CN115031733B - An active synchronous positioning and mapping method for multi-beam bathymetry of underwater robots - Google Patents
An active synchronous positioning and mapping method for multi-beam bathymetry of underwater robots Download PDFInfo
- Publication number
- CN115031733B CN115031733B CN202210488829.5A CN202210488829A CN115031733B CN 115031733 B CN115031733 B CN 115031733B CN 202210488829 A CN202210488829 A CN 202210488829A CN 115031733 B CN115031733 B CN 115031733B
- Authority
- CN
- China
- Prior art keywords
- exploration
- map
- action
- candidate point
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000013507 mapping Methods 0.000 title claims abstract description 21
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 13
- 230000009471 action Effects 0.000 claims abstract description 38
- 230000008901 benefit Effects 0.000 claims abstract description 19
- 125000000205 L-threonino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])[C@](C([H])([H])[H])([H])O[H] 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 3
- 239000013598 vector Substances 0.000 claims description 3
- 238000012876 topography Methods 0.000 abstract description 5
- 238000011156 evaluation Methods 0.000 abstract description 2
- 238000005303 weighing Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
- G01C21/203—Specially adapted for sailing ships
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域Technical Field
本发明属于水下机器人定位与导航技术领域,具体涉及一种水下机器人多波束测深主动同步定位与建图方法。The invention belongs to the technical field of underwater robot positioning and navigation, and in particular relates to an underwater robot multi-beam bathymetric active synchronous positioning and mapping method.
背景技术Background Art
受探测技术以及成本限制,截至目前全球海床中完成测绘的比例仅占20%,探测海底地形有利于人们掌握海洋断层位置、洋流潮汐规律。受海水遮挡,海底的地形变化难以直接观察,因此人们常常使用多波束声纳进行测深作业,而水下机器人(AutonomousUnderwater Vehicle,AUV)作为人们探索海洋的最佳工具之一被广泛地应用于海底地形测量。因为海洋平均水深为3795米,而多波束声纳的测距范围有限。所以与水面船艇相比,水下机器人的工作范围更加广泛且能够获得分辨率更高的海底地形测量数据。AUV在水下执行海底地形测量任务时,由于其携带能源有限,因此有必要采用合适的算法对AUV探索海洋的效率进行优化。Limited by detection technology and cost, only 20% of the global seabed has been mapped so far. Detecting the seabed topography is helpful for people to understand the location of ocean faults and the laws of ocean currents and tides. Due to the obstruction of seawater, the topographic changes on the seabed are difficult to observe directly, so people often use multi-beam sonar for depth measurement, and underwater robots (Autonomous Underwater Vehicle, AUV) are widely used in seabed topography measurement as one of the best tools for people to explore the ocean. Because the average depth of the ocean is 3795 meters, and the range of multi-beam sonar is limited. Therefore, compared with surface vessels, underwater robots have a wider working range and can obtain seabed topography data with higher resolution. When AUV performs seabed topography measurement tasks underwater, due to its limited energy, it is necessary to use appropriate algorithms to optimize the efficiency of AUV exploring the ocean.
公开日为2019年10月11日,公开号CN110320520A,发明名称为“一种测深信息同步定位与建图的鲁棒后端图优化方法”的专利申请。该方法通过主要针对水下机器人传统图优化方法无法处理的无效数据关联问题,实现了利用协方差对数据关联进行有效性判别。然而该方法只是对水下测深同步定位建图算法的后端进行改善,并未涉及主动决策回环与探索动作选择方面。The patent application with the publication date of October 11, 2019, publication number CN110320520A, and invention name "A robust back-end graph optimization method for simultaneous positioning and mapping of bathymetric information". This method mainly targets the invalid data association problem that cannot be handled by traditional graph optimization methods of underwater robots, and realizes the validity judgment of data association using covariance. However, this method only improves the back-end of the underwater bathymetric simultaneous positioning and mapping algorithm, and does not involve active decision loops and exploration action selection.
公开日为2021年5月14日,公开号CN112802195A,发明名称为“一种基于声呐的水下机器人连续占据建图方法”的专利申请。该方法通过将高斯过程连续占据建图技术应用到水下声呐建图,提高了所生成地图的精度使得观测噪声、异常值等因素更具鲁棒性。该方法是一种针对建图质量的优化方法,使水下机器人的建图质量得到了提高,并未涉及主动决策回环与探索动作选择方面。The publication date is May 14, 2021, the publication number is CN112802195A, and the invention name is "A method for continuous occupation mapping of underwater robots based on sonar". This method improves the accuracy of the generated map by applying Gaussian process continuous occupancy mapping technology to underwater sonar mapping, making factors such as observation noise and outliers more robust. This method is an optimization method for mapping quality, which improves the mapping quality of underwater robots and does not involve active decision loops and exploration action selection.
发明内容Summary of the invention
本发明的目的在于提供一种水下机器人多波束测深主动同步定位与建图方法。The object of the present invention is to provide an underwater robot multi-beam bathymetric active synchronous positioning and mapping method.
一种水下机器人多波束测深主动同步定位与建图方法,包括以下步骤:A method for active synchronous positioning and mapping of multi-beam bathymetry of an underwater robot, comprising the following steps:
步骤1:设定任务区域;Step 1: Set the task area;
步骤2:对所设定的任务区域进行全覆盖路径规划;Step 2: Plan a full coverage path for the set mission area;
步骤3:执行多波束测深SLAM,并构建轨迹地图Maptraj;Step 3: Execute multi-beam bathymetric SLAM and construct the trajectory map Map traj ;
步骤4:根据轨迹地图计算候选回环目标和候选探索目标;Step 4: Calculate candidate loop targets and candidate exploration targets based on the trajectory map;
步骤4.1:根据多波束测线的平均宽度w将轨迹地图Maptraj分成子地图集合;Step 4.1: Divide the trajectory map Map traj into a set of sub-maps according to the average width w of the multi-beam survey line;
步骤4.2:通过机器人当前位置(x,y)和位置协方差矩阵∑确定候选点搜索半径r:Step 4.2: Determine the candidate point search radius r by the robot's current position (x, y) and the position covariance matrix ∑:
步骤4.3:计算在搜索半径r内的所有子地图的地形费舍尔信息量{Ti|i=1,2,…,Num}Step 4.3: Calculate the terrain Fisher information {T i |i=1,2,…,Num} of all sub-maps within the search radius r
其中,sub1,sub2,…,subNum为搜索半径r内的所有子地图,Num表示子地图的数量;Mi、Ni表示子地图subi的数据矩阵的大小;hab表示对应位置(a,b)的地形高程;||·||表示欧式范数;Where sub 1 , sub 2 ,…, sub Num are all submaps within the search radius r, Num represents the number of submaps; Mi , Ni represent the size of the data matrix of submap sub i ; h ab represents the terrain elevation of the corresponding position (a, b); ||·|| represents the Euclidean norm;
步骤4.4:取所有满足Ti>Tthres的子地图中心点作为回环目标点集合;Tthres为预设的地形费舍尔信息量阈值;根据当前机器人位置到回环目标的距离,在前进方向上选取相同距离的点作为探索目标点,从而生成探索目标点集合;Step 4.4: Take all sub-map center points that satisfy Ti > T thres as the loop target point set; T thres is the preset terrain Fisher information threshold; according to the distance from the current robot position to the loop target, select points with the same distance in the forward direction as exploration target points, thereby generating an exploration target point set;
步骤4.5:输出回环候选点集合和探索候选点集合;Step 4.5: Output the loop closure candidate point set and the exploration candidate point set;
步骤5:根据效用方程计算到达每个候选点的收益,选择对应收益最优的候选点,根据AUV向收益最优候选点行驶的动作a*,判断执行回环任务或探索任务;Step 5: Calculate the benefits of reaching each candidate point according to the utility equation, select the candidate point with the best benefits, and determine whether to perform a loop task or an exploration task according to the action a * of the AUV driving to the candidate point with the best benefits;
步骤6:执行AUV向收益最优候选点行驶的动作a*,判断设定的任务区域是否探索完成;若完成探索,则结束;否则,返回步骤3。Step 6: Execute the action a * of the AUV driving to the candidate point with the best return, and judge whether the exploration of the set task area is completed; if the exploration is completed, end; otherwise, return to step 3.
进一步地,所述步骤5具体为:Furthermore, the step 5 is specifically as follows:
根据效用方程计算到达每个候选点的收益ηI,选择对应收益最优的候选点,该过程表示为:According to the utility equation, the benefit ηI of reaching each candidate point is calculated, and the candidate point with the best corresponding benefit is selected. The process is expressed as:
其中,a*表示收益最优时AUV向对应的候选点行驶的动作;η表示平衡因子;Va是受动作a影响的地图体积,可通过光线投射法计算;由于每个重访动作都有相应的探索动作,Vexplore为受到探索行动影响的地图体积;I为执行动作a时的互信息,u表示历史控制向量的集合,z表示所有历史观测的集合,m(a)则表示由于执行动作a而探测得到的地图信息,采用占用栅格地图的形式表示,所以m表示其中某一栅格的地图信息;Hα=1[P(m|x,u,z)]表示栅格m的香农熵;Hα(a)[P(m|x,u,z)]表示栅格m的瑞利熵,计算公式如下,Among them, a * represents the action of the AUV driving to the corresponding candidate point when the benefit is optimal; η represents the balance factor; Va is the map volume affected by action a, which can be calculated by the ray casting method; since each revisit action has a corresponding exploration action, Vexplore is the map volume affected by the exploration action; I is the mutual information when executing action a, u represents the set of historical control vectors, z represents the set of all historical observations, m(a) represents the map information detected by executing action a, and is represented in the form of an occupied grid map, so m represents the map information of one of the grids; H α=1 [P(m|x,u,z)] represents the Shannon entropy of grid m; H α(a) [P(m|x,u,z)] represents the Rayleigh entropy of grid m, and the calculation formula is as follows,
为了避免算法只对栅格地图占用信息进行考虑,机器人状态信息将融合在α(a)的计算之中,其计算方法如下:In order to avoid the algorithm only considering the grid map occupancy information, the robot state information will be integrated into the calculation of α(a), which is calculated as follows:
其中,σ表执行动作a后机器人的位姿不确定性,Among them, σ represents the position uncertainty of the robot after executing action a,
其中,∑target表示通过预测得到的到达目标点时机器人的位置协方差;∑now表示当前时刻机器人的位置协方差;Ti表示目标子地图subi的地形费舍尔信息量;Tmax表示搜索范围内最大的地形费舍尔信息量。Among them, ∑ target represents the position covariance of the robot when it reaches the target point obtained by prediction; ∑ now represents the position covariance of the robot at the current moment; Ti represents the terrain Fisher information of the target submap sub i ; T max represents the maximum terrain Fisher information within the search range.
本发明的有益效果在于:The beneficial effects of the present invention are:
与传统的水下机器人测深信息同步定位与建图方法相比,本发明通过主动对地形进行有目的性地回溯,平衡了回溯和探索之间的关系,从而使得水下机器人能够更有效的在不依赖母船的情况下获得高精度的位置信息和海底地形图。Compared with the traditional underwater robot bathymetric information simultaneous positioning and mapping method, the present invention balances the relationship between backtracking and exploration by actively and purposefully backtracking the terrain, thereby enabling the underwater robot to more effectively obtain high-precision position information and seabed topographic maps without relying on a mother ship.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的总体流程图。FIG. 1 is an overall flow chart of the present invention.
图2为本发明中计算候选回环点与探索点的流程图。FIG. 2 is a flow chart of calculating candidate loop points and exploration points in the present invention.
具体实施方式DETAILED DESCRIPTION
下面结合附图对本发明做进一步描述。The present invention is further described below in conjunction with the accompanying drawings.
本发明涉及水下机器人主动同步定位与建图方法,该方法通过主动选择进行回环动作或探索动作,使AUV在探索效率得到提高的同时兼顾所构建地图的准确性。The present invention relates to an active synchronous positioning and mapping method for an underwater robot. The method actively selects a loop action or an exploration action, so that the exploration efficiency of an AUV is improved while taking into account the accuracy of the constructed map.
一种水下机器人多波束测深主动同步定位与建图方法,其特征在于,包括以下步骤:A method for active synchronous positioning and mapping of multi-beam bathymetry of an underwater robot, characterized in that it comprises the following steps:
步骤1:设定任务区域;Step 1: Set the task area;
步骤2:对所设定的任务区域进行全覆盖路径规划;Step 2: Plan a full coverage path for the set mission area;
步骤3:执行多波束测深SLAM,并构建轨迹地图Maptraj;多波束测深SLAM为通过多波束测深声呐获取水下地形。Step 3: Execute multi-beam bathymetric SLAM and construct a trajectory map Map traj ; multi-beam bathymetric SLAM is to obtain underwater terrain through multi-beam bathymetric sonar.
步骤4:根据轨迹地图计算候选回环目标和候选探索目标;Step 4: Calculate candidate loop targets and candidate exploration targets based on the trajectory map;
步骤4.1:根据多波束测线的平均宽度w将轨迹地图Maptraj分成子地图集合;Step 4.1: Divide the trajectory map Map traj into a set of sub-maps according to the average width w of the multi-beam survey line;
步骤4.2:通过机器人当前位置(x,y)和位置协方差矩阵∑确定候选点搜索半径r:Step 4.2: Determine the candidate point search radius r by the robot's current position (x, y) and the position covariance matrix ∑:
步骤4.3:计算在搜索半径r内的所有子地图的地形费舍尔信息量{Ti|i=1,2,…,Num}Step 4.3: Calculate the terrain Fisher information {T i |i=1,2,…,Num} of all sub-maps within the search radius r
其中,sub1,sub2,…,subNum为搜索半径r内的所有子地图,Num表示子地图的数量;Mi、Ni表示子地图subi的数据矩阵的大小;hab表示对应位置(a,b)的地形高程;||·||表示欧式范数;Where sub 1 , sub 2 ,…, sub Num are all submaps within the search radius r, Num represents the number of submaps; Mi , Ni represent the size of the data matrix of submap sub i ; h ab represents the terrain elevation of the corresponding position (a, b); ||·|| represents the Euclidean norm;
步骤4.4:取所有满足Ti>Tthres的子地图中心点作为回环目标点集合;Tthres为预设的地形费舍尔信息量阈值;根据当前机器人位置到回环目标的距离,在前进方向上选取相同距离的点作为探索目标点,从而生成探索目标点集合;Step 4.4: Take all sub-map center points that satisfy Ti > T thres as the loop target point set; T thres is the preset terrain Fisher information threshold; according to the distance from the current robot position to the loop target, select points with the same distance in the forward direction as exploration target points, thereby generating an exploration target point set;
步骤4.5:输出回环候选点集合和探索候选点集合;Step 4.5: Output the loop candidate point set and the exploration candidate point set;
步骤5:根据效用方程计算到达每个候选点的收益,选择对应收益最优的候选点,根据AUV向收益最优候选点行驶的动作a*,判断执行回环任务或探索任务;Step 5: Calculate the benefits of reaching each candidate point according to the utility equation, select the candidate point with the best benefits, and determine whether to perform a loop task or an exploration task according to the action a * of the AUV driving to the candidate point with the best benefits;
根据效用方程计算到达每个候选点的收益ηI,选择对应收益最优的候选点,该过程表示为:According to the utility equation, the benefit ηI of reaching each candidate point is calculated, and the candidate point with the best corresponding benefit is selected. The process is expressed as:
其中,a*表示收益最优时AUV向对应的候选点行驶的动作;η表示平衡因子;Va是受动作a影响的地图体积,可通过光线投射法计算;由于每个重访动作都有相应的探索动作,Vexplore为受到探索行动影响的地图体积;I为执行动作a时的互信息,u表示历史控制向量的集合,z表示所有历史观测的集合,m(a)则表示由于执行动作a而探测得到的地图信息,采用占用栅格地图的形式表示,所以m表示其中某一栅格的地图信息;Hα=1[P(m|x,u,z)]表示栅格m的香农熵;Hα(a)[P(m|x,u,z)]表示栅格m的瑞利熵,计算公式如下,Among them, a * represents the action of the AUV driving to the corresponding candidate point when the benefit is optimal; η represents the balance factor; Va is the map volume affected by action a, which can be calculated by the ray casting method; since each revisit action has a corresponding exploration action, Vexplore is the map volume affected by the exploration action; I is the mutual information when executing action a, u represents the set of historical control vectors, z represents the set of all historical observations, m(a) represents the map information detected by executing action a, and is represented in the form of an occupied grid map, so m represents the map information of one of the grids; H α=1 [P(m|x,u,z)] represents the Shannon entropy of grid m; H α(a) [P(m|x,u,z)] represents the Rayleigh entropy of grid m, and the calculation formula is as follows,
为了避免算法只对栅格地图占用信息进行考虑,机器人状态信息将融合在α(a)的计算之中,其计算方法如下:In order to avoid the algorithm only considering the grid map occupancy information, the robot state information will be integrated into the calculation of α(a), which is calculated as follows:
其中,σ表执行动作a后机器人的位姿不确定性,Among them, σ represents the uncertainty of the robot's posture after executing action a,
其中,∑target表示通过预测得到的到达目标点时机器人的位置协方差;∑now表示当前时刻机器人的位置协方差;Ti表示目标子地图subi的地形费舍尔信息量;Tmax表示搜索范围内最大的地形费舍尔信息量;Wherein, ∑ target represents the position covariance of the robot when it reaches the target point obtained by prediction; ∑ now represents the position covariance of the robot at the current moment; Ti represents the terrain Fisher information of the target submap sub i ; T max represents the maximum terrain Fisher information within the search range;
步骤6:执行AUV向收益最优候选点行驶的动作a*,判断设定的任务区域是否探索完成;若完成探索,则结束;否则,返回步骤3。Step 6: Execute the action a * of the AUV driving to the candidate point with the best return, and judge whether the exploration of the set task area is completed; if the exploration is completed, end; otherwise, return to step 3.
本发明是一种水下机器人多波束测深主动同步定位与建图方法。包括水下机器人主动同步定位与建图策略、回环目标点地形信息评价方法、权衡探索和回环动作的效用方程、以及执行回环动作时的路径规划方法。与传统的水下机器人测深信息同步定位与建图方法相比,本发明通过主动对地形进行有目的性地回溯,平衡了回溯和探索之间的关系,从而使得水下机器人能够更有效的在不依赖母船的情况下获得高精度的位置信息和海底地形图。The present invention is an underwater robot multi-beam bathymetric active synchronous positioning and mapping method. It includes an underwater robot active synchronous positioning and mapping strategy, a loop target point terrain information evaluation method, a utility equation for weighing exploration and loop action, and a path planning method when executing loop action. Compared with the traditional underwater robot bathymetric information synchronous positioning and mapping method, the present invention balances the relationship between backtracking and exploration by actively and purposefully backtracking the terrain, so that the underwater robot can more effectively obtain high-precision position information and seabed terrain maps without relying on the mother ship.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210488829.5A CN115031733B (en) | 2022-05-06 | 2022-05-06 | An active synchronous positioning and mapping method for multi-beam bathymetry of underwater robots |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210488829.5A CN115031733B (en) | 2022-05-06 | 2022-05-06 | An active synchronous positioning and mapping method for multi-beam bathymetry of underwater robots |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115031733A CN115031733A (en) | 2022-09-09 |
CN115031733B true CN115031733B (en) | 2024-11-08 |
Family
ID=83119038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210488829.5A Active CN115031733B (en) | 2022-05-06 | 2022-05-06 | An active synchronous positioning and mapping method for multi-beam bathymetry of underwater robots |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115031733B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117824664B (en) * | 2024-03-05 | 2024-05-28 | 河海大学 | Active SLAM method for autonomous unmanned system based on multi-beam bathymetric sonar |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109186610A (en) * | 2018-10-15 | 2019-01-11 | 哈尔滨工程大学 | A kind of robust BSLAM method of AUV terrain match navigation |
CN110726415A (en) * | 2019-10-21 | 2020-01-24 | 哈尔滨工程大学 | An adaptive underwater multi-beam synchronous positioning and mapping method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3304120B8 (en) * | 2015-05-29 | 2023-10-04 | Verity AG | Methods and systems for scheduling the transmission of localization signals and operating self-localizing apparatus |
-
2022
- 2022-05-06 CN CN202210488829.5A patent/CN115031733B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109186610A (en) * | 2018-10-15 | 2019-01-11 | 哈尔滨工程大学 | A kind of robust BSLAM method of AUV terrain match navigation |
CN110726415A (en) * | 2019-10-21 | 2020-01-24 | 哈尔滨工程大学 | An adaptive underwater multi-beam synchronous positioning and mapping method |
Also Published As
Publication number | Publication date |
---|---|
CN115031733A (en) | 2022-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108871351B (en) | A dynamic path planning method for AUV submarine terrain matching | |
CN106123850B (en) | AUV prestowage multibeam sonars underwater topography surveys and draws modification method | |
Chen et al. | Review of AUV underwater terrain matching navigation | |
CN111273298B (en) | Underwater acoustic target positioning and tracking method based on wave glider networking technology | |
CN101907711A (en) | A Simultaneous Detection and Localization Method for an Autonomous Underwater Robot | |
CN108562287A (en) | A kind of Terrain-aided Underwater Navigation based on adaptively sampled particle filter | |
CN108919274B (en) | Shallow water wave following scanning detection system based on single wave beam and working method thereof | |
Ling et al. | Active Bathymetric SLAM for autonomous underwater exploration | |
CN105115492A (en) | Underwater topography matching navigation system based on acoustics Doppler log | |
CN115031733B (en) | An active synchronous positioning and mapping method for multi-beam bathymetry of underwater robots | |
CN110726415A (en) | An adaptive underwater multi-beam synchronous positioning and mapping method | |
CN110118547A (en) | A kind of the unmanned boat automatic cruising calculating system and method for reservoir capacity | |
Sun et al. | A novel path planning method for multiple USVs to collect seabed-based data | |
CN110763234B (en) | Submarine topography matching navigation path planning method for underwater robot | |
Kim et al. | Range-free localization with a mobile beacon via motion compensation in underwater sensor networks | |
CN113639749A (en) | Multi-beam sounding data matching detection method based on uncertainty | |
CN108594241B (en) | An AUV Acoustic Stealth Situation Assessment Method | |
Li et al. | Terrain matching positioning method based on node multi-information fusion | |
Padial et al. | Correlation of imaging sonar acoustic shadows and bathymetry for ROV terrain-relative localization | |
JP4513455B2 (en) | 3D submarine topographic map display apparatus and method | |
CN106908036B (en) | A kind of AUV multi-beam Bathymetric Data patterning process based on local offset | |
Chen et al. | Path planning of underwater terrain-aided navigation based on improved artificial potential field method | |
CN116148865A (en) | Submarine topography intelligent sweep and autonomous positioning system | |
CN114998540A (en) | Smart city sensor detection active synchronous positioning and mapping method | |
KR102469164B1 (en) | Apparatus and method for geophysical navigation of USV(Unmanned Surface Vehicles) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |