CN115025770A - MnO (MnO) 2 /γ-Al 2 O 3 Low-dimensional nano composite material and preparation method and application thereof - Google Patents
MnO (MnO) 2 /γ-Al 2 O 3 Low-dimensional nano composite material and preparation method and application thereof Download PDFInfo
- Publication number
- CN115025770A CN115025770A CN202210550305.4A CN202210550305A CN115025770A CN 115025770 A CN115025770 A CN 115025770A CN 202210550305 A CN202210550305 A CN 202210550305A CN 115025770 A CN115025770 A CN 115025770A
- Authority
- CN
- China
- Prior art keywords
- mno
- low
- nanosheet
- carrier
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910018072 Al 2 O 3 Inorganic materials 0.000 title claims abstract description 123
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 85
- 239000000463 material Substances 0.000 title claims abstract description 45
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 239000002135 nanosheet Substances 0.000 claims abstract description 62
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims abstract description 42
- 239000002159 nanocrystal Substances 0.000 claims abstract description 19
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 60
- 239000012855 volatile organic compound Substances 0.000 claims description 33
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 17
- 238000001354 calcination Methods 0.000 claims description 14
- 229910006636 γ-AlOOH Inorganic materials 0.000 claims description 13
- 239000003638 chemical reducing agent Substances 0.000 claims description 12
- 229960005070 ascorbic acid Drugs 0.000 claims description 10
- 235000010323 ascorbic acid Nutrition 0.000 claims description 10
- 239000011668 ascorbic acid Substances 0.000 claims description 10
- 239000012286 potassium permanganate Substances 0.000 claims description 10
- 238000011065 in-situ storage Methods 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 8
- 229910052708 sodium Inorganic materials 0.000 claims description 8
- 239000011734 sodium Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 7
- 239000004202 carbamide Substances 0.000 claims description 7
- 239000002270 dispersing agent Substances 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 5
- 239000012670 alkaline solution Substances 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 claims description 4
- 238000006479 redox reaction Methods 0.000 claims description 4
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical group [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 239000002105 nanoparticle Substances 0.000 abstract description 16
- 230000003197 catalytic effect Effects 0.000 abstract description 14
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 32
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 30
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 21
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 17
- 239000003054 catalyst Substances 0.000 description 16
- 239000002253 acid Substances 0.000 description 14
- 239000002131 composite material Substances 0.000 description 14
- 229910002092 carbon dioxide Inorganic materials 0.000 description 12
- 238000003795 desorption Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- 239000001569 carbon dioxide Substances 0.000 description 10
- 238000012512 characterization method Methods 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 239000000395 magnesium oxide Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229910052593 corundum Inorganic materials 0.000 description 6
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002841 Lewis acid Substances 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 238000001994 activation Methods 0.000 description 4
- 239000012876 carrier material Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000007084 catalytic combustion reaction Methods 0.000 description 4
- 239000010431 corundum Substances 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 150000007517 lewis acids Chemical class 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000696 nitrogen adsorption--desorption isotherm Methods 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000662429 Fenerbahce Species 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/864—Removing carbon monoxide or hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/088—Decomposition of a metal salt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7027—Aromatic hydrocarbons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种低维锰基纳米复合材料,具体涉及一种MnO2/γ-Al2O3低维纳米复合材料及其制备方法与应用,属于环境催化材料领域。The invention relates to a low-dimensional manganese-based nanocomposite material, in particular to a MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite material, a preparation method and application thereof, and belongs to the field of environmental catalytic materials.
背景技术Background technique
臭氧主要是由可挥发性有机化合物(VOCs)和NOx在太阳光照下发生光化学反应产生的。为降低臭氧浓度,对其前体物VOCs进行控制,从源头上减少VOCs原辅材料的使用和降低VOCs的排放是极其必要的。但是,因为工艺技术和产品性能需求的原因,很难完全实现低浓度VOCs零排放。因此,末端治理仍是VOCs治理的重要组成部分。Ozone is mainly produced by the photochemical reaction of volatile organic compounds (VOCs) and NOx under sunlight. In order to reduce the ozone concentration and control its precursor VOCs, it is extremely necessary to reduce the use of VOCs raw and auxiliary materials and reduce the emission of VOCs from the source. However, due to process technology and product performance requirements, it is difficult to completely achieve zero emission of low-concentration VOCs. Therefore, terminal treatment is still an important part of VOCs treatment.
燃烧、催化燃烧等高效治理技术在我国大型喷涂、化工企业中得到广泛应用,但是VOCs的高效治理技术价格昂贵,运行成本与后期维护成本较高,多数企业难以承受,而只能采用活性炭吸附的简单工艺治理VOCs,这种方式难以避免会出现去除效率不高或者为负值等问题。所以,针对部分企业中小风量低浓度VOCs处理的问题,开发一种能够在较低温度下去除VOCs的催化剂势在必行,其可以大大减少外部供能,降低能耗。High-efficiency treatment technologies such as combustion and catalytic combustion have been widely used in large-scale spraying and chemical enterprises in my country, but the high-efficiency treatment technology of VOCs is expensive, with high operating costs and post-maintenance costs, which are unbearable for most enterprises, and can only use activated carbon adsorption It is difficult to avoid problems such as low removal efficiency or negative value in the simple process of treating VOCs. Therefore, it is imperative to develop a catalyst that can remove VOCs at a lower temperature, which can greatly reduce external energy supply and reduce energy consumption in view of the problem of small air volume and low concentration VOCs treatment in some enterprises.
然而,当前商用催化剂多以贵金属为主,价格高、资源浪费严重,研发可替代的非贵金属催化剂是环境催化领域关注的焦点和热点。单一组分的块体金属氧化物中,金属离子氧化-还原循环电子传递慢,晶格氧沿体相到表面方向扩散的活化能较高,金属氧化物上反应物分子的活化和气相氧的活化过程都只能在同一金属位上交替进行,导致金属氧化物反应活性较低。而负载型催化剂中的载体可以通过增加电子密度、提供分散相成核中心和调控表面酸碱性等作用来提高催化剂的性能。However, the current commercial catalysts are mostly precious metals, which are expensive and waste of resources. The research and development of alternative non-precious metal catalysts is the focus and hot spot in the field of environmental catalysis. In single-component bulk metal oxides, the electron transfer in the oxidation-reduction cycle of metal ions is slow, the activation energy of lattice oxygen diffusion along the bulk-to-surface direction is high, the activation of reactant molecules on the metal oxide and the gas-phase oxygen The activation process can only be carried out alternately on the same metal site, resulting in low reactivity of metal oxides. The carrier in the supported catalyst can improve the performance of the catalyst by increasing the electron density, providing the nucleation center of the dispersed phase, and regulating the acidity and alkalinity of the surface.
发明内容SUMMARY OF THE INVENTION
有鉴于此,为了解决催化燃烧技术中使用金属氧化物催化剂净化VOCs低温活性低、反应速率慢的问题,本发明开发了一种载体酸性可调、氧空位活性位点暴露度高,同时能够高效协同吸附活化有机废气和氧气分子并使其快速反应的MnO2/γ-Al2O3低维纳米复合材料。In view of this, in order to solve the problems of low low temperature activity and slow reaction rate of using metal oxide catalysts to purify VOCs in catalytic combustion technology, the present invention has developed a carrier with adjustable acidity, high exposure of oxygen vacancy active sites, and high efficiency. MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposites that synergistically adsorb and activate organic waste gas and oxygen molecules and make them react rapidly.
具体来说,第一方面,本发明提供了一种MnO2/γ-Al2O3低维纳米复合材料。所述MnO2/γ-Al2O3低维纳米复合材料包括γ-Al2O3纳米片载体,以及黏附于γ-Al2O3纳米片载体的氧化锰纳米晶粒;Specifically, in the first aspect, the present invention provides a MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite material. The MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite material comprises a γ-Al 2 O 3 nanosheet carrier, and manganese oxide nanocrystals adhered to the γ-Al 2 O 3 nanosheet carrier;
以纳米复合材料总质量为100wt%计,所述氧化锰纳米晶粒的质量分数为10~15wt%,所述γ-Al2O3纳米片载体的质量分数为85~90wt%。Based on the total mass of the nanocomposite material as 100 wt %, the mass fraction of the manganese oxide nanocrystal grains is 10-15 wt %, and the mass fraction of the γ-Al 2 O 3 nanosheet carrier is 85-90 wt %.
较佳地,所述氧化锰纳米晶粒的粒径为3~8nm,所述γ-Al2O3纳米片载体的长度为350~400nm,厚度为8~15nm;所述MnO2/γ-Al2O3低维纳米复合材料的比表面积为 200~220m2/g。Preferably, the particle size of the manganese oxide nanocrystal grains is 3-8 nm, the length of the γ-Al 2 O 3 nanosheet carrier is 350-400 nm, and the thickness is 8-15 nm; the MnO 2 /γ- The specific surface area of the Al 2 O 3 low-dimensional nanocomposite is 200-220 m 2 /g.
第二方面,本发明提供了一种上述MnO2/γ-Al2O3低维纳米复合材料的制备方法,包括以下步骤:In a second aspect, the present invention provides a method for preparing the above-mentioned MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite material, comprising the following steps:
(1)将γ-Al2O3纳米片载体分散于水中,加入还原剂并使其充分吸附于γ-Al2O3纳米片载体表面;(1) Disperse the γ-Al 2 O 3 nanosheet carrier in water, add a reducing agent and make it fully adsorbed on the surface of the γ-Al 2 O 3 nanosheet carrier;
(2)加入高锰酸钾溶液与还原剂发生氧化还原反应,生成的MnO2纳米晶粒原位沉积于γ- Al2O3纳米片载体表面;(2) adding potassium permanganate solution and reducing agent to undergo redox reaction, and the generated MnO 2 nanocrystal grains are deposited in situ on the surface of γ-Al 2 O 3 nanosheet carrier;
(3)离心、洗涤、干燥、研磨和焙烧,得到所述MnO2/γ-Al2O3低维纳米复合材料。(3) centrifugation, washing, drying, grinding and roasting to obtain the MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite material.
较佳地,所述γ-Al2O3纳米片载体的制备方法包括:向偏铝酸钠溶液中加入弱碱性溶液与分散剂形成混合溶液;Preferably, the preparation method of the γ-Al 2 O 3 nanosheet carrier comprises: adding a weak alkaline solution and a dispersant to the sodium metaaluminate solution to form a mixed solution;
将混合溶液进行水热反应,再进行离心、洗涤、干燥和研磨,得到γ-AlOOH纳米片前体;将γ-AlOOH纳米片前体进行煅烧和研磨,得到γ-Al2O3纳米片载体。The mixed solution is subjected to a hydrothermal reaction, followed by centrifugation, washing, drying and grinding to obtain a γ-AlOOH nanosheet precursor; the γ-AlOOH nanosheet precursor is calcined and ground to obtain a γ-Al 2 O 3 nanosheet carrier .
较佳的,所述弱碱性溶液为氨水或尿素溶液,所述分散剂为聚丙烯酸钠。Preferably, the weak alkaline solution is ammonia water or urea solution, and the dispersant is sodium polyacrylate.
较佳地,所述偏铝酸钠与尿素的摩尔比为1:8~12。Preferably, the molar ratio of the sodium metaaluminate to urea is 1:8-12.
较佳地,所述水热反应的温度为100~160℃,反应时间为8~12h。Preferably, the temperature of the hydrothermal reaction is 100-160° C., and the reaction time is 8-12 h.
较佳地,所述煅烧γ-AlOOH纳米片的温度为400~700℃,优选为500℃;煅烧时间为2~5h。Preferably, the temperature for calcining the γ-AlOOH nanosheets is 400-700°C, preferably 500°C; the calcining time is 2-5h.
较佳地,所述还原剂为抗坏血酸。Preferably, the reducing agent is ascorbic acid.
较佳地,所述γ-Al2O3纳米片载体与还原剂的质量比为1:(0.5~1.2);所述高锰酸钾与还原剂的摩尔比为1:(0.5~1)。Preferably, the mass ratio of the γ-Al 2 O 3 nanosheet carrier to the reducing agent is 1: (0.5-1.2); the molar ratio of the potassium permanganate to the reducing agent is 1: (0.5-1) .
较佳的,所述MnO2纳米晶粒原位沉积于γ-Al2O3纳米片载体表面后焙烧的温度为200~350℃,时间为2~5小时,气氛为空气气氛。Preferably, the MnO 2 nanocrystal grains are deposited in-situ on the surface of the γ-Al 2 O 3 nanosheet carrier and then calcined at a temperature of 200-350° C. for 2-5 hours, and the atmosphere is an air atmosphere.
第三方面,本发明提供了一种上述MnO2/γ-Al2O3低维纳米复合材料在去除可挥发性有机化合物VOCs中的应用,所述VOCs包括甲苯。In a third aspect, the present invention provides an application of the above MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite material in removing volatile organic compound VOCs, where the VOCs include toluene.
有益效果beneficial effect
本发明提供的MnO2/γ-Al2O3低维纳米复合材料,具有较大的比表面积、丰富的弱酸位点,与产物二氧化碳之间的化学结合性差,有利于甲苯等VOCs分子在材料表面的吸附活化,产物二氧化碳分子的脱附及催化氧化反应。该复合材料可以实现对中小风量低浓度VOCs废气的治理(主要针对甲苯、苯等),净化效率高(≥99%)、起燃点温度低、稳定性持久,能够降低催化剂最佳催化温度至200℃以下,减少反应时外部能量的供给,降低能耗。在小型涂装企业中小风量低浓度VOCs治理方面具有巨大应用潜力。The MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite material provided by the present invention has a large specific surface area, abundant weak acid sites, and poor chemical bonding with the product carbon dioxide, which is beneficial for VOCs molecules such as toluene in the material. The adsorption and activation of the surface, the desorption of the product carbon dioxide molecules and the catalytic oxidation reaction. The composite material can realize the treatment of low-concentration VOCs exhaust gas with small and medium air volume (mainly for toluene, benzene, etc.), with high purification efficiency (≥99%), low light-off temperature, long-lasting stability, and can reduce the optimal catalytic temperature of the catalyst to 200 ℃ below, reduce the supply of external energy during the reaction and reduce the energy consumption. It has great application potential in the treatment of VOCs with small air volume and low concentration in small painting enterprises.
附图说明Description of drawings
图1示出了本发明所述MnO2/γ-Al2O3低维纳米复合材料的制备过程示意图;FIG. 1 shows a schematic diagram of the preparation process of the MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite according to the present invention;
图2示出了实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料的SEM、低倍TEM、高倍 TEM、HAADF、HRTEM和mapping表征图;2 shows the SEM, low-magnification TEM, high-magnification TEM, HAADF, HRTEM and mapping characterization diagrams of the MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared in Example 1;
图3示出了实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料与对比例1制备的MnO2/ γ-Al2O3(c)低维纳米复合材料的XRD表征图;3 shows the MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared in Example 1 and the MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposite prepared in Comparative Example 1 XRD pattern of ;
图4示出了实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料与对比例1制备的MnO2/ γ-Al2O3(c)低维纳米复合材料的NH3程序升温脱附(NH3-TPD)谱图;4 shows the MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared in Example 1 and the MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposite prepared in Comparative Example 1 The NH 3 temperature programmed desorption (NH 3 -TPD) spectrum;
图5示出了实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料与对比例1制备的MnO2/ γ-Al2O3(c)低维纳米复合材料的CO2程序升温脱附(CO2-TPD)谱图;5 shows the MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared in Example 1 and the MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposite prepared in Comparative Example 1 The CO 2 temperature programmed desorption (CO 2 -TPD) spectrum;
图6示出了对比例1制备的MnO2/γ-Al2O3(c)纳米复合材料的SEM和TEM表征图;6 shows the SEM and TEM characterization images of the MnO 2 /γ-Al 2 O 3 (c) nanocomposite prepared in Comparative Example 1;
图7示出了实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料与对比例1制备的MnO2/ γ-Al2O3(c)低维纳米复合材料的氮气吸附-脱附等温曲线图;7 shows the MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared in Example 1 and the MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposite prepared in Comparative Example 1 The nitrogen adsorption-desorption isotherm curve of ;
图8示出了实施例1制备的γ-Al2O3(s)纳米片和对比例1采用的商业氧化铝纳米颗粒γ- Al2O3(c)的吡啶红外谱图;8 shows the pyridine infrared spectra of the γ-Al 2 O 3 (s) nanosheets prepared in Example 1 and the commercial alumina nanoparticles γ-Al 2 O 3 (c) used in Comparative Example 1;
图9示出了实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料与对比例1制备的MnO2/ γ-Al2O3(c)低维纳米复合材料在去除600ppm甲苯时催化效率随温度变化的谱图;9 shows the MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared in Example 1 and the MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposite prepared in Comparative Example 1 Spectra of catalytic efficiency as a function of temperature when removing 600 ppm of toluene;
图10示出了MnO2/γ-Al2O3(s)材料在温度升高至200℃时的催化稳定性测试结果示意图;Figure 10 shows a schematic diagram of the catalytic stability test results of the MnO 2 /γ-Al 2 O 3 (s) material when the temperature is increased to 200°C;
图11示出了对比例2制备的MnO2/SiO2纳米复合材料的SEM和TEM表征图;Figure 11 shows the SEM and TEM characterization images of the MnO 2 /SiO 2 nanocomposite prepared in Comparative Example 2;
图12示出了实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料与对比例1制备的MnO2/ γ-Al2O3(c)、对比例2制备的MnO2/SiO2和对比例3制备的MnO2/MgO低维纳米复合材料在去除600ppm甲苯时催化效率随温度变化的谱图;Figure 12 shows the MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared in Example 1 and the MnO 2 /γ-Al 2 O 3 (c) prepared in Comparative Example 1 and Comparative Example 2 The spectra of the MnO 2 /SiO 2 and the MnO 2 /MgO low-dimensional nanocomposites prepared in Comparative Example 3 in the removal of 600 ppm toluene as a function of temperature;
图13示出了对比例3制备的MnO2/MgO纳米复合材料的SEM和TEM表征图。FIG. 13 shows the SEM and TEM characterization images of the MnO 2 /MgO nanocomposite prepared in Comparative Example 3. FIG.
具体实施方式Detailed ways
以下通过实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。The present invention is further described below through the embodiments, and it should be understood that the following embodiments are only used to illustrate the present invention, but not to limit the present invention.
本发明提供了一种应用于催化氧化低浓度(小于1000ppm)可挥发性有机化合物VOCs的MnO2/γ-Al2O3低维纳米复合材料及其制备方法。所述MnO2/γ-Al2O3低维纳米复合材料由细小的氧化锰纳米晶粒黏附于氧化铝纳米片载体而形成。The invention provides a MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite material for catalytic oxidation of low-concentration (less than 1000 ppm) volatile organic compounds VOCs and a preparation method thereof. The MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite material is formed by adhering fine manganese oxide nanocrystal grains to an alumina nanosheet carrier.
在一些实施方式中,以纳米复合材料的总质量为100wt%计,所述氧化锰纳米晶粒的质量分数可以为10~15wt%,所述氧化铝纳米片载体的质量分数可以为85~90wt%。优选地,所述氧化锰纳米晶粒的尺寸可以为3~8nm;所述氧化铝纳米片载体的长度为350~400 nm,厚度为8~15nm。In some embodiments, based on the total mass of the nanocomposite material as 100 wt %, the mass fraction of the manganese oxide nanocrystal grains may be 10-15 wt %, and the mass fraction of the alumina nanosheet carrier may be 85-90 wt % %. Preferably, the size of the manganese oxide nanocrystal grains may be 3-8 nm; the length of the alumina nanosheet carrier is 350-400 nm, and the thickness is 8-15 nm.
所述低维纳米复合材料中,载体材料优选采用γ相的氧化铝纳米片,其比表面积可以达到200m2/g以上,复合材料的比表面积可以达到200-220m2/g。较大的载体比表面积为金属氧化物颗粒的附着提供丰富的成核中心,复合材料中氧化锰纳米晶粒的分散度高、粒径小、与载体相互作用强。同时,γ-Al2O3纳米片载体的表面弱酸性位点较多(酸性位点总量较高,且酸性位点与Lewis酸性位点的比值较高),易于吸附活化甲苯等可挥发性有机化合物,与二氧化碳之间的化学结合性较差。此外,复合材料中MnO2上的氧空位与氧化铝载体上的酸性位点能够协同活化氧气和甲苯等VOCs分子并发生反应,促进低温催化氧化过程的实现。In the low-dimensional nanocomposite material, the carrier material is preferably γ-phase alumina nanosheets, the specific surface area of which can reach more than 200 m 2 /g, and the specific surface area of the composite material can reach 200-220 m 2 /g. The larger specific surface area of the carrier provides abundant nucleation centers for the attachment of metal oxide particles, and the manganese oxide nanocrystals in the composite have high dispersion, small particle size, and strong interaction with the carrier. At the same time, the surface of the γ-Al 2 O 3 nanosheet carrier has more weakly acidic sites ( The total amount of acidic sites is high, and The ratio of acid sites to Lewis acid sites is higher), which is easy to adsorb and activate volatile organic compounds such as toluene, and has poor chemical bonding with carbon dioxide. In addition, the oxygen vacancies on MnO2 in the composites and the acidic sites on the alumina support can synergistically activate and react with VOCs molecules such as oxygen and toluene, promoting the realization of the low-temperature catalytic oxidation process.
基于以上特性,本发明提供的MnO2/γ-Al2O3低维纳米复合材料能够作为低浓度甲苯等VOCs在低温下催化燃烧的催化剂,催化氧化过程中产生的二氧化碳更容易从催化剂表面扩散到外部环境。Based on the above characteristics, the MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite material provided by the present invention can be used as a catalyst for the catalytic combustion of VOCs such as low-concentration toluene at low temperature, and the carbon dioxide generated during the catalytic oxidation process is more easily diffused from the surface of the catalyst to the external environment.
以下结合附图1示例性说明本发明所述MnO2/γ-Al2O3低维纳米复合材料的制备过程。The preparation process of the MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite material according to the present invention is exemplarily described below with reference to FIG. 1 .
水热法制备γ-AlOOH纳米片前体。首先,将适量偏铝酸钠完全溶解于水中,磁力搅拌下,向溶液中加入氨水或尿素调节偏铝酸钠水溶液的pH为7.5-10,通过加入氨水或尿素可以保证在pH值较低的条件下AlO-也能够发生水解并生成氢氧化物沉淀。可以控制偏铝酸钠与尿素的摩尔比为1:8-12,以保证适宜纳米片形貌的生成。然后,加入适量聚丙烯酸钠等分散剂,完全溶解于溶液中,所述分散剂的用量可以为0.1~0.3g。室温搅拌混合均匀后,将溶液转移至高压反应釜中,于100-160℃下静置反应8~12h。反应结束后,离心、洗涤、冷冻干燥、研磨,得到白色粉末状γ-AlOOH纳米片前体。Preparation of γ-AlOOH nanosheet precursors by hydrothermal method. First, dissolve an appropriate amount of sodium metaaluminate in water, and add ammonia or urea to the solution to adjust the pH of the sodium metaaluminate aqueous solution to 7.5-10 under magnetic stirring. AlO - can also be hydrolyzed under these conditions and form hydroxide precipitation. The molar ratio of sodium metaaluminate to urea can be controlled to be 1:8-12 to ensure the formation of suitable nanosheet morphology. Then, an appropriate amount of dispersing agent such as sodium polyacrylate is added to be completely dissolved in the solution, and the amount of the dispersing agent may be 0.1-0.3 g. After stirring and mixing at room temperature, the solution was transferred to an autoclave, and the reaction was allowed to stand at 100-160°C for 8-12 hours. After the reaction, centrifuge, wash, freeze-dry, and grind to obtain a white powdery γ-AlOOH nanosheet precursor.
空气煅烧法合成γ-Al2O3纳米片载体。将γ-AlOOH纳米片前体平铺在方形刚玉坩埚中,将刚玉坩埚置于马弗炉中煅烧2~5h,煅烧温度为400-700℃,优选为500℃,升温速率为2-10℃/min。将煅烧后的产物研磨,得到结晶度较低的白色粉末状γ-Al2O3纳米片载体。Synthesis of γ-Al 2 O 3 nanosheet supports by air calcination. The γ-AlOOH nanosheet precursor is laid flat in a square corundum crucible, and the corundum crucible is placed in a muffle furnace for calcination for 2-5 hours. The calcination temperature is 400-700 °C, preferably 500 °C, and the heating rate is 2-10 °C. /min. The calcined product was ground to obtain a white powdery γ-Al 2 O 3 nanosheet carrier with low crystallinity.
浸渍-原位表面沉积法合成MnO2/γ-Al2O3低维纳米复合材料。将γ-Al2O3白色粉末均匀分散于水中,添加适量还原剂抗坏血酸,其中γ-Al2O3与抗坏血酸的质量比可以为1:(0.5~1.2)。搅拌混合均匀,使抗坏血酸充分吸附于氧化铝载体表面。然后,将高锰酸钾以溶液的形式按照高锰酸钾与抗坏血酸的摩尔比为1:(0.5~1)的用量滴加到抗坏血酸与氧化铝载体的混合溶液中,高锰酸钾的浓度可以为0.2-0.8mol/L,滴加速度可以为0.5-1.5ml/min,室温搅拌2-4h,使还原剂抗坏血酸与高锰酸钾充分发生氧化还原反应,MnO2晶粒原位沉积于氧化铝载体表面。反应结束后,离心、洗涤,冷冻干燥并将产物研磨,于空气中200~350℃下焙烧2~5h(优选焙烧的升温速率为2-10℃/min),得到棕黑色粉末状 MnO2/γ-Al2O3低维纳米复合材料。Synthesis of MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposites by impregnation-in situ surface deposition method. The γ-Al 2 O 3 white powder is uniformly dispersed in water, and an appropriate amount of reducing agent ascorbic acid is added, wherein the mass ratio of γ-Al 2 O 3 to ascorbic acid can be 1:(0.5-1.2). Stir and mix evenly, so that the ascorbic acid is fully adsorbed on the surface of the alumina carrier. Then, potassium permanganate is added dropwise to the mixed solution of ascorbic acid and alumina carrier in the form of a solution according to the molar ratio of potassium permanganate to ascorbic acid as 1: (0.5~1), the concentration of potassium permanganate is It can be 0.2-0.8mol/L, and the dropping rate can be 0.5-1.5ml/min. Stir at room temperature for 2-4h, so that the reducing agent ascorbic acid and potassium permanganate fully undergo redox reaction, and the MnO 2 grains are deposited in situ in the oxidation-reduction reaction. Aluminium carrier surface. After the reaction is completed, centrifuge, wash, freeze-dry and grind the product, and calcinate at 200-350° C. in air for 2-5h (preferably the heating rate of calcination is 2-10° C./min) to obtain brown-black powdery MnO 2 / γ-Al 2 O 3 low-dimensional nanocomposites.
本发明中使用浸渍-原位表面沉积法有利于MnO2在γ-Al2O3纳米片载体上的均匀分布,而且有利于获得尺寸较小的MnO2晶粒。The use of the dip-in-situ surface deposition method in the present invention is beneficial to the uniform distribution of MnO 2 on the γ-Al 2 O 3 nanosheet carrier, and is beneficial to obtain MnO 2 crystal grains with smaller size.
本发明所得到的MnO2/γ-Al2O3低维纳米复合材料作为解决中小风量低浓度VOCs低温下高效催化氧化的催化剂时,将其加入固定床连续流动反应器中进行性能测试,空速为 60000mL g-1h-1,反应进气与出气中的甲苯C7H8浓度通过气相色谱在线检测。本发明提供的复合材料(MnO2/γ-Al2O3)具有较高的C7H8催化氧化活性:对600ppm的C7H8可在 153℃的低温条件下实现90%以上的去除转化率;将温度升高至200℃时,该复合材料可持续实现至少24个小时的99%以上的去除转化率。When the MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite material obtained by the invention is used as a catalyst for solving the high-efficiency catalytic oxidation of VOCs at low temperature with medium and small air volume and low concentration, it is added into a fixed-bed continuous flow reactor for performance testing. The flow rate was 60000 mL g -1 h -1 , and the concentration of toluene C 7 H 8 in the reaction inlet and outlet gas was detected online by gas chromatography. The composite material (MnO 2 /γ-Al 2 O 3 ) provided by the invention has high C 7 H 8 catalytic oxidation activity: 600 ppm of C 7 H 8 can be removed at a low temperature of 153° C. over 90% Conversion rate; when the temperature is raised to 200°C, the composite material can continuously achieve a removal conversion rate of more than 99% for at least 24 hours.
本发明利用空气煅烧法制备表面酸碱性适宜的氧化铝载体材料,并利用浸渍-原位表面沉积法制备MnO2/γ-Al2O3低维纳米复合材料,该复合材料针对中小风量低浓度VOCs处理的问题,实现了较低温度下去除VOCs的可行性。而且,该催化剂载体材料比表面积较大,为金属氧化物颗粒提供丰富的成核中心,从而产生分散度高、粒径小、金属氧化物与载体相互作用强的催化剂。同时,载体表面的酸性位点有利于VOCs分子吸附和产物CO2分子的脱附,进一步促进低浓度甲苯等VOCs在低温下的催化燃烧。The invention uses the air calcination method to prepare the alumina carrier material with suitable surface acidity and alkalinity, and uses the impregnation-in-situ surface deposition method to prepare the MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite material, and the composite material is suitable for medium and small air volume and low The problem of concentration VOCs treatment realizes the feasibility of removing VOCs at lower temperature. Moreover, the catalyst carrier material has a large specific surface area, which provides abundant nucleation centers for the metal oxide particles, thereby producing a catalyst with high dispersion, small particle size, and strong interaction between the metal oxide and the carrier. At the same time, the acidic sites on the surface of the carrier are beneficial to the adsorption of VOCs molecules and the desorption of product CO2 molecules, which further promotes the catalytic combustion of VOCs such as low-concentration toluene at low temperatures.
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适范围内的选择,而并非要限定于下文示例的具体数值。The following further examples are given to illustrate the present invention in detail. It should also be understood that the following examples are only used to further illustrate the present invention, and should not be construed as limiting the protection scope of the present invention. Some non-essential improvements and adjustments made by those skilled in the art according to the above content of the present invention belong to the present invention. scope of protection. The specific process parameters and the like in the following examples are only an example in the suitable range, that is, those skilled in the art can make selections within the suitable range through the descriptions herein, and are not intended to be limited to the specific values in the following examples.
实施例1Example 1
将1g(0.012mol)偏铝酸钠溶解于50mL水中,磁力搅拌下,向溶液中加入6g(0.1mol)尿素和0.20g聚丙烯酸钠。室温搅拌1h后,将溶液转移至反应釜中,于140℃烘箱中静置反应10h。反应后,经离心、水洗,于冷冻干燥机中冻干。将产物研磨、收集,得到γ-AlOOH白色粉末。Dissolve 1 g (0.012 mol) of sodium metaaluminate in 50 mL of water, and add 6 g (0.1 mol) of urea and 0.20 g of sodium polyacrylate to the solution under magnetic stirring. After stirring at room temperature for 1 hour, the solution was transferred to the reaction kettle and left to react in a 140°C oven for 10 hours. After the reaction, it was centrifuged, washed with water, and lyophilized in a freeze dryer. The product was ground and collected to give γ-AlOOH white powder.
然后,将1gγ-AlOOH白色粉末样品平铺在方形刚玉坩埚中,将刚玉坩埚置于马弗炉中煅烧2h,煅烧温度为500℃,升温速率为5℃/min,收集得到γ-Al2O3白色粉末。Then, 1 g of γ-AlOOH white powder sample was laid flat in a square corundum crucible, and the corundum crucible was calcined in a muffle furnace for 2 h at a calcination temperature of 500 °C and a heating rate of 5 °C/min, and collected to obtain γ-Al 2 O 3 white powder.
最后,将0.3gγ-Al2O3白色粉末均匀分散于30mL水中,将0.176g(0.001mol)抗坏血酸加入上述溶液中,室温搅拌10h后使抗坏血酸充分吸附到氧化铝载体表面,然后将5mL高锰酸钾溶液(0.4mol/L)滴加到上述混合溶液中,室温搅拌2h。反应结束后,经离心、水洗,于冷冻干燥机中冻干并将产物研磨,转移至300℃马弗炉中煅烧2h,升温速率为5℃ /min,得到所述MnO2/γ-Al2O3低维纳米复合材料,记为MnO2/γ-Al2O3(s)低维纳米复合材料。Finally, 0.3 g of γ-Al 2 O 3 white powder was uniformly dispersed in 30 mL of water, 0.176 g (0.001 mol) of ascorbic acid was added to the above solution, and after stirring at room temperature for 10 h, the ascorbic acid was fully adsorbed to the surface of the alumina carrier, and then 5 mL of permanganate was added to the solution. Potassium acid solution (0.4mol/L) was added dropwise to the above mixed solution and stirred at room temperature for 2h. After the reaction was completed, centrifuged, washed with water, freeze-dried in a freeze dryer, ground the product, transferred to a 300°C muffle furnace for calcination for 2h, and the heating rate was 5°C/min to obtain the MnO 2 /γ-Al 2 O 3 low-dimensional nanocomposite, denoted as MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite.
以纳米复合材料总质量为100wt%计,本实施例1所制备复合材料中氧化锰纳米晶粒的质量分数为13wt%,所述γ-Al2O3纳米片载体的质量分数为87wt%。Based on the total mass of the nanocomposite material as 100wt%, the mass fraction of manganese oxide nanocrystal grains in the composite material prepared in Example 1 is 13wt%, and the mass fraction of the γ-Al 2 O 3 nanosheet carrier is 87wt%.
以下通过扫描电镜、透射电镜、X射线衍射、氮气吸附-脱附、化学吸附表征MnO2/γ-Al2O3(s)低维纳米复合材料的化学组成和化学微环境。The chemical composition and chemical microenvironment of MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption-desorption, and chemical adsorption.
图2示出了实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料的SEM、低倍 TEM、高倍TEM、HAADF、HRTEM和mapping表征图。从图2中可以看出,Al2O3纳米片的长度和厚度分别为360和10nm,而复合材料是在氧化铝纳米片载体上黏附着许多细小的纳米颗粒且粒径尺寸约为5nm。HAADF图中显示的小亮点和mapping照片中Mn元素的分布,均证明细小的氧化锰纳米颗粒高度分散在氧化铝纳米片载体上。2 shows the SEM, low-magnification TEM, high-magnification TEM, HAADF, HRTEM and mapping characterization images of the MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared in Example 1. It can be seen from Fig. 2 that the length and thickness of the Al 2 O 3 nanosheets are 360 and 10 nm, respectively, and the composite material is made by adhering many fine nanoparticles on the alumina nanosheet carrier with a particle size of about 5 nm. The small bright spots shown in the HAADF map and the distribution of Mn elements in the mapping photos both prove that the fine manganese oxide nanoparticles are highly dispersed on the alumina nanosheet support.
图3示出了实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料的XRD表征图。从图中可以看出在37.76°、45.80°和66.92°处有三处弱而宽的衍射峰,对应于立方晶系γ-Al2O3的(311)、(400)和(440)晶面,表明载体是结晶度较低的γ相氧化铝材料,但是没有识别出明显氧化锰特征峰,证明氧化锰晶粒尺寸小且高度分散于氧化铝纳米片载体上。FIG. 3 shows the XRD characterization diagram of the MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared in Example 1. FIG. It can be seen from the figure that there are three weak and broad diffraction peaks at 37.76°, 45.80° and 66.92°, corresponding to the (311), (400) and (440) crystal planes of the cubic system γ-Al 2 O 3 , indicating that the carrier is a γ-phase alumina material with low crystallinity, but no obvious characteristic peaks of manganese oxide are identified, which proves that manganese oxide has small grain size and is highly dispersed on the alumina nanosheet carrier.
图4示出了实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料与对比例1制备的MnO2/γ-Al2O3(c)低维纳米复合材料的NH3程序升温脱附(NH3-TPD)谱图;图5示出了实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料与对比例1制备的MnO2/γ-Al2O3(c)低维纳米复合材料的CO2程序升温脱附(CO2-TPD)谱图。从图4所示的NH3-TPD图中可以看出,MnO2/γ-Al2O3(s)在109℃处有一个高而宽的峰,对应于弱酸性位点;从图5所示的 CO2-TPD图中可以看出,MnO2/γ-Al2O3(s)的二氧化碳脱附温度在118℃。证明实施例1制备的γ相氧化铝纳米片的酸性位点主要以弱酸性位点为主,与二氧化碳之间的化学结合稳定性低,使甲苯等VOCs催化氧化过程中产生的二氧化碳更容易从催化剂表面扩散到外部环境。4 shows the MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared in Example 1 and the MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposite prepared in Comparative Example 1 The NH 3 temperature - programmed desorption (NH 3 -TPD) spectrum of CO 2 temperature-programmed desorption (CO 2 -TPD) spectra of 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposites. From the NH 3 -TPD plot shown in Fig. 4, it can be seen that MnO 2 /γ-Al 2 O 3 (s) has a high and broad peak at 109 °C, corresponding to the weakly acidic site; from Fig. 5 As can be seen from the CO 2 -TPD diagram shown, the CO2 desorption temperature of MnO 2 /γ-Al 2 O 3 (s) is at 118°C. It is proved that the acid sites of the γ-phase alumina nanosheets prepared in Example 1 are mainly weak acid sites, and the chemical bonding stability with carbon dioxide is low, so that the carbon dioxide generated during the catalytic oxidation of VOCs such as toluene can be easily removed from the carbon dioxide. The catalyst surface diffuses to the external environment.
实施例2Example 2
与实施例1的方案基本相同,主要区别在于:本实施例中γ-AlOOH转化为γ-Al2O3白色粉末的煅烧温度为600℃。以纳米复合材料总质量为100wt%计,本实施例所制备复合材料中氧化锰纳米晶粒的质量分数为13wt%,所述γ-Al2O3纳米片载体的质量分数为87wt%。The scheme is basically the same as that of Example 1, the main difference is that: in this example, the calcination temperature for converting γ-AlOOH into γ-Al 2 O 3 white powder is 600°C. Based on the total mass of the nanocomposite material as 100 wt%, the mass fraction of manganese oxide nanocrystal grains in the composite material prepared in this example is 13 wt%, and the mass fraction of the γ-Al 2 O 3 nanosheet carrier is 87 wt %.
实施例3Example 3
与实施例1的方案基本相同,主要区别在于:本实施例中γ-AlOOH转化为γ-Al2O3白色粉末的煅烧温度为700℃。以纳米复合材料总质量为100wt%计,本实施例所制备复合材料中氧化锰纳米晶粒的质量分数为12.8wt%,所述γ-Al2O3纳米片载体的质量分数为87.2 wt%。The scheme is basically the same as that of Example 1, except that the calcination temperature for converting γ-AlOOH into γ-Al 2 O 3 white powder in this example is 700°C. Based on the total mass of the nanocomposite material as 100 wt %, the mass fraction of manganese oxide nanocrystals in the composite material prepared in this example is 12.8 wt %, and the mass fraction of the γ-Al 2 O 3 nanosheet carrier is 87.2 wt % .
实施例4Example 4
与实施例1的方案基本相同,主要区别在于:本实施例中高锰酸钾溶液的浓度为0.2 mol/L。以纳米复合材料总质量为100wt%计,本实施例所制备复合材料中氧化锰纳米晶粒的质量分数为10wt%,所述γ-Al2O3纳米片载体的质量分数为90wt%。The scheme is basically the same as that of Example 1, and the main difference is that: in this example, the concentration of the potassium permanganate solution is 0.2 mol/L. Based on the total mass of the nanocomposite material as 100wt%, the mass fraction of manganese oxide nanocrystal grains in the composite material prepared in this example is 10wt%, and the mass fraction of the γ-Al 2 O 3 nanosheet carrier is 90wt%.
实施例5Example 5
与实施例1的方案基本相同,主要区别在于:本实施例中高锰酸钾溶液的浓度为0.8 mol/L。以纳米复合材料总质量为100wt%计,本实施例所制备复合材料中氧化锰纳米晶粒的质量分数为15wt%,所述γ-Al2O3纳米片载体的质量分数为85wt%。The scheme is basically the same as that of Example 1, and the main difference is that: in this example, the concentration of the potassium permanganate solution is 0.8 mol/L. Based on the total mass of the nanocomposite material as 100wt%, the mass fraction of manganese oxide nanocrystal grains in the composite material prepared in this example is 15wt%, and the mass fraction of the γ-Al 2 O 3 nanosheet carrier is 85wt%.
对比例1Comparative Example 1
与实施例1的方案基本相同,主要区别在于:本对比例中直接采用商业氧化铝粉体(Adamas试剂公司,99%,gamma-phase Al2O3,20nm)作为原料,制备得到的MnO2/γ- Al2O3低维纳米复合材料记为MnO2/γ-Al2O3(c)低维纳米复合材料。The scheme is basically the same as that of Example 1, the main difference is: in this comparative example, commercial alumina powder (Adamas Reagent Company, 99%, gamma-phase Al 2 O 3 , 20nm) is directly used as the raw material, and the prepared MnO 2 The /γ-Al 2 O 3 low-dimensional nanocomposite is denoted as MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposite.
以下通过扫描电镜、透射电镜、X射线衍射、氮气吸附-脱附、化学吸附表征MnO2/γ-Al2O3(c)低维纳米复合材料的化学组成和化学微环境。The chemical composition and chemical microenvironment of the MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposite were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption-desorption, and chemical adsorption.
图6示出了对比例1制备的MnO2/γ-Al2O3(c)纳米复合材料的SEM和TEM表征图。从图中可以看出,商业Al2O3纳米颗粒粒径为20nm,与粒径尺寸更小的MnO2纳米颗粒简单堆积在一起。FIG. 6 shows the SEM and TEM characterization images of the MnO 2 /γ-Al 2 O 3 (c) nanocomposite prepared in Comparative Example 1. FIG. As can be seen from the figure, commercial Al2O3 nanoparticles with a particle size of 20 nm are simply stacked with MnO2 nanoparticles of smaller particle size.
图3示出了对比例1制备的MnO2/γ-Al2O3(c)低维纳米复合材料的XRD表征图。从图中可以看出,在37.76°、39.44°、45.80°、61.06°和66.92°处的较强的衍射峰,对应于立方晶系γ-Al2O3的(311)、(222)、(400)、(511)和(440)晶面,表明该材料是结晶度较高的γ相氧化铝材料。3 shows the XRD characterization diagram of the MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposite prepared in Comparative Example 1. It can be seen from the figure that the stronger diffraction peaks at 37.76°, 39.44 °, 45.80 °, 61.06° and 66.92° correspond to (311), (222), (400), (511) and (440) crystal planes, indicating that the material is a γ-phase alumina material with high crystallinity.
图7示出了实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料与对比例1制备的MnO2/γ-Al2O3(c)低维纳米复合材料的氮气吸附-脱附等温曲线图。由图中可知,采用γ相氧化铝纳米片为载体制备的MnO2/γ-Al2O3(s)低维纳米复合材料比采用商业氧化铝纳米颗粒为载体制备的MnO2/γ-Al2O3(c)复合材料的比表面积更大,分别为209.8m2/g与134.5m2/g。二维纳米片载体增大的比表面积既有利于氧化锰纳米颗粒的分散,又有利于与甲苯等VOCs 气体接触催化反应。7 shows the MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared in Example 1 and the MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposite prepared in Comparative Example 1 of nitrogen adsorption-desorption isotherms. It can be seen from the figure that the MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared by using γ-phase alumina nanosheets as a carrier is better than the MnO 2 /γ-Al prepared by using commercial alumina nanoparticles as a carrier. The specific surface area of the 2 O 3 (c) composite is larger, which are 209.8 m 2 /g and 134.5 m 2 /g, respectively. The increased specific surface area of the two-dimensional nanosheet support is not only conducive to the dispersion of manganese oxide nanoparticles, but also to the catalytic reaction with VOCs such as toluene.
图4示出了对比例1制备的MnO2/γ-Al2O3(c)低维纳米复合材料的NH3程序升温脱附(NH3-TPD)谱图。在NH3-TPD中,MnO2/γ-Al2O3(c)在94℃和274℃有两处NH3脱附峰,分别对应于弱酸和中强酸位点。4 shows the NH 3 temperature programmed desorption (NH 3 -TPD) spectrum of the MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposite prepared in Comparative Example 1. In NH 3 -TPD, MnO 2 /γ-Al 2 O 3 (c) has two NH 3 desorption peaks at 94°C and 274°C, corresponding to weak acid and moderately strong acid sites, respectively.
图5示出了对比例1制备的MnO2/γ-Al2O3(c)低维纳米复合材料的CO2程序升温脱附(CO2-TPD)谱图。在CO2-TPD中,MnO2/γ-Al2O3(c)的二氧化碳脱附温度在138℃和 424℃,证明对比例1中氧化铝纳米颗粒的酸性位点为中强酸,与二氧化碳之间的化学结合较强,不利于产物二氧化碳分子脱附从而使催化剂活性减弱。5 shows the CO 2 temperature-programmed desorption (CO 2 -TPD) spectrum of the MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposite prepared in Comparative Example 1. In CO 2 -TPD, the carbon dioxide desorption temperatures of MnO 2 /γ-Al 2 O 3 (c) were at 138 °C and 424 °C, proving that the acid sites of alumina nanoparticles in Comparative Example 1 are moderately strong acids, which are not compatible with carbon dioxide. The chemical bonding between them is strong, which is not conducive to the desorption of the product carbon dioxide molecules and thus weakens the catalyst activity.
图8示出了实施例1制备的γ-Al2O3(s)纳米片和对比例1采用的商业氧化铝纳米颗粒γ-Al2O3(c)的吡啶红外谱图。从图中可知,实施例1制备的γ相氧化铝纳米片γ-Al2O3(s)在 423K时,酸/Lewis酸为0.55,573K时为0.63;商业氧化铝纳米颗粒γ-Al2O3(c)在 423K时,酸/Lewis酸为0.49,573K时为0.32。证明实施例1制备的γ相氧化铝纳米片比商业氧化铝纳米颗粒总酸量高,Lewis酸量比酸量多,且γ相氧化铝纳米片γ-Al2O3(s)上的酸酸量比商业氧化铝纳米颗粒γ-Al2O3(c)的高。8 shows the pyridine infrared spectra of the γ-Al 2 O 3 (s) nanosheets prepared in Example 1 and the commercial alumina nanoparticles γ-Al 2 O 3 (c) used in Comparative Example 1. It can be seen from the figure that the γ-phase alumina nanosheets γ-Al 2 O 3 (s) prepared in Example 1 are at 423K, acid/Lewis acid 0.55, 0.63 at 573K; commercial alumina nanoparticles γ - Al2O3 (c) at 423K, Acid/Lewis Acid 0.49, 0.32 at 573K. It is proved that the γ-phase alumina nanosheets prepared in Example 1 have higher total acid content than commercial alumina nanoparticles, and the Lewis acid content is higher than that of commercial alumina nanoparticles. The acid content is large, and the γ-phase alumina nanosheets γ-Al 2 O 3 (s) on the The amount of acid is higher than that of commercial alumina nanoparticles γ-Al 2 O 3 (c).
以下通过实施例1中制备得到的MnO2/γ-Al2O3(s)低维纳米复合材料以及对比例1中制备得到的MnO2/γ-Al2O3(c)低维纳米复合材料进行甲苯低温降解性能测试实验。The MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared in Example 1 and the MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposite prepared in Comparative Example 1 are as follows The materials were tested for the low temperature degradation performance of toluene.
实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料和对比例1制备的MnO2/γ-Al2O3(c)低维纳米复合材料的甲苯低温降解性能测试在固定床连续流动反应器中进行,以内径8mm的石英管作为反应器,催化剂填充量为0.1g,反应进气为:C7H8浓度为600ppm, O2浓度21%、载气N2,反应温度为120-280℃,空速为60000mL g-1h-1,反应进气与出气中的C7H8浓度通过气相色谱在线检测,催化剂反应活性通过C7H8的转化率表示,结果如图9 所示。可见,本发明实施例1制备的MnO2/γ-Al2O3(s)低维纳米复合材料的C7H8催化氧化性能明显优于用商业氧化铝纳米颗粒制备的MnO2/γ-Al2O3(c)低维纳米复合材料,600ppm 的C7H8可在153℃下实现90%以上的去除转化率。图10显示了MnO2/γ-Al2O3(s)材料在温度升高至200℃时的催化稳定性测试结果示意图,从图中可知,其能够实现至少24个小时 99%以上的甲苯去除率,而且材料活性几乎没有衰减。Toluene low temperature degradation performance of MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposites prepared in Example 1 and MnO 2 /γ-Al 2 O 3 (c) low-dimensional nanocomposites prepared in Comparative Example 1 The test was carried out in a fixed-bed continuous flow reactor, a quartz tube with an inner diameter of 8 mm was used as the reactor, the catalyst filling amount was 0.1 g, and the reaction gas was: C 7 H 8 concentration of 600 ppm, O concentration of 21 %, carrier gas N 2 , the reaction temperature is 120-280 ℃, the space velocity is 60000mL g -1 h -1 , the C 7 H 8 concentration in the reaction inlet and outlet gas is detected online by gas chromatography, and the catalyst reaction activity is determined by the conversion rate of C 7 H 8 The results are shown in Figure 9. It can be seen that the C 7 H 8 catalytic oxidation performance of the MnO 2 /γ-Al 2 O 3 (s) low-dimensional nanocomposite prepared in Example 1 of the present invention is significantly better than that of MnO 2 /γ- Al 2 O 3 (c) low-dimensional nanocomposite, 600 ppm C 7 H 8 can achieve more than 90% removal conversion at 153 °C. Figure 10 shows the schematic diagram of the catalytic stability test results of the MnO 2 /γ-Al 2 O 3 (s) material when the temperature is raised to 200°C. It can be seen from the figure that it can achieve a toluene concentration of more than 99% for at least 24 hours removal rate, and the material activity is almost not attenuated.
对比例2Comparative Example 2
与实施例1的方案基本相同,主要区别在于:本对比例中直接采用已有文献报道的树枝状氧化硅粉体(注:Nat.Commun.,2021,12,4968,doi.org/10.1038/s41467-021-25226-x) 作为载体原料,制备得到的MnO2/SiO2低维纳米复合材料。The scheme is basically the same as that of Example 1, the main difference is: in this comparative example, the dendritic silica powder reported in the literature is directly used (Note: Nat. Commun., 2021, 12, 4968, doi.org/10.1038/ s41467-021-25226-x) as the carrier raw material, the obtained MnO 2 /SiO 2 low-dimensional nanocomposite was prepared.
图11示出了对比例2制备的MnO2/SiO2纳米复合材料的SEM和TEM表征图。从图中可以看出,SiO2载体是具有直径大约为30nm的介孔结构的树枝状二氧化硅纳米材料,微小的MnO2纳米颗粒高度分散在材料的孔道中。11 shows the SEM and TEM characterization images of the MnO 2 /SiO 2 nanocomposite prepared in Comparative Example 2. It can be seen from the figure that the SiO2 support is a dendritic silica nanomaterial with a mesoporous structure with a diameter of about 30 nm, and the tiny MnO2 nanoparticles are highly dispersed in the pores of the material.
对比例2制备的MnO2/SiO2低维纳米复合材料的甲苯低温降解性能测试通过甲苯C7H8的转化率表示,结果如图12所示。由图中可以看出,600ppm的C7H8可在211℃下实现90%以上的去除转化率。The toluene low-temperature degradation performance test of the MnO 2 /SiO 2 low-dimensional nanocomposite prepared in Comparative Example 2 is represented by the conversion rate of toluene C 7 H 8 , and the results are shown in FIG. 12 . It can be seen from the figure that 600 ppm of C 7 H 8 can achieve more than 90% removal conversion at 211 °C.
对比例3Comparative Example 3
与实施例1的方案基本相同,主要区别在于:本对比例中直接采用已有文献报道的氧化镁粉体(注:Chem.Commun.,2013,49,6093-6095,DOI:10.1039/c3cc42504e)作为载体原料,制备得到的MnO2/MgO低维纳米复合材料。The scheme is basically the same as that of Example 1, the main difference is: in this comparative example, the magnesium oxide powder reported in the literature is directly used (Note: Chem. Commun., 2013, 49, 6093-6095, DOI: 10.1039/c3cc42504e) As a carrier material, the obtained MnO 2 /MgO low-dimensional nanocomposite was prepared.
图13示出了对比例3制备的MnO2/MgO纳米复合材料的SEM和TEM表征图。从图中可以看出,MgO是由纳米片组装成的花状结构,通过原位浸渍沉积法制备的 MnO2/MgO与实施例1的MnO2/Al2O3(s)形貌结构相似,MnO2纳米颗粒分散于MgO纳米片上。FIG. 13 shows the SEM and TEM characterization images of the MnO 2 /MgO nanocomposite prepared in Comparative Example 3. FIG. It can be seen from the figure that MgO is a flower-like structure assembled by nanosheets, and the morphology and structure of MnO 2 /MgO prepared by in-situ dip deposition method are similar to that of MnO 2 /Al 2 O 3 (s) in Example 1. , MnO nanoparticles are dispersed on MgO nanosheets.
对比例3制备的MnO2/MgO低维纳米复合材料的甲苯低温降解性能测试通过C7H8的转化率表示,结果如图12所示。从图中可以看出,600ppm的C7H8条件下测试,当反应温度高达260℃时,甲苯转化率依旧低于30%。The toluene low-temperature degradation performance test of the MnO 2 /MgO low-dimensional nanocomposite prepared in Comparative Example 3 is represented by the conversion rate of C 7 H 8 , and the results are shown in FIG. 12 . It can be seen from the figure that the toluene conversion rate is still lower than 30% when the reaction temperature is as high as 260°C when tested under the condition of 600ppm C 7 H 8 .
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。While the content of the present invention has been described in detail by way of the above preferred embodiments, it should be appreciated that the above description should not be construed as limiting the present invention. Various modifications and alternatives to the present invention will be apparent to those skilled in the art upon reading the foregoing. Accordingly, the scope of protection of the present invention should be defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210550305.4A CN115025770A (en) | 2022-05-20 | 2022-05-20 | MnO (MnO) 2 /γ-Al 2 O 3 Low-dimensional nano composite material and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210550305.4A CN115025770A (en) | 2022-05-20 | 2022-05-20 | MnO (MnO) 2 /γ-Al 2 O 3 Low-dimensional nano composite material and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115025770A true CN115025770A (en) | 2022-09-09 |
Family
ID=83120948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210550305.4A Pending CN115025770A (en) | 2022-05-20 | 2022-05-20 | MnO (MnO) 2 /γ-Al 2 O 3 Low-dimensional nano composite material and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115025770A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115957759A (en) * | 2022-12-12 | 2023-04-14 | 河南农业大学 | Manganese-based synergistic monolithic catalyst and preparation method and application thereof |
CN116449026A (en) * | 2023-06-19 | 2023-07-18 | 成都信息工程大学 | Method for detecting cardiac troponin I based on manganese dioxide nano-sheet |
CN116726912A (en) * | 2023-06-19 | 2023-09-12 | 金华职业技术学院 | Ozone normal temperature decomposition supported manganese-based catalyst and preparation method thereof |
CN117000265A (en) * | 2023-07-24 | 2023-11-07 | 河北工业大学 | Manganese-based catalyst for synergistically removing nitrogen oxides and volatile organic compounds, and preparation method and application thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101058069A (en) * | 2007-06-01 | 2007-10-24 | 山东大学 | Manganese dioxide/active aluminum oxide composite adsorbing material and its preparation method |
CN102688741A (en) * | 2012-06-13 | 2012-09-26 | 陕西科技大学 | Adsorbing material of alumina nano-sheet and preparation method thereof |
JP2015202440A (en) * | 2014-04-11 | 2015-11-16 | 株式会社豊田中央研究所 | VOC decomposition removal catalyst, method for producing the same, and VOC decomposition removal method using the same |
CN106268799A (en) * | 2016-08-26 | 2017-01-04 | 中国科学院上海硅酸盐研究所 | Manganese oxide nanometer sheet material of the crystallization of supporting Pt and its preparation method and application |
CN107537478A (en) * | 2016-06-29 | 2018-01-05 | 华东师范大学 | A kind of self-supporting catalyst with core-casing structure and its preparation method and application |
CN108726544A (en) * | 2018-07-02 | 2018-11-02 | 陕西学前师范学院 | Nanometer sheet self assembly hierarchical structure γ-AlOOH tiny balloons, preparation method and application |
CN109759054A (en) * | 2019-02-25 | 2019-05-17 | 中国计量大学 | A kind of nano-catalyst composite material for decomposing formaldehyde at room temperature and preparation method thereof |
CN110124663A (en) * | 2019-06-24 | 2019-08-16 | 河北科技大学 | A kind of catalyst and preparation method and application for catalysis oxidation VOCs |
CN111298818A (en) * | 2019-11-14 | 2020-06-19 | 天津大学 | Palladium and platinum catalyst, preparation thereof and application thereof in reaction for preparing furan from furfural |
CN114249300A (en) * | 2021-12-31 | 2022-03-29 | 大连理工大学 | Application of aluminum oxide-loaded Ni catalyst with specific microstructure in preparation of synthesis gas by dry reforming of methane under catalysis of plasma |
-
2022
- 2022-05-20 CN CN202210550305.4A patent/CN115025770A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101058069A (en) * | 2007-06-01 | 2007-10-24 | 山东大学 | Manganese dioxide/active aluminum oxide composite adsorbing material and its preparation method |
CN102688741A (en) * | 2012-06-13 | 2012-09-26 | 陕西科技大学 | Adsorbing material of alumina nano-sheet and preparation method thereof |
JP2015202440A (en) * | 2014-04-11 | 2015-11-16 | 株式会社豊田中央研究所 | VOC decomposition removal catalyst, method for producing the same, and VOC decomposition removal method using the same |
CN107537478A (en) * | 2016-06-29 | 2018-01-05 | 华东师范大学 | A kind of self-supporting catalyst with core-casing structure and its preparation method and application |
CN106268799A (en) * | 2016-08-26 | 2017-01-04 | 中国科学院上海硅酸盐研究所 | Manganese oxide nanometer sheet material of the crystallization of supporting Pt and its preparation method and application |
CN108726544A (en) * | 2018-07-02 | 2018-11-02 | 陕西学前师范学院 | Nanometer sheet self assembly hierarchical structure γ-AlOOH tiny balloons, preparation method and application |
CN109759054A (en) * | 2019-02-25 | 2019-05-17 | 中国计量大学 | A kind of nano-catalyst composite material for decomposing formaldehyde at room temperature and preparation method thereof |
CN110124663A (en) * | 2019-06-24 | 2019-08-16 | 河北科技大学 | A kind of catalyst and preparation method and application for catalysis oxidation VOCs |
CN111298818A (en) * | 2019-11-14 | 2020-06-19 | 天津大学 | Palladium and platinum catalyst, preparation thereof and application thereof in reaction for preparing furan from furfural |
CN114249300A (en) * | 2021-12-31 | 2022-03-29 | 大连理工大学 | Application of aluminum oxide-loaded Ni catalyst with specific microstructure in preparation of synthesis gas by dry reforming of methane under catalysis of plasma |
Non-Patent Citations (1)
Title |
---|
ZHUO WANG ET AL: "Studies of sulfur poisoning process via ammonium sulfate on MnO2/γ-Al2O3 catalyst for catalytic combustion of toluene" * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115957759A (en) * | 2022-12-12 | 2023-04-14 | 河南农业大学 | Manganese-based synergistic monolithic catalyst and preparation method and application thereof |
CN115957759B (en) * | 2022-12-12 | 2023-09-08 | 河南农业大学 | Manganese-based synergistic monolithic catalyst and preparation method and application thereof |
CN116449026A (en) * | 2023-06-19 | 2023-07-18 | 成都信息工程大学 | Method for detecting cardiac troponin I based on manganese dioxide nano-sheet |
CN116726912A (en) * | 2023-06-19 | 2023-09-12 | 金华职业技术学院 | Ozone normal temperature decomposition supported manganese-based catalyst and preparation method thereof |
CN117000265A (en) * | 2023-07-24 | 2023-11-07 | 河北工业大学 | Manganese-based catalyst for synergistically removing nitrogen oxides and volatile organic compounds, and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115025770A (en) | MnO (MnO) 2 /γ-Al 2 O 3 Low-dimensional nano composite material and preparation method and application thereof | |
CN103172030B (en) | Oxide powder and preparation method thereof as well as catalyst and carrier thereof | |
CN110732323B (en) | Preparation method of α-MnO2 catalyst for catalyzing the oxidation of volatile organic compounds | |
CN109772465B (en) | A kind of preparation method of water-soluble carbon dots modified perovskite catalytic material | |
CN104627960A (en) | Method of catalytic cracking of methane over modified red mud for hydrogen production | |
CN111203260B (en) | Monoatomic palladium-supported carbon nitride catalyst, preparation thereof and application thereof in removing NO | |
CN110327963A (en) | A kind of g-C3N4/TiO2Composite material and preparation method and application | |
CN102698785A (en) | A kind of preparation method of diatomite-supported nitrogen-doped nano-TiO2 photocatalytic material | |
CN109663611A (en) | A kind of preparation method and its fixed nitrogen application of the compound zinc ferrite Z-type catalyst of single-layer silicon nitride carbon | |
CN113398936A (en) | Zinc oxide/ZnFe-LDH @ charcoal visible-light-driven photocatalyst and preparation method and application thereof | |
CN113877556B (en) | Indium oxyhydroxide/modified attapulgite photocatalytic composite material and its preparation method and application | |
CN105664920A (en) | Cs2W3O10 (cesium tungstate) powder, preparation method and application thereof | |
CN114950564A (en) | Manganese-based metal organic framework low-temperature denitration catalyst with high sulfur resistance and preparation method thereof | |
CN102974379B (en) | Method for preparing nitrogen-doped photo-catalytic material containing gallium oxide at low temperature | |
Neppolian et al. | Preparation of unique TiO2 nano-particle photocatalysts by a multi-gelation method for control of the physicochemical parameters and reactivity | |
CN108636410A (en) | A kind of preparation method and applications of the Fe2O3 doping aluminium oxide hollow microsphere with porous structure | |
CN111054419A (en) | A kind of semiconductor/g-C3N4 photocatalyst for CO2 reduction and preparation method thereof | |
CN112023976A (en) | Bimetallic modified MCM-41 molecular sieve catalyst, preparation method and application | |
Feng et al. | Photocatalytic activity of porous magnesium oxychloride cement combined with AC/TiO2 composites | |
Zhang et al. | Preparation of mesoporous TiO2 photocatalyst by selective dissolving of titania–silica binary oxides | |
CN102408246A (en) | A kind of preparation method of nitrogen-doped silicon-aluminum immobilized TiO2 porous ceramics | |
Li et al. | CuCeO x/VMT powder and monolithic catalyst for CO-selective catalytic reduction of NO with CO | |
CN115770605A (en) | Preparation of graphite-phase carbon nitride/titanium dioxide/magnesium lithium silicate composite photocatalyst | |
CN114870862A (en) | Composite oxide catalyst for purifying automobile exhaust and preparation method thereof | |
CN105297135A (en) | A Bi2Sn2O7 nanocrystal with visible light response ability and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220909 |