoustic communication system and method |
WO2022088563A1 (en) * | 2020-10-28 | 2022-05-05 | 鹏城实验室 | Ofdm-based underwater acoustic communication synchronization method, intelligent terminal, and storage medium |
CN113078959A (en) * | 2021-03-26 | 2021-07-06 | 集美大学 | Anti-change Doppler frequency shift underwater acoustic communication method |
Also Published As
Publication number | Publication date |
---|---|
CN115037384A (en) | 2022-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7327700B2 (en) | Flexible multi-channel multi-thread media access controller and physical layer interface for wireless networks | |
US5809083A (en) | Differentially encoded pilot word system and method for wireless transmissions of digital data | |
JP4989632B2 (en) | Acknowledgment message changes in communication networks | |
US8064554B2 (en) | Radio communication system performing multi-carrier transmission, reception device, reception method, transmission device, transmission method, delay time calculation device, and delay time calculation method | |
KR100922245B1 (en) | Timing control in orthogonal frequency division multiplex systems based on effective signal-to-noise ratio | |
CN1237729C (en) | CDMA system which uses pre-rotation before transmission | |
KR101578935B1 (en) | Receiving method and apparatus in a multi-input / output system | |
CA2583111A1 (en) | Multiple antenna processing on transmit for wireless local area networks | |
WO2002093859A1 (en) | Channel decoding apparatus and method in an orthogonal frequency division multiplexing system | |
CN101164308A (en) | Timing corrections in a multi carrier system and propagation to a channel estimation time filter | |
JP4130821B2 (en) | Apparatus and method for canceling interference signal in orthogonal frequency division multiplexing system using multiple antennas | |
WO2006115246A1 (en) | Wireless communication apparatus and wireless communication method | |
WO2006091916A2 (en) | Ultrawideband architecture | |
CN115037384B (en) | A reconfigurable real-time underwater acoustic communication system and method | |
CN107204826A (en) | Towards the ADAPTIVE MIXED repeating method and device of deep space communication | |
CN1588936A (en) | Orthogonal frequency division multiplexing transmission system with self adaption protective interval | |
CN110350985A (en) | A kind of underwater sound parallel transmission method based on active time reversal | |
CN112910570A (en) | Underwater acoustic communication link self-adaptive configuration method based on orthogonal signal division multiplexing modulation | |
JP2010119070A (en) | Phase noise compensation receiver | |
CN112910808B (en) | A multi-carrier shallow sea acoustic communication method with short guard interval | |
CN110324065A (en) | A kind of multi-user's underwater acoustic communication method based on cyclic shift keying band spectrum modulation | |
CN203039714U (en) | A MIMO-OFDM Wireless Communication System | |
CN114884783B (en) | A Method for Channel Estimation of Power Line System Using Neural Network | |
CN114641087B (en) | A shortwave digital channelized communication and detection integrated fast link establishment method | |
CN114584435B (en) | OFDM-NOMA balanced detection method based on modulation information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |