[go: up one dir, main page]

CN115035306A - Image material determination method and related device - Google Patents

Image material determination method and related device Download PDF

Info

Publication number
CN115035306A
CN115035306A CN202210724245.3A CN202210724245A CN115035306A CN 115035306 A CN115035306 A CN 115035306A CN 202210724245 A CN202210724245 A CN 202210724245A CN 115035306 A CN115035306 A CN 115035306A
Authority
CN
China
Prior art keywords
data
standard
feature
highlight
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210724245.3A
Other languages
Chinese (zh)
Other versions
CN115035306B (en
Inventor
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority to CN202210724245.3A priority Critical patent/CN115035306B/en
Priority claimed from CN202210724245.3A external-priority patent/CN115035306B/en
Publication of CN115035306A publication Critical patent/CN115035306A/en
Application granted granted Critical
Publication of CN115035306B publication Critical patent/CN115035306B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/80Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
    • G06V10/806Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Image Analysis (AREA)

Abstract

The application provides an image material determining method and a related device, and firstly, target characteristic data of a target image is determined; then, highlight feature data and standard feature data are determined according to the target feature data, wherein the highlight feature data are used for indicating image features without the influence of the saturated pixels, and the standard feature data are used for indicating image features without the influence of the saturated pixels; then, determining fusion characteristic data according to the highlight characteristic data and the standard characteristic data; and finally, determining the material data of the target image according to the fusion characteristic data, wherein the material data comprises at least one of a diffuse reflection material map, a roughness material map, a mirror surface material map and a normal line material map. The method has the advantages that excessive acquisition of the input target image is not needed, accurate material data can be obtained only by a single target image, and the efficiency and the accuracy of material estimation are greatly improved.

Description

图像材质确定方法及相关装置Image material determination method and related device

技术领域technical field

本申请涉及图像分析技术领域,特别是一种图像材质确定方法及相关装置。The present application relates to the technical field of image analysis, in particular to an image material determination method and related devices.

背景技术Background technique

随着技术的发展,在很多领域都需要根据物体的图像来确定其真实材质信息,但是由于现实世界材质的内在复杂性,需要额外的摄像机,像机等采集设备对物体进行详尽的空间和角度采样来得到输入图像,这十分影响对图像进行材质分析的效率。With the development of technology, in many fields, it is necessary to determine the real material information of the object according to the image. However, due to the inherent complexity of the material in the real world, additional cameras, cameras and other acquisition equipment are required to perform detailed spatial and angle analysis of the object. Sampling to get the input image, which greatly affects the efficiency of the material analysis of the image.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本申请提供了一种,可以根据单张图像确定准确的材质数据,无需其余参数,可以大大提升对材质估计的效率和准确性。In view of this, the present application provides a method that can determine accurate material data according to a single image without the need for other parameters, which can greatly improve the efficiency and accuracy of material estimation.

第一方面,本申请实施例提供了一种图像材质确定方法,所述方法包括:In a first aspect, an embodiment of the present application provides a method for determining an image material, the method comprising:

确定目标图像的目标特征数据;Determine the target feature data of the target image;

根据所述目标特征数据确定高光特征数据和标准特征数据,所述高光特征数据用于指示消除饱和像素影响的图像特征,所述标准特征数据用于指示未消除所述饱和像素影响的图像特征;Determine highlight feature data and standard feature data according to the target feature data, where the highlight feature data is used to indicate an image feature that eliminates the influence of saturated pixels, and the standard feature data is used to indicate an image feature that does not eliminate the influence of the saturated pixel;

根据所述高光特征数据和所述标准特征数据确定融合特征数据;Determine fusion feature data according to the highlight feature data and the standard feature data;

根据所述融合特征数据确定所述目标图像的材质数据,所述材质数据包括漫反射材质图、粗糙度材质图、镜面材质图和法线材质图中的至少一种。The material data of the target image is determined according to the fusion feature data, and the material data includes at least one of a diffuse reflection material map, a roughness material map, a specular material map and a normal material map.

第二方面,本申请实施例提供一种图像材质确定装置,所述装置包括:In a second aspect, an embodiment of the present application provides an image material determination device, the device comprising:

特征确定单元,英语确定目标图像的目标特征数据;A feature determination unit, which determines the target feature data of the target image in English;

分支提取单元,用于根据所述目标特征数据确定高光特征数据和标准特征数据,所述高光特征数据用于指示消除饱和像素影响的图像特征,所述标准特征数据用于指示未消除所述饱和像素影响的图像特征;A branch extraction unit, configured to determine highlight feature data and standard feature data according to the target feature data, where the highlight feature data is used to indicate the image features that eliminate the influence of saturated pixels, and the standard feature data is used to indicate that the saturation is not eliminated Pixel-influenced image features;

融合提取单元,用于根据所述高光特征数据和所述标准特征数据确定融合特征数据;a fusion extraction unit, configured to determine fusion characteristic data according to the highlight characteristic data and the standard characteristic data;

材质估计单元,用于根据所述融合特征数据确定所述目标图像的材质数据,所述材质数据包括漫反射材质图、粗糙度材质图、镜面材质图和法线材质图中的至少一种。A material estimation unit, configured to determine material data of the target image according to the fusion feature data, where the material data includes at least one of a diffuse reflection material map, a roughness material map, a specular material map and a normal material map.

第三方面,本申请实施例提供了一种电子设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,上述一个或多个程序被存储在上述存储器中,并且被配置由上述处理器执行,上述程序包括用于执行本申请实施例第一方面任一方法中的步骤的指令。In a third aspect, an embodiment of the present application provides an electronic device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory, and are configured by the above Executed by the processor, the above program includes instructions for executing steps in any method in the first aspect of the embodiments of the present application.

第四方面,本申请实施例提供了一种计算机可读存储介质,其中,上述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,上述计算机程序使得计算机执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。In a fourth aspect, an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes a computer to execute the computer program as described in the first embodiment of the present application. In one aspect some or all of the steps described in any method.

第五方面,本申请实施例提供了一种计算机程序产品,其中,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面任一方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。In a fifth aspect, an embodiment of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute as implemented in the present application. Examples include some or all of the steps described in any method of the first aspect. The computer program product may be a software installation package.

可见,通过上述图像材质确定方法及相关装置,首先,确定目标图像的目标特征数据;然后,根据所述目标特征数据确定高光特征数据和标准特征数据,所述高光特征数据用于指示消除饱和像素影响的图像特征,所述标准特征数据用于指示未消除所述饱和像素影响的图像特征;接着,根据所述高光特征数据和所述标准特征数据确定融合特征数据;最后,根据所述融合特征数据确定所述目标图像的材质数据,所述材质数据包括漫反射材质图、粗糙度材质图、镜面材质图和法线材质图中的至少一种。无需对输入的目标图像进行过多的采集,只需要单张目标图像就可以得到准确的材质数据,大大提升了对材质进行估计的效率和准确性。It can be seen that, through the above-mentioned image material determination method and related device, first, the target feature data of the target image is determined; then, according to the target feature data, highlight feature data and standard feature data are determined, and the highlight feature data is used to indicate the elimination of saturated pixels. Influenced image features, the standard feature data is used to indicate the image features that are not affected by the saturated pixels; then, fusion feature data is determined according to the highlight feature data and the standard feature data; finally, according to the fusion feature The data determines material data of the target image, and the material data includes at least one of a diffuse reflection material map, a roughness material map, a specular material map, and a normal material map. There is no need to collect too many input target images, and only a single target image is needed to obtain accurate material data, which greatly improves the efficiency and accuracy of material estimation.

附图说明Description of drawings

为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are some embodiments of the present invention, which are of great significance to the art For those of ordinary skill, other drawings can also be obtained from these drawings without any creative effort.

图1为本申请实施例提供的一种图像材质确定方法的系统架构图;1 is a system architecture diagram of a method for determining an image material provided by an embodiment of the present application;

图2为本申请实施例提供的一种图像材质确定方法的流程示意图;2 is a schematic flowchart of a method for determining an image material according to an embodiment of the present application;

图3A为本申请实施例提供的一种材质估计模型的架构示意图;3A is a schematic structural diagram of a material estimation model provided by an embodiment of the present application;

图3B为本申请实施例提供的另一种材质估计模型的架构示意图;3B is a schematic structural diagram of another material estimation model provided by an embodiment of the present application;

图3C为本申请实施例提供的另一种材质估计模型的架构示意图;3C is a schematic structural diagram of another material estimation model provided by an embodiment of the present application;

图4为本申请实施例提供的另一种图像材质确定方法的流程示意图;4 is a schematic flowchart of another image material determination method provided by an embodiment of the present application;

图5为本申请实施例提供的一种电子设备的结构示意图;5 is a schematic structural diagram of an electronic device according to an embodiment of the present application;

图6为本申请实施例提供的一种图像材质确定装置的功能单元组成框图;FIG. 6 is a block diagram of functional units of an image material determination device provided by an embodiment of the present application;

图7为本申请实施例提供的另一种图像材质确定装置的功能单元组成框图。FIG. 7 is a block diagram of functional units of another image material determination apparatus provided by an embodiment of the present application.

具体实施方式Detailed ways

为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make those skilled in the art better understand the solutions of the present application, the technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are only It is a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present application.

本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。The terms "first", "second" and the like in the description and claims of the present application and the above drawings are used to distinguish different objects, rather than to describe a specific order. Furthermore, the terms "comprising" and "having" and any variations thereof are intended to cover non-exclusive inclusion. For example, a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes unlisted steps or units, or optionally also includes For other steps or units inherent to these processes, methods, products or devices.

应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。本申请实施例中出现的“多个”是指两个或两个以上。It should be understood that the term "and/or" in this document is only an association relationship to describe associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, and A and B exist at the same time , there are three cases of B alone. In addition, the character "/" in this text indicates that the related objects are an "or" relationship. The "plurality" in the embodiments of the present application refers to two or more.

本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。The "connection" in the embodiments of the present application refers to various connection modes such as direct connection or indirect connection, so as to realize communication between devices, which is not limited in the embodiments of the present application.

在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。Reference herein to an "embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application. The appearances of the phrase in various places in the specification are not necessarily all referring to the same embodiment, nor a separate or alternative embodiment that is mutually exclusive of other embodiments. It is explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.

下面对本申请的背景技术及相关术语进行说明。The background technology and related terms of the present application are described below.

背景技术相关:Background technology related:

基本概念:basic concept:

基于真实物理的渲染(Physically Based Rendering,PBR)指的是基于基本的真实物理规律和数学推导,建立模拟真实现象的渲染方程来渲染真实画面的技术。相对于之前传统的基础模拟渲染,PBR开始遵守物理规律,使得渲染更加真实,但由于目前硬件水平等的限制也并没有完全按照现实世界的规律去计算,是介于纯经验算法模拟渲染和真实物理渲染之间的渲染技术。PBR渲染中加入了能量守恒、菲涅耳反射定律、光的吸收现象等物理规律的考虑,更好的表现物体表面的细节和粗糙度,各向异性,区分金属和非金属材质,半透明材质等各种复杂的材质特性。Physically Based Rendering (PBR) refers to the technology of rendering real pictures by establishing rendering equations that simulate real phenomena based on basic real physical laws and mathematical derivation. Compared with the previous traditional basic simulation rendering, PBR began to abide by the laws of physics, making the rendering more realistic. However, due to the limitations of the current hardware level, it is not completely calculated according to the laws of the real world. It is between pure empirical algorithm simulation rendering and real rendering. Rendering techniques between physical rendering. In PBR rendering, the consideration of physical laws such as energy conservation, Fresnel reflection law, light absorption phenomenon, etc. is added to better represent the details and roughness of the object surface, anisotropy, distinguish between metal and non-metal materials, and translucent materials and other complex material properties.

可见,在图形学领域,对物体材质的分析越来越重要,渲染技术也越来越精细,现有的分析方法可以采用多个摄像机去对物体进行详尽的空间和角度采样,并基于采样得到的多张图像进行物体的材质分析,这十分影响对物体进行材质分析的效率,并且,采集到的多张图像本身可能存在一些噪点,现有的方法无法去除噪点带来的影响,无法保证最终确定的材质信息的准确性。It can be seen that in the field of graphics, the analysis of object materials is becoming more and more important, and the rendering technology is becoming more and more refined. In addition, the collected images may have some noise, and the existing methods cannot remove the influence of noise and cannot guarantee the final Determines the accuracy of the material information.

为解决上述问题,本申请提供了一种图像材质确定方法及相关装置,可以基于单张图像确定图像中物体的材质数据,无需额外摄像头采集多张图像也无需其余参数作为额外输入,并且采用双分支的神经网络模型排除噪点的影响,可以大大提升确定材质数据的效率和准确性。In order to solve the above problems, the present application provides an image material determination method and related device, which can determine the material data of an object in an image based on a single image, without the need for an additional camera to collect multiple images or other parameters as additional input, and adopts dual The branched neural network model eliminates the influence of noise, which can greatly improve the efficiency and accuracy of determining material data.

首先,结合图1对本申请实施例提供的一种图像材质确定方法的系统架构进行说明,图1为本申请实施例提供的一种图像材质确定方法的系统架构图,该系统架构100包括采集设备110和材质确定设备120,其中上述采集设备110可以为采集图像的设备,如摄像机、激光设备等,用于采集物体的图像,上述采集设备110可以有线或无线连接材质确定设备120,向上述材质确定设备120发送采集到的图像,或者,上述采集设备110可以将图像上传至网络,无需与材质确定设备120连接。上述材质确定设备120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)、服务器等等。First, the system architecture of an image material determination method provided by an embodiment of the present application will be described with reference to FIG. 1 . FIG. 1 is a system architecture diagram of an image material determination method provided by an embodiment of the present application. The system architecture 100 includes a collection device. 110 and a material determination device 120, wherein the above-mentioned acquisition device 110 can be a device that collects images, such as a camera, a laser device, etc., used to collect images of objects, and the above-mentioned acquisition device 110 can be wired or wirelessly connected to the material determination device 120, to the above-mentioned material. The determination device 120 sends the captured image, or the aforementioned capture device 110 may upload the image to the network without connecting to the material determination device 120 . The above-mentioned material determination device 120 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, and various forms of user equipment (User Equipment, UE), Mobile station (Mobile Station, MS), terminal device (terminal device), server and so on.

在一种可能的实施例中,上述材质确定设备120可以搭载材质估计模型或者相关的材质估计算法,用于从采集设备110或其他渠道(如网络平台等)获取图像,并通过材质估计模型进行相应的处理,得到材质数据。In a possible embodiment, the above-mentioned material determination device 120 may be equipped with a material estimation model or a related material estimation algorithm to acquire images from the acquisition device 110 or other channels (such as network platforms, etc.), and perform the processing through the material estimation model. Corresponding processing, the material data is obtained.

可以理解的是,无论采集设备110采集了多少张图像,材质确定设备120都会基于单张图像进行材质确定方法的流程。It can be understood that no matter how many images are collected by the collection device 110, the material determination device 120 will perform the flow of the material determination method based on a single image.

可见,通过上述系统架构,无需通过大量摄像头进行详尽采样,只需要单张图像就可以获得其材质数据,大大提升了对材质估计的效率和准确性。It can be seen that through the above system architecture, the material data can be obtained only from a single image without the need for detailed sampling through a large number of cameras, which greatly improves the efficiency and accuracy of material estimation.

在了解了本申请的系统架构后,下面结合图2对本申请实施中的一种图像材质确定方法进行说明,图2为本申请实施例提供的一种图像材质确定方法的流程示意图,具体包括以下步骤:After understanding the system architecture of the present application, a method for determining an image material in the implementation of the present application is described below with reference to FIG. 2 . FIG. 2 is a schematic flowchart of a method for determining an image material provided in an embodiment of the present application, which specifically includes the following step:

步骤201,确定目标图像的目标特征数据。Step 201: Determine target feature data of the target image.

其中,目标图像可以为包含目标物体的图像,目标特征数据可以为反映目标图像的特征向量。The target image may be an image containing a target object, and the target feature data may be a feature vector reflecting the target image.

在一个可能的实施例中,可以首先对目标图像进行特征提取前的前置处理,前置处理的步骤可以包括灰度化、颜色空间的标准化等,然后可以进行初步的特征提取处理,初步的特征提取处理的步骤可以包括确定每个像素的梯度、将图像划分为多个单位区域、统计每个单位区域的梯度直方图、根据直方图得到目标特征数据等,可以根据不同的需求采用不同的前置处理和特征提取处理,在此不做具体限定。In a possible embodiment, preprocessing before feature extraction may be performed on the target image first, and the preprocessing steps may include grayscale, color space standardization, etc., and then preliminary feature extraction may be performed. The steps of feature extraction processing may include determining the gradient of each pixel, dividing the image into multiple unit areas, counting the gradient histogram of each unit area, obtaining target feature data according to the histogram, etc. The preprocessing and feature extraction processing are not specifically limited here.

在一个可能的实施例中,可以将目标图像输入材质估计模型的特征提取模块,根据特征提取模块的输出得到目标特征数据,可以理解的是,上述特征提取模块可以先对目标图像的规则化处理,举例来说,彩色图像可以解析为R(红)G(绿)B(蓝)三个通道,其中每个值介于0~255之间,将目标图像规则化处理后,可以通过卷积模块进行卷积运算,并得到目标特征数据,卷积模块中的卷积层个数与目标特征数据的复杂度成正比关系。举例来说,目标特征数据可以为128维的特征向量,也可以为64维的特征向量,在此不做具体限定,可以根据需求灵活调整特征提取模块中的卷积模块来调整最终确定的目标特征数据的维度。In a possible embodiment, the target image can be input into the feature extraction module of the material estimation model, and the target feature data can be obtained according to the output of the feature extraction module. It can be understood that the above-mentioned feature extraction module can first perform regularization processing on the target image. , for example, a color image can be parsed into three channels of R (red) G (green) B (blue), where each value is between 0 and 255. After the target image is regularized, it can be processed by convolution The module performs the convolution operation and obtains the target feature data. The number of convolution layers in the convolution module is proportional to the complexity of the target feature data. For example, the target feature data can be a 128-dimensional feature vector or a 64-dimensional feature vector, which is not specifically limited here, and the convolution module in the feature extraction module can be flexibly adjusted according to requirements to adjust the final target. The dimension of the feature data.

可见,通过确定目标图像的目标特征数据,可以基于单证目标图像提取目标特征数,为后续的材质估计提供数据参考。It can be seen that by determining the target feature data of the target image, the target feature number can be extracted based on the document target image to provide data reference for subsequent material estimation.

步骤202,根据所述目标特征数据确定高光特征数据和标准特征数据。Step 202: Determine highlight feature data and standard feature data according to the target feature data.

其中,所述高光特征数据用于指示消除饱和像素影响的图像特征,所述标准特征数据用于指示未消除所述饱和像素影响的图像特征。Wherein, the highlight feature data is used to indicate the image features whose influence of saturated pixels is eliminated, and the standard feature data is used to indicate the image features whose influences of saturated pixels are not eliminated.

其中,可以将所述目标特征数据输入材质估计模型的高光分支模组,根据所述高光分支模组的输出确定所述高光特征数据;以及,将所述目标特征数据输入所述材质估计模型的标准分支模组,根据所述标准分支模组的输出确定所述标准特征数据。Wherein, the target feature data can be input into the highlight branch module of the material estimation model, and the highlight feature data can be determined according to the output of the highlight branch module; and, the target feature data can be input into the material estimation model. The standard branch module determines the standard feature data according to the output of the standard branch module.

在一个可能的实施例中,高光分支模组包括第一高光卷积模块、第一空洞卷积模块以及第一标准卷积模块,可以将所述目标特征数据输入所述第一高光卷积模块,根据所述第一高光卷积模块的输出得到第一高光卷积数据、第二高光卷积数据和第三高光卷积数据;将所述第二高光卷积数据和所述第三高光卷积数据输入所述第一空洞卷积模块,根据所述第一空洞卷积模块的输出得到第四高光卷积数据;将所述第一高光卷积数据和所述第四高光卷积数据输入所述第一标准卷积模块,根据所述第一标准卷积模块的输出得到所述高光特征数据。In a possible embodiment, the highlight branch module includes a first highlight convolution module, a first hole convolution module and a first standard convolution module, and the target feature data can be input into the first highlight convolution module , obtain the first highlight convolution data, the second highlight convolution data and the third highlight convolution data according to the output of the first highlight convolution module; combine the second highlight convolution data and the third highlight volume The product data is input into the first hole convolution module, and the fourth highlight convolution data is obtained according to the output of the first hole convolution module; the first highlight convolution data and the fourth highlight convolution data are input The first standard convolution module obtains the highlight feature data according to the output of the first standard convolution module.

在一个可能的实施例中,标准分支模组包括第二标准卷积模块、第二空洞卷积模块以及第三标准卷积模块,可以将所述目标特征数据输入所述第二标准卷积模块,根据所述第二标准卷积模块的输出得到第一标准卷积数据、第二标准卷积数据和第三标准卷积数据;将所述第二标准卷积数据和所述第三标准卷积数据输入所述第二空洞卷积模块,根据所述第二空洞卷积模块的输出得到第四标准卷积数据;将所述第一标准卷积数据和所述第四标准卷积数据输入所述第三标准卷积模块,根据所述第三标准卷积模块的输出得到所述标准特征数据。In a possible embodiment, the standard branch module includes a second standard convolution module, a second hole convolution module and a third standard convolution module, and the target feature data can be input into the second standard convolution module , obtain the first standard convolution data, the second standard convolution data and the third standard convolution data according to the output of the second standard convolution module; combine the second standard convolution data and the third standard convolution data The product data is input into the second hole convolution module, and the fourth standard convolution data is obtained according to the output of the second hole convolution module; the first standard convolution data and the fourth standard convolution data are input The third standard convolution module obtains the standard feature data according to the output of the third standard convolution module.

可见,根据所述目标特征数据确定高光特征数据和标准特征数据,可以排除图像中饱和像素的影响,避免提取到不必要的特征,提升材质估计的准确性。It can be seen that determining the highlight feature data and the standard feature data according to the target feature data can exclude the influence of saturated pixels in the image, avoid extracting unnecessary features, and improve the accuracy of material estimation.

步骤203,根据所述高光特征数据和所述标准特征数据确定融合特征数据。Step 203: Determine fusion feature data according to the highlight feature data and the standard feature data.

其中,可以将所述高光特征数据和所述标准特征数据输入材质估计模型的特征融合模组,根据所述特征融合模组的输出得到所述融合特征数据。The highlight feature data and the standard feature data can be input into a feature fusion module of a material estimation model, and the fusion feature data can be obtained according to the output of the feature fusion module.

在一个可能的实施例中,特征融合模组包括特征连接模块、自注意力特征选择模块以及融合卷积模块。可以将所述高光特征数据和所述标准特征数据输入所述特征连接模块,根据所述特征连接模块的输出得到特征连接数据;将所述特征连接数据输入所述自注意力特征选择模块,根据所述自注意力特征选择模块的输出得到特征权重数据;将所述特征权重数据输入所述融合卷积模块,根据所述融合卷积模块的输出得到所述融合特征数据。In a possible embodiment, the feature fusion module includes a feature connection module, a self-attention feature selection module, and a fusion convolution module. The highlight feature data and the standard feature data can be input into the feature connection module, and feature connection data can be obtained according to the output of the feature connection module; the feature connection data can be input into the self-attention feature selection module, according to The output of the self-attention feature selection module obtains feature weight data; the feature weight data is input into the fusion convolution module, and the fusion feature data is obtained according to the output of the fusion convolution module.

可见,根据所述高光特征数据和所述标准特征数据确定融合特征数据,可以将高光特征数据和标准特征数据进行融合,使得描述目标图像的特征增加,而每一特征下的信息不增加,在排除饱和像素干扰的同时提升材质估计的准确性。It can be seen that the fusion feature data is determined according to the highlight feature data and the standard feature data, and the highlight feature data and the standard feature data can be fused, so that the features describing the target image are increased, and the information under each feature does not increase. Improve the accuracy of material estimation while eliminating the interference of saturated pixels.

步骤204,根据所述融合特征数据确定所述目标图像的材质数据。Step 204: Determine material data of the target image according to the fusion feature data.

其中,所述材质数据包括漫反射材质图、粗糙度材质图、镜面材质图和法线材质图中的至少一种。The material data includes at least one of a diffuse reflection material map, a roughness material map, a specular material map, and a normal material map.

可见,通过上述图像材质确定方法,首先,首先,确定目标图像的目标特征数据;然后,根据所述目标特征数据确定高光特征数据和标准特征数据,所述高光特征数据用于指示消除饱和像素影响的图像特征,所述标准特征数据用于指示未消除所述饱和像素影响的图像特征;接着,根据所述高光特征数据和所述标准特征数据确定融合特征数据;最后,根据所述融合特征数据确定所述目标图像的材质数据,所述材质数据包括漫反射材质图、粗糙度材质图、镜面材质图和法线材质图中的至少一种。无需对输入的目标图像进行过多的采集,只需要单张目标图像就可以得到准确的材质数据,大大提升了对材质进行估计的效率和准确性。It can be seen that, through the above-mentioned image material determination method, first, first, the target feature data of the target image is determined; then, according to the target feature data, highlight feature data and standard feature data are determined, and the highlight feature data is used to indicate the elimination of the influence of saturated pixels. image features, the standard feature data is used to indicate the image features that do not eliminate the influence of the saturated pixels; then, the fusion feature data is determined according to the highlight feature data and the standard feature data; finally, according to the fusion feature data Determine the material data of the target image, the material data includes at least one of a diffuse reflection material map, a roughness material map, a specular material map and a normal material map. There is no need to collect too many input target images, and only a single target image is needed to obtain accurate material data, which greatly improves the efficiency and accuracy of material estimation.

为便于理解,下面对本申请实施例中的材质估计模型进行说明,如图3A所示,图3A为本申请实施例提供的一种材质估计模型的架构示意图,该材质估计模型300包括特征提取模块310、高光分支模组320、标准分支模组330以及特征融合模组340,其中,目标图像可以作为输入数据,首先输入特征提取模块310,然后,特征提取模块310输出的目标特征数据分别输入高光分支模组320和标准分支模组330,高光分支模组320输出的高光特征数据和标准分支模组330输出的标准特征数据一起输入特征融合模组340,根据特征融合模组340的输出确定目标图像的材质数据,可以最终从四个独立的预测分支分别确定漫反射材质图、粗糙度材质图、镜面材质图和法线材质图。For ease of understanding, the material estimation model in the embodiment of the present application is described below. As shown in FIG. 3A , FIG. 3A is a schematic diagram of the architecture of a material estimation model provided by the embodiment of the present application. The material estimation model 300 includes a feature extraction module. 310, the highlight branch module 320, the standard branch module 330 and the feature fusion module 340, wherein, the target image can be used as input data, firstly input the feature extraction module 310, then, the target feature data output by the feature extraction module 310 are respectively input into the highlight The branch module 320 and the standard branch module 330, the highlight feature data output by the highlight branch module 320 and the standard feature data output by the standard branch module 330 are input into the feature fusion module 340 together, and the target is determined according to the output of the feature fusion module 340 The material data of the image, can finally determine the diffuse material map, the roughness material map, the specular material map and the normal material map respectively from four independent prediction branches.

具体的,如图3B所示,图3B为本申请实施例提供的另一种材质估计模型的架构示意图,上述特征提取模块310可以包括至少一个用于特征提取的卷积模块311,上述高光分支模组320可以包括第一高光卷积模块321、第一空洞卷积模块322以及第一标准卷积模块323,上述标准分支模组330可以包括第二标准卷积模块331、第二空洞卷积模块332以及第三标准卷积模块333,上述特征融合模组340可以包括特征连接模块341、自注意力特征选择模块342以及融合卷积模块343。上述第一高光卷积模块321可以包括至少一个用于高光特征提取的卷积单元,上述第一空洞卷积模块322可以包括至少一个空洞卷积单元,上述第一标准卷积模块323可以包括至少一个用于标准特征提取的卷积单元,上述第二标准卷积模块331可以包括至少一个用于标准特征提取的卷积单元,上述第二空洞卷积模块332可以包括至少一个空洞卷积单元,上述第三标准卷积模块333可以包括至少一个用于标准特征提取的卷积单元。Specifically, as shown in FIG. 3B , which is a schematic diagram of the architecture of another material estimation model provided by an embodiment of the present application, the above-mentioned feature extraction module 310 may include at least one convolution module 311 for feature extraction, and the above-mentioned highlight branch The module 320 may include a first highlight convolution module 321, a first hole convolution module 322 and a first standard convolution module 323, and the above-mentioned standard branch module 330 may include a second standard convolution module 331, a second hole convolution Module 332 and a third standard convolution module 333 , the above-mentioned feature fusion module 340 may include a feature connection module 341 , a self-attention feature selection module 342 and a fusion convolution module 343 . The first highlight convolution module 321 may include at least one convolution unit for highlight feature extraction, the first hole convolution module 322 may include at least one hole convolution unit, and the first standard convolution module 323 may include at least one hole convolution unit. a convolution unit for standard feature extraction, the above-mentioned second standard convolution module 331 may include at least one convolution unit for standard feature extraction, the above-mentioned second hole convolution module 332 may include at least one hole convolution unit, The above-mentioned third standard convolution module 333 may include at least one convolution unit for standard feature extraction.

进一步的,在一个可能的实施例中,材质估计模型可以如图3C所示,图3C为本申请实施例提供的另一种材质估计模型的架构示意图,包括用于目标特征数据提取的卷积单元a,用于高光特征数据提取的高光卷积单元h1、高光卷积单元h2、高光卷积单元h3、高光卷积单元h4、高光卷积单元h5、高光卷积单元h6、空洞卷积单元h7、标准卷积单元h8、标准卷积单元h9,用于标准特征数据提取的标准卷积单元s1、标准卷积单元s2、标准卷积单元s3、标准卷积单元s4、标准卷积单元s5、标准卷积单元s6、空洞卷积单元s7、标准卷积单元s8、标准卷积单元s9,用于确定融合特征数据的特征连接单元、自注意力特征选择模块(Attention-based Feature Selection Module,AFS)、融合卷积单元f1、融合卷积单元f2、融合卷积单元f3、融合卷积单元f4。Further, in a possible embodiment, the material estimation model may be as shown in FIG. 3C , which is a schematic diagram of the architecture of another material estimation model provided by this embodiment of the present application, including a convolution used for target feature data extraction. Unit a, highlight convolution unit h1, highlight convolution unit h2, highlight convolution unit h3, highlight convolution unit h4, highlight convolution unit h5, highlight convolution unit h6, and hole convolution unit for highlight feature data extraction h7, standard convolution unit h8, standard convolution unit h9, standard convolution unit s1, standard convolution unit s2, standard convolution unit s3, standard convolution unit s4, standard convolution unit s5 for standard feature data extraction , standard convolution unit s6, hole convolution unit s7, standard convolution unit s8, standard convolution unit s9, used to determine the feature connection unit of the fusion feature data, the self-attention feature selection module (Attention-based Feature Selection Module, AFS), fusion convolution unit f1, fusion convolution unit f2, fusion convolution unit f3, fusion convolution unit f4.

其中,高光卷积单元h1至高光卷积单元h6可以理解为第一高光卷积模块,空洞卷积单元h7可以理解为第一空洞卷积模块,标准卷积单元h8和标准卷积单元h9可以理解为第一标准卷积模块;标准卷积单元s1至标准卷积单元s6可以理解为第二标准卷积模块,空洞卷积单元s7可以理解为第二空洞卷积模块,标准卷积单元s8和标准卷积单元s9可以理解为第二标准卷积模块;融合卷积单元f1至融合卷积单元f4可以理解为融合卷积模块。Among them, the highlight convolution unit h1 to the highlight convolution unit h6 can be understood as the first highlight convolution module, the hole convolution unit h7 can be understood as the first hole convolution module, the standard convolution unit h8 and the standard convolution unit h9 can be It is understood as the first standard convolution module; the standard convolution unit s1 to the standard convolution unit s6 can be understood as the second standard convolution module, the hole convolution unit s7 can be understood as the second hole convolution module, and the standard convolution unit s8 And the standard convolution unit s9 can be understood as the second standard convolution module; the fusion convolution unit f1 to the fusion convolution unit f4 can be understood as the fusion convolution module.

具体的,目标图像输入卷积层a,卷积层a输出目标特征数据,并将目标特征数据分别传递至高光卷积单元h1和标准卷积单元s1。Specifically, the target image is input to the convolutional layer a, the convolutional layer a outputs the target feature data, and the target feature data is transferred to the highlight convolution unit h1 and the standard convolution unit s1 respectively.

其中,高光卷积单元h1至高光卷积单元h4依次执行卷积运算,高光卷积单元h4可以将来自高光卷积单元h3的输出数据传递至标准卷积单元h8,同时,高光卷积单元h4至高光卷积单元h6依次执行卷积运算,高光卷积单元h6可以将来自高光卷积单元h5的输出数据和自身的输出数据传递至空洞卷积单元h7,空洞卷积单元h7可以连接来自高光卷积单元h5的输出数据和来自高光卷积单元h6的输出数据,标准卷积单元h8可以连接来自高光卷积单元h3的输出数据和空洞卷积单元h7的输出数据,标准卷积单元h9可以执行卷积运算,并输出高光特征数据。Among them, the highlight convolution unit h1 to the highlight convolution unit h4 perform convolution operations in sequence, and the highlight convolution unit h4 can transfer the output data from the highlight convolution unit h3 to the standard convolution unit h8. At the same time, the highlight convolution unit h4 The convolution operation is performed sequentially to the highlight convolution unit h6. The highlight convolution unit h6 can transfer the output data from the highlight convolution unit h5 and its own output data to the hole convolution unit h7, and the hole convolution unit h7 can be connected from the highlight convolution unit h7. The output data of the convolution unit h5 and the output data from the highlight convolution unit h6, the standard convolution unit h8 can connect the output data from the highlight convolution unit h3 and the output data of the hole convolution unit h7, and the standard convolution unit h9 can Perform convolution operation and output highlight feature data.

其中,标准卷积单元s1至标准卷积单元s4依次执行卷积运算,标准卷积单元s4可以将艾滋标准卷积单元s3的输出数据传递至标准卷积单元s8,同时,标准卷积单元s4至标准卷积单元s4依次执行卷积运算,标准卷积单元s6可以将来自标准卷积单元s5的输出数据和自身的输出数据传递至空洞卷积单元s7,空洞卷积单元s7可以连接来自标准卷积单元s5的输出数据和来自标准卷积单元s6的输出数据,标准卷积单元s8可以连接来自标准卷积单元s3的输出数据和空洞卷积单元s7的输出数据,标准卷积单元s9可以执行卷积运算,并输出标准特征数据。Among them, the standard convolution unit s1 to the standard convolution unit s4 perform convolution operations in sequence, and the standard convolution unit s4 can transmit the output data of the AIDS standard convolution unit s3 to the standard convolution unit s8. At the same time, the standard convolution unit s4 To the standard convolution unit s4 to perform convolution operations in turn, the standard convolution unit s6 can transfer the output data from the standard convolution unit s5 and its own output data to the hole convolution unit s7, and the hole convolution unit s7 can be connected from the standard convolution unit s7. The output data of the convolution unit s5 and the output data from the standard convolution unit s6, the standard convolution unit s8 can connect the output data from the standard convolution unit s3 and the output data of the hole convolution unit s7, and the standard convolution unit s9 can Perform convolution operation and output standard feature data.

其中,高光特征数据和标准特征数据输入特征连接单元进行合并,特征连接单元输出合并后的数据,并将合并后的数据传递至自注意力特征选择AFS模块,然后,依次经过融合卷积单元f1、融合卷积单元f2、融合卷积单元f3、融合卷积单元f4得到融合特征数据。最后基于融合特征数据从四个预测分支输出漫反射材质图、粗糙度材质图、镜面材质图和法线材质图。Among them, the highlight feature data and standard feature data are input into the feature connection unit for merging, and the feature connection unit outputs the merged data, and transmits the merged data to the self-attention feature selection AFS module, and then passes through the fusion convolution unit f1 in turn , fusion convolution unit f2, fusion convolution unit f3, fusion convolution unit f4 to obtain fusion feature data. Finally, the diffuse material map, the roughness material map, the specular material map and the normal material map are output from the four prediction branches based on the fusion feature data.

需要说明的是,每个高光卷积单元都可以包括多个卷积分支运算,包括归一化(IN等)处理、激活函数(sigmod等)处理、高级激活函数(Leaky ReLU等)处理、用于保留全局与局部信息的inception分支运算等,通过高光分支模组可以修复目标图像中的高光区域,但是会产生过渡模糊的法线和和有偏的镜面分量,需要结合标准分支模组得到更加完善的融合特征数据,而每个标准卷积单元可以采用现有的卷积运算方式,在此不做赘述。而自注意特征选择模块可以包括池化层和多个卷积层,自注意力特征选择模块可以为信息丰富的特征分配高权重,抑制无用特征的表达。It should be noted that each highlight convolution unit can include multiple convolution branch operations, including normalization (IN, etc.) processing, activation function (sigmod, etc.) processing, advanced activation function (Leaky ReLU, etc.) processing, For the inception branch operation that preserves global and local information, the highlight area in the target image can be repaired through the highlight branch module, but it will produce blurred normals and biased specular components, which need to be combined with the standard branch module. Perfect fusion feature data, and each standard convolution unit can use the existing convolution operation method, which will not be repeated here. While the self-attention feature selection module can include pooling layers and multiple convolutional layers, the self-attention feature selection module can assign high weights to informative features and suppress the expression of useless features.

可以理解的是,特征连接单元经常用于将特征联合,多个卷积特征提取框架提取的特征融合或者是将输出层的信息进行融合。也就是说描述目标图像本身的特征增加了,而每一特征下的信息没有增加。It can be understood that the feature connection unit is often used to combine features, fuse features extracted by multiple convolutional feature extraction frameworks, or fuse information from the output layer. That is to say, the features describing the target image itself are increased, but the information under each feature is not increased.

可见,通过上述双流架构的材质估计模型,可以排除饱和像素的影响,无需对输入的目标图像进行过多的采集,只需要单张目标图像就可以得到准确的材质数据,大大提升了对材质进行估计的效率和准确性。It can be seen that through the material estimation model of the above-mentioned dual-stream architecture, the influence of saturated pixels can be excluded, and there is no need to collect too many input target images, and only a single target image can be used to obtain accurate material data, which greatly improves the performance of materials. Estimated efficiency and accuracy.

下面结合图4对本申请实施例提供的另一种图像材质确定方法进行说明,图4为本申请实施例提供的另一种图像材质确定方法的流程示意图,具体包括以下步骤:Another image material determination method provided by an embodiment of the present application will be described below with reference to FIG. 4 . FIG. 4 is a schematic flowchart of another image material determination method provided by an embodiment of the present application, which specifically includes the following steps:

步骤401,将训练图像输入预设模型,根据所述预设模型的输出得到预估材质数据。Step 401: Input the training image into a preset model, and obtain estimated material data according to the output of the preset model.

其中,所述预估材质数据包括预估漫反射材质图、预估粗糙度材质图、预估镜面材质图和预估法线材质图。上述训练图像可以来自训练数据库,为已经标注过的图像。上述预设模型可以为没有完成训练的模型,其架构与本申请实施例中的材质模型架构一致。Wherein, the estimated material data includes an estimated diffuse reflection texture map, an estimated roughness texture map, an estimated specular texture map, and an estimated normal texture map. The above-mentioned training images can be from the training database, which are already labeled images. The above-mentioned preset model may be a model that has not completed training, and its architecture is consistent with the material model architecture in the embodiment of the present application.

步骤402,通过第一损失函数对所述预估漫反射材质图、所述预估粗糙度材质图、所述预估镜面材质图和所述预估法线材质图进行处理,得到第一差异数据。Step 402: Process the estimated diffuse reflection texture map, the estimated roughness texture map, the estimated specular texture map, and the estimated normal texture map through a first loss function to obtain a first difference data.

其中,第一损失函数的可以利用像素损失来惩罚像素空间中出现的差异,举例来说,可以利用地图损失(map loss)和渲染损失(render loss)对预估粗糙度材质图、所述预估镜面材质图和所述预估法线材质图进行处理,得到第一差异数据,在此不做赘述。Among them, the pixel loss of the first loss function can be used to punish the difference in the pixel space. For example, the map loss and the rendering loss can be used to estimate the roughness material map, the pre- The estimated specular texture map and the estimated normal texture map are processed to obtain the first difference data, which will not be repeated here.

步骤403,通过第二损失函数对所述预估漫反射材质图和所述预估法线材质图进行处理,得到第二差异数据。Step 403: Process the estimated diffuse reflection texture map and the estimated normal texture map through a second loss function to obtain second difference data.

其中,第二损失函数可以包括global D和local D,分别在预估漫反射材质图和预估法线材质图添加global D和local D,形成对抗性损失函数,得到第二差异数据。The second loss function may include global D and local D. Add global D and local D to the estimated diffuse material map and the estimated normal material map respectively to form an adversarial loss function and obtain second difference data.

可见,由于第一损失函数进行处理后通常会产生模糊的纹理,缺乏高频细节,特别是会导致最终生成的预估漫反射材质图和预估法线材质图比较模糊,为了防止这种情况,可以通过第二损失函数专门对预估漫反射材质图和预估法线材质图进行处理,提升材质估计模型最终确定的漫反射材质图和法线材质图的准确性。It can be seen that because the first loss function usually produces blurred textures and lacks high-frequency details, especially the final estimated diffuse material map and estimated normal material map will be blurred. In order to prevent this situation , the estimated diffuse material map and the estimated normal material map can be specially processed through the second loss function to improve the accuracy of the diffuse material map and the normal material map finally determined by the material estimation model.

步骤404,根据所述第一差异数据和所述第二差异数据对所述预设模型进行调整,以得到材质估计模型。Step 404: Adjust the preset model according to the first difference data and the second difference data to obtain a material estimation model.

可见,通过上述训练方式得到材质估计模型,可以排除饱和像素的影响,无需对输入的目标图像进行过多的采集,只需要单张目标图像就可以得到准确的材质数据,大大提升了对材质进行估计的效率和准确性。It can be seen that the material estimation model obtained by the above training method can eliminate the influence of saturated pixels, and there is no need to collect too many input target images, and only a single target image can be used to obtain accurate material data, which greatly improves the performance of materials. Estimated efficiency and accuracy.

步骤405,确定目标图像的目标特征数据。Step 405: Determine target feature data of the target image.

步骤406,根据所述目标特征数据确定高光特征数据和标准特征数据。Step 406: Determine highlight feature data and standard feature data according to the target feature data.

步骤407,根据所述高光特征数据和所述标准特征数据确定融合特征数据。Step 407: Determine fusion feature data according to the highlight feature data and the standard feature data.

步骤408,根据所述融合特征数据确定所述目标图像的材质数据。Step 408: Determine material data of the target image according to the fusion feature data.

可见,通过上述图像材质确定方法,首先,确定目标图像的目标特征数据;然后,根据所述目标特征数据确定高光特征数据和标准特征数据,所述高光特征数据用于指示消除饱和像素影响的图像特征,所述标准特征数据用于指示未消除所述饱和像素影响的图像特征;接着,根据所述高光特征数据和所述标准特征数据确定融合特征数据;最后,根据所述融合特征数据确定所述目标图像的材质数据,所述材质数据包括漫反射材质图、粗糙度材质图、镜面材质图和法线材质图中的至少一种。无需对输入的目标图像进行过多的采集,只需要单张目标图像就可以得到准确的材质数据,大大提升了对材质进行估计的效率和准确性。It can be seen that, through the above-mentioned image material determination method, first, the target feature data of the target image is determined; then, according to the target feature data, highlight feature data and standard feature data are determined, and the highlight feature data is used to indicate an image that eliminates the influence of saturated pixels. feature, the standard feature data is used to indicate the image features that do not eliminate the influence of the saturated pixels; then, the fusion feature data is determined according to the highlight feature data and the standard feature data; finally, the fusion feature data is determined according to the fusion feature data. The material data of the target image includes at least one of a diffuse reflection material map, a roughness material map, a specular material map, and a normal material map. There is no need to collect too many input target images, and only a single target image is needed to obtain accurate material data, which greatly improves the efficiency and accuracy of material estimation.

下面结合图5对本申请实施例中的一种电子设备进行说明,图5为本申请实施例提供的一种电子设备的结构示意图,如图5所示,该电子设备500包括处理器501、通信接口502和存储器503,所述处理器、通信接口和存储器相互连接,其中,电子设备500还可以包括总线504,处理器501、通信接口502和存储器503之间可以通过总线504相互连接,总线504可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。总线504可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。所述存储器503用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行上述图2、图4中所描述的全部或部分方法。An electronic device in an embodiment of the present application will be described below with reference to FIG. 5, which is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in FIG. 5, the electronic device 500 includes a processor 501, a communication The interface 502 and the memory 503, the processor, the communication interface and the memory are connected to each other, wherein the electronic device 500 may further include a bus 504, and the processor 501, the communication interface 502 and the memory 503 may be connected to each other through the bus 504, and the bus 504 It may be a Peripheral Component Interconnect (PCI for short) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA for short) bus or the like. The bus 504 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 5, but it does not mean that there is only one bus or one type of bus. The memory 503 is used to store a computer program, the computer program includes program instructions, and the processor is configured to invoke the program instructions to execute all or part of the methods described in FIG. 2 and FIG. 4 .

上述主要从方法侧执行过程的角度对本申请实施例的方案进行了介绍。可以理解的是,电子设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所提供的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。The foregoing mainly introduces the solutions of the embodiments of the present application from the perspective of the method-side execution process. It can be understood that, in order to realize the above-mentioned functions, the electronic device includes corresponding hardware structures and/or software modules for executing each function. Those skilled in the art should easily realize that the present application can be implemented in hardware or in the form of a combination of hardware and computer software, in combination with the units and algorithm steps of each example described in the embodiments provided herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.

本申请实施例可以根据上述方法示例对电子设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。In this embodiment of the present application, the electronic device may be divided into functional units according to the foregoing method examples. For example, each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit. The above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and other division methods may be used in actual implementation.

在采用对应各个功能划分各个功能模块的情况下,下面结合图6对本申请实施例中的一种图像材质确定装置进行详细说明,图6为本申请实施例提供的一种图像材质确定装置的功能单元组成框图,该图像材质确定装置600包括:In the case where each function module is divided according to each function, an image material determination apparatus in an embodiment of the present application will be described in detail below with reference to FIG. 6 , and FIG. 6 is a function of an image material determination apparatus provided by an embodiment of the application. Unit composition block diagram, the image material determination device 600 includes:

特征确定单元610,英语确定目标图像的目标特征数据;Feature determination unit 610, determines the target feature data of the target image in English;

分支提取单元620,用于根据所述目标特征数据确定高光特征数据和标准特征数据,所述高光特征数据用于指示消除饱和像素影响的图像特征,所述标准特征数据用于指示未消除所述饱和像素影响的图像特征;The branch extraction unit 620 is configured to determine highlight feature data and standard feature data according to the target feature data, where the highlight feature data is used to indicate that the image features affected by saturated pixels are eliminated, and the standard feature data is used to indicate that the Image characteristics affected by saturated pixels;

融合提取单元630,用于根据所述高光特征数据和所述标准特征数据确定融合特征数据;a fusion extraction unit 630, configured to determine fusion characteristic data according to the highlight characteristic data and the standard characteristic data;

材质估计单元640,用于根据所述融合特征数据确定所述目标图像的材质数据,所述材质数据包括漫反射材质图、粗糙度材质图、镜面材质图和法线材质图中的至少一种。A material estimation unit 640, configured to determine material data of the target image according to the fusion feature data, where the material data includes at least one of a diffuse reflection material map, a roughness material map, a specular material map and a normal material map .

可见,通过上述图像材质确定方法及相关装置,首先,确定目标图像的目标特征数据;然后,根据所述目标特征数据确定高光特征数据和标准特征数据,所述高光特征数据用于指示消除饱和像素影响的图像特征,所述标准特征数据用于指示未消除所述饱和像素影响的图像特征;接着,根据所述高光特征数据和所述标准特征数据确定融合特征数据;最后,根据所述融合特征数据确定所述目标图像的材质数据,所述材质数据包括漫反射材质图、粗糙度材质图、镜面材质图和法线材质图中的至少一种。无需对输入的目标图像进行过多的采集,只需要单张目标图像就可以得到准确的材质数据,大大提升了对材质进行估计的效率和准确性。It can be seen that, through the above-mentioned image material determination method and related device, first, the target feature data of the target image is determined; then, according to the target feature data, highlight feature data and standard feature data are determined, and the highlight feature data is used to indicate the elimination of saturated pixels. Influenced image features, the standard feature data is used to indicate the image features that are not affected by the saturated pixels; then, fusion feature data is determined according to the highlight feature data and the standard feature data; finally, according to the fusion feature The data determines material data of the target image, and the material data includes at least one of a diffuse reflection material map, a roughness material map, a specular material map, and a normal material map. There is no need to collect too many input target images, and only a single target image is needed to obtain accurate material data, which greatly improves the efficiency and accuracy of material estimation.

在采用集成的单元的情况下,下面结合图7对本申请实施例中的另一种图像材质确定装置700进行详细说明,所述图像材质确定装置700包括处理单元701和通信单元702,其中,所述处理单元701,用于执行如上述方法实施例中的任一步骤,且在执行诸如发送等数据传输时,可选择的调用所述通信单元702来完成相应操作。In the case of using an integrated unit, another image material determination apparatus 700 in this embodiment of the present application will be described in detail below with reference to FIG. 7 . The image material determination apparatus 700 includes a processing unit 701 and a communication unit 702 , wherein the The processing unit 701 is configured to perform any step in the above method embodiments, and when performing data transmission such as sending, the communication unit 702 can be selectively invoked to complete corresponding operations.

其中,所述图像材质确定装置700还可以包括存储单元703,用于存储程序代码和数据。所述处理单元701可以是处理器,所述通信单元702可以是无线通信模块,存储单元703可以是存储器。Wherein, the image material determination apparatus 700 may further include a storage unit 703 for storing program codes and data. The processing unit 701 may be a processor, the communication unit 702 may be a wireless communication module, and the storage unit 703 may be a memory.

所述处理单元701具体用于:The processing unit 701 is specifically used for:

确定目标图像的目标特征数据;Determine the target feature data of the target image;

根据所述目标特征数据确定高光特征数据和标准特征数据,所述高光特征数据用于指示消除饱和像素影响的图像特征,所述标准特征数据用于指示未消除所述饱和像素影响的图像特征;Determine highlight feature data and standard feature data according to the target feature data, where the highlight feature data is used to indicate an image feature that eliminates the influence of saturated pixels, and the standard feature data is used to indicate an image feature that does not eliminate the influence of the saturated pixel;

根据所述高光特征数据和所述标准特征数据确定融合特征数据;Determine fusion feature data according to the highlight feature data and the standard feature data;

根据所述融合特征数据确定所述目标图像的材质数据,所述材质数据包括漫反射材质图、粗糙度材质图、镜面材质图和法线材质图中的至少一种。The material data of the target image is determined according to the fusion feature data, and the material data includes at least one of a diffuse reflection material map, a roughness material map, a specular material map and a normal material map.

可见,通过上述图像材质确定方法及相关装置,首先,确定目标图像的目标特征数据;然后,根据所述目标特征数据确定高光特征数据和标准特征数据,所述高光特征数据用于指示消除饱和像素影响的图像特征,所述标准特征数据用于指示未消除所述饱和像素影响的图像特征;接着,根据所述高光特征数据和所述标准特征数据确定融合特征数据;最后,根据所述融合特征数据确定所述目标图像的材质数据,所述材质数据包括漫反射材质图、粗糙度材质图、镜面材质图和法线材质图中的至少一种。无需对输入的目标图像进行过多的采集,只需要单张目标图像就可以得到准确的材质数据,大大提升了对材质进行估计的效率和准确性。It can be seen that, through the above-mentioned image material determination method and related device, first, the target feature data of the target image is determined; then, according to the target feature data, highlight feature data and standard feature data are determined, and the highlight feature data is used to indicate the elimination of saturated pixels. Influenced image features, the standard feature data is used to indicate the image features that are not affected by the saturated pixels; then, fusion feature data is determined according to the highlight feature data and the standard feature data; finally, according to the fusion feature The data determines material data of the target image, and the material data includes at least one of a diffuse reflection material map, a roughness material map, a specular material map, and a normal material map. There is no need to collect too many input target images, and only a single target image is needed to obtain accurate material data, which greatly improves the efficiency and accuracy of material estimation.

本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任一方法的部分或全部步骤。Embodiments of the present application further provide a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program causes the computer to execute part or all of the steps of any method described in the above method embodiments .

本申请实施例还提供一种计算机程序产品,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如上述方法实施例中记载的任一方法的部分或全部步骤。该计算机程序产品可以为一个软件安装包,上述计算机包括电子设备。Embodiments of the present application further provide a computer program product, where the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute any one of the method embodiments described above. some or all of the steps of the method. The computer program product may be a software installation package, and the computer includes an electronic device.

需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。It should be noted that, for the sake of simple description, the foregoing method embodiments are all expressed as a series of action combinations, but those skilled in the art should know that the present application is not limited by the described action sequence. Because in accordance with the present application, certain steps may be performed in other orders or concurrently. Secondly, those skilled in the art should also know that the embodiments described in the specification are all preferred embodiments, and the actions and modules involved are not necessarily required by the present application.

在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above-mentioned embodiments, the description of each embodiment has its own emphasis. For parts that are not described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.

在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed apparatus may be implemented in other manners. For example, the device embodiments described above are only illustrative. For example, the division of the above-mentioned units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical or other forms.

上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described above as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.

上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例上述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。The above-mentioned integrated units, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable memory. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art, or all or part of the technical solution, and the computer software product is stored in a memory, Several instructions are included to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the above-mentioned methods in the various embodiments of the present application. The aforementioned memory includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.

本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。Those skilled in the art can understand that all or part of the steps in the various methods of the above embodiments can be completed by instructing relevant hardware through a program, and the program can be stored in a computer-readable memory, and the memory can include: a flash disk , Read-only memory (English: Read-Only Memory, referred to as: ROM), random access device (English: Random Access Memory, referred to as: RAM), magnetic disk or optical disk, etc.

以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The embodiments of the present application have been introduced in detail above, and the principles and implementations of the present application are described in this paper by using specific examples. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present application; at the same time, for Persons of ordinary skill in the art, based on the idea of the present application, will have changes in the specific implementation manner and application scope. In summary, the contents of this specification should not be construed as limitations on the present application.

Claims (10)

1.一种图像材质确定方法,其特征在于,所述方法包括:1. A method for determining an image material, wherein the method comprises: 确定目标图像的目标特征数据;Determine the target feature data of the target image; 根据所述目标特征数据确定高光特征数据和标准特征数据,所述高光特征数据用于指示消除饱和像素影响的图像特征,所述标准特征数据用于指示未消除所述饱和像素影响的图像特征;Determine highlight feature data and standard feature data according to the target feature data, where the highlight feature data is used to indicate an image feature that eliminates the influence of saturated pixels, and the standard feature data is used to indicate an image feature that does not eliminate the influence of the saturated pixel; 根据所述高光特征数据和所述标准特征数据确定融合特征数据;Determine fusion feature data according to the highlight feature data and the standard feature data; 根据所述融合特征数据确定所述目标图像的材质数据,所述材质数据包括漫反射材质图、粗糙度材质图、镜面材质图和法线材质图中的至少一种。The material data of the target image is determined according to the fusion feature data, and the material data includes at least one of a diffuse reflection material map, a roughness material map, a specular material map and a normal material map. 2.根据权利要求1所述的方法,其特征在于,所述根据所述目标特征数据确定高光特征数据和标准特征数据,包括:2. The method according to claim 1, wherein the determining of the highlight feature data and the standard feature data according to the target feature data comprises: 将所述目标特征数据输入材质估计模型的高光分支模组,根据所述高光分支模组的输出确定所述高光特征数据;以及,Inputting the target feature data into the highlight branch module of the material estimation model, and determining the highlight feature data according to the output of the highlight branch module; and, 将所述目标特征数据输入所述材质估计模型的标准分支模组,根据所述标准分支模组的输出确定所述标准特征数据。The target feature data is input into the standard branch module of the material estimation model, and the standard feature data is determined according to the output of the standard branch module. 3.根据权利要求2所述的方法,其特征在于,所述高光分支模组包括第一高光卷积模块、第一空洞卷积模块以及第一标准卷积模块;所述将所述目标特征数据输入材质估计模型的高光分支模组,根据所述高光分支模组的输出确定所述高光特征数据,包括:3. The method according to claim 2, wherein the highlight branch module comprises a first highlight convolution module, a first hole convolution module and a first standard convolution module; The data is input to the highlight branch module of the material estimation model, and the highlight feature data is determined according to the output of the highlight branch module, including: 将所述目标特征数据输入所述第一高光卷积模块,根据所述第一高光卷积模块的输出得到第一高光卷积数据、第二高光卷积数据和第三高光卷积数据;Inputting the target feature data into the first highlight convolution module, and obtaining the first highlight convolution data, the second highlight convolution data and the third highlight convolution data according to the output of the first highlight convolution module; 将所述第二高光卷积数据和所述第三高光卷积数据输入所述第一空洞卷积模块,根据所述第一空洞卷积模块的输出得到第四高光卷积数据;Inputting the second highlight convolution data and the third highlight convolution data into the first hole convolution module, and obtaining fourth highlight convolution data according to the output of the first hole convolution module; 将所述第一高光卷积数据和所述第四高光卷积数据输入所述第一标准卷积模块,根据所述第一标准卷积模块的输出得到所述高光特征数据。The first highlight convolution data and the fourth highlight convolution data are input into the first standard convolution module, and the highlight feature data is obtained according to the output of the first standard convolution module. 4.根据权利要求2所述的方法,其特征在于,所述标准分支模组包括第二标准卷积模块、第二空洞卷积模块以及第三标准卷积模块;所述将所述目标特征数据输入所述材质估计模型的标准分支模组,根据所述标准分支模组的输出确定所述标准特征数据,包括:4. The method according to claim 2, wherein the standard branch module comprises a second standard convolution module, a second hole convolution module and a third standard convolution module; The data is input into the standard branch module of the material estimation model, and the standard feature data is determined according to the output of the standard branch module, including: 将所述目标特征数据输入所述第二标准卷积模块,根据所述第二标准卷积模块的输出得到第一标准卷积数据、第二标准卷积数据和第三标准卷积数据;Inputting the target feature data into the second standard convolution module, and obtaining the first standard convolution data, the second standard convolution data and the third standard convolution data according to the output of the second standard convolution module; 将所述第二标准卷积数据和所述第三标准卷积数据输入所述第二空洞卷积模块,根据所述第二空洞卷积模块的输出得到第四标准卷积数据;The second standard convolution data and the third standard convolution data are input into the second hole convolution module, and the fourth standard convolution data is obtained according to the output of the second hole convolution module; 将所述第一标准卷积数据和所述第四标准卷积数据输入所述第三标准卷积模块,根据所述第三标准卷积模块的输出得到所述标准特征数据。The first standard convolution data and the fourth standard convolution data are input into the third standard convolution module, and the standard feature data is obtained according to the output of the third standard convolution module. 5.根据权利要求1所述的方法,其特征在于,所述根据所述高光特征数据和所述标准特征数据确定融合特征数据,包括:5. The method according to claim 1, wherein the determining of fusion feature data according to the highlight feature data and the standard feature data comprises: 将所述高光特征数据和所述标准特征数据输入材质估计模型的特征融合模组,根据所述特征融合模组的输出得到所述融合特征数据。Input the highlight feature data and the standard feature data into the feature fusion module of the material estimation model, and obtain the fusion feature data according to the output of the feature fusion module. 6.根据权利要求5所述的方法,其特征在于,所述特征融合模组包括特征连接模块、自注意力特征选择模块以及融合卷积模块;所述将所述高光特征数据和所述标准特征数据输入材质估计模型的特征融合模组,根据所述特征融合模组的输出得到所述融合特征数据,包括:6. The method according to claim 5, wherein the feature fusion module comprises a feature connection module, a self-attention feature selection module and a fusion convolution module; The feature data is input into the feature fusion module of the material estimation model, and the fusion feature data is obtained according to the output of the feature fusion module, including: 将所述高光特征数据和所述标准特征数据输入所述特征连接模块,根据所述特征连接模块的输出得到特征连接数据;Input the highlight feature data and the standard feature data into the feature connection module, and obtain the feature connection data according to the output of the feature connection module; 将所述特征连接数据输入所述自注意力特征选择模块,根据所述自注意力特征选择模块的输出得到特征权重数据;Input the feature connection data into the self-attention feature selection module, and obtain feature weight data according to the output of the self-attention feature selection module; 将所述特征权重数据输入所述融合卷积模块,根据所述融合卷积模块的输出得到所述融合特征数据。The feature weight data is input into the fusion convolution module, and the fusion feature data is obtained according to the output of the fusion convolution module. 7.根据权利要求1所述的方法,其特征在于,所述确定目标图像的目标特征数据之前,所述方法还包括:7. The method according to claim 1, characterized in that, before said determining the target feature data of the target image, the method further comprises: 将训练图像输入预设模型,根据所述预设模型的输出得到预估材质数据,所述预估材质数据包括预估漫反射材质图、预估粗糙度材质图、预估镜面材质图和预估法线材质图;The training image is input into a preset model, and estimated material data is obtained according to the output of the preset model, and the estimated material data includes an estimated diffuse reflection texture map, an estimated roughness texture map, an estimated specular texture map, and a predicted texture map. Estimate normal material map; 通过第一损失函数对所述预估漫反射材质图、所述预估粗糙度材质图、所述预估镜面材质图和所述预估法线材质图进行处理,得到第一差异数据;The estimated diffuse reflection texture map, the estimated roughness texture map, the estimated specular texture map, and the estimated normal texture map are processed by the first loss function to obtain first difference data; 通过第二损失函数对所述预估漫反射材质图和所述预估法线材质图进行处理,得到第二差异数据;The estimated diffuse reflection texture map and the estimated normal texture map are processed through a second loss function to obtain second difference data; 根据所述第一差异数据和所述第二差异数据对所述预设模型进行调整,以得到材质估计模型。The preset model is adjusted according to the first difference data and the second difference data to obtain a material estimation model. 8.一种图像材质确定装置,其特征在于,所述装置包括:8. An image material determination device, wherein the device comprises: 特征确定单元,英语确定目标图像的目标特征数据;A feature determination unit, which determines the target feature data of the target image in English; 分支提取单元,用于根据所述目标特征数据确定高光特征数据和标准特征数据,所述高光特征数据用于指示消除饱和像素影响的图像特征,所述标准特征数据用于指示未消除所述饱和像素影响的图像特征;A branch extraction unit, configured to determine highlight feature data and standard feature data according to the target feature data, where the highlight feature data is used to indicate the image features that eliminate the influence of saturated pixels, and the standard feature data is used to indicate that the saturation is not eliminated Pixel-influenced image features; 融合提取单元,用于根据所述高光特征数据和所述标准特征数据确定融合特征数据;a fusion extraction unit, configured to determine fusion characteristic data according to the highlight characteristic data and the standard characteristic data; 材质估计单元,用于根据所述融合特征数据确定所述目标图像的材质数据,所述材质数据包括漫反射材质图、粗糙度材质图、镜面材质图和法线材质图中的至少一种。A material estimation unit, configured to determine material data of the target image according to the fusion feature data, where the material data includes at least one of a diffuse reflection material map, a roughness material map, a specular material map and a normal material map. 9.一种电子设备,其特征在于,包括基带芯片,所述基带芯片包括数字信号处理器和累加器,所述基带芯片用于通过所述数字信号处理器和所述累加器执行如权利要求1-8任一项所述的方法中的步骤的指令。9. An electronic device, characterized in that it comprises a baseband chip, the baseband chip comprising a digital signal processor and an accumulator, and the baseband chip is used to execute the process as claimed in the claims through the digital signal processor and the accumulator Instructions for steps in the method of any one of 1-8. 10.一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被基带芯片执行时使所述基带芯片执行如权利要求1-7任一项所述的方法。10. A computer storage medium, wherein the computer storage medium stores a computer program, and the computer program includes program instructions, the program instructions, when executed by a baseband chip, cause the baseband chip to execute as claimed in claim 1 The method of any one of -7.
CN202210724245.3A 2022-06-24 Image material determination method and related device Active CN115035306B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210724245.3A CN115035306B (en) 2022-06-24 Image material determination method and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210724245.3A CN115035306B (en) 2022-06-24 Image material determination method and related device

Publications (2)

Publication Number Publication Date
CN115035306A true CN115035306A (en) 2022-09-09
CN115035306B CN115035306B (en) 2025-04-11

Family

ID=

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453135A (en) * 2013-05-23 2016-03-30 生物梅里埃公司 Method, system and computer program product for producing a raised relief map from images of an object
CN106331663A (en) * 2016-08-26 2017-01-11 珠海金山网络游戏科技有限公司 System and method for acquiring interactive materials for portable devices
CN110390648A (en) * 2019-06-24 2019-10-29 浙江大学 An image highlight removal method based on the distinction between unsaturated and saturated highlights
US20190347526A1 (en) * 2018-05-09 2019-11-14 Adobe Inc. Extracting material properties from a single image
CN111033566A (en) * 2017-08-03 2020-04-17 赛峰集团 Method and system for the non-destructive inspection of an aircraft part
CN112634156A (en) * 2020-12-22 2021-04-09 浙江大学 Method for estimating material reflection parameter based on portable equipment collected image
CN113538413A (en) * 2021-08-12 2021-10-22 泰康保险集团股份有限公司 Image detection method and device, electronic equipment and storage medium
CN114549607A (en) * 2022-02-21 2022-05-27 脸萌有限公司 Main body material determination method, device, electronic device and storage medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453135A (en) * 2013-05-23 2016-03-30 生物梅里埃公司 Method, system and computer program product for producing a raised relief map from images of an object
CN106331663A (en) * 2016-08-26 2017-01-11 珠海金山网络游戏科技有限公司 System and method for acquiring interactive materials for portable devices
CN111033566A (en) * 2017-08-03 2020-04-17 赛峰集团 Method and system for the non-destructive inspection of an aircraft part
US20190347526A1 (en) * 2018-05-09 2019-11-14 Adobe Inc. Extracting material properties from a single image
CN110390648A (en) * 2019-06-24 2019-10-29 浙江大学 An image highlight removal method based on the distinction between unsaturated and saturated highlights
CN112634156A (en) * 2020-12-22 2021-04-09 浙江大学 Method for estimating material reflection parameter based on portable equipment collected image
CN113538413A (en) * 2021-08-12 2021-10-22 泰康保险集团股份有限公司 Image detection method and device, electronic equipment and storage medium
CN114549607A (en) * 2022-02-21 2022-05-27 脸萌有限公司 Main body material determination method, device, electronic device and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王传宇;郭新宇;温维亮;杜建军;肖伯祥;: "田间光照条件下应用半球图像解析玉米冠层结构参数", 农业工程学报, no. 04, 23 February 2016 (2016-02-23) *

Similar Documents

Publication Publication Date Title
US9135678B2 (en) Methods and apparatus for interfacing panoramic image stitching with post-processors
CN112651438A (en) Multi-class image classification method and device, terminal equipment and storage medium
WO2021164550A1 (en) Image classification method and apparatus
CN106462572A (en) Techniques for distributed optical character recognition and distributed machine language translation
CN114511041B (en) Model training method, image processing method, apparatus, equipment and storage medium
CN114092963A (en) Key point detection and model training method, device, equipment and storage medium
CN113989616A (en) A target detection method, apparatus, device and storage medium
CN107590811A (en) Landscape image processing method, device and computing device based on scene cut
CN110619334B (en) Portrait segmentation method based on deep learning, architecture and related device
CN111160312A (en) Target identification method and device and electronic equipment
CN107644423A (en) Video data real-time processing method, device and computing device based on scene cut
CN117953581A (en) Method and device for identifying actions, electronic equipment and readable storage medium
CN113888635B (en) Visual positioning method and related device
CN114972947A (en) Depth scene text detection method and device based on fuzzy semantic modeling
CN118608926A (en) Image quality evaluation method, device, electronic device and storage medium
CN115035306A (en) Image material determination method and related device
CN107622226A (en) Vehicle detection method and system based on improved deformable part model algorithm
CN107945202A (en) Image partition method, device and computing device based on adaptive threshold
CN115330803B (en) Surface defect data enhancement method and device, electronic equipment and storage medium
CN113554037B (en) A feature extraction method and device based on model simplification
CN115035306B (en) Image material determination method and related device
CN112991451B (en) Image recognition method, related device and computer program product
CN116310408A (en) Method and device for establishing data association between event camera and frame camera
CN107622498A (en) Image traversal processing method, device and computing device based on scene segmentation
CN114648757A (en) Three-dimensional target detection method and device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant