[go: up one dir, main page]

CN115032906B - Digital twin room temperature prediction method, smart home equipment control method and device - Google Patents

Digital twin room temperature prediction method, smart home equipment control method and device Download PDF

Info

Publication number
CN115032906B
CN115032906B CN202210605105.4A CN202210605105A CN115032906B CN 115032906 B CN115032906 B CN 115032906B CN 202210605105 A CN202210605105 A CN 202210605105A CN 115032906 B CN115032906 B CN 115032906B
Authority
CN
China
Prior art keywords
parameters
room
parameter
temperature
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210605105.4A
Other languages
Chinese (zh)
Other versions
CN115032906A (en
Inventor
邓邱伟
孙雨新
王迪
张丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Technology Co Ltd
Qingdao Haier Intelligent Home Appliance Technology Co Ltd
Haier Smart Home Co Ltd
Original Assignee
Qingdao Haier Technology Co Ltd
Qingdao Haier Intelligent Home Appliance Technology Co Ltd
Haier Smart Home Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Technology Co Ltd, Qingdao Haier Intelligent Home Appliance Technology Co Ltd, Haier Smart Home Co Ltd filed Critical Qingdao Haier Technology Co Ltd
Priority to CN202210605105.4A priority Critical patent/CN115032906B/en
Publication of CN115032906A publication Critical patent/CN115032906A/en
Application granted granted Critical
Publication of CN115032906B publication Critical patent/CN115032906B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2642Domotique, domestic, home control, automation, smart house
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The invention relates to the technical field of temperature prediction, and provides a digital twin room temperature prediction method, an intelligent household equipment control method and a device, wherein the method comprises the steps of firstly obtaining thermal parameters, dimension parameters and outdoor temperature parameters of a target room; and then, based on the room temperature prediction model, determining the thermal parameter, the size parameter and the indoor temperature parameter of the target room corresponding to the outdoor temperature parameter of the target room. According to the method, the thermal parameters, the size parameters and the outdoor temperature parameters of the target room are introduced, the room temperature prediction model is combined to jointly determine the indoor temperature parameters of the target room, the constraint of the temperature sensor can be eliminated, the indoor temperature of the target room can be determined even if the temperature sensor is not installed in the target room, and the acquisition cost of the indoor temperature can be saved. Furthermore, in the method, the thermal parameters, the size parameters and the outdoor temperature parameters of the target room are introduced, so that the accuracy of the indoor temperature can be improved.

Description

数字孪生室温预测方法、智能家居设备控制方法及装置Digital twin room temperature prediction method, smart home equipment control method and device

技术领域Technical Field

本发明涉及温度预测技术领域,尤其涉及一种数字孪生室温预测方法、智能家居设备控制方法及装置。The present invention relates to the field of temperature prediction technology, and in particular to a digital twin room temperature prediction method, a smart home device control method and a device.

背景技术Background Art

随着智能家居(smart home,home automation)的广泛应用以及用户对室内舒适度的要求逐渐提高,获取室温以对智能家居进行控制进而保证用户的室内舒适度至关重要。With the widespread application of smart homes (home automation) and the increasing requirements of users for indoor comfort, it is very important to obtain the room temperature to control the smart home and ensure the indoor comfort of users.

现有技术中,通常通过室内安装的温度传感器直接进行温度测量,但是处于成本考虑,室内安装温度传感器的方案并未普及,对于没有安装温度传感器的房间则无法获取房间的室内温度,这将导致后续无法对智能家居进行自动控制,进而无法保证用户的室内舒适度。In the prior art, temperature measurement is usually performed directly through temperature sensors installed indoors. However, due to cost considerations, the solution of installing temperature sensors indoors has not been popularized. For rooms without temperature sensors installed, the indoor temperature of the room cannot be obtained, which will lead to the subsequent inability to automatically control the smart home, and thus the inability to ensure the user's indoor comfort.

为此,现急需提供一种室温预测方法。Therefore, there is an urgent need to provide a room temperature prediction method.

发明内容Summary of the invention

本发明提供一种数字孪生室温预测方法、智能家居设备控制方法及装置,用以解决现有技术中存在的缺陷。The present invention provides a digital twin room temperature prediction method, a smart home equipment control method and a device to solve the defects in the prior art.

本发明提供一种数字孪生室温预测方法,包括:The present invention provides a digital twin room temperature prediction method, comprising:

获取目标房间的热参数、尺寸参数以及室外温度参数;所述目标房间内安装有具有联网功能的智能家居设备;Acquiring thermal parameters, size parameters, and outdoor temperature parameters of a target room; wherein a smart home device with networking function is installed in the target room;

基于室温预测模型,确定所述目标房间的热参数、尺寸参数以及室外温度参数对应的所述目标房间的室内温度参数;Determine, based on the room temperature prediction model, the indoor temperature parameters of the target room corresponding to the thermal parameters, size parameters and outdoor temperature parameters of the target room;

其中,所述室温预测模型基于携带有室内温度标签的样本房间的热参数、尺寸参数以及室外温度参数确定,所述室温预测模型用于表征任一房间的热参数、尺寸参数以及室外温度参数与室内温度参数之间的定量关系。The room temperature prediction model is determined based on the thermal parameters, size parameters and outdoor temperature parameters of a sample room carrying an indoor temperature tag, and is used to characterize the quantitative relationship between the thermal parameters, size parameters and outdoor temperature parameters of any room and the indoor temperature parameters.

根据本发明提供的一种数字孪生室温预测方法,所述热参数包括日照参数、结构热交换参数、温度调节参数以及气流热量交换参数中的至少一项;According to a digital twin room temperature prediction method provided by the present invention, the thermal parameters include at least one of a sunshine parameter, a structural heat exchange parameter, a temperature adjustment parameter, and an airflow heat exchange parameter;

所述日照参数包括日照直射面积参数、日照角度参数以及日照强度参数中的至少一项;The sunshine parameter includes at least one of a sunshine direct area parameter, a sunshine angle parameter and a sunshine intensity parameter;

所述结构热交换参数包括房间对外接触面积参数、房间对内接触面积参数以及墙体导热系数参数中的至少一项;The structural heat exchange parameter includes at least one of a room external contact area parameter, a room internal contact area parameter, and a wall thermal conductivity parameter;

所述温度调节参数包括所述目标房间内的温度调节设备的工作参数;The temperature adjustment parameters include operating parameters of the temperature adjustment device in the target room;

所述气流热量交换参数包括通风量参数以及室外风速参数中的至少一项。The airflow heat exchange parameter includes at least one of a ventilation volume parameter and an outdoor wind speed parameter.

根据本发明提供的一种数字孪生室温预测方法,所述热参数、所述尺寸参数以及所述室外温度参数基于如下方法获取:According to a digital twin room temperature prediction method provided by the present invention, the thermal parameters, the size parameters and the outdoor temperature parameters are obtained based on the following method:

基于用户交互设备,接收用户输入的所述热参数、所述尺寸参数以及所述室外温度参数;Based on the user interaction device, receiving the thermal parameter, the size parameter and the outdoor temperature parameter input by the user;

或者,基于所述智能家居设备的网络地址,确定所述热参数、所述尺寸参数以及所述室外温度参数。Alternatively, the thermal parameter, the size parameter and the outdoor temperature parameter are determined based on the network address of the smart home device.

根据本发明提供的一种数字孪生室温预测方法,所述温度调节设备包括暖气,所述暖气的工作参数包括工作功率;According to a digital twin room temperature prediction method provided by the present invention, the temperature adjustment device includes a heater, and the working parameters of the heater include working power;

所述墙体导热系数参数、所述暖气的工作功率以及所述尺寸参数基于如下方法确定:The wall thermal conductivity parameter, the heater operating power and the size parameter are determined based on the following method:

基于所述网络地址,确定房间所在区域的墙体导热系数平均值、暖气工作功率平均值以及尺寸平均值;Based on the network address, determine the average wall thermal conductivity, the average heating working power and the average size of the area where the room is located;

将所述墙体导热系数平均值作为所述墙体导热系数参数,将所述暖气工作功率平均值作为所述暖气的工作功率,将所述尺寸平均值作为所述尺寸参数。The average value of the wall thermal conductivity is used as the wall thermal conductivity parameter, the average value of the heater working power is used as the heater working power, and the average value of the size is used as the size parameter.

根据本发明提供的一种数字孪生室温预测方法,所述温度调节设备还包括智能温度调节设备,所述智能温度调节设备包括空调、电暖气以及燃气中的至少一项;所述空调的工作参数、所述电暖气的工作参数以及所述燃气的工作参数均包括工作功率以及工作开关字段,所述通风量参数包括通风量以及通风开关字段;According to a digital twin room temperature prediction method provided by the present invention, the temperature adjustment device also includes an intelligent temperature adjustment device, and the intelligent temperature adjustment device includes at least one of an air conditioner, an electric heater, and a gas; the working parameters of the air conditioner, the working parameters of the electric heater, and the working parameters of the gas all include working power and working switch fields, and the ventilation volume parameters include ventilation volume and ventilation switch fields;

所述空调的工作参数、所述电暖气的工作参数、所述燃气的工作参数以及所述通风量参数基于如下方法确定:The operating parameters of the air conditioner, the operating parameters of the electric heater, the operating parameters of the gas, and the ventilation volume parameters are determined based on the following method:

基于所述网络地址,采集所述空调的工作功率、所述电暖气的工作功率、所述燃气的工作功率以及所述通风量,并基于采集结果,确定所述空调的工作开关字段、所述电暖气的工作开关字段、所述燃气的工作开关字段以及所述通风开关字段。Based on the network address, the working power of the air conditioner, the working power of the electric heater, the working power of the gas and the ventilation volume are collected, and based on the collection results, the working switch field of the air conditioner, the working switch field of the electric heater, the working switch field of the gas and the ventilation switch field are determined.

根据本发明提供的一种数字孪生室温预测方法,所述日照直射面积参数、所述房间对外接触面积参数以及所述房间对内接触面积参数均包括第一面积极值和第二面积极值,所述室温预测模型包括第一室温预测模型以及第二室温预测模型,所述室内温度参数包括第一室内温度以及第二室内温度;According to a digital twin room temperature prediction method provided by the present invention, the direct sunlight area parameter, the room external contact area parameter and the room internal contact area parameter all include a first surface positive value and a second surface positive value, the room temperature prediction model includes a first room temperature prediction model and a second room temperature prediction model, and the indoor temperature parameter includes a first indoor temperature and a second indoor temperature;

相应地,所述基于室温预测模型,确定所述目标房间的热参数、尺寸参数以及室外温度参数对应的所述目标房间的室内温度参数,包括:Accordingly, the step of determining the indoor temperature parameters of the target room corresponding to the thermal parameters, size parameters, and outdoor temperature parameters of the target room based on the room temperature prediction model includes:

基于所述第一室温预测模型,确定所述目标房间的日照直射面积参数的第一面积极值、房间对外接触面积参数的第一面积极值、房间对内接触面积参数的第一面积极值、尺寸参数以及室外温度参数对应的所述目标房间的第一室内温度;Based on the first room temperature prediction model, determine a first indoor temperature of the target room corresponding to a first positive value of a sunlight direct area parameter of the target room, a first positive value of a room external contact area parameter, a first positive value of a room internal contact area parameter, a size parameter, and an outdoor temperature parameter;

基于所述第二室温预测模型,确定所述目标房间的日照直射面积参数的第二面积极值、房间对外接触面积参数的第二面积极值、房间对内接触面积参数的第二面积极值、尺寸参数以及室外温度参数对应的所述目标房间的第二室内温度。Based on the second room temperature prediction model, determine the second surface positive value of the direct sunlight area parameter of the target room, the second surface positive value of the room's external contact area parameter, the second surface positive value of the room's internal contact area parameter, the size parameters and the second indoor temperature of the target room corresponding to the outdoor temperature parameters.

根据本发明提供的一种数字孪生室温预测方法,所述室温预测模型的初始模型包括逻辑回归模型、决策树模型、感知机模型或者神经网络模型。According to a digital twin room temperature prediction method provided by the present invention, the initial model of the room temperature prediction model includes a logistic regression model, a decision tree model, a perceptron model or a neural network model.

本发明还提供一种智能家居设备控制方法,包括:The present invention also provides a smart home device control method, comprising:

接收用户需求指令,并对所述用户需求指令进行语义解析,确定用户语义解析结果;Receive user demand instructions, perform semantic analysis on the user demand instructions, and determine user semantic analysis results;

基于所述用户语义解析结果,以及上述的数字孪生室温预测方法得到的所述目标房间的室内温度参数,生成控制指令;Generate a control instruction based on the user semantic analysis result and the indoor temperature parameters of the target room obtained by the digital twin room temperature prediction method;

基于所述控制指令,对所述目标房间内的智能家居设备进行控制。Based on the control instruction, the smart home devices in the target room are controlled.

本发明还提供一种数字孪生室温预测装置,包括:The present invention also provides a digital twin room temperature prediction device, comprising:

获取模块,用于获取目标房间的热参数、尺寸参数以及室外温度参数;所述目标房间内安装有具有联网功能的智能家居设备;An acquisition module, used to acquire thermal parameters, size parameters and outdoor temperature parameters of a target room; the target room is equipped with a smart home device with networking function;

预测模块,用于基于室温预测模型,确定所述目标房间的热参数、尺寸参数以及室外温度参数对应的所述目标房间的室内温度参数;A prediction module, for determining, based on a room temperature prediction model, indoor temperature parameters of the target room corresponding to thermal parameters, size parameters and outdoor temperature parameters of the target room;

其中,所述室温预测模型基于携带有室内温度标签的样本房间的热参数、尺寸参数以及室外温度参数确定,所述室温预测模型用于表征任一房间的热参数、尺寸参数以及室外温度参数与室内温度参数之间的定量关系。The room temperature prediction model is determined based on the thermal parameters, size parameters and outdoor temperature parameters of a sample room carrying an indoor temperature tag, and is used to characterize the quantitative relationship between the thermal parameters, size parameters and outdoor temperature parameters of any room and the indoor temperature parameters.

本发明还提供一种智能家居设备控制装置,包括:The present invention also provides a smart home device control device, comprising:

接收模块,用于接收用户需求指令,并对所述用户需求指令进行语义解析,确定用户语义解析结果;A receiving module is used to receive a user demand instruction, and perform semantic analysis on the user demand instruction to determine a user semantic analysis result;

生成模块,用于基于所述用户语义解析结果,以及上述的数字孪生室温预测方法得到的所述目标房间的室内温度参数,生成控制指令;A generation module, used to generate a control instruction based on the user semantic analysis result and the indoor temperature parameter of the target room obtained by the digital twin room temperature prediction method;

控制模块,用于基于所述控制指令,对所述目标房间内的智能家居设备进行控制。A control module is used to control the smart home devices in the target room based on the control instruction.

本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述的数字孪生室温预测方法或智能家居设备控制方法。The present invention also provides an electronic device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, the digital twin room temperature prediction method or smart home device control method as described above is implemented.

本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述的数字孪生室温预测方法或智能家居设备控制方法。The present invention also provides a non-transitory computer-readable storage medium having a computer program stored thereon. When the computer program is executed by a processor, the digital twin room temperature prediction method or smart home device control method as described in any one of the above is implemented.

本发明还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述的数字孪生室温预测方法或智能家居设备控制方法。The present invention also provides a computer program product, including a computer program, which, when executed by a processor, implements the digital twin room temperature prediction method or smart home device control method as described above.

本发明提供的数字孪生室温预测方法、智能家居设备控制方法及装置,首先获取目标房间的热参数、尺寸参数以及室外温度参数;目标房间内安装有具有联网功能的智能家居设备;然后基于室温预测模型,确定目标房间的热参数、尺寸参数以及室外温度参数对应的目标房间的室内温度参数。该方法引入目标房间的热参数、尺寸参数以及室外温度参数,并结合室温预测模型,共同实现对目标房间的室内温度参数的确定,可以摆脱温度传感器的束缚,即使在目标房间内没有安装有温度传感器的情况下,也能够确定目标房间的室内温度,可以节约室内温度的获取成本。而且,在该方法中,引入目标房间的热参数、尺寸参数以及室外温度参数,可以提高室内温度的准确性。The digital twin room temperature prediction method, smart home device control method and device provided by the present invention first obtain the thermal parameters, size parameters and outdoor temperature parameters of the target room; the target room is equipped with a smart home device with networking function; then, based on the room temperature prediction model, the indoor temperature parameters of the target room corresponding to the thermal parameters, size parameters and outdoor temperature parameters of the target room are determined. The method introduces the thermal parameters, size parameters and outdoor temperature parameters of the target room, and combines the room temperature prediction model to jointly realize the determination of the indoor temperature parameters of the target room, which can get rid of the constraints of the temperature sensor. Even if the temperature sensor is not installed in the target room, the indoor temperature of the target room can be determined, which can save the cost of obtaining the indoor temperature. Moreover, in this method, the thermal parameters, size parameters and outdoor temperature parameters of the target room are introduced to improve the accuracy of the indoor temperature.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the present invention or the prior art, the following briefly introduces the drawings required for use in the embodiments or the description of the prior art. Obviously, for ordinary technicians in this field, other drawings can be obtained based on the drawings in the following description without creative work.

图1是本发明提供的数字孪生室温预测方法的流程示意图;FIG1 is a schematic flow chart of a digital twin room temperature prediction method provided by the present invention;

图2是本发明提供的智能家居设备控制方法的流程示意图;FIG2 is a schematic diagram of a flow chart of a smart home device control method provided by the present invention;

图3是本发明提供的数字孪生室温预测装置的结构示意图;FIG3 is a schematic structural diagram of a digital twin room temperature prediction device provided by the present invention;

图4是本发明提供的智能家居设备控制装置的结构示意图;FIG4 is a schematic diagram of the structure of a smart home device control device provided by the present invention;

图5是本发明提供的电子设备的结构示意图。FIG. 5 is a schematic diagram of the structure of an electronic device provided by the present invention.

具体实施方式DETAILED DESCRIPTION

为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the present invention clearer, the technical solution of the present invention will be clearly and completely described below in conjunction with the drawings of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.

由于现有技术中,通常通过室内安装的温度传感器直接进行温度测量,但是对于没有安装温度传感器的房间则无法获取房间的室内温度,这将导致后续无法对智能家居进行自动控制,进而无法保证用户的室内舒适度。为此,本发明实施例中提供了一种数字孪生室温预测方法,以实现在不通过温度传感器也可以获取室温的技术效果。In the prior art, temperature measurement is usually performed directly through a temperature sensor installed indoors, but the indoor temperature of a room without a temperature sensor installed cannot be obtained, which will result in the inability to automatically control the smart home and thus fail to ensure the user's indoor comfort. To this end, a digital twin room temperature prediction method is provided in an embodiment of the present invention to achieve the technical effect of obtaining the room temperature without a temperature sensor.

图1为本发明实施例中提供的一种数字孪生室温预测方法的流程示意图,如图1所示,该方法包括:FIG1 is a schematic flow chart of a digital twin room temperature prediction method provided in an embodiment of the present invention. As shown in FIG1 , the method includes:

S11,获取目标房间的热参数、尺寸参数以及室外温度参数;所述目标房间内安装有具有联网功能的智能家居设备;S11, obtaining thermal parameters, size parameters and outdoor temperature parameters of a target room; the target room is equipped with a smart home device with networking function;

S12,基于室温预测模型,确定所述目标房间的热参数、尺寸参数以及室外温度参数对应的所述目标房间的室内温度参数;S12, determining, based on a room temperature prediction model, indoor temperature parameters of the target room corresponding to thermal parameters, size parameters, and outdoor temperature parameters of the target room;

其中,所述室温预测模型基于携带有室内温度标签的样本房间的热参数、尺寸参数以及室外温度参数确定,所述室温预测模型用于表征任一房间的热参数、尺寸参数以及室外温度参数与室内温度参数之间的定量关系。The room temperature prediction model is determined based on the thermal parameters, size parameters and outdoor temperature parameters of a sample room carrying an indoor temperature tag, and is used to characterize the quantitative relationship between the thermal parameters, size parameters and outdoor temperature parameters of any room and the indoor temperature parameters.

具体地,本发明实施例中提供的数字孪生室温预测方法,其执行主体为数字孪生室温预测装置,该装置可以配置于云服务器内,该云服务器可以与待测温的目标房间内安装的具有联网功能的智能家居设备通过物联网(Internet of Things,IOT)连接。Specifically, the digital twin room temperature prediction method provided in the embodiment of the present invention is executed by a digital twin room temperature prediction device, which can be configured in a cloud server. The cloud server can be connected to smart home devices with networking functions installed in the target room to be measured through the Internet of Things (IOT).

首先执行步骤S11,获取目标房间的热参数、尺寸参数以及室外温度参数。该目标房间是指需要确定其室内温度的房间,该目标房间内可以安装有具有联网功能的智能家居设备。智能家居设备可以是智能空调、智能窗户、智能冰箱等,此处不作具体限定。智能家居设备的联网功能可以通过内置的WIFI模块或者其他无线通信模块实现。First, step S11 is performed to obtain the thermal parameters, size parameters and outdoor temperature parameters of the target room. The target room refers to the room whose indoor temperature needs to be determined, and the target room may be installed with a smart home device with networking function. The smart home device may be a smart air conditioner, a smart window, a smart refrigerator, etc., which are not specifically limited here. The networking function of the smart home device can be realized through a built-in WIFI module or other wireless communication module.

热参数是指用于表征房间热相关的参数,例如可以包括日照参数、结构热交换参数、温度调节参数以及气流热量交换参数中的至少一项。日照参数是指日照热量功率或影响房间内日照热量的相关参数,结构热交换参数是指结构热交换热量功率或影响房间内空气热交换热量的相关参数,温度调节参数是指房间内温度调节设备的工作参数,例如工作功率等,气流热量交换参数是指房间内气流热量交换功率或影响房间内气流热量交换的相关参数。Thermal parameters refer to parameters used to characterize room heat, and may include at least one of sunlight parameters, structural heat exchange parameters, temperature adjustment parameters, and airflow heat exchange parameters. Sunlight parameters refer to sunlight heat power or related parameters that affect sunlight heat in the room, structural heat exchange parameters refer to structural heat exchange heat power or related parameters that affect air heat exchange heat in the room, temperature adjustment parameters refer to working parameters of the temperature adjustment device in the room, such as working power, etc., and airflow heat exchange parameters refer to airflow heat exchange power in the room or related parameters that affect airflow heat exchange in the room.

室外温度参数是指室外温度或者用于影响室外环境温度的相关参数,该相关参数可以包括房间所在区域的天气状况以及房间所在经纬度,可以通过阴、多云、晴、雨、雪的离散值进行表示。通过房间所在区域的天气状况以及房间所在经纬度,可以确定出室外温度,其单位为W/m2The outdoor temperature parameter refers to the outdoor temperature or a related parameter that affects the outdoor ambient temperature. The related parameter may include the weather conditions of the area where the room is located and the longitude and latitude of the room, and may be represented by discrete values of cloudy, overcast, sunny, rainy, and snowy. The outdoor temperature may be determined by the weather conditions of the area where the room is located and the longitude and latitude of the room, and its unit is W/m 2 .

尺寸参数是指房间的尺寸,可以包括房间的长、宽和高。Dimensional parameters refer to the dimensions of the room, which can include the length, width, and height of the room.

本发明实施例中,目标房间的热参数、尺寸参数以及室外温度参数均是与目标房间的室内温度参数相关的间接参数。目标房间的热参数、尺寸参数以及室外温度参数的获取可以通过目标房间内安装的智能家居设备的联网功能实现,也可以是通过用户在智能家居设备的应用程序(APP)上手动输入,此处不作具体限定。In the embodiment of the present invention, the thermal parameters, size parameters and outdoor temperature parameters of the target room are all indirect parameters related to the indoor temperature parameters of the target room. The acquisition of the thermal parameters, size parameters and outdoor temperature parameters of the target room can be achieved through the networking function of the smart home device installed in the target room, or can be manually input by the user on the application (APP) of the smart home device, which is not specifically limited here.

然后执行步骤S12,引入室温预测模型,通过室温预测模块确定目标房间的热参数、尺寸参数以及室外温度参数对应的目标房间的室内温度参数。此处,室温预测模型用于表征任一房间的热参数、尺寸参数以及室外温度参数与室内温度参数之间的定量关系,该任一房间可以是任意一个房间,即任一房间的室内温度参数均可以通过室温预测模型表征的定量关系确定。Then, step S12 is executed to introduce a room temperature prediction model, and the indoor temperature parameters of the target room corresponding to the thermal parameters, size parameters and outdoor temperature parameters of the target room are determined by the room temperature prediction module. Here, the room temperature prediction model is used to characterize the quantitative relationship between the thermal parameters, size parameters and outdoor temperature parameters of any room and the indoor temperature parameters. The any room can be any room, that is, the indoor temperature parameters of any room can be determined by the quantitative relationship characterized by the room temperature prediction model.

该定量关系可以通过携带有室内温度标签的样本房间的热参数、尺寸参数以及室外温度参数确定,即可以通过对样本房间的热参数、尺寸参数以及室外温度参数与其室内温度标签之间的内置联系进行分析研究,得到对应的定量关系。The quantitative relationship can be determined by the thermal parameters, dimensional parameters and outdoor temperature parameters of the sample room carrying the indoor temperature tag, that is, the corresponding quantitative relationship can be obtained by analyzing the built-in connection between the thermal parameters, dimensional parameters and outdoor temperature parameters of the sample room and its indoor temperature tag.

该室温预测模型的初始模型可以是逻辑回归模型,也可以是神经网络模型或深度神经网络(Deep Neural Networks,DNN)模型。通过样本房间的热参数、尺寸参数以及室外温度参数与其室内温度标签,不断对初始模型进行迭代学习以确定满足预测准确率要求的室温预测模型的模型参数。The initial model of the room temperature prediction model can be a logistic regression model, a neural network model or a deep neural network (DNN) model. Through the thermal parameters, size parameters, outdoor temperature parameters and indoor temperature labels of the sample room, the initial model is continuously iterated to determine the model parameters of the room temperature prediction model that meet the prediction accuracy requirements.

当初始模型是逻辑回归模型时,初始模型的自变量是样本房间的热参数、尺寸参数以及室外温度参数,因变量是样本房间的室内温度标签,室温预测模型的自变量是任一房间的热参数、尺寸参数以及室外温度参数,因变量是任一房间的室内温度参数。When the initial model is a logistic regression model, the independent variables of the initial model are the thermal parameters, size parameters and outdoor temperature parameters of the sample room, and the dependent variable is the indoor temperature label of the sample room. The independent variables of the room temperature prediction model are the thermal parameters, size parameters and outdoor temperature parameters of any room, and the dependent variable is the indoor temperature parameter of any room.

当初始模型是神经网络模型时,初始模型的输入是样本房间的热参数、尺寸参数以及室外温度参数,输出是样本房间的室内温度标签,室温预测模型的输入是任一房间的热参数、尺寸参数以及室外温度参数,输出是任一房间的室内温度参数。When the initial model is a neural network model, the input of the initial model is the thermal parameters, size parameters and outdoor temperature parameters of the sample room, and the output is the indoor temperature label of the sample room. The input of the room temperature prediction model is the thermal parameters, size parameters and outdoor temperature parameters of any room, and the output is the indoor temperature parameters of any room.

可以理解的是,目标房间的室内温度参数可以包括室内温度的取值,该室内温度的取值可以是极值,例如极大值或极小值,也可以是介于极大值与极小值之间的一个值。这与样本房间的室内温度标签的选取有关,若选取的样本房间的室内温度标签是极大值,则经过室温预测模型得到的室内温度参数也是一个极大值,若选取的样本房间的室内温度标签是极小值,则经过室温预测模型得到的室内温度参数也是一个极小值。It is understandable that the indoor temperature parameter of the target room may include the value of the indoor temperature, and the value of the indoor temperature may be an extreme value, such as a maximum value or a minimum value, or a value between the maximum value and the minimum value. This is related to the selection of the indoor temperature label of the sample room. If the indoor temperature label of the selected sample room is a maximum value, the indoor temperature parameter obtained by the room temperature prediction model is also a maximum value. If the indoor temperature label of the selected sample room is a minimum value, the indoor temperature parameter obtained by the room temperature prediction model is also a minimum value.

需要说明的是,样本房间的室内温度标签是与样本房间的热参数、尺寸参数以及室外温度参数之间存在定量关系的,因此样本房间的室内温度标签的选取会受到样本房间的热参数中存在取值范围的参数取值的影响,当样本房间的热参数中存在取值范围的参数取极值时,样本房间的室内温度标签也为温度极值。It should be noted that there is a quantitative relationship between the indoor temperature label of the sample room and the thermal parameters, size parameters and outdoor temperature parameters of the sample room. Therefore, the selection of the indoor temperature label of the sample room will be affected by the parameter values within the value range of the thermal parameters of the sample room. When the parameter values within the value range of the thermal parameters of the sample room are extreme values, the indoor temperature label of the sample room is also the temperature extreme value.

对于样本房间,其辐射热量与其接收热量相等,通过黑体辐射公式,即可确定样本房间的辐射热量功率。For the sample room, its radiated heat is equal to its received heat. The radiated heat power of the sample room can be determined by the blackbody radiation formula.

黑体辐射公式为:The formula for blackbody radiation is:

P=σT4 P=σT 4

其中,P为单位面积的辐射功率,σ=5.67*10-8W*(m-2*k-4),T为热力学温度,单位为K。Wherein, P is the radiation power per unit area, σ=5.67*10 -8 W*(m -2 *k -4 ), and T is the thermodynamic temperature, in K.

样本房间的辐射热量功率可以表示为:The radiant heat power of the sample room can be expressed as:

W1=σS(T1-T2)4 W 1 =σS(T 1 -T 2 ) 4

其中,W1为样本房间的辐射热量功率,S为样本房间的表面积,可以通过样本房间的尺寸参数确定,T1为样本房间的室内温度参数,T2为样本房间的室外温度参数。Among them, W1 is the radiant heat power of the sample room, S is the surface area of the sample room, which can be determined by the size parameters of the sample room, T1 is the indoor temperature parameter of the sample room, and T2 is the outdoor temperature parameter of the sample room.

另一方面,样本房间的接收热量功率与样本房间的热参数有关,因此通过上述样本房间的辐射热量功率的公式,可以建立任一房间的热参数、尺寸参数以及室温温度参数与室内温度参数之间的定量关系。On the other hand, the received heat power of the sample room is related to the thermal parameters of the sample room. Therefore, through the formula of the radiant heat power of the sample room mentioned above, a quantitative relationship between the thermal parameters, size parameters, room temperature parameters and indoor temperature parameters of any room can be established.

数字孪生是充分利用物理模型,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程。数字孪生可以被视为一个或多个重要的、彼此依赖的装备系统的数字映射系统。本发明实施例中,通过考虑目标房间的热参数、尺寸参数以及室外温度参数,实现数字孪生的室温预测,得到目标房间的室内温度参数。得到的目标房间的室内温度参数,既可以便于后续家电控制过程中依赖此信息进行控制决策,也可以直接向用户提供,此处不作具体限定。Digital twins make full use of physical models, integrate multi-disciplinary, multi-physical quantity, multi-scale, and multi-probability simulation processes, complete mapping in virtual space, and thus reflect the entire life cycle of the corresponding physical equipment. Digital twins can be regarded as a digital mapping system of one or more important, interdependent equipment systems. In an embodiment of the present invention, by considering the thermal parameters, dimensional parameters, and outdoor temperature parameters of the target room, the room temperature prediction of the digital twin is realized to obtain the indoor temperature parameters of the target room. The obtained indoor temperature parameters of the target room can be used to facilitate control decisions based on this information in the subsequent home appliance control process, and can also be provided directly to users, which is not specifically limited here.

本发明实施例中提供的数字孪生室温预测方法,首先获取目标房间的热参数、尺寸参数以及室外温度参数;目标房间内安装有具有联网功能的智能家居设备;然后基于室温预测模型,确定目标房间的热参数、尺寸参数以及室外温度参数对应的目标房间的室内温度参数。该方法引入目标房间的热参数、尺寸参数以及室外温度参数,并结合室温预测模型,共同实现对目标房间的室内温度参数的确定,可以摆脱温度传感器的束缚,即使在目标房间内没有安装有温度传感器的情况下,也能够确定目标房间的室内温度,可以节约室内温度的获取成本。而且,在该方法中,引入目标房间的热参数、尺寸参数以及室外温度参数,可以提高室内温度的准确性。The digital twin room temperature prediction method provided in the embodiment of the present invention first obtains the thermal parameters, size parameters and outdoor temperature parameters of the target room; the target room is equipped with a smart home device with networking function; then, based on the room temperature prediction model, the indoor temperature parameters of the target room corresponding to the thermal parameters, size parameters and outdoor temperature parameters of the target room are determined. The method introduces the thermal parameters, size parameters and outdoor temperature parameters of the target room, and combines the room temperature prediction model to jointly realize the determination of the indoor temperature parameters of the target room, which can get rid of the constraints of the temperature sensor. Even if there is no temperature sensor installed in the target room, the indoor temperature of the target room can be determined, which can save the cost of obtaining the indoor temperature. Moreover, in this method, the introduction of the thermal parameters, size parameters and outdoor temperature parameters of the target room can improve the accuracy of the indoor temperature.

在上述实施例的基础上,本发明实施例中提供的数字孪生室温预测方法,所述热参数包括日照参数、结构热交换参数、温度调节参数以及气流热量交换参数中的至少一项;On the basis of the above embodiment, in the digital twin room temperature prediction method provided in the embodiment of the present invention, the thermal parameter includes at least one of a sunshine parameter, a structural heat exchange parameter, a temperature adjustment parameter, and an airflow heat exchange parameter;

所述日照参数包括日照直射面积参数、日照角度参数以及日照强度参数中的至少一项;The sunshine parameter includes at least one of a sunshine direct area parameter, a sunshine angle parameter and a sunshine intensity parameter;

所述结构热交换参数包括房间对外接触面积参数、房间对内接触面积参数以及墙体导热系数参数中的至少一项;The structural heat exchange parameter includes at least one of a room external contact area parameter, a room internal contact area parameter, and a wall thermal conductivity parameter;

所述温度调节参数包括所述目标房间内的温度调节设备的工作参数;The temperature adjustment parameters include operating parameters of the temperature adjustment device in the target room;

所述气流热量交换参数包括通风量参数以及室外风速参数中的至少一项。The airflow heat exchange parameter includes at least one of a ventilation volume parameter and an outdoor wind speed parameter.

具体地,本发明实施例中,热参数可以包括日照参数、结构热交换参数、温度调节参数以及气流热量交换参数中的至少一项,热参数中包括的参数项数越多,则考虑的因素越多,使得通过携带有室内温度标签的样本房间的热参数、尺寸参数以及室外温度参数确定的室温预测模型的准确性越高,进而通过室温预测模型得到的目标房间的室内温度参数的准确性更高。Specifically, in an embodiment of the present invention, the thermal parameters may include at least one of sunlight parameters, structural heat exchange parameters, temperature regulation parameters, and airflow heat exchange parameters. The more parameter items included in the thermal parameters, the more factors are considered, so that the room temperature prediction model determined by the thermal parameters, size parameters and outdoor temperature parameters of the sample room carrying the indoor temperature label has higher accuracy, and thus the indoor temperature parameters of the target room obtained by the room temperature prediction model have higher accuracy.

此处,日照参数可以包括日照直射面积参数、日照角度参数以及日照强度参数中的至少一项。Here, the sunshine parameter may include at least one of a sunshine direct area parameter, a sunshine angle parameter, and a sunshine intensity parameter.

该日照直射面积参数是指日照直射面积或者影响日照直射面积的相关参数,该相关参数可以包括房间窗体面积以及环境对房间窗体的遮挡面积,房间窗体面积与环境对房间窗体的遮挡面积的差值即可作为日照直射面积。房间窗体面积、环境对房间窗体的遮挡面积以及日照直射面积的单位均为平方米(m2)。The direct sunlight area parameter refers to the direct sunlight area or related parameters that affect the direct sunlight area. The related parameters may include the room window area and the area of the room window blocked by the environment. The difference between the room window area and the area of the room window blocked by the environment can be used as the direct sunlight area. The units of the room window area, the area of the room window blocked by the environment and the direct sunlight area are all square meters (m 2 ).

日照角度参数是指日照角度或者影响日照角度的相关参数,例如可以包括当前时刻以及房间所在经纬度。当前时刻可以通过当前年份的1月1日0点开始到当前时刻的秒数进行表示,单位可以是s。通过当前时刻以及房间所在经纬度,可以确定出日照角度,其单位为度(°)。The sunshine angle parameter refers to the sunshine angle or related parameters that affect the sunshine angle, for example, the current time and the longitude and latitude of the room. The current time can be represented by the number of seconds from 0:00 on January 1 of the current year to the current time, and the unit can be s. The sunshine angle can be determined by the current time and the longitude and latitude of the room, and its unit is degree (°).

日照强度参数是指日照强度或者影响日照强度的相关参数,例如可以包括房间所在区域的天气状况以及房间所在经纬度。房间所在区域的天气状况可以通过阴、多云、晴、雨、雪的离散值进行表示。通过房间所在区域的天气状况以及房间所在经纬度,可以确定出日照强度的取值,其单位为W/m2The sunshine intensity parameter refers to the sunshine intensity or related parameters that affect the sunshine intensity, for example, the weather conditions of the area where the room is located and the longitude and latitude of the room. The weather conditions of the area where the room is located can be represented by discrete values of cloudy, overcast, sunny, rainy, and snowy. The value of sunshine intensity can be determined by the weather conditions of the area where the room is located and the longitude and latitude of the room. The unit is W/m 2 .

结构热交换参数可以包括房间对外接触面积参数、房间对内接触面积参数以及墙体导热系数参数中的至少一项。The structural heat exchange parameter may include at least one of a room-to-external contact area parameter, a room-to-internal contact area parameter, and a wall thermal conductivity parameter.

房间对外接触面积参数是指房间对外接触面积的取值,可以是房间直接与室外环境接触的区域面积,例如外墙面积、外窗体面积等,其单位为m2The room external contact area parameter refers to the value of the room external contact area, which can be the area of the room directly in contact with the outdoor environment, such as the external wall area, external window area, etc., and its unit is m2 .

房间对内接触面积参数是指房间对内接触面积的取值,可以是房间直接与房间所在楼栋内部其他房间或区域接触的区域面积,例如内墙面积、内窗体面积等,其单位为m2The room internal contact area parameter refers to the value of the room internal contact area, which can be the area of the room directly contacting other rooms or areas in the building where the room is located, such as the inner wall area, inner window area, etc., and its unit is m2 .

墙体导热系数参数是指房间的墙体的导热系数的取值,与墙体所采用的材料有关。The wall thermal conductivity parameter refers to the value of the thermal conductivity of the room wall, which is related to the material used for the wall.

目标房间内的温度调节设备热源是指能够调节目标房间内的温度高低的设备,可以包括暖气等集中供热设备,也可以是房间内依据用户需求自行安装的设备,例如空调、电暖气以及燃气中的至少一项。温度调节设备的工作参数可以是指影响温度调节设备的温度调节性能的参数,例如工作功率等。The heat source of the temperature regulating device in the target room refers to the device that can adjust the temperature in the target room, which may include central heating equipment such as a heater, or equipment installed in the room according to user needs, such as at least one of air conditioning, electric heater and gas. The operating parameters of the temperature regulating device may refer to the parameters that affect the temperature regulating performance of the temperature regulating device, such as operating power, etc.

气流热量交换参数是指气流热量交换功率或者影响气流热量交换的相关参数,该相关参数可以包括通风量参数、室外风速参数以及室温温度参数中的至少一项。通风量参数即房间通风量,单位为m3/s。室外风速参数即房间所在的室外环境风速,单位为m/s。The airflow heat exchange parameter refers to the airflow heat exchange power or related parameters that affect the airflow heat exchange, and the related parameters may include at least one of the ventilation volume parameter, the outdoor wind speed parameter, and the room temperature parameter. The ventilation volume parameter is the room ventilation volume, in m 3 /s. The outdoor wind speed parameter is the outdoor environment wind speed of the room, in m/s.

本发明实施例中,给出了热参数的类别以及子类别,可以进一步优化室温预测模型的性能,进而提高室温预测的准确性。In the embodiment of the present invention, the categories and subcategories of thermal parameters are provided, which can further optimize the performance of the room temperature prediction model, thereby improving the accuracy of room temperature prediction.

在上述实施例的基础上,本发明实施例中提供的数字孪生室温预测方法,所述热参数、所述尺寸参数以及所述室外温度参数基于如下方法获取:On the basis of the above-mentioned embodiment, in the digital twin room temperature prediction method provided in the embodiment of the present invention, the thermal parameters, the size parameters and the outdoor temperature parameters are obtained based on the following method:

基于用户交互设备,接收用户输入的所述热参数、所述尺寸参数以及所述室外温度参数;Based on the user interaction device, receiving the thermal parameter, the size parameter and the outdoor temperature parameter input by the user;

或者,基于所述智能家居设备的网络地址,确定所述热参数、所述尺寸参数以及所述室外温度参数。Alternatively, the thermal parameter, the size parameter and the outdoor temperature parameter are determined based on the network address of the smart home device.

具体地,本发明实施例中,在获取目标房间的热参数、尺寸参数以及室外温度参数时,可以通过如下两种方式确定:一种方式是事先确定,该方式需要利用用户交互设备,该用户交互设备可以是安装有智能家居设备应用程序的终端设备,例如手机、平板等。用户可以在用户交互设备上输入目标房间的热参数、尺寸参数以及室外温度参数等,用户输入的信息通过用户交互设备的联网功能即可被室温预测模块接收并存储。Specifically, in the embodiment of the present invention, when obtaining the thermal parameters, size parameters and outdoor temperature parameters of the target room, the following two methods can be used to determine: one method is to determine in advance, which requires the use of a user interaction device, which can be a terminal device with a smart home device application installed, such as a mobile phone, a tablet, etc. The user can input the thermal parameters, size parameters and outdoor temperature parameters of the target room on the user interaction device, and the information input by the user can be received and stored by the room temperature prediction module through the networking function of the user interaction device.

另一种方式是可能由于用户忽略或用户不知道而导致并未事先确定的情况,该方式需要利用智能家居设备的网络地址,确定目标房间的热参数、尺寸参数以及室外温度参数。通过该网络地址,可以获取到目标房间所在区域的相关参数的平均值或者能够确定相关参数的间接参数,此处不作具体限定。Another method is a situation that may not be determined in advance due to user neglect or ignorance. This method requires using the network address of the smart home device to determine the thermal parameters, size parameters and outdoor temperature parameters of the target room. Through the network address, the average value of the relevant parameters of the area where the target room is located or the indirect parameters that can determine the relevant parameters can be obtained, which are not specifically limited here.

同样地,样本房间的热参数、尺寸参数以及室外温度参数也可以通过上述获取目标房间的热参数、尺寸参数以及室外温度参数的方式进行获取,只需将目标房间替换为样本房间即可,样本房间内也同样安装有具有联网功能的智能家居设备,此处不再赘述。Similarly, the thermal parameters, size parameters and outdoor temperature parameters of the sample room can also be obtained by the above-mentioned method of obtaining the thermal parameters, size parameters and outdoor temperature parameters of the target room. It is only necessary to replace the target room with the sample room. The sample room is also installed with smart home devices with networking functions, which will not be repeated here.

可以理解的是,参数的两种获取方式,可以优先选择有用户参与的第一种方式,若没有通过第一种方式获取到相关参数,则采用第二种方式,如此可以使得到的目标房间的室内温度参数更加准确。It is understandable that of the two methods of obtaining parameters, the first method with user participation can be preferred. If the relevant parameters are not obtained through the first method, the second method is used, so that the indoor temperature parameters of the target room can be obtained more accurately.

本发明实施例中,在确定目标房间或样本房间的热参数、尺寸参数以及室外温度参数时,可以采用两种不同的方式实现,即使在用户无法给出目标房间或样本房间的热参数、尺寸参数以及室外温度参数的情况下也可以通过其他方式获取,不仅可以保证室温预测模型的确定,也可以保证目标房间的室内温度参数的顺利获取。In an embodiment of the present invention, when determining the thermal parameters, size parameters and outdoor temperature parameters of a target room or a sample room, two different methods can be used to achieve this. Even if the user is unable to provide the thermal parameters, size parameters and outdoor temperature parameters of the target room or the sample room, they can be obtained through other methods. This can not only ensure the determination of the room temperature prediction model, but also ensure the smooth acquisition of the indoor temperature parameters of the target room.

在上述实施例的基础上,本发明实施例中提供的数字孪生室温预测方法,所述温度调节设备包括暖气,所述暖气的工作参数包括工作功率;On the basis of the above-mentioned embodiment, in the digital twin room temperature prediction method provided in the embodiment of the present invention, the temperature adjustment device includes a heater, and the working parameters of the heater include working power;

所述墙体导热系数参数、所述暖气的工作功率以及所述尺寸参数基于如下方法确定:The wall thermal conductivity parameter, the heater operating power and the size parameter are determined based on the following method:

基于所述网络地址,确定房间所在区域的墙体导热系数平均值、暖气工作功率平均值以及尺寸平均值;Based on the network address, determine the average wall thermal conductivity, the average heating working power and the average size of the area where the room is located;

将所述墙体导热系数平均值作为所述墙体导热系数参数,将所述暖气工作功率平均值作为所述暖气的工作功率,将所述尺寸平均值作为所述尺寸参数。The average value of the wall thermal conductivity is used as the wall thermal conductivity parameter, the average value of the heater working power is used as the heater working power, and the average value of the size is used as the size parameter.

具体地,本发明实施例中,在确定目标房间的墙体导热系数参数、暖气的工作参数以及尺寸参数时,可以采用如下方法:首先,根据网络地址,确定目标房间所在区域的墙体导热系数平均值、暖气工作功率平均值以及尺寸平均值,进而可以将上述平均值作为目标房间的相关参数,即将墙体导热系数平均值作为目标房间的墙体导热系数参数,将暖气工作功率平均值作为目标房间的暖气的工作功率,将尺寸平均值作为目标房间的尺寸参数。Specifically, in an embodiment of the present invention, when determining the wall thermal conductivity parameters, heater working parameters and size parameters of the target room, the following method can be used: first, according to the network address, the average wall thermal conductivity, the average heater working power and the average size of the area where the target room is located are determined, and then the above average values can be used as relevant parameters of the target room, that is, the average wall thermal conductivity is used as the wall thermal conductivity parameter of the target room, the average heater working power is used as the heater working power of the target room, and the average size is used as the size parameter of the target room.

可以理解的是,在确定样本房间的墙体导热系数参数、暖气的工作参数以及尺寸参数时,依然可以采用上述方法,不同的是利用的是样本房间所在区域的墙体导热系数平均值、暖气工作功率平均值以及尺寸平均值作为样本房间的相关参数,即将墙体导热系数平均值作为样本房间的墙体导热系数参数,将暖气工作功率平均值作为样本房间的暖气的工作功率,将尺寸平均值作为样本房间的尺寸参数。It can be understood that the above method can still be used to determine the wall thermal conductivity parameters, heating working parameters and size parameters of the sample room. The difference is that the average wall thermal conductivity, average heating working power and average size of the area where the sample room is located are used as the relevant parameters of the sample room, that is, the average wall thermal conductivity is used as the wall thermal conductivity parameter of the sample room, the average heating working power is used as the heating working power of the sample room, and the average size is used as the size parameter of the sample room.

本发明实施例中,采用房间所在区域的相关参数的平均值作为相关参数的取值,可以在用户无法给出目标房间或样本房间的热参数、尺寸参数以及室外温度参数中至少一项的情况下获取到相关参数。而且,房间所在区域的相关参数的平均值可以表征房间所在区域的共性,进而可以降低目标房间或样本房间的个性化,避免与真实取值产生较大偏差。In the embodiment of the present invention, the average value of the relevant parameters of the area where the room is located is used as the value of the relevant parameter, so that the relevant parameter can be obtained when the user cannot provide at least one of the thermal parameters, size parameters and outdoor temperature parameters of the target room or sample room. In addition, the average value of the relevant parameters of the area where the room is located can represent the commonality of the area where the room is located, thereby reducing the personalization of the target room or sample room and avoiding a large deviation from the actual value.

在上述实施例的基础上,本发明实施例中提供的数字孪生室温预测方法,所述温度调节设备还包括智能温度调节设备,所述智能温度调节设备包括空调、电暖气以及燃气中的至少一项;所述空调的工作参数、所述电暖气的工作参数以及所述燃气的工作参数均包括工作功率以及工作开关字段,所述通风量参数包括通风量以及通风开关字段;On the basis of the above embodiments, in the digital twin room temperature prediction method provided in the embodiments of the present invention, the temperature adjustment device further includes an intelligent temperature adjustment device, and the intelligent temperature adjustment device includes at least one of an air conditioner, an electric heater, and a gas; the working parameters of the air conditioner, the working parameters of the electric heater, and the working parameters of the gas all include working power and working switch fields, and the ventilation volume parameters include ventilation volume and ventilation switch fields;

所述空调的工作参数、所述电暖气的工作参数、所述燃气的工作参数以及所述通风量参数基于如下方法确定:The operating parameters of the air conditioner, the operating parameters of the electric heater, the operating parameters of the gas, and the ventilation volume parameters are determined based on the following method:

基于所述网络地址,采集所述空调的工作功率、所述电暖气的工作功率、所述燃气的工作功率以及所述通风量,并基于采集结果,确定所述空调的工作开关字段、所述电暖气的工作开关字段、所述燃气的工作开关字段以及所述通风开关字段。Based on the network address, the working power of the air conditioner, the working power of the electric heater, the working power of the gas and the ventilation volume are collected, and based on the collection results, the working switch field of the air conditioner, the working switch field of the electric heater, the working switch field of the gas and the ventilation switch field are determined.

具体地,本发明实施例中,温度调节设备可以是智能温度调节设备,即具有联网功能的智能家居设备,智能温度调节设备可以包括空调、电暖气以及燃气中的至少一项。空调的工作参数、电暖气的参数以及燃气的工作参数均可以包括工作功率以及工作开关字段,工作功率即为对应的智能温度调节设备在工作时的工作功率,工作开关字段是指用于判断对应的智能温度调节设备的工作是否有效,即室温预测装置能否获取到对应的智能温度调节设备的工作参数,如果有效,即室温预测装置能获取到对应的工作参数,进而工作开关字段可以设置为1。否则,如果无效,即室温预测装置不能获取到对应的工作参数,工作开关字段可以设置为0。Specifically, in an embodiment of the present invention, the temperature regulating device may be an intelligent temperature regulating device, that is, an intelligent home device with networking function, and the intelligent temperature regulating device may include at least one of air conditioning, electric heater and gas. The working parameters of the air conditioning, the parameters of the electric heater and the working parameters of the gas may include working power and working switch fields. The working power is the working power of the corresponding intelligent temperature regulating device when it is working. The working switch field is used to judge whether the corresponding intelligent temperature regulating device is working effectively, that is, whether the room temperature prediction device can obtain the working parameters of the corresponding intelligent temperature regulating device. If it is effective, that is, the room temperature prediction device can obtain the corresponding working parameters, and then the working switch field can be set to 1. Otherwise, if it is invalid, that is, the room temperature prediction device cannot obtain the corresponding working parameters, the working switch field can be set to 0.

同样地,通风量参数也可以包括通风量以及通风开关字段,该通风量即为窗户在单位时间内的进风或出风的流量。通风开关字段是指用于判断室温预测装置能否获取到通风量,如果能获取到,则通风开关字段可以设置为1。否则,如果室温预测装置不能获取到通风量,则通风开关字段可以设置为0。Similarly, the ventilation volume parameter may also include ventilation volume and ventilation switch fields, where the ventilation volume is the flow rate of air entering or leaving the window per unit time. The ventilation switch field is used to determine whether the room temperature prediction device can obtain the ventilation volume. If it can be obtained, the ventilation switch field can be set to 1. Otherwise, if the room temperature prediction device cannot obtain the ventilation volume, the ventilation switch field can be set to 0.

进而,空调的工作参数、电暖气的工作参数、燃气的工作参数以及通风量参数均可以通过如下方法确定:即根据智能家居设备的网络地址,采集空调的工作功率、电暖气的工作功率、燃气的工作功率以及通风量,如果采集到工作功率和/或通风量,则采集结果是对应值,如果未采集到,则采集结果为空。Furthermore, the working parameters of the air conditioner, the working parameters of the electric heater, the working parameters of the gas, and the ventilation volume parameters can all be determined by the following method: that is, according to the network address of the smart home device, the working power of the air conditioner, the working power of the electric heater, the working power of the gas, and the ventilation volume are collected. If the working power and/or ventilation volume are collected, the collection result is the corresponding value; if not collected, the collection result is empty.

此后,根据采集结果,确定空调的工作开关字段、电暖气的工作开关字段、燃气的工作开关字段以及通风开关字段。即采集结果为对应值时,对应的开关字段取值为1,采集结果为空时,对应的开关字段取值为0。After that, according to the collection result, the working switch field of the air conditioner, the working switch field of the electric heater, the working switch field of the gas, and the ventilation switch field are determined. That is, when the collection result is a corresponding value, the corresponding switch field takes a value of 1, and when the collection result is empty, the corresponding switch field takes a value of 0.

本发明实施例中,在空调的工作参数、电暖气的工作参数、燃气的工作参数以及通风量参数中均增加了相应的开关字段,可以在无法获取到对应参数取值时尽量忽略对应参数对室内温度参数的影响。In an embodiment of the present invention, corresponding switch fields are added to the working parameters of the air conditioner, the working parameters of the electric heater, the working parameters of the gas, and the ventilation volume parameters, so that the influence of the corresponding parameters on the indoor temperature parameters can be ignored as much as possible when the corresponding parameter values cannot be obtained.

在上述实施例的基础上,本发明实施例中提供的数字孪生室温预测方法,所述日照直射面积参数、所述房间对外接触面积参数以及所述房间对内接触面积参数均包括第一面积极值和第二面积极值,所述室温预测模型包括第一室温预测模型以及第二室温预测模型,所述室内温度参数包括第一室内温度以及第二室内温度;On the basis of the above embodiment, in the digital twin room temperature prediction method provided in the embodiment of the present invention, the direct sunlight area parameter, the room external contact area parameter and the room internal contact area parameter all include a first surface positive value and a second surface positive value, the room temperature prediction model includes a first room temperature prediction model and a second room temperature prediction model, and the indoor temperature parameter includes a first indoor temperature and a second indoor temperature;

相应地,所述基于室温预测模型,确定所述目标房间的热参数、尺寸参数以及室外温度参数对应的所述目标房间的室内温度参数,包括:Accordingly, the step of determining the indoor temperature parameters of the target room corresponding to the thermal parameters, size parameters, and outdoor temperature parameters of the target room based on the room temperature prediction model includes:

基于所述第一室温预测模型,确定所述目标房间的日照直射面积参数的第一面积极值、房间对外接触面积参数的第一面积极值、房间对内接触面积参数的第一面积极值、尺寸参数以及室外温度参数对应的所述目标房间的第一室内温度;Based on the first room temperature prediction model, determine a first indoor temperature of the target room corresponding to a first positive value of a sunlight direct area parameter of the target room, a first positive value of a room external contact area parameter, a first positive value of a room internal contact area parameter, a size parameter, and an outdoor temperature parameter;

基于所述第二室温预测模型,确定所述目标房间的日照直射面积参数的第二面积极值、房间对外接触面积参数的第二面积极值、房间对内接触面积参数的第二面积极值、尺寸参数以及室外温度参数对应的所述目标房间的第二室内温度。Based on the second room temperature prediction model, determine the second surface positive value of the direct sunlight area parameter of the target room, the second surface positive value of the room's external contact area parameter, the second surface positive value of the room's internal contact area parameter, the size parameters and the second indoor temperature of the target room corresponding to the outdoor temperature parameters.

具体地,本发明实施例中,日照直射面积参数、房间对外接触面积参数以及房间对内接触面积参数均包括第一面积极值和第二面积极值,第一面积极值可以是面积极大值,第二面积极值可以面积极小值。也就是说,这三个参数均可以得到一个取值范围,则可以分别用样本房间的对应参数的第一面积极值,结合其他取值固定的参数以及样本房间的室温标签,确定第一室温预测模型;并利用样本房间的对应参数的第二面积极值,结合其他取值固定的参数以及样本房间的室温标签,确定第二室温预测模型。Specifically, in the embodiment of the present invention, the direct sunlight area parameter, the room external contact area parameter, and the room internal contact area parameter all include a first positive value and a second positive value, the first positive value can be a maximum area value, and the second positive value can be a minimum area value. In other words, these three parameters can all obtain a value range, and the first positive value of the corresponding parameter of the sample room can be used to determine the first room temperature prediction model in combination with other fixed parameters and the room temperature label of the sample room; and the second positive value of the corresponding parameter of the sample room can be used to determine the second room temperature prediction model in combination with other fixed parameters and the room temperature label of the sample room.

由此,第一室温预测模型可以用于确定任一房间的第一室内温度,第二室温预测模型用于确定任一房间的第二室内温度。也就是说,任一房间的室内温度参数均包括第一室内温度以及第二室内温度,第一室内温度可以是室内温度参数的极大值,第二室内温度可以是室内温度参数的极小值。Thus, the first room temperature prediction model can be used to determine the first indoor temperature of any room, and the second room temperature prediction model can be used to determine the second indoor temperature of any room. In other words, the indoor temperature parameters of any room include the first indoor temperature and the second indoor temperature, the first indoor temperature can be the maximum value of the indoor temperature parameter, and the second indoor temperature can be the minimum value of the indoor temperature parameter.

进一步地,由于得到的目标房间的室内温度参数的极大值和极小值,可以得到目标房间的室内温度参数的取值范围,可以给出目标房间的室内温度变化,有助于依据该室内温度参数对目标房间内的智能家居设备进行自动控制。Furthermore, since the maximum and minimum values of the indoor temperature parameters of the target room are obtained, the value range of the indoor temperature parameters of the target room can be obtained, and the indoor temperature change of the target room can be given, which is helpful to automatically control the smart home devices in the target room according to the indoor temperature parameters.

本发明实施例中,由于日照直射面积参数、房间对外接触面积参数以及房间对内接触面积参数等参数均存在取值范围,因此可以得到第一室温预测模型以及第二室温预测模型这两个,进而可以得出两个室内温度参数的极值,并给出室内温度参数的取值范围,有助于依据该室内温度参数对目标房间内的智能家居设备进行自动控制,为自动控制的决策提供控制依据。In the embodiment of the present invention, since parameters such as the direct sunlight area parameter, the room external contact area parameter and the room internal contact area parameter all have a range of values, a first room temperature prediction model and a second room temperature prediction model can be obtained, and then the extreme values of the two indoor temperature parameters can be obtained, and the range of values of the indoor temperature parameters can be given, which is helpful to automatically control the smart home devices in the target room according to the indoor temperature parameters, and provide a control basis for the decision-making of automatic control.

在上述实施例的基础上,本发明实施例中提供的数字孪生室温预测方法,所述室温预测模型的初始模型包括逻辑回归模型、决策树模型、感知机模型或者神经网络模型。Based on the above embodiments, the digital twin room temperature prediction method provided in the embodiments of the present invention, the initial model of the room temperature prediction model includes a logistic regression model, a decision tree model, a perceptron model or a neural network model.

具体地,本发明实施例中,室温预测模型的初始模型除了可以包括逻辑回归模型以及神经网络模型之外,还可以包括决策树模型以及感知机模型等,这些模型均可以用于准确表征任一房间的热参数、尺寸参数以及室外温度参数与室内温度参数之间复杂的定量关系。Specifically, in an embodiment of the present invention, the initial model of the room temperature prediction model may include not only a logistic regression model and a neural network model, but also a decision tree model and a perceptron model, etc. These models can be used to accurately characterize the thermal parameters, dimensional parameters and the complex quantitative relationship between the outdoor temperature parameters and the indoor temperature parameters of any room.

决策树模型可以是梯度提升决策树(Gradient Boosting Decision Tree,GBDT)模型。The decision tree model may be a Gradient Boosting Decision Tree (GBDT) model.

如图2所示,在上述实施例的基础上,本发明实施例中提供了一种智能家居设备控制方法,包括:As shown in FIG. 2 , based on the above embodiment, a smart home device control method is provided in an embodiment of the present invention, including:

S21,接收用户需求指令,并对所述用户需求指令进行语义解析,确定用户语义解析结果;S21, receiving a user demand instruction, and performing semantic analysis on the user demand instruction to determine a user semantic analysis result;

S22,基于所述用户语义解析结果,以及上述的数字孪生室温预测方法得到的所述目标房间的室内温度参数,生成控制指令;S22, generating a control instruction based on the user semantic analysis result and the indoor temperature parameter of the target room obtained by the digital twin room temperature prediction method;

S23,基于所述控制指令,对所述目标房间内的智能家居设备进行控制。S23: Control the smart home devices in the target room based on the control instruction.

具体地,本发明实施例中提供的智能家居设备控制方法,其执行主体为智能家居设备控制装置,该装置可以配置于云服务器内。Specifically, the smart home device control method provided in the embodiment of the present invention is executed by a smart home device control device, which can be configured in a cloud server.

首先执行步骤S21,接收用户需求指令,该用户需求指令可以是语音指令,该语音指令可以是“有点热”、“有点冷”等。接收用户需求指令后对用户需求指令进行语义解析,可以先将用户需求指令转换为文本,然后进行文本解析,确定用户语义解析结果。First, step S21 is executed to receive a user demand instruction, which may be a voice instruction, such as "a little hot", "a little cold", etc. After receiving the user demand instruction, semantic analysis is performed on the user demand instruction, and the user demand instruction may be first converted into text, and then the text is analyzed to determine the user semantic analysis result.

然后执行步骤S22,根据用户语义解析结果,以及上述各实施例中提供的数字孪生室温预测方法得到的所述目标房间的室内温度参数,生成控制指令。该控制指令可以是用于控制面板房间内的智能家居设备的指令,智能家居设备可以是目标房间内的空调、电暖气以及燃气等温度调节设备,也可以是用于改变目标房间的通风量参数进而调节室内温度的智能窗户。Then, step S22 is executed to generate a control instruction based on the user semantic analysis result and the indoor temperature parameter of the target room obtained by the digital twin room temperature prediction method provided in the above embodiments. The control instruction can be an instruction for controlling the smart home device in the panel room. The smart home device can be a temperature control device such as an air conditioner, electric heater, and gas in the target room, or a smart window for changing the ventilation volume parameter of the target room to adjust the indoor temperature.

该控制指令的生成,可以根据用户语义解析结果以及目标房间的室内温度参数,并可以结合室外温度参数实现,例如若用户语义解析结果为“有点热”,且室内温度参数大于室外温度参数,则控制指令可以是针对于智能窗户的打开指令;若室内温度参数小于等于室外温度参数,则控制指令可以是针对于空调的制冷模式打开指令。若用户语义解析结果为“有点冷”,且室内温度参数大于室外温度参数,则控制指令可以是针对于电暖气以及燃气的打开指令,或针对于空调的制热模式打开指令;若室内温度参数小于等于室外温度参数,则控制指令可以是针对于智能窗户的打开指令。The generation of the control instruction can be based on the user semantic analysis result and the indoor temperature parameter of the target room, and can be implemented in combination with the outdoor temperature parameter. For example, if the user semantic analysis result is "a bit hot" and the indoor temperature parameter is greater than the outdoor temperature parameter, the control instruction can be an opening instruction for the smart window; if the indoor temperature parameter is less than or equal to the outdoor temperature parameter, the control instruction can be an opening instruction for the air conditioner in cooling mode. If the user semantic analysis result is "a bit cold" and the indoor temperature parameter is greater than the outdoor temperature parameter, the control instruction can be an opening instruction for electric heaters and gas, or an opening instruction for the air conditioner in heating mode; if the indoor temperature parameter is less than or equal to the outdoor temperature parameter, the control instruction can be an opening instruction for the smart window.

然后执行步骤S23,根据控制指令,对目标房间内的智能家居设备进行控制。即将控制指令发送至对应的智能家居设备,以使对应的智能家居设备执行接收到的控制指令。Then, step S23 is performed to control the smart home device in the target room according to the control instruction, that is, the control instruction is sent to the corresponding smart home device so that the corresponding smart home device executes the received control instruction.

本发明实施例中提供的智能家居设备控制方法,采用上述各实施例中提供的数字孪生室温预测方法得到的目标房间的室内温度参数,结合用户语义解析结果,在不需要借助温度传感器的情况下即可实现对目标房间内的智能家居设备的控制,可以减小智能家居设备的控制成本,并提高控制效率以及准确性。The smart home device control method provided in the embodiments of the present invention adopts the indoor temperature parameters of the target room obtained by the digital twin room temperature prediction method provided in the above embodiments, combined with the user semantic analysis results, to achieve control of the smart home devices in the target room without the aid of temperature sensors, thereby reducing the control cost of the smart home devices and improving the control efficiency and accuracy.

如图3所示,在上述实施例的基础上,本发明实施例中提供了一种数字孪生室温预测装置,包括:As shown in FIG3 , based on the above embodiment, a digital twin room temperature prediction device is provided in an embodiment of the present invention, including:

获取模块31,用于获取目标房间的热参数、尺寸参数以及室外温度参数;所述目标房间内安装有具有联网功能的智能家居设备;An acquisition module 31 is used to acquire thermal parameters, size parameters and outdoor temperature parameters of a target room; the target room is equipped with a smart home device with networking function;

预测模块32,用于基于室温预测模型,确定所述目标房间的热参数、尺寸参数以及室外温度参数对应的所述目标房间的室内温度参数;A prediction module 32, for determining, based on a room temperature prediction model, indoor temperature parameters of the target room corresponding to thermal parameters, size parameters and outdoor temperature parameters of the target room;

其中,所述室温预测模型基于携带有室内温度标签的样本房间的热参数、尺寸参数以及室外温度参数确定,所述室温预测模型用于表征任一房间的热参数、尺寸参数以及室外温度参数与室内温度参数之间的定量关系。The room temperature prediction model is determined based on the thermal parameters, size parameters and outdoor temperature parameters of a sample room carrying an indoor temperature tag, and is used to characterize the quantitative relationship between the thermal parameters, size parameters and outdoor temperature parameters of any room and the indoor temperature parameters.

在上述实施例的基础上,本发明实施例中提供的数字孪生室温预测装置,所述热参数包括日照参数、结构热交换参数、温度调节参数以及气流热量交换参数中的至少一项;On the basis of the above embodiment, in the digital twin room temperature prediction device provided in the embodiment of the present invention, the thermal parameter includes at least one of a sunshine parameter, a structural heat exchange parameter, a temperature adjustment parameter and an airflow heat exchange parameter;

所述日照参数包括日照直射面积参数、日照角度参数以及日照强度参数中的至少一项;The sunshine parameter includes at least one of a sunshine direct area parameter, a sunshine angle parameter and a sunshine intensity parameter;

所述结构热交换参数包括房间对外接触面积参数、房间对内接触面积参数以及墙体导热系数参数中的至少一项;The structural heat exchange parameter includes at least one of a room external contact area parameter, a room internal contact area parameter, and a wall thermal conductivity parameter;

所述温度调节参数包括所述目标房间内的温度调节设备的工作参数;The temperature adjustment parameters include operating parameters of the temperature adjustment device in the target room;

所述气流热量交换参数包括通风量参数以及室外风速参数中的至少一项。The airflow heat exchange parameter includes at least one of a ventilation volume parameter and an outdoor wind speed parameter.

在上述实施例的基础上,本发明实施例中提供的数字孪生室温预测装置,所述获取模块具体用于:On the basis of the above embodiment, in the digital twin room temperature prediction device provided in the embodiment of the present invention, the acquisition module is specifically used for:

基于用户交互设备,接收用户输入的所述热参数、所述尺寸参数以及所述室外温度参数;Based on the user interaction device, receiving the thermal parameter, the size parameter and the outdoor temperature parameter input by the user;

或者,基于所述智能家居设备的网络地址,确定所述热参数、所述尺寸参数以及所述室外温度参数。Alternatively, the thermal parameter, the size parameter and the outdoor temperature parameter are determined based on the network address of the smart home device.

在上述实施例的基础上,本发明实施例中提供的数字孪生室温预测装置,所述温度调节设备包括暖气,所述暖气的工作参数包括工作功率;On the basis of the above embodiment, in the digital twin room temperature prediction device provided in the embodiment of the present invention, the temperature adjustment device includes a heater, and the working parameters of the heater include working power;

所述获取模块还具体用于:The acquisition module is also specifically used for:

基于所述网络地址,确定房间所在区域的墙体导热系数平均值、暖气工作功率平均值以及尺寸平均值;Based on the network address, determine the average wall thermal conductivity, the average heating working power and the average size of the area where the room is located;

将所述墙体导热系数平均值作为所述墙体导热系数参数,将所述暖气工作功率平均值作为所述暖气的工作功率,将所述尺寸平均值作为所述尺寸参数。The average value of the wall thermal conductivity is used as the wall thermal conductivity parameter, the average value of the heater working power is used as the heater working power, and the average value of the size is used as the size parameter.

在上述实施例的基础上,本发明实施例中提供的数字孪生室温预测装置,所述温度调节设备还包括智能温度调节设备,所述智能温度调节设备包括空调、电暖气以及燃气中的至少一项;所述空调的工作参数、所述电暖气的工作参数以及所述燃气的工作参数均包括工作功率以及工作开关字段,所述通风量参数包括通风量以及通风开关字段;On the basis of the above embodiment, in the digital twin room temperature prediction device provided in the embodiment of the present invention, the temperature adjustment device further includes an intelligent temperature adjustment device, and the intelligent temperature adjustment device includes at least one of an air conditioner, an electric heater, and a gas; the working parameters of the air conditioner, the working parameters of the electric heater, and the working parameters of the gas all include working power and working switch fields, and the ventilation volume parameters include ventilation volume and ventilation switch fields;

所述获取模块还具体用于:The acquisition module is also specifically used for:

基于所述网络地址,采集所述空调的工作功率、所述电暖气的工作功率、所述燃气的工作功率以及所述通风量,并基于采集结果,确定所述空调的工作开关字段、所述电暖气的工作开关字段、所述燃气的工作开关字段以及所述通风开关字段。Based on the network address, the working power of the air conditioner, the working power of the electric heater, the working power of the gas and the ventilation volume are collected, and based on the collection results, the working switch field of the air conditioner, the working switch field of the electric heater, the working switch field of the gas and the ventilation switch field are determined.

在上述实施例的基础上,本发明实施例中提供的数字孪生室温预测装置,所述日照直射面积参数、所述房间对外接触面积参数以及所述房间对内接触面积参数均包括第一面积极值和第二面积极值,所述室温预测模型包括第一室温预测模型以及第二室温预测模型,所述室内温度参数包括第一室内温度以及第二室内温度;On the basis of the above embodiment, in the digital twin room temperature prediction device provided in the embodiment of the present invention, the direct sunlight area parameter, the room external contact area parameter and the room internal contact area parameter all include a first surface positive value and a second surface positive value, the room temperature prediction model includes a first room temperature prediction model and a second room temperature prediction model, and the indoor temperature parameter includes a first indoor temperature and a second indoor temperature;

相应地,所述预测模块具体用于:Accordingly, the prediction module is specifically used for:

基于所述第一室温预测模型,确定所述目标房间的日照直射面积参数的第一面积极值、房间对外接触面积参数的第一面积极值、房间对内接触面积参数的第一面积极值、尺寸参数以及室外温度参数对应的所述目标房间的第一室内温度;Based on the first room temperature prediction model, determine a first indoor temperature of the target room corresponding to a first positive value of a sunlight direct area parameter of the target room, a first positive value of a room external contact area parameter, a first positive value of a room internal contact area parameter, a size parameter, and an outdoor temperature parameter;

基于所述第二室温预测模型,确定所述目标房间的日照直射面积参数的第二面积极值、房间对外接触面积参数的第二面积极值、房间对内接触面积参数的第二面积极值、尺寸参数以及室外温度参数对应的所述目标房间的第二室内温度。Based on the second room temperature prediction model, determine the second positive value of the direct sunlight area parameter of the target room, the second positive value of the external contact area parameter of the room, the second positive value of the internal contact area parameter of the room, the size parameters and the second indoor temperature of the target room corresponding to the outdoor temperature parameters.

在上述实施例的基础上,本发明实施例中提供的数字孪生室温预测装置,所述室温预测模型的初始模型包括逻辑回归模型、决策树模型、感知机模型或者神经网络模型。Based on the above embodiments, in the digital twin room temperature prediction device provided in the embodiments of the present invention, the initial model of the room temperature prediction model includes a logistic regression model, a decision tree model, a perceptron model or a neural network model.

具体地,本发明实施例中提供的数字孪生室温预测装置中各模块的作用与上述方法类实施例中各步骤的操作流程是一一对应的,实现的效果也是一致的,具体参见上述实施例,本发明实施例中对此不再赘述。Specifically, the functions of each module in the digital twin room temperature prediction device provided in the embodiment of the present invention correspond one-to-one to the operating procedures of each step in the above-mentioned method embodiment, and the effects achieved are also consistent. Please refer to the above-mentioned embodiment for details, and no further details will be given in the embodiment of the present invention.

如图4所示,在上述实施例的基础上,本发明实施例中提供了一种智能家居设备控制装置,包括:As shown in FIG. 4 , based on the above embodiment, an embodiment of the present invention provides a smart home device control device, including:

接收模块41,用于接收用户需求指令,并对所述用户需求指令进行语义解析,确定用户语义解析结果;The receiving module 41 is used to receive a user demand instruction, and perform semantic analysis on the user demand instruction to determine a user semantic analysis result;

生成模块42,用于基于所述用户语义解析结果,以及上述的数字孪生室温预测方法得到的所述目标房间的室内温度参数,生成控制指令;A generation module 42 is used to generate a control instruction based on the user semantic analysis result and the indoor temperature parameter of the target room obtained by the digital twin room temperature prediction method;

控制模块43,用于基于所述控制指令,对所述目标房间内的智能家居设备进行控制。The control module 43 is used to control the smart home devices in the target room based on the control instruction.

图5示例了一种电子设备的实体结构示意图,如图5所示,该电子设备可以包括:处理器(Processor)510、通信接口(Communications Interface)520、存储器(Memory)530和通信总线540,其中,处理器510,通信接口520,存储器530通过通信总线540完成相互间的通信。处理器510可以调用存储器530中的逻辑指令,以执行上述各实施例中提供的数字孪生室温预测方法,该方法包括:获取目标房间的热参数、尺寸参数以及室外温度参数;所述目标房间内安装有具有联网功能的智能家居设备;基于室温预测模型,确定所述目标房间的热参数、尺寸参数以及室外温度参数对应的所述目标房间的室内温度参数;其中,所述室温预测模型基于携带有室内温度标签的样本房间的热参数、尺寸参数以及室外温度参数确定,所述室温预测模型用于表征任一房间的热参数、尺寸参数以及室外温度参数与室内温度参数之间的定量关系;或者,执行上述各实施例中提供的智能家居设备控制方法,该方法包括:接收用户需求指令,并对所述用户需求指令进行语义解析,确定用户语义解析结果;基于所述用户语义解析结果,以及上述的数字孪生室温预测方法得到的所述目标房间的室内温度参数,生成控制指令;基于所述控制指令,对所述目标房间内的智能家居设备进行控制。Figure 5 illustrates a schematic diagram of the physical structure of an electronic device. As shown in Figure 5, the electronic device may include: a processor (Processor) 510, a communication interface (Communications Interface) 520, a memory (Memory) 530 and a communication bus 540, wherein the processor 510, the communication interface 520, and the memory 530 communicate with each other through the communication bus 540. The processor 510 can call the logic instructions in the memory 530 to execute the digital twin room temperature prediction method provided in the above embodiments, the method comprising: obtaining thermal parameters, size parameters and outdoor temperature parameters of the target room; the target room is installed with smart home devices with networking function; based on the room temperature prediction model, determining the indoor temperature parameters of the target room corresponding to the thermal parameters, size parameters and outdoor temperature parameters of the target room; wherein the room temperature prediction model is determined based on the thermal parameters, size parameters and outdoor temperature parameters of a sample room carrying an indoor temperature tag, and the room temperature prediction model is used to characterize the quantitative relationship between the thermal parameters, size parameters and outdoor temperature parameters of any room and the indoor temperature parameters; or, executing the smart home device control method provided in the above embodiments, the method comprising: receiving a user demand instruction, and performing semantic analysis on the user demand instruction to determine the user semantic analysis result; generating a control instruction based on the user semantic analysis result and the indoor temperature parameters of the target room obtained by the above digital twin room temperature prediction method; and controlling the smart home device in the target room based on the control instruction.

此外,上述的存储器530中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, the logic instructions in the above-mentioned memory 530 can be implemented in the form of a software functional unit and can be stored in a computer-readable storage medium when it is sold or used as an independent product. Based on such an understanding, the technical solution of the present invention is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk and other media that can store program codes.

另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各实施例中提供的数字孪生室温预测方法,该方法包括:获取目标房间的热参数、尺寸参数以及室外温度参数;所述目标房间内安装有具有联网功能的智能家居设备;基于室温预测模型,确定所述目标房间的热参数、尺寸参数以及室外温度参数对应的所述目标房间的室内温度参数;其中,所述室温预测模型基于携带有室内温度标签的样本房间的热参数、尺寸参数以及室外温度参数确定,所述室温预测模型用于表征任一房间的热参数、尺寸参数以及室外温度参数与室内温度参数之间的定量关系;或者,执行上述各实施例中提供的智能家居设备控制方法,该方法包括:接收用户需求指令,并对所述用户需求指令进行语义解析,确定用户语义解析结果;基于所述用户语义解析结果,以及上述的数字孪生室温预测方法得到的所述目标房间的室内温度参数,生成控制指令;基于所述控制指令,对所述目标房间内的智能家居设备进行控制。On the other hand, the present invention also provides a computer program product, which includes a computer program, which can be stored on a non-transitory computer-readable storage medium. When the computer program is executed by a processor, the computer can execute the digital twin room temperature prediction method provided in the above embodiments, the method comprising: obtaining thermal parameters, size parameters and outdoor temperature parameters of the target room; the target room is installed with a smart home device with networking function; based on the room temperature prediction model, determining the indoor temperature parameters of the target room corresponding to the thermal parameters, size parameters and outdoor temperature parameters of the target room; wherein the room temperature prediction model is determined based on the thermal parameters, size parameters and outdoor temperature parameters of a sample room carrying an indoor temperature tag, and the room temperature prediction model is used to characterize the quantitative relationship between the thermal parameters, size parameters and outdoor temperature parameters of any room and the indoor temperature parameters; or, executing the smart home device control method provided in the above embodiments, the method comprising: receiving a user demand instruction, and performing semantic analysis on the user demand instruction to determine the user semantic analysis result; based on the user semantic analysis result and the indoor temperature parameters of the target room obtained by the above digital twin room temperature prediction method, generating a control instruction; based on the control instruction, controlling the smart home device in the target room.

又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例中提供的数字孪生室温预测方法,该方法包括:获取目标房间的热参数、尺寸参数以及室外温度参数;所述目标房间内安装有具有联网功能的智能家居设备;基于室温预测模型,确定所述目标房间的热参数、尺寸参数以及室外温度参数对应的所述目标房间的室内温度参数;其中,所述室温预测模型基于携带有室内温度标签的样本房间的热参数、尺寸参数以及室外温度参数确定,所述室温预测模型用于表征任一房间的热参数、尺寸参数以及室外温度参数与室内温度参数之间的定量关系;或者,执行上述各实施例中提供的智能家居设备控制方法,该方法包括:接收用户需求指令,并对所述用户需求指令进行语义解析,确定用户语义解析结果;基于所述用户语义解析结果,以及上述的数字孪生室温预测方法得到的所述目标房间的室内温度参数,生成控制指令;基于所述控制指令,对所述目标房间内的智能家居设备进行控制。On the other hand, the present invention also provides a non-transitory computer-readable storage medium having a computer program stored thereon, which is implemented when the processor executes the digital twin room temperature prediction method provided in the above embodiments, the method comprising: obtaining thermal parameters, size parameters and outdoor temperature parameters of the target room; the target room is installed with a smart home device with networking function; based on the room temperature prediction model, determining the indoor temperature parameters of the target room corresponding to the thermal parameters, size parameters and outdoor temperature parameters of the target room; wherein the room temperature prediction model is determined based on the thermal parameters, size parameters and outdoor temperature parameters of a sample room carrying an indoor temperature tag, and the room temperature prediction model is used to characterize the quantitative relationship between the thermal parameters, size parameters and outdoor temperature parameters of any room and the indoor temperature parameters; or, executing the smart home device control method provided in the above embodiments, the method comprising: receiving a user demand instruction, and performing semantic analysis on the user demand instruction to determine the user semantic analysis result; generating a control instruction based on the user semantic analysis result and the indoor temperature parameters of the target room obtained by the above digital twin room temperature prediction method; and controlling the smart home device in the target room based on the control instruction.

以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the scheme of this embodiment. Ordinary technicians in this field can understand and implement it without paying creative labor.

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。Through the description of the above implementation methods, those skilled in the art can clearly understand that each implementation method can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware. Based on this understanding, the above technical solution is essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, a disk, an optical disk, etc., including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in each embodiment or some parts of the embodiments.

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit it. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the aforementioned embodiments, or make equivalent replacements for some of the technical features therein. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention.

Claims (11)

1.一种数字孪生室温预测方法,其特征在于,包括:1. A digital twin room temperature prediction method, comprising: 获取目标房间的热参数、尺寸参数以及室外温度参数;所述目标房间内安装有具有联网功能的智能家居设备;Acquiring thermal parameters, size parameters, and outdoor temperature parameters of a target room; wherein a smart home device with networking function is installed in the target room; 基于室温预测模型,确定所述目标房间的热参数、尺寸参数以及室外温度参数对应的所述目标房间的室内温度参数;Determine, based on the room temperature prediction model, the indoor temperature parameters of the target room corresponding to the thermal parameters, size parameters and outdoor temperature parameters of the target room; 其中,所述室温预测模型基于携带有室内温度标签的样本房间的热参数、尺寸参数以及室外温度参数确定,所述室温预测模型用于表征任一房间的热参数、尺寸参数以及室外温度参数与室内温度参数之间的定量关系;The room temperature prediction model is determined based on the thermal parameters, size parameters and outdoor temperature parameters of the sample room carrying the indoor temperature tag, and the room temperature prediction model is used to characterize the quantitative relationship between the thermal parameters, size parameters and outdoor temperature parameters of any room and the indoor temperature parameters; 所述热参数包括日照参数以及结构热交换参数,所述日照参数包括日照直射面积参数,所述结构热交换参数包括房间对外接触面积参数以及房间对内接触面积参数;The thermal parameters include sunshine parameters and structural heat exchange parameters, wherein the sunshine parameters include sunshine direct area parameters, and the structural heat exchange parameters include room external contact area parameters and room internal contact area parameters; 所述日照直射面积参数、所述房间对外接触面积参数以及所述房间对内接触面积参数均包括第一面积极值和第二面积极值,所述室温预测模型包括第一室温预测模型以及第二室温预测模型,所述室内温度参数包括第一室内温度以及第二室内温度;The direct sunlight area parameter, the room external contact area parameter and the room internal contact area parameter all include a first surface positive value and a second surface positive value, the room temperature prediction model includes a first room temperature prediction model and a second room temperature prediction model, and the indoor temperature parameter includes a first indoor temperature and a second indoor temperature; 相应地,所述基于室温预测模型,确定所述目标房间的热参数、尺寸参数以及室外温度参数对应的所述目标房间的室内温度参数,包括:Accordingly, the step of determining the indoor temperature parameters of the target room corresponding to the thermal parameters, size parameters, and outdoor temperature parameters of the target room based on the room temperature prediction model includes: 基于所述第一室温预测模型,确定所述目标房间的日照直射面积参数的第一面积极值、房间对外接触面积参数的第一面积极值、房间对内接触面积参数的第一面积极值、尺寸参数以及室外温度参数对应的所述目标房间的第一室内温度;Based on the first room temperature prediction model, determine a first surface positive value of a sunlight direct area parameter of the target room, a first surface positive value of a room external contact area parameter, a first surface positive value of a room internal contact area parameter, a size parameter, and a first indoor temperature of the target room corresponding to an outdoor temperature parameter; 基于所述第二室温预测模型,确定所述目标房间的日照直射面积参数的第二面积极值、房间对外接触面积参数的第二面积极值、房间对内接触面积参数的第二面积极值、尺寸参数以及室外温度参数对应的所述目标房间的第二室内温度。Based on the second room temperature prediction model, determine the second positive value of the direct sunlight area parameter of the target room, the second positive value of the external contact area parameter of the room, the second positive value of the internal contact area parameter of the room, the size parameters and the second indoor temperature of the target room corresponding to the outdoor temperature parameters. 2.根据权利要求1所述的数字孪生室温预测方法,其特征在于,所述热参数还包括温度调节参数以及气流热量交换参数中的至少一项;2. The digital twin room temperature prediction method according to claim 1, characterized in that the thermal parameters also include at least one of a temperature adjustment parameter and an airflow heat exchange parameter; 所述日照参数还包括日照角度参数以及日照强度参数中的至少一项;The sunshine parameter also includes at least one of a sunshine angle parameter and a sunshine intensity parameter; 所述结构热交换参数还包括墙体导热系数参数;The structural heat exchange parameters also include wall thermal conductivity parameters; 所述温度调节参数包括所述目标房间内的温度调节设备的工作参数;The temperature adjustment parameters include operating parameters of the temperature adjustment device in the target room; 所述气流热量交换参数包括通风量参数以及室外风速参数中的至少一项。The airflow heat exchange parameter includes at least one of a ventilation volume parameter and an outdoor wind speed parameter. 3.根据权利要求2所述的数字孪生室温预测方法,其特征在于,所述热参数、所述尺寸参数以及所述室外温度参数基于如下方法获取:3. The digital twin room temperature prediction method according to claim 2, characterized in that the thermal parameters, the size parameters and the outdoor temperature parameters are obtained based on the following method: 基于用户交互设备,接收用户输入的所述热参数、所述尺寸参数以及所述室外温度参数;Based on the user interaction device, receiving the thermal parameter, the size parameter and the outdoor temperature parameter input by the user; 或者,基于所述智能家居设备的网络地址,确定所述热参数、所述尺寸参数以及所述室外温度参数。Alternatively, the thermal parameter, the size parameter and the outdoor temperature parameter are determined based on the network address of the smart home device. 4.根据权利要求3所述的数字孪生室温预测方法,其特征在于,所述温度调节设备包括暖气,所述暖气的工作参数包括工作功率;4. The digital twin room temperature prediction method according to claim 3, characterized in that the temperature adjustment device includes a heater, and the working parameters of the heater include working power; 所述墙体导热系数参数、所述暖气的工作功率以及所述尺寸参数基于如下方法确定:The wall thermal conductivity parameter, the heater operating power and the size parameter are determined based on the following method: 基于所述网络地址,确定房间所在区域的墙体导热系数平均值、暖气工作功率平均值以及尺寸平均值;Based on the network address, determine the average wall thermal conductivity, the average heating working power and the average size of the area where the room is located; 将所述墙体导热系数平均值作为所述墙体导热系数参数,将所述暖气工作功率平均值作为所述暖气的工作功率,将所述尺寸平均值作为所述尺寸参数。The average value of the wall thermal conductivity is used as the wall thermal conductivity parameter, the average value of the heater working power is used as the heater working power, and the average value of the size is used as the size parameter. 5.根据权利要求3所述的数字孪生室温预测方法,其特征在于,所述温度调节设备还包括智能温度调节设备,所述智能温度调节设备包括空调、电暖气以及燃气中的至少一项;所述空调的工作参数、所述电暖气的工作参数以及所述燃气的工作参数均包括工作功率以及工作开关字段,所述通风量参数包括通风量以及通风开关字段;5. The digital twin room temperature prediction method according to claim 3 is characterized in that the temperature regulating device further comprises an intelligent temperature regulating device, and the intelligent temperature regulating device comprises at least one of an air conditioner, an electric heater and a gas; the working parameters of the air conditioner, the working parameters of the electric heater and the working parameters of the gas all comprise working power and working switch fields, and the ventilation volume parameters comprise ventilation volume and ventilation switch fields; 所述空调的工作参数、所述电暖气的工作参数、所述燃气的工作参数以及所述通风量参数基于如下方法确定:The operating parameters of the air conditioner, the operating parameters of the electric heater, the operating parameters of the gas, and the ventilation volume parameters are determined based on the following method: 基于所述网络地址,采集所述空调的工作功率、所述电暖气的工作功率、所述燃气的工作功率以及所述通风量,并基于采集结果,确定所述空调的工作开关字段、所述电暖气的工作开关字段、所述燃气的工作开关字段以及所述通风开关字段。Based on the network address, the working power of the air conditioner, the working power of the electric heater, the working power of the gas and the ventilation volume are collected, and based on the collection results, the working switch field of the air conditioner, the working switch field of the electric heater, the working switch field of the gas and the ventilation switch field are determined. 6.根据权利要求1-5中任一项所述的数字孪生室温预测方法,其特征在于,所述室温预测模型的初始模型包括逻辑回归模型、决策树模型、感知机模型或者神经网络模型。6. The digital twin room temperature prediction method according to any one of claims 1-5 is characterized in that the initial model of the room temperature prediction model includes a logistic regression model, a decision tree model, a perceptron model or a neural network model. 7.一种智能家居设备控制方法,其特征在于,包括:7. A smart home device control method, characterized by comprising: 接收用户需求指令,并对所述用户需求指令进行语义解析,确定用户语义解析结果;Receive user demand instructions, perform semantic analysis on the user demand instructions, and determine user semantic analysis results; 基于所述用户语义解析结果,以及如权利要求1-6中任一项所述的数字孪生室温预测方法得到的所述目标房间的室内温度参数,生成控制指令;Generate a control instruction based on the user semantic analysis result and the indoor temperature parameter of the target room obtained by the digital twin room temperature prediction method according to any one of claims 1 to 6; 基于所述控制指令,对所述目标房间内的智能家居设备进行控制。Based on the control instruction, the smart home devices in the target room are controlled. 8.一种数字孪生室温预测装置,其特征在于,包括:8. A digital twin room temperature prediction device, comprising: 获取模块,用于获取目标房间的热参数、尺寸参数以及室外温度参数;所述目标房间内安装有具有联网功能的智能家居设备;An acquisition module, used to acquire thermal parameters, size parameters and outdoor temperature parameters of a target room; the target room is equipped with a smart home device with networking function; 预测模块,用于基于室温预测模型,确定所述目标房间的热参数、尺寸参数以及室外温度参数对应的所述目标房间的室内温度参数;A prediction module, for determining, based on a room temperature prediction model, indoor temperature parameters of the target room corresponding to thermal parameters, size parameters and outdoor temperature parameters of the target room; 其中,所述室温预测模型基于携带有室内温度标签的样本房间的热参数、尺寸参数以及室外温度参数确定,所述室温预测模型用于表征任一房间的热参数、尺寸参数以及室外温度参数与室内温度参数之间的定量关系;The room temperature prediction model is determined based on the thermal parameters, size parameters and outdoor temperature parameters of the sample room carrying the indoor temperature tag, and the room temperature prediction model is used to characterize the quantitative relationship between the thermal parameters, size parameters and outdoor temperature parameters of any room and the indoor temperature parameters; 所述热参数包括日照参数以及结构热交换参数,所述日照参数包括日照直射面积参数,所述结构热交换参数包括房间对外接触面积参数以及房间对内接触面积参数;The thermal parameters include sunshine parameters and structural heat exchange parameters, the sunshine parameters include sunshine direct area parameters, and the structural heat exchange parameters include room external contact area parameters and room internal contact area parameters; 所述日照直射面积参数、所述房间对外接触面积参数以及所述房间对内接触面积参数均包括第一面积极值和第二面积极值,所述室温预测模型包括第一室温预测模型以及第二室温预测模型,所述室内温度参数包括第一室内温度以及第二室内温度;The direct sunlight area parameter, the room external contact area parameter and the room internal contact area parameter all include a first surface positive value and a second surface positive value, the room temperature prediction model includes a first room temperature prediction model and a second room temperature prediction model, and the indoor temperature parameter includes a first indoor temperature and a second indoor temperature; 相应地,所述预测模块,具体用于:Accordingly, the prediction module is specifically used for: 基于所述第一室温预测模型,确定所述目标房间的日照直射面积参数的第一面积极值、房间对外接触面积参数的第一面积极值、房间对内接触面积参数的第一面积极值、尺寸参数以及室外温度参数对应的所述目标房间的第一室内温度;Based on the first room temperature prediction model, determine a first surface positive value of a sunlight direct area parameter of the target room, a first surface positive value of a room external contact area parameter, a first surface positive value of a room internal contact area parameter, a size parameter, and a first indoor temperature of the target room corresponding to an outdoor temperature parameter; 基于所述第二室温预测模型,确定所述目标房间的日照直射面积参数的第二面积极值、房间对外接触面积参数的第二面积极值、房间对内接触面积参数的第二面积极值、尺寸参数以及室外温度参数对应的所述目标房间的第二室内温度。Based on the second room temperature prediction model, determine the second surface positive value of the direct sunlight area parameter of the target room, the second surface positive value of the room's external contact area parameter, the second surface positive value of the room's internal contact area parameter, the size parameters and the second indoor temperature of the target room corresponding to the outdoor temperature parameters. 9.一种智能家居设备控制装置,其特征在于,包括:9. A smart home device control device, comprising: 接收模块,用于接收用户需求指令,并对所述用户需求指令进行语义解析,确定用户语义解析结果;A receiving module is used to receive a user demand instruction, and perform semantic analysis on the user demand instruction to determine a user semantic analysis result; 生成模块,用于基于所述用户语义解析结果,以及如权利要求1-6中任一项所述的数字孪生室温预测方法得到的所述目标房间的室内温度参数,生成控制指令;A generation module, used to generate a control instruction based on the user semantic analysis result and the indoor temperature parameter of the target room obtained by the digital twin room temperature prediction method according to any one of claims 1 to 6; 控制模块,用于基于所述控制指令,对所述目标房间内的智能家居设备进行控制。A control module is used to control the smart home devices in the target room based on the control instruction. 10.一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至6任一项所述的数字孪生室温预测方法或如权利要求7所述的智能家居设备控制方法。10. An electronic device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, the digital twin room temperature prediction method as described in any one of claims 1 to 6 or the smart home device control method as described in claim 7 is implemented. 11.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述的数字孪生室温预测方法或如权利要求7所述的智能家居设备控制方法。11. A non-transitory computer-readable storage medium having a computer program stored thereon, characterized in that when the computer program is executed by a processor, the digital twin room temperature prediction method as described in any one of claims 1 to 6 or the smart home device control method as described in claim 7 is implemented.
CN202210605105.4A 2022-05-30 2022-05-30 Digital twin room temperature prediction method, smart home equipment control method and device Active CN115032906B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210605105.4A CN115032906B (en) 2022-05-30 2022-05-30 Digital twin room temperature prediction method, smart home equipment control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210605105.4A CN115032906B (en) 2022-05-30 2022-05-30 Digital twin room temperature prediction method, smart home equipment control method and device

Publications (2)

Publication Number Publication Date
CN115032906A CN115032906A (en) 2022-09-09
CN115032906B true CN115032906B (en) 2024-10-22

Family

ID=83122557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210605105.4A Active CN115032906B (en) 2022-05-30 2022-05-30 Digital twin room temperature prediction method, smart home equipment control method and device

Country Status (1)

Country Link
CN (1) CN115032906B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115933422A (en) * 2022-12-27 2023-04-07 广州视声智能股份有限公司 Household equipment control method and device based on digital twinning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104919477A (en) * 2013-01-11 2015-09-16 松下知识产权经营株式会社 Device for estimating thermal characteristics of room, and program
CN110056931A (en) * 2019-04-05 2019-07-26 杭州云谷节能技术有限公司 A kind of indoor temperature control method of water system heating
CN110986306A (en) * 2019-11-30 2020-04-10 远景智能国际私人投资有限公司 Method, device and equipment for adjusting room temperature based on machine learning and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009852A (en) * 2003-05-28 2005-01-13 Matsushita Electric Ind Co Ltd Energy consumption prediction apparatus and energy consumption prediction method
JP4891987B2 (en) * 2006-03-09 2012-03-07 株式会社日立国際電気 Temperature adjustment method
CN108679788B (en) * 2018-03-12 2020-03-10 珠海格力电器股份有限公司 Temperature correction method and device of air conditioner, storage medium and air conditioner
CN111426024B (en) * 2020-04-13 2022-12-02 青岛海尔空调电子有限公司 Operation mode control method for air conditioner and air conditioner
CN112050397A (en) * 2020-08-27 2020-12-08 浙江省邮电工程建设有限公司 Method and system for regulating and controlling temperature of machine room
CN113177321B (en) * 2021-05-10 2022-10-04 合肥工业大学 A Modeling Method of Air Conditioning Load Based on Dynamic Process of Heat Exchange

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104919477A (en) * 2013-01-11 2015-09-16 松下知识产权经营株式会社 Device for estimating thermal characteristics of room, and program
CN110056931A (en) * 2019-04-05 2019-07-26 杭州云谷节能技术有限公司 A kind of indoor temperature control method of water system heating
CN110986306A (en) * 2019-11-30 2020-04-10 远景智能国际私人投资有限公司 Method, device and equipment for adjusting room temperature based on machine learning and storage medium

Also Published As

Publication number Publication date
CN115032906A (en) 2022-09-09

Similar Documents

Publication Publication Date Title
US20240111317A1 (en) Optimization of energy use through model-based simulations
CN113110082B (en) Method and device for controlling household appliance and household appliance
CN113325762B (en) Intelligent building personalized energy consumption control method, system, device and equipment
US10584892B2 (en) Air-conditioning control method, air-conditioning control apparatus, and storage medium
US11060745B1 (en) Energy reduction
CN110494697A (en) Data learning server and for generate and using its learning model method
CN107250928A (en) Energy consumption to building is optimized and controlled
CN110726209B (en) Air conditioner control method and device, storage medium and processor
US20220100464A1 (en) Methods and systems for execution of voice commands
Khan et al. An OCF-IoTivity enabled smart-home optimal indoor environment control system for energy and comfort optimization
CN115032906B (en) Digital twin room temperature prediction method, smart home equipment control method and device
CN111542796B (en) Decoupling modeling method and system
Sun et al. Individual room air-conditioning control in high-insulation residential building during winter: A deep reinforcement learning-based control model for reducing energy consumption
CN114322260B (en) Air conditioner automatic driving, model training and predicting method, device and equipment
US20230123181A1 (en) Indoor-temperature estimation apparatus, non-transitory computer-readable medium, and indoor-temperature estimation method
CN116088324A (en) Realization method, device, storage medium and electronic equipment of a kind of smart home
US11971186B2 (en) Information processing method, information processing apparatus, and program
CN115782513A (en) Intelligent control method and system for vehicle-mounted air conditioner of dormitory van
JP7332865B2 (en) Information processing method, information processing device, and program
CN114897042A (en) Method and system for learning temperature regulation habits of automobile air conditioner users
CN114924508B (en) Control method and device for building indoor equipment, storage medium, and computer equipment
CN114543278B (en) Air conditioner room temperature control method and device
Sarker et al. Development of an IoT-driven deep learning framework for smart energy prediction in commercial buildings
CN115808894A (en) Control instruction generation method and device, storage medium and electronic device
CN117787556A (en) Intelligent building adjustable capacity assessment method, system and electronic equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant