CN115029479B - MNP (MNP) marking site of Zika virus, primer composition, kit and application of MNP marking site - Google Patents
MNP (MNP) marking site of Zika virus, primer composition, kit and application of MNP marking site Download PDFInfo
- Publication number
- CN115029479B CN115029479B CN202111356004.XA CN202111356004A CN115029479B CN 115029479 B CN115029479 B CN 115029479B CN 202111356004 A CN202111356004 A CN 202111356004A CN 115029479 B CN115029479 B CN 115029479B
- Authority
- CN
- China
- Prior art keywords
- mnp
- zika virus
- detection
- kit
- marker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000907316 Zika virus Species 0.000 title claims abstract description 125
- 239000000203 mixture Substances 0.000 title claims abstract description 25
- 238000001514 detection method Methods 0.000 claims abstract description 72
- 230000007614 genetic variation Effects 0.000 claims abstract description 14
- 238000007403 mPCR Methods 0.000 claims description 21
- 238000012360 testing method Methods 0.000 claims description 9
- 241000700605 Viruses Species 0.000 claims description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 claims 1
- 239000003550 marker Substances 0.000 abstract description 54
- 238000012163 sequencing technique Methods 0.000 abstract description 20
- 238000000034 method Methods 0.000 abstract description 18
- 230000003321 amplification Effects 0.000 abstract description 11
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 11
- 241000894007 species Species 0.000 abstract description 10
- 238000005516 engineering process Methods 0.000 abstract description 9
- 230000035945 sensitivity Effects 0.000 abstract description 9
- 239000002773 nucleotide Substances 0.000 abstract description 6
- 125000003729 nucleotide group Chemical group 0.000 abstract description 6
- 230000002265 prevention Effects 0.000 abstract description 6
- 238000011160 research Methods 0.000 abstract description 6
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 102000054765 polymorphisms of proteins Human genes 0.000 abstract description 3
- 238000012300 Sequence Analysis Methods 0.000 abstract description 2
- 108700028369 Alleles Proteins 0.000 description 15
- 239000012634 fragment Substances 0.000 description 8
- 108020004707 nucleic acids Proteins 0.000 description 8
- 102000039446 nucleic acids Human genes 0.000 description 8
- 150000007523 nucleic acids Chemical class 0.000 description 8
- 238000012165 high-throughput sequencing Methods 0.000 description 7
- 238000003908 quality control method Methods 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 208000020329 Zika virus infectious disease Diseases 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 101100184487 Caenorhabditis elegans mnp-1 gene Proteins 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 208000001455 Zika Virus Infection Diseases 0.000 description 3
- 208000035332 Zika virus disease Diseases 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 238000010839 reverse transcription Methods 0.000 description 3
- 241000710831 Flavivirus Species 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 108091036078 conserved sequence Proteins 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 238000007481 next generation sequencing Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 241000589291 Acinetobacter Species 0.000 description 1
- 208000006820 Arthralgia Diseases 0.000 description 1
- 241000588807 Bordetella Species 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 241001647372 Chlamydia pneumoniae Species 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 208000001490 Dengue Diseases 0.000 description 1
- 206010012310 Dengue fever Diseases 0.000 description 1
- 241000725619 Dengue virus Species 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 241000710781 Flaviviridae Species 0.000 description 1
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 1
- 241000046923 Human bocavirus Species 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 241000588747 Klebsiella pneumoniae Species 0.000 description 1
- 241000589248 Legionella Species 0.000 description 1
- 208000007764 Legionnaires' Disease Diseases 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 1
- 241000588655 Moraxella catarrhalis Species 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 241000202934 Mycoplasma pneumoniae Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 241000606701 Rickettsia Species 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 241000710886 West Nile virus Species 0.000 description 1
- 241000710772 Yellow fever virus Species 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 208000025729 dengue disease Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 238000012268 genome sequencing Methods 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 208000004141 microcephaly Diseases 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 208000013465 muscle pain Diseases 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000009340 pathogen transmission Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007480 sanger sequencing Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229940051021 yellow-fever virus Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/70—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
- C12Q1/701—Specific hybridization probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/16—Primer sets for multiplex assays
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Virology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明实施例涉及生物技术领域,特别涉及一种寨卡病毒的MNP标记位点、引物组合物、试剂盒及其应用。The embodiment of the present invention relates to the field of biotechnology, in particular to a Zika virus MNP marker site, primer composition, kit and application thereof.
背景技术Background technique
寨卡病毒属黄病毒科,黄病毒属,为单股正链RNA病毒,是一种通过蚊虫进行传播的虫媒病毒。1947年,寨卡病毒首次在乌干达寨卡丛林的恒河猴身中发现,由此而得名。目前,全球范围内共有84个国家报道发现寨卡病毒感染病例,且该病毒在东南亚等地区有逐步蔓延的趋势。寨卡病毒感染后症状与登革热相似,表现为发烧、疹子、关节疼痛、肌肉疼痛、头痛和结膜炎等症状。世界卫生组织(WHO)认为,新生儿小头畸形、格林-巴利综合征可能与寨卡病毒感染有关。由于寨卡病毒与登革病毒、西尼罗河病毒和黄热病毒等其他黄病毒会发生交叉反应,使得寨卡病毒的诊断困难重重,且目前尚没有针对寨卡病毒的疫苗、预防性药物或特效药。因此,快速、准确的寨卡病毒的检测对于及时诊断病因,做到早发现早治疗,减少病情恶化和防止病原体传播具有重要意义。另外,寨卡病毒作为群体生物,在和宿主、环境的互作中,群体内个体会发生变异,导致检测或治疗方法的失效;对于实验研究来说,这种不易被察觉的变异会导致不同实验室或同一实验室不同时期相同命名的毒株实际上并不相同,导致实验结果的不可重现和不可比较。因此,开发快速、准确的、可监测变异的寨卡病毒检测分析方法对于寨卡病毒的临床治疗、防疫检测和科学研究和都具有重要意义。Zika virus belongs to the Flaviviridae family and belongs to the Flavivirus genus. It is a single-stranded positive-sense RNA virus and is an arbovirus transmitted by mosquitoes. In 1947, the Zika virus was first discovered in rhesus monkeys in the Zika jungle of Uganda, hence the name. At present, a total of 84 countries around the world have reported cases of Zika virus infection, and the virus is gradually spreading in Southeast Asia and other regions. Symptoms of Zika virus infection are similar to those of dengue fever, including fever, rash, joint pain, muscle pain, headache and conjunctivitis. The World Health Organization (WHO) believes that neonatal microcephaly and Guillain-Barré syndrome may be related to Zika virus infection. Diagnosis of Zika virus is difficult due to cross-reactivity with other flaviviruses such as dengue virus, West Nile virus and yellow fever virus, and there are currently no vaccines, preventive drugs or specific treatments for Zika virus medicine. Therefore, rapid and accurate detection of Zika virus is of great significance for timely diagnosis of the cause, early detection and early treatment, reduction of disease progression and prevention of pathogen transmission. In addition, as Zika virus is a group organism, in the interaction with the host and the environment, individuals in the group will mutate, leading to the failure of detection or treatment methods; for experimental research, this undetectable variation will lead to different The strains with the same name in the same laboratory or in different periods in the same laboratory are actually not the same, resulting in irreproducible and incomparable experimental results. Therefore, the development of rapid, accurate, and variable-monitoring Zika virus detection and analysis methods is of great significance for the clinical treatment, epidemic prevention detection and scientific research of Zika virus.
经典的寨卡病毒检测方法,包括分离培养、PCR技术、全基因组和宏基因组测序等,在时长、操作复杂度、检测通量、检测变异的准确性和灵敏度、成本等方面存在一个或多个局限。融合超多重PCR扩增和高通量测序的靶向分子标记检测技术,可以在低微生物含量的样本中靶向的富集目标微生物,避免了全基因组依赖于病原菌的分离培养和宏基因组测序带来的大量数据浪费和背景噪音的局限,具有样本需要量少、诊断结果精确,节约数据量、检测低频变异和免培养的优势。现有的靶向检测技术检测的分子标记主要包括SNP和SSR标记。SSR标记是公认的多态性最高的标记,但在微生物中数量少;SNP标记数量巨大,分布密集,是二态性标记,单个SNP标记的多态性不足以捕获微生物种群中潜在的等位基因多样性。Classic Zika virus detection methods, including isolation and culture, PCR technology, whole genome and metagenomic sequencing, etc., have one or more limitations in terms of time length, operational complexity, detection throughput, accuracy and sensitivity of detection of mutations, cost, etc. . The targeted molecular marker detection technology that combines ultra-multiplex PCR amplification and high-throughput sequencing can enrich target microorganisms in samples with low microbial content, avoiding the isolation and culture of pathogenic bacteria and metagenomic sequencing of the whole genome. Due to the limitation of a large amount of data waste and background noise, it has the advantages of less sample requirements, accurate diagnostic results, saving data, detecting low-frequency mutations, and exempting culture. The molecular markers detected by existing targeted detection technologies mainly include SNP and SSR markers. SSR markers are recognized as the most polymorphic markers, but their number is small in microorganisms; SNP markers are huge in number, densely distributed, and are dimorphic markers, and the polymorphism of a single SNP marker is not enough to capture potential alleles in microbial populations genetic diversity.
因此,开发寨卡病毒的高多态性的新型分子标记及其检测技术,成为亟待解决的技术问题。Therefore, the development of new molecular markers with high polymorphism of Zika virus and its detection technology has become a technical problem to be solved urgently.
发明内容Contents of the invention
本发明目的是提供一种寨卡病毒特异的MNP标记位点、引物组合物、试剂盒及其应用,可以对寨卡病毒进行定性的鉴定和变异检测,具有多靶标、高通量、高灵敏和精细分型的效果。The purpose of the present invention is to provide a Zika virus-specific MNP marker site, primer composition, kit and application thereof, which can carry out qualitative identification and variation detection of Zika virus, and have multi-target, high-throughput, and high-sensitivity and fine-tuning effects.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
在本发明的第一方面,提供了一种寨卡病毒特异的MNP标记位点,所述MNP标记位点是指在寨卡病毒基因组上筛选的区分于其他物种且在物种内部具有多个核苷酸多态性的基因组区域,包括:以MH675624.1为参考基因组的MNP-1、MNP-3、MNP-9、MNP-11和MNP-13的标记位点;以MT505349.1为参考基因组的MNP-2、MNP-4、MNP-7、MNP-12和MNP-14~MNP-15的标记位点;以KU955594.1为参考基因组的MNP-5~MNP-6、MNP-8和MNP-10的标记位点。In the first aspect of the present invention, a Zika virus-specific MNP marker site is provided, and the MNP marker site refers to a Zika virus genome screened on the Zika virus genome that is different from other species and has multiple cores within the species. Genomic regions of nucleotide polymorphisms, including: marker sites of MNP-1, MNP-3, MNP-9, MNP-11 and MNP-13 with MH675624.1 as the reference genome; MT505349.1 as the reference genome The marker sites of MNP-2, MNP-4, MNP-7, MNP-12 and MNP-14~MNP-15; MNP-5~MNP-6, MNP-8 and MNP with KU955594.1 as the reference genome -10 marker sites.
上述技术方案中,MNP-1~MNP-15的标记位点具体如说明书表1所示,表1中标注的所述MNP标记的起始和终止位置是基于表1中MNP同一行对应的参考序列确定的。In the above technical solution, the marking sites of MNP-1 to MNP-15 are specifically shown in Table 1 of the instruction manual. The starting and ending positions of the MNP marking marked in Table 1 are based on the references corresponding to the same row of MNP in Table 1. The sequence is determined.
在本发明的第二方面,提供了一种用于检测所述MNP标记位点的多重PCR引物组合物,所述多重PCR引物组合物包括15对引物,具体的引物序列如SEQ ID NO.1~SEQ IDNO.30所示。In a second aspect of the present invention, a multiplex PCR primer composition for detecting the MNP marker site is provided, the multiplex PCR primer composition includes 15 pairs of primers, and the specific primer sequence is as SEQ ID NO.1 ~shown in SEQ ID NO.30.
上述技术方案中,每个MNP标记位点的引物包括上引物和下引物,具体如说明书表1所示。In the above technical solution, the primers for each MNP marker site include an upper primer and a lower primer, as shown in Table 1 of the specification.
在本发明的第三方面,提供了一种用于检测所述寨卡病毒MNP标记位点的检测试剂盒,所述试剂盒包括所述的引物组合物。In the third aspect of the present invention, a detection kit for detecting the Zika virus MNP marker site is provided, the kit includes the primer composition.
进一步地,所述试剂盒还包括多重PCR预混液。Further, the kit also includes a multiplex PCR master mix.
在本发明的第四方面,提供了所述的寨卡病毒的MNP标记位点或者所述的多重PCR引物组合物或者所述的检测试剂盒在寨卡病毒非诊断目的定性检测和制备寨卡病毒定性检测产品中的应用。In the fourth aspect of the present invention, the MNP marker site of the Zika virus or the multiple PCR primer composition or the detection kit is provided for the qualitative detection and preparation of Zika virus for non-diagnostic purposes. Applications in virus qualitative detection products.
在本发明的第五方面,提供了所述的寨卡病毒的MNP标记位点或者所述的多重PCR引物组合物或者所述的检测试剂盒在检测寨卡病毒毒株内部和毒株间遗传变异中的应用。In a fifth aspect of the present invention, the MNP marker site of the Zika virus or the multiplex PCR primer composition or the detection kit is provided for detecting Zika virus strains and strains. Application in Variation.
在本发明的第六方面,提供了所述的寨卡病毒的MNP标记位点或者所述的多重PCR引物组合物或者所述的检测试剂盒在构建寨卡病毒数据库中的应用。In the sixth aspect of the present invention, the application of the MNP marker site of Zika virus or the multiplex PCR primer composition or the detection kit in constructing Zika virus database is provided.
在本发明的第七方面,提供了所述的寨卡病毒的MNP标记位点或者所述的多重PCR引物组合物或者所述的检测试剂盒在寨卡病毒精细分型检测中的应用。In the seventh aspect of the present invention, the application of the MNP marker site of Zika virus or the multiplex PCR primer composition or the detection kit in fine typing detection of Zika virus is provided.
以上所述应用中,具体操作步骤为:首先是获取待测样本的病毒总RNA;利用商业化的反转录试剂盒反转录成cDNA;利用本发明的试剂盒对所述cDNA和空白对照进行第一轮多重PCR扩增,循环数不高于25个;对扩增产物进行纯化后,进行基于第二轮PCR扩增的样本标签和二代测序接头添加;对第二轮扩增产物纯化后定量;检测多个毒株时通过将第二轮扩增产物等量混合后进行高通量测序;测序结果比对到所述的寨卡病毒的参考序列上,获取在所述cDNA的检测序列数目和基因型数据。根据在所述cDNA和所述空白对照获得的寨卡病毒测序序列数量和检出MNP位点的数目,对所述cDNA的测序数据进行数据质量控制和数据分析,获得检出MNP位点数目、覆盖每个所述MNP位点的测序序列数目和所述MNP位点基因型数据。In the application described above, the specific operation steps are: firstly, obtain the viral total RNA of the sample to be tested; utilize a commercialized reverse transcription kit to reverse transcribe into cDNA; Carry out the first round of multiplex PCR amplification, the number of cycles is not higher than 25; after the amplification products are purified, add sample tags and next-generation sequencing adapters based on the second round of PCR amplification; Quantification after purification; when multiple strains are detected, high-throughput sequencing is performed by mixing equal amounts of the second-round amplification products; the sequencing results are compared to the reference sequence of the Zika virus, and the cDNA is obtained Detect sequence number and genotype data. According to the number of Zika virus sequencing sequences and the number of detected MNP sites obtained in the cDNA and the blank control, data quality control and data analysis were performed on the sequencing data of the cDNA to obtain the number of detected MNP sites, The number of sequencing sequences covering each of the MNP sites and the genotype data of the MNP sites.
当用于寨卡病毒鉴定时,根据在待测样品和空白对照中检出的寨卡病毒的测序序列数量和检出MNP位点的数目,进行质控后判定待测样品中是否含有寨卡病毒的核酸。其中,所述的质控方案和判定方法是以拷贝数已知的寨卡病毒的RNA为检测样本,评估所述试剂盒检测寨卡病毒的灵敏度、准确性和特异性,制定所述试剂盒检测寨卡病毒时的质控方案和判定方法。When used for Zika virus identification, according to the number of sequenced sequences of Zika virus detected in the sample to be tested and the blank control and the number of detected MNP sites, after quality control, it is determined whether the sample to be tested contains Zika The nucleic acid of the virus. Wherein, the quality control scheme and determination method are to use the RNA of Zika virus with known copy number as the detection sample, evaluate the sensitivity, accuracy and specificity of the kit for detecting Zika virus, and formulate the kit Quality control scheme and determination method for Zika virus detection.
当用于寨卡病毒遗传变异检测时,包括毒株间和毒株内部的遗传变异检测。毒株间的遗传变异检测包括利用所述的试剂盒和方法,获得待比较毒株各自在15个MNP位点的基因型数据。通过基因型比对,分析待比较毒株在所述15个MNP位点上的主基因型是否存在差异。若待比较毒株在至少一个MNP位点的主基因型存在变异,则判定两者存在遗传变异。作为一种备选方案,也可以通过单重PCR对待比较毒株的15个位点分别进行扩增,然后对扩增产物进行Sanger测序,获得序列后,对待比较毒株每个MNP位点的基因型进行比对。如果存在主基因型不一致的MNP位点,则待比较毒株之间存在变异。当检测毒株内部的遗传变异时,则通过统计模型判定在待测毒株所述的MNP位点是否检出主基因型以外的次基因型。若待测毒株在至少一个MNP位点存在次基因型,则判定待测毒株内部存在遗传变异。When used for the detection of Zika virus genetic variation, it includes the detection of genetic variation between strains and within strains. The detection of genetic variation between strains includes using the kit and method to obtain the genotype data of each of the 15 MNP sites of the strains to be compared. Through genotype comparison, analyze whether there are differences in the main genotypes of the strains to be compared at the 15 MNP sites. If there is a variation in the main genotype of at least one MNP locus of the strain to be compared, it is determined that there is a genetic variation between the two. As an alternative, the 15 loci of the strain to be compared can also be amplified by single-plex PCR, and then the amplified products are subjected to Sanger sequencing. After the sequence is obtained, each MNP locus of the strain to be compared is genotype comparison. If there are MNP sites with inconsistent main genotypes, there is variation among the strains to be compared. When detecting genetic variation within a strain, a statistical model is used to determine whether a secondary genotype other than the main genotype is detected at the MNP site of the strain to be tested. If the strain to be tested has a subgenotype at at least one MNP site, it is determined that there is genetic variation within the strain to be tested.
当用于构建寨卡病毒MNP指纹数据库时,将从样本中鉴定的寨卡病毒的所述MNP位点的基因型数据,录入数据库文件,构成寨卡病毒的MNP指纹数据库;每次鉴定不同的样本时,通过和所述寨卡病毒的MNP指纹数据库比对,鉴定样本中的寨卡病毒是否和数据库中的毒株在所述MNP位点存在主基因型(在一个MNP位点具有超过50%测序片段支持的基因型)的差异,在至少1个MNP位点存在主基因型差异的寨卡病毒即为新的变异类型,收录进MNP指纹数据库。When used to construct the Zika virus MNP fingerprint database, the genotype data of the MNP site of the Zika virus identified from the sample is entered into the database file to form the MNP fingerprint database of the Zika virus; During the sample, by comparing with the MNP fingerprint database of the Zika virus, identify whether the Zika virus in the sample and the strain in the database have a main genotype at the MNP site (with more than 50 genotypes at one MNP site). % genotypes supported by sequencing fragments), Zika virus with major genotype differences at at least one MNP locus is a new variant type, which is included in the MNP fingerprint database.
当用于寨卡病毒分型时,是对待测样本中的寨卡病毒进行鉴定,获得每个所述MNP位点的基因型。通过和所述寨卡病毒的MNP指纹数据库比对,鉴定样本中的寨卡病毒是已有的类型还是新的类型,新的类型收录进MNP指纹数据库。因此利用所述的引物组合,可以不断的丰富MNP指纹数据库。When used for Zika virus typing, the Zika virus in the sample to be tested is identified to obtain the genotype of each MNP site. By comparing with the MNP fingerprint database of the Zika virus, it is identified whether the Zika virus in the sample is an existing type or a new type, and the new type is included in the MNP fingerprint database. Therefore, using the primer combination, the MNP fingerprint database can be continuously enriched.
本发明在寨卡病毒领域属于首创,并未见相关文献报道;MNP标记主要基于参考序列开发,根据已报道的寨卡病毒代表小种的重测序数据可以挖掘大规模的区分于其他物种、在寨卡病毒物种内部多态、两侧序列保守的MNP位点;通过MNP位点两侧的保守序列可以设计适用于于多重PCR扩增的MNP位点检测引物;再根据标准品的测试结果,可筛选出一套多态性最大、特异性高的一套MNP位点、兼容性最好的引物组合以及检测试剂盒。The present invention is the first in the field of Zika virus, and there are no related literature reports; MNP markers are mainly developed based on reference sequences. MNP sites with polymorphic and conserved sequences on both sides of the Zika virus species; MNP site detection primers suitable for multiplex PCR amplification can be designed through the conserved sequences on both sides of the MNP site; then according to the test results of the standard, A set of MNP sites with the largest polymorphism and high specificity, a primer combination with the best compatibility and a detection kit can be screened out.
本发明实施例中的一个或多个技术方案,至少具有如下技术效果或优点:One or more technical solutions in the embodiments of the present invention have at least the following technical effects or advantages:
本发明提供了一种寨卡病毒的MNP标记位点、引物组合物、试剂盒及其应用。所提供的寨卡病毒的15个MNP位点和其引物组合,可进行多重PCR扩增,融合二代测序平台进行扩增产物的测序,满足对结合分枝杆菌进行高通量、高效率、高准确性和高灵敏度检测的需求,满足寨卡病毒标准的、可共享的指纹数据构建的要求;准确检测寨卡病毒毒株间遗传变异的需求;鉴定寨卡病毒纯合和杂合的需求,为寨卡病毒的科学研究、科学监测和防治提供技术支撑。The invention provides a Zika virus MNP marker site, primer composition, kit and application thereof. The provided 15 MNP sites of Zika virus and their primer combinations can be used for multiplex PCR amplification, combined with the next-generation sequencing platform to sequence the amplified products, meeting the high-throughput, high-efficiency, The demand for high-accuracy and high-sensitivity detection meets the requirements for Zika virus standard and shareable fingerprint data construction; the demand for accurate detection of genetic variation among Zika virus strains; the demand for identification of Zika virus homozygosity and heterozygosity , to provide technical support for scientific research, scientific monitoring and prevention and control of Zika virus.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明实施例的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the following will briefly introduce the drawings that need to be used in the description of the embodiments. Obviously, the drawings in the following description are some implementations of the embodiments of the present invention. For example, those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为MNP标记多态性原理图;Figure 1 is a schematic diagram of MNP marker polymorphism;
图2为寨卡病毒MNP标记位点的筛选和引物设计流程图;Fig. 2 is the screening and primer design flowchart of Zika virus MNP marker site;
图3为MNP标记位点的检测流程图。Fig. 3 is a flowchart of the detection of MNP marker sites.
具体实施方式Detailed ways
下文将结合具体实施方式和实施例,具体阐述本发明实施例,本发明实施例的优点和各种效果将由此更加清楚地呈现。本领域技术人员应理解,这些具体实施方式和实施例是用于说明本发明实施例,而非限制本发明实施例。The following will specifically describe the embodiments of the present invention in combination with specific implementations and examples, and the advantages and various effects of the embodiments of the present invention will be presented more clearly. Those skilled in the art should understand that these specific implementations and examples are for illustrating the embodiments of the present invention, rather than limiting the embodiments of the present invention.
在整个说明书中,除非另有特别说明,本文使用的术语应理解为如本领域中通常所使用的含义。因此,除非另有定义,本文使用的所有技术和科学术语具有与本发明实施例所属领域技术人员的一般理解相同的含义。若存在矛盾,本说明书优先。Throughout the specification, unless otherwise specified, terms used herein should be understood as commonly used in the art. Therefore, unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the embodiments of the present invention belong. In case of conflict, this specification shall take precedence.
除非另有特别说明,本发明实施例中用到的各种原材料、试剂、仪器和设备等,均可通过市场购买得到或者可通过现有方法制备得到。Unless otherwise specified, various raw materials, reagents, instruments and equipment used in the examples of the present invention can be purchased from the market or prepared by existing methods.
本申请实施例的技术方案为解决上述技术问题,总体思路如下:The technical solution of the embodiment of the present application is to solve the above-mentioned technical problems, and the general idea is as follows:
本发明开发适应于检测群体生物的、物种特异的新型分子标记-MNP标记。MNP标记是指在基因组上一段区域内由多个核苷酸引起的多态性标记。与SSR标记和SNP标记相比,MNP标记具有以下优势:(1)等位基因丰富,单个MNP位点上有2n种等位基因,高于SSR和SNP;(2)物种区分能力强,只需要少量的MNP标记就能实现物种鉴定,减少了检测错误率。基于超多重PCR结合二代高通量测序技术检测MNP标记的MNP标记法具有以下优势:(1)输出的是碱基序列,无需平行实验,可构建标准化的数据库进行共享共用;(2)高效率,利用样品RNA条形码,突破测序样品数量的局限,可一次性对成百上千份样本的数万个MNP位点分型;(3)高灵敏度,利用多重PCR一次检测多个靶标,避免单个靶标扩增失败导致高的假阴性和低的灵敏度;(4)高准确性,利用二代高通量测序仪对扩增产物测序数百次。The invention develops a new species-specific molecular marker-MNP marker, which is suitable for detecting population organisms. MNP markers refer to polymorphic markers caused by multiple nucleotides in an upper region of the genome. Compared with SSR markers and SNP markers, MNP markers have the following advantages: (1) rich alleles, 2 n alleles on a single MNP locus, higher than SSR and SNP markers; (2) strong species discrimination ability, Only a small amount of MNP markers are needed to achieve species identification, reducing the detection error rate. The MNP marker method based on ultra-multiplex PCR combined with next-generation high-throughput sequencing technology to detect MNP markers has the following advantages: (1) The output is base sequence, without parallel experiments, and a standardized database can be built for sharing; (2) High Efficiency, using sample RNA barcodes, breaking through the limitation of the number of sequencing samples, and can type tens of thousands of MNP sites in hundreds of thousands of samples at one time; (3) High sensitivity, using multiplex PCR to detect multiple targets at one time, avoiding Failure to amplify a single target leads to high false negatives and low sensitivity; (4) high accuracy, using a second-generation high-throughput sequencer to sequence the amplified product hundreds of times.
鉴于以上优点和特性,MNP标记及其检测技术MNP标记法可实现群体生物多等位基因型的分类与溯源,在病原微生物的鉴定、指纹数据库构建、遗传变异检测等方面都具有应用潜力。目前在微生物中,尚未有关于MNP标记的报道,也缺乏相应的技术。因此,本发明开发了寨卡病毒的MNP标记位点,所述MNP标记位点为在寨卡病毒基因组上筛选的区分于其他物种且在物种内部具有多个核苷酸多态性的基因组区域,包括:以MH675624.1为参考基因组的MNP-1、MNP-3、MNP-9、MNP-11和MNP-13的标记位点;以MT505349.1为参考基因组的MNP-2、MNP-4、MNP-7、MNP-12和MNP-14~MNP-15的标记位点;以KU955594.1为参考基因组的MNP-5~MNP-6、MNP-8和MNP-10的标记位点。In view of the above advantages and characteristics, MNP marker and its detection technology MNP marker method can realize the classification and traceability of multi-allelic genotypes in populations, and has application potential in the identification of pathogenic microorganisms, fingerprint database construction, and genetic variation detection. At present, in microorganisms, there is no report on MNP labeling, and there is a lack of corresponding technology. Therefore, the present invention has developed the MNP marker site of Zika virus, and the MNP marker site is a genomic region screened on the Zika virus genome that is distinguished from other species and has multiple nucleotide polymorphisms within the species , including: marker sites of MNP-1, MNP-3, MNP-9, MNP-11 and MNP-13 with MH675624.1 as the reference genome; MNP-2 and MNP-4 with MT505349.1 as the reference genome , MNP-7, MNP-12 and MNP-14~MNP-15 marker sites; MNP-5~MNP-6, MNP-8 and MNP-10 marker sites with KU955594.1 as the reference genome.
接着,本发明开发了用于检测所述寨卡病毒MNP标记位点的多重PCR引物组合物,其特征在于,所述多重PCR引物组合物包括15对引物,所述15对引物的核苷酸序列如SEQ IDNO.1~SEQ ID NO.30所示。所述引物互相间不冲突,可以通过多重PCR进行高效的扩增。Next, the present invention has developed a multiplex PCR primer composition for detecting the Zika virus MNP marker site, characterized in that the multiplex PCR primer composition includes 15 pairs of primers, and the nucleotides of the 15 pairs of primers The sequence is shown as SEQ ID NO.1-SEQ ID NO.30. The primers do not conflict with each other and can be efficiently amplified by multiplex PCR.
所述多重PCR引物组合物可以作为用于检测所述寨卡病毒MNP标记位点的检测试剂盒。The multiplex PCR primer composition can be used as a detection kit for detecting the Zika virus MNP marker site.
本发明的试剂盒能够准确、灵敏地检测低至10拷贝/反应的寨卡病毒。The kit of the invention can accurately and sensitively detect Zika virus as low as 10 copies/reaction.
本发明的MNP标记和所述试剂盒在复杂模板中检测寨卡病毒的高特异性。The MNP marker of the present invention and the kit have high specificity for detecting Zika virus in complex templates.
下面将结合实施例、对比例及实验数据对本申请的一种寨卡病毒的MNP标记位点、引物组合物、试剂盒及其应用进行详细说明。A Zika virus MNP marker site, primer composition, kit and application of the present application will be described in detail below in combination with examples, comparative examples and experimental data.
实施例1、寨卡病毒MNP标记位点的筛选和多重PCR扩增引物的设计Embodiment 1, the screening of Zika virus MNP marker site and the design of multiple PCR amplification primers
S1、寨卡病毒MNP标记位点的筛选S1. Screening of Zika virus MNP marker sites
基于网上公开的3794个寨卡病毒不同分离株的基因组完整或部分序列,通过序列比对,获得15个MNP标记位点。对于网上不存在基因组数据的物种,也可以通过高通量测序获得待检测微生物物种代表小种的基因组序列信息,其中高通量测序可以是全基因组或简化基因组测序。为了保证所筛选标记的多态性,一般使用至少10个遗传上有代表性的分离株的基因组序列作为参考。筛选的15个MNP标记位点如表1所示:Based on the complete or partial genome sequences of 3794 Zika virus isolates published online, 15 MNP marker sites were obtained through sequence alignment. For species that do not have genomic data on the Internet, the genome sequence information of representative races of the microbial species to be detected can also be obtained through high-throughput sequencing, where high-throughput sequencing can be whole genome or simplified genome sequencing. In order to ensure the polymorphism of the selected markers, the genome sequences of at least 10 genetically representative isolates are generally used as references. The 15 MNP marker sites screened are shown in Table 1:
表1-所述MNP标记位点以及检测引物在参考序列上的起始位置Table 1 - the MNP marker site and the starting position of the detection primer on the reference sequence
所述步骤S1具体包括:The step S1 specifically includes:
选择所述寨卡病毒的一个代表株的基因组序列作为参考基因组,将所述基因组序列和所述参考基因组进行序列比对,获得所述寨卡病毒各毒株的单核酸多态性位点;Select the genome sequence of a representative strain of the Zika virus as a reference genome, compare the genome sequence with the reference genome, and obtain the single nucleic acid polymorphism sites of each strain of the Zika virus;
在所述参考基因组上,以100~300bp为窗口,以1bp为步长进行窗口平移,筛选获得多个候选MNP位点区域,其中,所述候选MNP位点区域含有≥2个所述单核苷酸变异位点,且两端各30bp的序列上均不存在所述单核酸多态性位点;On the reference genome, use 100-300 bp as a window, and use 1 bp as a step to perform window translation, and screen to obtain a plurality of candidate MNP site regions, wherein the candidate MNP site regions contain ≥ 2 of the mononuclei Nucleotide variation sites, and the single nucleic acid polymorphism sites do not exist on the 30bp sequences at both ends;
在所述候选多核苷酸多态性位点区域中筛选区分度DP≥0.2的区域作为MNP标记位点;其中,DP=d/t,t是在所述候选多核苷酸多态性位点区域中所有小种两两比较时的比较对数,d是在所述候选多核苷酸多态性位点区域中至少两个单核酸多态性差异的样品对数。In the candidate polynucleotide polymorphic site region, the region with a discrimination degree DP≥0.2 is selected as the MNP marker site; wherein, DP=d/t, t is at the candidate polynucleotide polymorphic site d is the logarithm of comparisons of at least two single nucleic acid polymorphism differences in the region of candidate polynucleotide polymorphism sites.
作为一种可选的实施方式,在所述参考基因组上,以100~300bp为窗口进行筛选时,也可选用其他步长,本实施方式采用步长为1bp,有利于全面的筛选。As an optional implementation, other step lengths can also be used when screening on the reference genome with a window of 100-300 bp. In this embodiment, the step size is 1 bp, which is conducive to comprehensive screening.
S2、多重PCR扩增引物的设计S2, the design of multiple PCR amplification primers
通过引物设计软件设计所述MNP位点的多重PCR扩增引物,引物设计遵循引物间互不干扰,所有引物可以组合成引物池进行多重PCR扩增,即所有设计的引物可以在一个扩增反应中均正常扩增。The multiplex PCR amplification primers of the MNP site are designed by primer design software. The primer design follows that the primers do not interfere with each other. All primers can be combined into a primer pool for multiplex PCR amplification, that is, all designed primers can be used in one amplification reaction. Amplified normally.
该实施方式中,用于鉴定所述MNP标记位点的引物,如表1所示。In this embodiment, the primers used to identify the MNP marker site are shown in Table 1.
S3、引物组合的检测效率评估S3. Evaluation of detection efficiency of primer combinations
所述MNP标记的检测方法是通过多重PCR对所有MNP位点一次性进行扩增,通过二代高通量测序对扩增产物进行测序,对测序数据进行分析,根据检出的位点评价所述引物组合的兼容性。The detection method of the MNP marker is to amplify all MNP sites at one time through multiplex PCR, sequence the amplified products through second-generation high-throughput sequencing, analyze the sequencing data, and evaluate the detected sites according to the detected sites. Compatibility of the primer combinations described above.
本实施例中,将湖北省疾控中心提供的拷贝数已知的寨卡病毒RNA,经商业化反转录试剂盒反转录成cDNA后,加入到人基因组RNA中,制备成1000拷贝/反应的模板,使用所述的引物组合,根据在4个文库中MNP位点的检出情况筛查扩增均匀、兼容性最优的引物组合,最终筛选出本发明表1所述的15个MNP位点的引物组合物。In this example, the Zika virus RNA with a known copy number provided by the Hubei Provincial Center for Disease Control and Prevention was reverse-transcribed into cDNA by a commercial reverse transcription kit, and then added to human genomic RNA to prepare 1000 copies/ For the template of the reaction, use the primer combination to screen the primer combination with uniform amplification and optimal compatibility according to the detection of the MNP sites in the 4 libraries, and finally screen out the 15 primer combinations described in Table 1 of the present invention. Primer compositions for MNP loci.
实施例2所述MNP位点和引物鉴定寨卡病毒的阈值设置和性能评估Threshold setting and performance evaluation of Zika virus identified by MNP sites and primers described in Example 2
1、MNP标记的检测1. Detection of MNP markers
本实施例中,将湖北省疾控中心提供的拷贝数已知的寨卡病毒RNA,经商业化反转录试剂盒反转录成cDNA后,加入到人基因组RNA中,制备1拷贝/反应、10拷贝/反应和100拷贝/反应的寨卡病毒模拟样本。同时设置的等体积的无菌水作为空白对照。共计4个样本,每个样本每天构建3个重复文库,连续检测4天,即每个样本获得12组测序数据,具体如表2所示。根据在12次重复实验中,在空白对照和寨卡病毒核酸标准品中检出的寨卡病毒MNP位点的测序片段数和位点数,评估检测方法的重现性、准确性、灵敏度,制定质控体系污染和目标病原体检出的阈值。MNP标记的检测流程如图3所示。In this example, the Zika virus RNA with a known copy number provided by the Hubei Provincial Center for Disease Control and Prevention was reverse-transcribed into cDNA by a commercial reverse transcription kit, and then added to human genomic RNA to prepare 1 copy/reaction , 10 copies/reaction and 100 copies/reaction of Zika virus mock samples. At the same time, an equal volume of sterile water was set as a blank control. A total of 4 samples were constructed, and 3 replicate libraries were constructed per day for each sample, and were tested continuously for 4 days, that is, 12 sets of sequencing data were obtained for each sample, as shown in Table 2. According to the number of sequenced fragments and the number of sites of Zika virus MNP sites detected in the blank control and Zika virus nucleic acid standards in 12 repeated experiments, the reproducibility, accuracy and sensitivity of the detection method were evaluated, and the formula was formulated. Thresholds for quality control system contamination and detection of target pathogens. The detection process of MNP markers is shown in Figure 3.
表2-寨卡病毒的MNP标记法的检测灵敏度、稳定性分析Table 2 - Detection sensitivity and stability analysis of Zika virus MNP labeling method
如表2所示,所述试剂盒能在10拷贝/反应的样本中稳定的检出6个以上MNP位点,而在0拷贝/反应的样本中最多检出1个MNP位点,所述试剂盒能够明显区分10拷贝/反应和0拷贝/反应的样品,具有技术稳定性和低至10拷贝/反应的检测灵敏度。As shown in Table 2, the kit can stably detect more than 6 MNP sites in a sample of 10 copies/reaction, and detect at most 1 MNP site in a sample of 0 copy/reaction. The kit can clearly distinguish samples with 10 copies/reaction and 0 copies/reaction, and has technical stability and detection sensitivity as low as 10 copies/reaction.
2、MNP标记检测试剂盒检测寨卡病毒的重现性和准确性评估2. Evaluation of the reproducibility and accuracy of the MNP marker detection kit for detecting Zika virus
基于两次重复中,共同检出位点的基因型是否可重现,评估MNP标记检测方法检测寨卡病毒的重现性和准确性。具体地,对100拷贝/反应的样品的12组数据分别进行成对比较,结果如表3所示。Based on whether the genotypes of the common detection loci are reproducible in two replicates, the reproducibility and accuracy of the MNP marker detection method for detecting Zika virus were evaluated. Specifically, 12 sets of data of samples with 100 copies/reaction were compared in pairs, and the results are shown in Table 3.
表3-寨卡病毒MNP标记检出方法的重现性和准确率评估Table 3-Reproducibility and accuracy evaluation of Zika virus MNP marker detection method
由表3可知,主基因型存在差异的MNP位点数目都为0;依据2次重复实验间可重现的基因型认为是准确的原则,准确率a=1-(1-r)/2=0.5+0.5r,r代表重现率,即主基因型可重现的位点数目占共有位点数目的比率。本项目重现性试验中每个样品不同文库间、不同建库批次间MNP标记主基因型的差异对数为0,重现率r=100%,准确率a=100%。因此,本发明的试剂盒能够准确检测低至10拷贝/反应的寨卡病毒。It can be seen from Table 3 that the number of MNP loci with differences in the main genotype is 0; according to the principle that the reproducible genotype between two repeated experiments is considered accurate, the accuracy rate a=1-(1-r)/2 =0.5+0.5r, r represents the recurrence rate, that is, the ratio of the number of reproducible loci of the main genotype to the number of common loci. In the reproducibility test of this project, the logarithm of the difference of the main genotype of the MNP marker between different libraries and different database construction batches of each sample is 0, the reproducibility rate r=100%, and the accuracy rate a=100%. Therefore, the kit of the present invention can accurately detect Zika virus as low as 10 copies/reaction.
3、MNP标记检测试剂盒检出寨卡病毒的阈值判定3. Threshold determination of Zika virus detected by MNP marker detection kit
如表2所示,在1个拷贝/反应的样本中能检出比对到寨卡病毒的序列,至少覆盖1个MNP位点。而在部分空白对照中也检出了寨卡病毒的序列。由于MNP标记检测方法的极度灵敏,因此检测过中的数据污染容易导致假阳性的产生。因此本实例中制定质控方案,具体如下:As shown in Table 2, sequences aligned to Zika virus can be detected in 1 copy/reaction sample, covering at least 1 MNP site. In some blank controls, the sequence of Zika virus was also detected. Due to the extreme sensitivity of the MNP marker detection method, data contamination during the detection process can easily lead to false positives. Therefore, in this example, a quality control plan is formulated, as follows:
1)测序数据量大于4.5百万碱基。测算依据是每个样品检测MNP位点的数目是15个,一条测序片段的长度是300个碱基,所以当数据量大于4.5百万碱基时,大部分样品一次实验可以保证覆盖每个位点的测序片段数量达到1000倍,保证对每个MNP位点碱基序列的精准分析。1) The amount of sequencing data is greater than 4.5 million bases. The calculation is based on the fact that the number of MNP sites detected in each sample is 15, and the length of a sequencing fragment is 300 bases. Therefore, when the data volume is greater than 4.5 million bases, most samples can be guaranteed to cover every site in one experiment. The number of sequencing fragments at each point reaches 1000 times, ensuring accurate analysis of the base sequence of each MNP site.
2)根据测试样品中的寨卡病毒的信号指数S和空白对照中寨卡病毒的噪音指数P判定污染是否可接受,其中:2) According to the signal index S of the Zika virus in the test sample and the noise index P of the Zika virus in the blank control, determine whether the pollution is acceptable, wherein:
空白对照噪音指数P=nc/Nc,其中nc和Nc分别代表空白对照中,寨卡病毒的测序片段的数量和总测序片段数量。Blank control noise index P=nc/Nc, wherein nc and Nc respectively represent the number of sequenced fragments and the total number of sequenced fragments of Zika virus in the blank control.
测试样品的信号指数S=nt/Nt,其中nt和Nt分别代表测试样品中,寨卡病毒的测序片段的数量和总测序片段数量。The signal index of the test sample S=nt/Nt, wherein nt and Nt respectively represent the number of sequenced fragments and the total number of sequenced fragments of Zika virus in the test sample.
3)计算测试样品中MNP标记位点的检出率,指的是检出位点数和总设计位点数的比值。3) Calculate the detection rate of MNP marker sites in the test sample, which refers to the ratio of the number of detected sites to the total number of designed sites.
表4-待测样品中寨卡病毒的信噪比Table 4 - Signal-to-noise ratio of Zika virus in samples to be tested
结果如表4所示,寨卡病毒在空白对照中的噪音指数平均值是0.04%,而在1个拷贝的样品中的信号指数平均值是0.33%,1个拷贝的样品和空白对照的信噪比的平均值是8.25,因此,本发明规定当信噪比大于10倍时,可判定检测体系中的污染是可接受的。The results are shown in Table 4, the mean value of the noise index of Zika virus in the blank control is 0.04%, and the mean value of the signal index in the sample of 1 copy is 0.33%, the signal of the sample of 1 copy and the blank control The average value of the noise ratio is 8.25. Therefore, the present invention stipulates that when the signal-to-noise ratio is greater than 10 times, it can be judged that the contamination in the detection system is acceptable.
在10个拷贝的样品和空白对照的信噪比的平均值是80.75,在10拷贝/反应的12组数据中,能稳定的检出至少6个MNP位点,占总位点的40.0%。因此,在保证准确性的情况下,本标准规定寨卡病毒的信噪比判定阈值是40,即当样品中寨卡病毒的信噪比大于40,且位点检出率大于等于30%时,判定样本中检出了寨卡病毒的核酸。The average signal-to-noise ratio of the samples with 10 copies and the blank control is 80.75, and at least 6 MNP sites can be stably detected in 12 sets of data with 10 copies/reaction, accounting for 40.0% of the total sites. Therefore, in the case of ensuring accuracy, this standard stipulates that the signal-to-noise ratio threshold of Zika virus is 40, that is, when the signal-to-noise ratio of Zika virus in the sample is greater than 40, and the detection rate of the locus is greater than or equal to 30%. , it was determined that the nucleic acid of Zika virus was detected in the sample.
因此,本发明所提供的试剂盒能准确、灵敏的检测到低至10copy/反应的寨卡病毒。Therefore, the kit provided by the present invention can accurately and sensitively detect Zika virus as low as 10 copies/reaction.
4、MNP标记检测方法检测寨卡病毒的特异性评估4. Specificity evaluation of MNP marker detection method for detection of Zika virus
人为的将寨卡病毒和结核分枝杆菌、不动杆菌属毒株、百日咳鲍特菌、霍氏鲍特菌、肺炎衣原体、肺炎支原体、EB病毒、流感嗜血杆菌、水痘带状疱疹病毒、巨细胞病毒、单纯疱疹病毒、人博卡病毒、肺炎克雷伯杆菌、军团菌属、卡他莫拉菌、铜绿假单胞菌、立克次氏体属、金黄色葡萄球菌、肺炎链球菌、酿脓链球菌的核酸按照混在一起,制备混合模板,以空白模板作为对照,采用本发明所提供的方法对混合模板中的寨卡病毒进行检测,进行3个重复实验。经序列比对和按照所述的质控方案和判定阈值进行分析后,在3个重复实验中都能特异的检出所述的寨卡病毒的15个MNP标记,表明所述MNP标记和所述试剂盒在复杂模板中检测目标微生物的高特异性。Man-made Zika virus and Mycobacterium tuberculosis, Acinetobacter strains, Bordetella pertussis, Bordetella hallii, Chlamydia pneumoniae, Mycoplasma pneumoniae, Epstein-Barr virus, Haemophilus influenzae, varicella zoster virus, Cytomegalovirus, herpes simplex virus, human bocavirus, Klebsiella pneumoniae, Legionella, Moraxella catarrhalis, Pseudomonas aeruginosa, Rickettsia, Staphylococcus aureus, Streptococcus pneumoniae 1. The nucleic acid of Streptococcus pyogenes was mixed together to prepare a mixed template, and a blank template was used as a control, and the Zika virus in the mixed template was detected by the method provided by the present invention, and three repeated experiments were carried out. After sequence alignment and analysis according to the quality control scheme and decision threshold, 15 MNP markers of the Zika virus can be specifically detected in three repeated experiments, indicating that the MNP markers and all The above kit can detect target microorganisms with high specificity in complex templates.
实施例3、寨卡病毒毒株间的遗传变异检测Example 3, Detection of Genetic Variation Between Zika Virus Strains
利用所述的试剂盒和MNP标记位点检测方法对湖北省疾控提供的寨卡病毒毒株的6份子代毒株进行检测,样本依次命名为S1-S6,每个样品的测序平均覆盖倍数达1416倍,每个毒株均可以检出全部15个MNP标记(表5)。将6个毒株的指纹图谱进行两两比对,结果如表5所示,有1份(S-2)和同批次一起检测的5份寨卡病毒均存在5个MNP标记的主基因型差异(表5),表明存在毒株间变异。Using the kit and MNP marker site detection method to detect 6 progeny strains of the Zika virus strain provided by Hubei Provincial Disease Control and Prevention, the samples were named S1-S6 in sequence, and the average sequencing coverage of each sample Up to 1416 times, each strain can detect all 15 MNP markers (Table 5). The fingerprints of the 6 strains were compared in pairs, and the results are shown in Table 5. There is 1 copy (S-2) and 5 copies of Zika virus detected together with the same batch. There are 5 major genes marked by MNP Type differences (Table 5), indicating the existence of inter-strain variation.
表5-6个寨卡病毒的检测分析Table 5-6 Detection analysis of Zika virus
由表5可知,本发明的试剂盒通过检测MNP标记鉴定毒株间遗传变异的应用可以用于保证不同实验室相同命名寨卡病毒毒株的遗传一致性,从而保证研究结果的可比较性,这对于寨卡病毒的科学研究具有重要意义。而在临床上,可针对差异位点是否影响抗药性斟酌诊断方案。As can be seen from Table 5, the application of the kit of the present invention to identify genetic variation between strains by detecting MNP markers can be used to ensure the genetic consistency of the same named Zika virus strain in different laboratories, thereby ensuring the comparability of research results, This is of great significance for the scientific research of Zika virus. In clinical practice, the diagnostic scheme can be considered according to whether the difference site affects drug resistance.
实施例4、寨卡病毒毒株内部的遗传变异检测Example 4. Detection of genetic variation within Zika virus strains
作为群体生物,寨卡病毒群体内部部分个体发生变异,使群体不再纯合,形成异质的杂合群体,影响尤其是试验用微生物表型的稳定性和一致性。这种变异体在对群体进行分子标记检测时,表现为位点的主基因型外的等位基因型。当变异个体还未累积时,只占群体的极少部分,表现为低频率的等位基因型。低频率的等位基因型往往和技术错误混在一起,导致现有技术难以区分。本发明检测的是高多态性的MNP标记。基于多个错误同时发生的几率低于一个错误发生的几率,MNP标记的技术错误率显著低于SNP标记。As a group organism, some individuals within the Zika virus group mutate, making the group no longer homozygous and forming a heterogeneous heterozygous group, which affects the stability and consistency of the microbial phenotype, especially in the test. This variant appears as an allelic type outside the main genotype of the locus when the population is tested for molecular markers. When the variant individual has not yet accumulated, it only accounts for a very small part of the population, showing a low frequency allele type. Low-frequency allele types are often mixed with technical errors, making them difficult to distinguish with existing techniques. The present invention detects highly polymorphic MNP markers. The technical error rate of MNP markers is significantly lower than that of SNP markers, based on the fact that multiple errors are less likely to occur simultaneously than one error.
本实施例次等位基因型的真实性评估按如下进行:首先按照以下规则排除具有链偏好性(在RNA双链上覆盖的测序序列数的比值)的等位基因型:链偏好性大于10倍,或者与主等位基因型的链偏好性之差大于5倍。The authenticity evaluation of the secondary allelic type in this embodiment is carried out as follows: first, the allelic type with strand preference (ratio of the number of sequenced sequences covered on the RNA double strand) is excluded according to the following rules: strand preference is greater than 10 times, or more than 5 times different from the strand preference of the main allele type.
不存在链偏好性的基因型基于表6测序序列数目和比例判定其真实性。表6列出了基于BINOM.INV函数计算在α=99.9999%的概率保障下,emax(n=1)和emax(n≥2)分别为1.03%和0.0994%时,在各个位点中次等位基因型测序序列数目的临界值,只有次等位基因型的测序序列数目超过临界值时判定为真实的次等位基因型。当存在多个候选次等位基因时,对各候选等位基因型的P值进行多重校正,FDR<0.5%的候选等位基因判定是真实的次等位基因型。The authenticity of genotypes without strand preference was determined based on the number and proportion of sequenced sequences in Table 6. Table 6 lists the calculations based on the BINOM.INV function under the probability guarantee of α=99.9999%, when e max (n=1) and e max (n≥2) are 1.03% and 0.0994%, respectively, in each site The critical value of the number of sequencing sequences of the minor allele type, only when the number of sequencing sequences of the minor allele type exceeds the critical value, it is determined as the real minor allele type. When there are multiple candidate minor alleles, the P value of each candidate allele type is multiple-corrected, and the candidate alleles with FDR<0.5% are judged to be true minor allele types.
表6涉及到的参数emax(n=1)和emax(n≥2)指的是携带n个SNP的错误等位基因的测序序列数占该位点总测序序列数的最高比例。emax(n=1)和emax(n≥2)分别为1.03%和0.0994%是根据在930个纯合MNP位点检测到的所有次等位基因型的频率获得。The parameters e max (n=1) and e max (n≥2) involved in Table 6 refer to the highest ratio of the number of sequenced sequences carrying the wrong alleles of n SNPs to the total number of sequenced sequences at this site. e max (n=1) and e max (n≥2) of 1.03% and 0.0994%, respectively, were obtained from the frequencies of all minor alleles detected at 930 homozygous MNP loci.
表6-部分测序深度下进行判定次等位基因型的临界值Table 6-Critical value for judging minor allelic genotypes under partial sequencing depth
按照上述参数,将基因型存在差异的两个毒株的核酸按照以下8个比例1/1000,3/1000,5/1000,7/1000,1/100,3/100,5/100,7/100混合,制备人工杂合样本,每个样本检测3次重复,获得共计24个测序数据。通过和所述两个毒株的MNP位点的基因型进行精准比对,在24个人工杂合样本中均检测到了存在杂合基因型的位点,说明了所开发的寨卡病毒的MNP标记检测方法在检测毒株群体内部遗传变异的适用性。According to the above parameters, the nucleic acids of the two strains with different genotypes are divided into the following 8 ratios: 1/1000, 3/1000, 5/1000, 7/1000, 1/100, 3/100, 5/100, 7 /100 mixed to prepare artificial heterozygous samples, each sample was detected 3 times, and a total of 24 sequencing data were obtained. Through accurate comparison with the genotypes of the MNP sites of the two strains, the sites with heterozygous genotypes were detected in 24 artificial heterozygous samples, which shows that the MNP of the Zika virus developed Applicability of marker detection methods to detect genetic variation within strain populations.
实施例5、寨卡病毒MNP指纹数据库的构建Embodiment 5, the construction of Zika virus MNP fingerprint database
利用常规CTAB法、商业化试剂盒等方法提取用于构建寨卡病毒MNP指纹数据库的所有毒株或是样本的RNA,采用琼脂糖凝胶和紫外分光光度计检测RNA的质量。将上述6个毒株的测序数据同参考基因型进行序列比对后,获得每个毒株每个位点的主基因型,形成每个毒株的MNP指纹图谱。将获得的每个毒株的MNP指纹图谱录入数据库文件,形成寨卡病毒RNA指纹数据库。The RNA of all strains or samples used to construct the Zika virus MNP fingerprint database was extracted by conventional CTAB method and commercial kits, and the quality of RNA was detected by agarose gel and ultraviolet spectrophotometer. After comparing the sequencing data of the above six strains with the reference genotype, the main genotype of each locus of each strain was obtained to form the MNP fingerprint of each strain. The obtained MNP fingerprint of each virus strain is entered into the database file to form the Zika virus RNA fingerprint database.
所构建的MNP指纹数据库基于检测的毒株的基因序列,因此和所有的高通量测序数据兼容,具有完全可共建共享、随时可更新的特征。将每次检测获得的毒株的MNP指纹图谱同基于已有基因组数据构建的MNP指纹数据库进行比对,将主基因型存在差异的毒株的MNP指纹图谱录入所构建的MNP指纹数据库,达到数据库的实时更新和共建共享。The constructed MNP fingerprint database is based on the gene sequences of the detected strains, so it is compatible with all high-throughput sequencing data, and has the characteristics of being completely co-constructed, shared, and updateable at any time. Compare the MNP fingerprints of the strains obtained for each detection with the MNP fingerprint database constructed based on existing genomic data, and enter the MNP fingerprints of strains with differences in main genotypes into the constructed MNP fingerprint database to reach the database. Real-time updates and co-construction and sharing.
实施例6、在寨卡病毒精细分型中的应用Embodiment 6, the application in Zika virus fine typing
首先构建寨卡病毒的参考序列库,由已经公开的寨卡病毒的基因组序列和已构建的寨卡病毒的指纹数据库组成;利用实施例2所述的引物组合和MNP标记位点检测方法,获得每个待测样品中寨卡病毒的MNP指纹图谱;将每个毒株的RNA指纹图谱同构建的参考序列库进行比对,筛选获得和序列库中遗传距离最接近的毒株;和已有毒株的基因型100%相同的,为已有的变型,在至少一个MNP位点存在主基因型差异的为新的变型,实现对寨卡病毒的精细分型。本实施例对6份寨卡病毒病毒株的分型结果如表5所示,6份毒株可被分为2个类型,和参考序列库的毒株均存在1个以上MNP位点的主基因型差异,判定为2个新的变异株,实现对寨卡病毒的精细分型。First construct the reference sequence library of Zika virus, which is composed of the genome sequence of Zika virus that has been disclosed and the fingerprint database of Zika virus that has been constructed; Utilize the primer combination and MNP marker site detection method described in Example 2 to obtain The MNP fingerprint of Zika virus in each sample to be tested; the RNA fingerprint of each strain is compared with the reference sequence library constructed, and the strain with the closest genetic distance to the sequence library is obtained by screening; and the existing virus If the genotypes of the strains are 100% identical, it is an existing variant, and if there is a main genotype difference at at least one MNP site, it is a new variant, so as to realize the fine typing of Zika virus. The typing results of the 6 Zika virus strains in this example are shown in Table 5. The 6 strains can be divided into 2 types, and the strains in the reference sequence library all have more than one main MNP locus. The difference in genotype was determined to be two new mutant strains, and the fine typing of Zika virus was realized.
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。Finally, it should also be noted that the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, but also Other elements not expressly listed, or inherent to the process, method, article, or apparatus are also included.
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。Having described preferred embodiments of embodiments of the present invention, additional changes and modifications can be made to these embodiments by those skilled in the art once the basic inventive concept is appreciated. Therefore, the appended claims are intended to be interpreted to cover the preferred embodiment and all changes and modifications which fall within the scope of the embodiments of the present invention.
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明实施例权利要求及其等同技术的范围之内,则本发明实施例也意图包含这些改动和变型在内。Apparently, those skilled in the art can make various changes and modifications to the embodiments of the present invention without departing from the spirit and scope of the embodiments of the present invention. In this way, if the modifications and variations of the embodiments of the present invention fall within the scope of the claims of the embodiments of the present invention and equivalent technologies thereof, the embodiments of the present invention are also intended to include these modifications and variations.
序列表 sequence listing
<110> 江汉大学<110> Jianghan University
<120> 一种寨卡病毒的MNP标记位点、引物组合物、试剂盒及其应用<120> A Zika virus MNP marker site, primer composition, kit and application thereof
<160> 30<160> 30
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 21<211> 21
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
gccctcgatg ctgaagaaga a 21gccctcgatg ctgaagaaga a 21
<210> 2<210> 2
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
aaccctggtt ggagctaaga 20aaccctggtt ggagctaaga 20
<210> 3<210> 3
<211> 22<211> 22
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
ccaaggcaga catagagatg gc 22ccaaggcaga catagagatg gc 22
<210> 4<210> 4
<211> 22<211> 22
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
cagtgacttc cgcgtctttt tc 22cagtgacttc cgcgtctttt tc 22
<210> 5<210> 5
<211> 23<211> 23
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
atttgtcatg gccctgggac taa 23atttgtcatg gccctgggac taa 23
<210> 6<210> 6
<211> 19<211> 19
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
cctccagcca atgcgcata 19cctccagcca atgcgcata 19
<210> 7<210> 7
<211> 25<211> 25
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
gagtgaaaag aatgacacat ggagg 25gagtgaaaag aatgacacat ggagg 25
<210> 8<210> 8
<211> 25<211> 25
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
accagctaag gacttgggta tgatc 25accagctaag gacttgggta tgatc 25
<210> 9<210> 9
<211> 25<211> 25
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
aacatagttc gtctcaagag tggag 25aacatagttc gtctcaagag tggag 25
<210> 10<210> 10
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
ccagtccccc accatagaga 20ccagtccccc accatagaga 20
<210> 11<210> 11
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
gaggctggag ctctgatcac 20gaggctggag ctctgatcac 20
<210> 12<210> 12
<211> 26<211> 26
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 12<400> 12
tctcgtcact gtatagataa gggaag 26tctcgtcact gtatagataa gggaag 26
<210> 13<210> 13
<211> 24<211> 24
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 13<400> 13
taccggataa tgctatcagt gcat 24taccggataa tgctatcagt gcat 24
<210> 14<210> 14
<211> 22<211> 22
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 14<400> 14
caagcttcca aaacctccca ag 22caagcttcca aaacctccca ag 22
<210> 15<210> 15
<211> 22<211> 22
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 15<400> 15
cgctcccttc tcactctaca ag 22cgctcccttc tcactctaca ag 22
<210> 16<210> 16
<211> 18<211> 18
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 16<400> 16
ccaggcaatg gcaacggc 18ccaggcaatg gcaacggc 18
<210> 17<210> 17
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 17<400> 17
gaagaccatg cacactggct 20gaagaccatg cacactggct 20
<210> 18<210> 18
<211> 22<211> 22
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 18<400> 18
gtcttccttt gctccgtcct aa 22gtcttccttt gctccgtcct aa 22
<210> 19<210> 19
<211> 22<211> 22
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 19<400> 19
ctggagctct agaggctgag at 22ctggagctct agaggctgag at 22
<210> 20<210> 20
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 20<400> 20
agctgggacc ttggtgaatg 20agctgggacc ttggtgaatg 20
<210> 21<210> 21
<211> 23<211> 23
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 21<400> 21
agaaccaccc atataggaca tgg 23agaaccaccc atataggaca tgg 23
<210> 22<210> 22
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 22<400> 22
tgtcggtcat ggctattcct 20tgtcggtcat ggctattcct 20
<210> 23<210> 23
<211> 18<211> 18
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 23<400> 23
gggggacgtc aagcagga 18gggggacgtc aagcagga 18
<210> 24<210> 24
<211> 25<211> 25
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 24<400> 24
ttgaatattc caggcagagt ctgaa 25ttgaatattc caggcagagt ctgaa 25
<210> 25<210> 25
<211> 24<211> 24
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 25<400> 25
tgataacatc accttggcaa tcct 24tgataacatc accttggcaa tcct 24
<210> 26<210> 26
<211> 25<211> 25
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)
<400> 26<400> 26
aatggtaagt tcttcttcac actgc 25aatggtaagt tcttcttcac actgc 25
<210> 27<210> 27
<211> 19<211> 19
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)
<400> 27<400> 27
ggtgctcggt ggacttctc 19ggtgctcggt ggacttctc 19
<210> 28<210> 28
<211> 18<211> 18
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)
<400> 28<400> 28
cctcttccca agcctgct 18cctcttccca agcctgct 18
<210> 29<210> 29
<211> 23<211> 23
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)
<400> 29<400> 29
ggtcatagat tccaggagat gcc 23ggtcatagat tccaggagat gcc 23
<210> 30<210> 30
<211> 25<211> 25
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)
<400> 30<400> 30
atgtactcat ctccaggttt gttgg 25atgtactcat ctccaggtt gttgg 25
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111356004.XA CN115029479B (en) | 2021-11-16 | 2021-11-16 | MNP (MNP) marking site of Zika virus, primer composition, kit and application of MNP marking site |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111356004.XA CN115029479B (en) | 2021-11-16 | 2021-11-16 | MNP (MNP) marking site of Zika virus, primer composition, kit and application of MNP marking site |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115029479A CN115029479A (en) | 2022-09-09 |
CN115029479B true CN115029479B (en) | 2023-06-16 |
Family
ID=83118216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111356004.XA Active CN115029479B (en) | 2021-11-16 | 2021-11-16 | MNP (MNP) marking site of Zika virus, primer composition, kit and application of MNP marking site |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115029479B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106702024A (en) * | 2016-12-31 | 2017-05-24 | 北京科兴中维生物技术有限公司 | Kit for detecting Zika virus and application of kit |
CA3017265A1 (en) * | 2016-03-11 | 2017-09-14 | F. Hoffmann-La Roche Ag | Compositions and methods for detection of zika virus |
WO2018042598A1 (en) * | 2016-09-01 | 2018-03-08 | 栄研化学株式会社 | Primer set for use in detection of zika virus |
CN107841573A (en) * | 2016-09-20 | 2018-03-27 | 魏颖颖 | Zika virus detection probe, fluorescent quantitation RT PCR kits and detection method |
CN107937502A (en) * | 2017-12-07 | 2018-04-20 | 江汉大学 | A kind of method for screening the high polymorphic molecular marker site of microorganism |
CN108531647A (en) * | 2018-03-30 | 2018-09-14 | 暨南大学 | A kind of zika virus one-step method fluorescence rt-PCR detection methods and kit |
CN108950077A (en) * | 2018-08-07 | 2018-12-07 | 中华人民共和国苏州出入境检验检疫局 | The qPCR detection method of zika virus |
KR20190002245A (en) * | 2017-06-29 | 2019-01-08 | 조용직 | Dual diagnostic kit and diagnostic method for zika virus |
CN113337640A (en) * | 2021-06-04 | 2021-09-03 | 深圳大学 | Dengue virus and Zika virus detection reagent combination and detection method |
-
2021
- 2021-11-16 CN CN202111356004.XA patent/CN115029479B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3017265A1 (en) * | 2016-03-11 | 2017-09-14 | F. Hoffmann-La Roche Ag | Compositions and methods for detection of zika virus |
WO2018042598A1 (en) * | 2016-09-01 | 2018-03-08 | 栄研化学株式会社 | Primer set for use in detection of zika virus |
CN107841573A (en) * | 2016-09-20 | 2018-03-27 | 魏颖颖 | Zika virus detection probe, fluorescent quantitation RT PCR kits and detection method |
CN106702024A (en) * | 2016-12-31 | 2017-05-24 | 北京科兴中维生物技术有限公司 | Kit for detecting Zika virus and application of kit |
KR20190002245A (en) * | 2017-06-29 | 2019-01-08 | 조용직 | Dual diagnostic kit and diagnostic method for zika virus |
CN107937502A (en) * | 2017-12-07 | 2018-04-20 | 江汉大学 | A kind of method for screening the high polymorphic molecular marker site of microorganism |
CN108531647A (en) * | 2018-03-30 | 2018-09-14 | 暨南大学 | A kind of zika virus one-step method fluorescence rt-PCR detection methods and kit |
CN108950077A (en) * | 2018-08-07 | 2018-12-07 | 中华人民共和国苏州出入境检验检疫局 | The qPCR detection method of zika virus |
CN113337640A (en) * | 2021-06-04 | 2021-09-03 | 深圳大学 | Dengue virus and Zika virus detection reagent combination and detection method |
Non-Patent Citations (2)
Title |
---|
Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes;FAYE O等;Virol J;第10卷;311 * |
寨卡病毒基因序列分析及核酸检测方法;狄弘玮;彭浩然;朱善邦;朱诗应;戚中田;唐海琳;赵平;;第二军医大学学报(第06期);661-667 * |
Also Published As
Publication number | Publication date |
---|---|
CN115029479A (en) | 2022-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113862384B (en) | MNP (MNP) marking site of Francisella tularensis, primer composition, kit and application | |
CN114214435B (en) | MNP (MNP) labeling combination of mycoplasma pneumoniae, primer pair combination, kit and application of MNP labeling combination | |
WO2023077488A1 (en) | Mnp marker combination of streptococcus pneumonia, primer pair combination, kit and uses thereof | |
WO2023077489A1 (en) | Mnp marker combination of yersinia pestis, primer pair combination, kit, and application thereof | |
CN115029479B (en) | MNP (MNP) marking site of Zika virus, primer composition, kit and application of MNP marking site | |
CN114836572B (en) | MNP (MNP) marker locus of paraenterovirus, primer composition, kit and application of MNP marker locus | |
CN114836573B (en) | MNP (MNP) marking site of measles virus, primer composition, kit and application of MNP marking site | |
CN115029477B (en) | MNP (MNP-associated protein) marker locus of human rhinovirus, primer composition, kit and application of MNP marker locus | |
CN114107563B (en) | A kind of MNP marker site, primer composition, kit and application of human metapneumovirus | |
CN114790486B (en) | A kind of MNP marker site, primer composition, kit and application of Bacillus anthracis | |
CN114836550B (en) | MNP (MNP) marking site of klebsiella pneumoniae, primer composition, kit and application of MNP marking site | |
CN113862383B (en) | A kind of MNP labeling site, primer composition and application of Bacillus subtilis | |
CN114790487B (en) | MNP (MNP) marking site of Huo Shibao terylen, primer composition, kit and application of MNP marking site | |
CN114107525B (en) | MNP (MNP) marking site of pseudomonas aeruginosa, primer composition, kit and application of MNP marking site | |
CN114790489B (en) | A kind of MNP marker site of Haemophilus influenzae, primer composition, kit and application thereof | |
CN115029454B (en) | A MNP marker site, primer composition, kit and application of Moraxella catarrhalis | |
CN114836574B (en) | MNP (MNP) marking site of mumps virus, primer composition, kit and application of MNP marking site | |
CN115029453B (en) | MNP (MNP) marking site of streptococcus pyogenes, primer composition, kit and application of MNP marking site | |
CN115029452B (en) | MNP (MNP) marking site of Legionella, primer composition, kit and application of MNP marking site | |
WO2023077486A1 (en) | Mnp marker combination for mycoplasma pneumoniae, primer pair combination, kit, and use | |
CN114107562B (en) | MNP (human parainfluenza virus) marker locus, primer composition, kit and application of MNP marker locus | |
CN114277165B (en) | A kind of MNP marker combination of Yersinia pestis, primer pair combination, kit and application thereof | |
CN114790488B (en) | MNP (MNP) marking site of staphylococcus aureus, primer composition, kit and application of MNP marking site | |
CN114277185B (en) | An adenovirus MNP label combination, primer pair combination, kit and application thereof | |
CN115044704B (en) | MNP (MNP) marking site of human coronavirus HCoV-229E, primer composition, kit and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |