CN115020673A - Modified nickel-cobalt-manganese ternary positive electrode material, its preparation method and lithium ion battery - Google Patents
Modified nickel-cobalt-manganese ternary positive electrode material, its preparation method and lithium ion battery Download PDFInfo
- Publication number
- CN115020673A CN115020673A CN202210770068.2A CN202210770068A CN115020673A CN 115020673 A CN115020673 A CN 115020673A CN 202210770068 A CN202210770068 A CN 202210770068A CN 115020673 A CN115020673 A CN 115020673A
- Authority
- CN
- China
- Prior art keywords
- source
- cobalt
- nickel
- positive electrode
- manganese ternary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical class [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 title claims abstract description 82
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 69
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 42
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 35
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000011734 sodium Substances 0.000 claims abstract description 39
- 239000011701 zinc Substances 0.000 claims abstract description 36
- 239000002904 solvent Substances 0.000 claims abstract description 31
- 239000011572 manganese Substances 0.000 claims abstract description 29
- 238000005245 sintering Methods 0.000 claims abstract description 28
- 238000001354 calcination Methods 0.000 claims abstract description 23
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 20
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 20
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 18
- 239000010941 cobalt Substances 0.000 claims abstract description 18
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 13
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 13
- 239000011574 phosphorus Substances 0.000 claims abstract description 13
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 12
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 5
- 239000011259 mixed solution Substances 0.000 claims description 69
- 239000010406 cathode material Substances 0.000 claims description 52
- 238000000498 ball milling Methods 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 42
- 230000008569 process Effects 0.000 claims description 33
- 238000001035 drying Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 15
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 5
- 229910013716 LiNi Inorganic materials 0.000 claims description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 3
- 239000005083 Zinc sulfide Substances 0.000 claims description 3
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical group [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims description 3
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 claims description 3
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 3
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims description 3
- 235000019838 diammonium phosphate Nutrition 0.000 claims description 3
- 235000019837 monoammonium phosphate Nutrition 0.000 claims description 3
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 claims description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 3
- 235000017550 sodium carbonate Nutrition 0.000 claims description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 3
- 235000011152 sodium sulphate Nutrition 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical group [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical group [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- 230000009257 reactivity Effects 0.000 abstract description 5
- 229910011328 LiNi0.6Co0.2Mn0.2O2 Inorganic materials 0.000 description 15
- 239000002245 particle Substances 0.000 description 11
- 230000009286 beneficial effect Effects 0.000 description 10
- 230000000670 limiting effect Effects 0.000 description 10
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 8
- 229940044175 cobalt sulfate Drugs 0.000 description 8
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 8
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 6
- 229940099596 manganese sulfate Drugs 0.000 description 6
- 235000007079 manganese sulphate Nutrition 0.000 description 6
- 239000011702 manganese sulphate Substances 0.000 description 6
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical group [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 229910001428 transition metal ion Inorganic materials 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000003139 buffering effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 3
- 229910052808 lithium carbonate Inorganic materials 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical group O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- -1 lithium hexafluorophosphate Chemical group 0.000 description 2
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 1
- 229910015872 LiNi0.8Co0.1Mn0.1O2 Inorganic materials 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910021311 NaFeO2 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical class [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明提供了一种改性镍钴锰三元正极材料、其制备方法及锂离子电池。该制备方法包括:将可选的钠源、锌源、锆源、磷源与第一溶剂混合,经预烧结处理后得到预烧结产物,预烧结产物的化学式为Na2(1‑x)ZnxZr4(PO4)6,其中x为0.5~1;将预烧结产物与锂源、镍源、钴源、锰源以及第二溶剂混合,经煅烧处理后得到改性镍钴锰三元正极材料;锂源、镍源、钴源与锰源的摩尔比为1.012:a:b:c,其中0.5≤a≤0.8,0.1≤b≤0.2,a+b<1,c=1‑a‑b。上述制备方法制得的改性镍钴锰三元正极材料具有较高的反应活性和结构稳定性,尤其适用于提高锂离子电池的高温循环稳定性。
The invention provides a modified nickel-cobalt-manganese ternary positive electrode material, a preparation method thereof and a lithium ion battery. The preparation method includes: mixing an optional sodium source, a zinc source, a zirconium source, and a phosphorus source with a first solvent, and after pre-sintering treatment, a pre-sintered product is obtained, and the chemical formula of the pre-sintered product is Na 2 (1-x) Zn x Zr 4 (PO 4 ) 6 , wherein x is 0.5-1; the pre-sintered product is mixed with lithium source, nickel source, cobalt source, manganese source and the second solvent, and after calcination treatment, a modified nickel-cobalt-manganese ternary is obtained Positive electrode material; the molar ratio of lithium source, nickel source, cobalt source and manganese source is 1.012:a:b:c, where 0.5≤a≤0.8, 0.1≤b≤0.2, a+b<1, c=1‑a ‑b. The modified nickel-cobalt-manganese ternary positive electrode material prepared by the above preparation method has high reactivity and structural stability, and is especially suitable for improving the high temperature cycle stability of lithium ion batteries.
Description
技术领域technical field
本发明涉及正极材料的制备技术领域,具体而言,涉及一种改性镍钴锰三元正极材料、其制备方法及锂离子电池。The invention relates to the technical field of preparation of positive electrode materials, in particular to a modified nickel-cobalt-manganese ternary positive electrode material, a preparation method thereof and a lithium ion battery.
背景技术Background technique
随着人类社会对能源与环保问题的重视,锂离子电池近年来快速发展,并在手机、电脑、新能源汽车及储能领域规模应用。尤其是在新能源汽车市场爆发式增长的推动下,带动了锂电池迅猛发展,行业竞争日演越烈,本土电池巨头的逐渐崛起。下游新能源汽车迈入高速增长期,补贴退坡、技术性能要求提升等因素加剧了电池行业优胜劣汰,市场集中度提升。在如此强烈的竞争环境下,提高材料的性价比尤为重要。高容量、长循环、安全和稳定,是锂离子电池今后的主要发展方向。As human society attaches great importance to energy and environmental protection issues, lithium-ion batteries have developed rapidly in recent years, and are widely used in mobile phones, computers, new energy vehicles and energy storage. In particular, driven by the explosive growth of the new energy vehicle market, it has driven the rapid development of lithium batteries, industry competition has become increasingly fierce, and local battery giants have gradually risen. Downstream new energy vehicles have entered a period of rapid growth. Factors such as the decline of subsidies and the improvement of technical performance requirements have intensified the survival of the fittest in the battery industry, and the market concentration has increased. In such a highly competitive environment, it is particularly important to improve the cost-effectiveness of materials. High capacity, long cycle, safety and stability are the main development directions of lithium-ion batteries in the future.
镍钴锰三元正极材料的结构与LiCoO2相似,为α-NaFeO2层状结构。目前,镍钴锰三元正极材料已经大规模产业化,但其仍存在一些缺点。首先,由于Ni2+半径与Li+半径非常接近,容易造成Li/Ni阳离子混排,导致锂离子电池的克容量和循环性能降低;其次,在首次充放电过程中,形成SEI膜的过程会消耗部分锂离子,这会导致首次库伦效率的降低;再次,在循环过程中,正极材料容易发生相变,晶体稳定性差导致的循环性能下降;最后,镍钴锰三元正极材料中镍含量高,Ni3+的比例也随之提高,然而Ni3+非常不稳定,当暴露在空气中时非常容易与空气中的水分和CO2反应生成表面残碱,导致正极材料容量损失和循环性能损失;此外,过多的表面残碱会使得三元电池产气严重,影响其循环性能、安全性能等。The structure of the nickel-cobalt-manganese ternary cathode material is similar to that of LiCoO2, which is a layered structure of α - NaFeO2 . At present, the nickel-cobalt-manganese ternary cathode material has been industrialized on a large scale, but it still has some shortcomings. First, due to the Ni 2+ radius with Li + radius Very close, it is easy to cause the mixing of Li/Ni cations, resulting in a decrease in the gram capacity and cycle performance of Li-ion batteries; secondly, during the first charge and discharge process, the process of forming the SEI film will consume part of the lithium ions, which will lead to the first Coulomb efficiency Thirdly, during the cycle process, the cathode material is prone to phase transition, and the cycle performance is reduced due to poor crystal stability; finally, the nickel content in the nickel-cobalt-manganese ternary cathode material is high, and the proportion of Ni 3+ increases accordingly. However, Ni 3+ is very unstable, and when exposed to air, it is very easy to react with moisture and CO 2 in the air to form surface residual alkali, resulting in the loss of cathode material capacity and cycle performance; in addition, too much surface residual alkali will make Ternary battery produces serious gas, which affects its cycle performance and safety performance.
此外,关于共沉淀法合成磷酸锆类化合物的研究已有报道,但并没有将该类材料应用在锂离子电池电极材料的制备领域中。In addition, studies on the synthesis of zirconium phosphate compounds by co-precipitation have been reported, but such materials have not been applied in the field of preparation of electrode materials for lithium ion batteries.
在此基础上,有必要研究和开发出一种改性镍钴锰三元正极材料及其制备方法,这对于提高正极材料的结构稳定性以及提高锂离子电池循环稳定性具有重要意义。On this basis, it is necessary to research and develop a modified nickel-cobalt-manganese ternary cathode material and its preparation method, which is of great significance for improving the structural stability of the cathode material and improving the cycle stability of lithium-ion batteries.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于提供一种改性镍钴锰三元正极材料、其制备方法及锂离子电池,以解决现有技术中镍钴锰三元正极材料的结构稳定性差以及容易生成表面残碱,导致的锂离子电池循环性差等的问题。The main purpose of the present invention is to provide a modified nickel-cobalt-manganese ternary positive electrode material, its preparation method and lithium ion battery, so as to solve the problem of poor structural stability of the nickel-cobalt-manganese ternary positive electrode material in the prior art and easy generation of surface residual alkali , resulting in problems such as poor cyclability of lithium-ion batteries.
为了实现上述目的,本发明一方面提供了一种改性镍钴锰三元正极材料的制备方法,该改性镍钴锰三元正极材料的制备方法包括:将可选的钠源、锌源、锆源、磷源与第一溶剂混合,经预烧结处理后得到预烧结产物,预烧结产物的化学式为Na2(1-x)ZnxZr4(PO4)6,其中x为0.5~1;将预烧结产物与锂源、镍源、钴源、锰源以及第二溶剂混合,经煅烧处理后得到改性镍钴锰三元正极材料;锂源、镍源、钴源与锰源的摩尔比为1.012:a:b:c,其中0.5≤a≤0.8,0.1≤b≤0.2,a+b<1,c=1-a-b。In order to achieve the above purpose, one aspect of the present invention provides a method for preparing a modified nickel-cobalt-manganese ternary positive electrode material. , a zirconium source, a phosphorus source and a first solvent are mixed, and a pre-sintered product is obtained after pre-sintering treatment. The chemical formula of the pre-sintered product is Na 2 (1-x) Zn x Zr 4 (PO 4 ) 6 , wherein x is 0.5~ 1; Mix the pre-sintered product with a lithium source, a nickel source, a cobalt source, a manganese source and a second solvent, and obtain a modified nickel-cobalt-manganese ternary positive electrode material after calcination treatment; a lithium source, a nickel source, a cobalt source and a manganese source The molar ratio is 1.012:a:b:c, wherein 0.5≤a≤0.8, 0.1≤b≤0.2, a+b<1, c=1-ab.
进一步地,以预烧结产物、锂源、镍源、钴源、锰源以及第二溶剂的总重量计,预烧结产物的重量百分含量为1~5wt%;优选地,预烧结产物中x为0.6~0.9。Further, based on the total weight of the pre-sintered product, the lithium source, the nickel source, the cobalt source, the manganese source and the second solvent, the weight percentage of the pre-sintered product is 1-5 wt %; preferably, x in the pre-sintered product is 0.6 to 0.9.
进一步地,预烧结处理过程的真空度为10-3~10-4Pa,温度为400~600℃,时间为5~10h;优选地,煅烧处理的温度为900~1000℃,时间为8~12h;更优选地,预烧结处理过程的温度与煅烧处理的温度呈正相关。Further, the vacuum degree of the pre-sintering treatment process is 10-3 to 10-4 Pa, the temperature is 400-600°C, and the time is 5-10h; preferably, the calcination temperature is 900-1000°C, and the time is 8- 12h; more preferably, the temperature of the pre-sintering process is positively correlated with the temperature of the calcination process.
进一步地,改性镍钴锰三元正极材料的制备方法还包括:将可选的钠源、锌源、锆源、磷源与第一溶剂混合,得到第一混合液;对第一混合液依次进行第一球磨处理、第一干燥处理以及预烧结处理,得到预烧结产物;将锂源、镍源、钴源、锰源以及第二溶剂混合,得到第二混合液;将预烧结产物与第二混合液混合并依次进行第二球磨处理、第二干燥处理以及煅烧处理,得到改性镍钴锰三元正极材料;优选地,第一混合液和第二混合液的固含量分别独立地选自30~60wt%,更优选为40~50wt%;优选地,第一球磨处理和第二球磨处理过程的球磨转速分别独立地选自600~750rpm,球磨时间分别独立地选自1~4h。Further, the preparation method of the modified nickel-cobalt-manganese ternary positive electrode material also includes: mixing the optional sodium source, zinc source, zirconium source, and phosphorus source with a first solvent to obtain a first mixed solution; The first ball milling treatment, the first drying treatment and the pre-sintering treatment are performed in sequence to obtain a pre-sintered product; the lithium source, the nickel source, the cobalt source, the manganese source and the second solvent are mixed to obtain a second mixed solution; the pre-sintered product is mixed with The second mixed solution is mixed and sequentially subjected to the second ball milling treatment, the second drying treatment and the calcination treatment to obtain a modified nickel-cobalt-manganese ternary positive electrode material; preferably, the solid contents of the first mixed solution and the second mixed solution are independent of each other. is selected from 30-60wt%, more preferably 40-50wt%; preferably, the ball milling speed of the first ball milling process and the second ball milling process is independently selected from 600-750rpm, and the ball milling time is independently selected from 1-4h .
进一步地,第一干燥处理和第二干燥处理的温度分别独立地选自90~120℃,时间分别独立地选自4~6h。Further, the temperature of the first drying process and the second drying process is independently selected from 90-120° C., and the time is independently selected from 4-6 h.
进一步地,当x不为1时,钠源选自碳酸钠、碳酸氢钠和硫酸钠组成的组中的一种或多种;锌源选自硫化锌;锆源选自氧化锆和/或氧氯化锆;磷源选自磷酸二氢铵和/或磷酸氢二铵。Further, when x is not 1, the sodium source is selected from one or more of the group consisting of sodium carbonate, sodium bicarbonate and sodium sulfate; the zinc source is selected from zinc sulfide; the zirconium source is selected from zirconia and/or Zirconium oxychloride; the phosphorus source is selected from ammonium dihydrogen phosphate and/or diammonium hydrogen phosphate.
进一步地,第一溶剂和第二溶剂分别独立地选自无水乙醇和/或水。Further, the first solvent and the second solvent are independently selected from absolute ethanol and/or water.
为了实现上述目的,本发明另一个方面还提供了一种改性镍钴锰三元正极材料,该改性镍钴锰三元正极材料由上述改性镍钴锰三元正极材料的制备方法制得。In order to achieve the above purpose, another aspect of the present invention also provides a modified nickel-cobalt-manganese ternary positive electrode material, the modified nickel-cobalt-manganese ternary positive electrode material is prepared by the above-mentioned preparation method of the modified nickel-cobalt-manganese ternary positive electrode material have to.
进一步地,改性镍钴锰三元正极材料包括内核和位于内核表面的改性材料,内核为LiNiaCobMncO2(I),其中0.5≤a≤0.8,0.1≤b≤0.2,a+b<1,c=1-a-b;改性材料为Na2(1-x)ZnxZr4(PO4)6(II),其中x为0.5~1。Further, the modified nickel-cobalt-manganese ternary cathode material includes an inner core and a modified material located on the surface of the inner core, and the inner core is LiNi a Co b Mn c O 2 (I), wherein 0.5≤a≤0.8, 0.1≤b≤0.2, a+b<1, c=1-ab; the modified material is Na 2 (1-x) Zn x Zr 4 (PO 4 ) 6 (II), wherein x is 0.5-1.
本发明的又一方面提供了一种锂离子电池,包括正极、负极、电解液以及设置于正极和负极之间的隔膜,该正极包括上述改性镍钴锰三元正极材料的制备方法制得的改性镍钴锰三元正极材料,或上述改性镍钴锰三元正极材料。Another aspect of the present invention provides a lithium ion battery, comprising a positive electrode, a negative electrode, an electrolyte, and a separator disposed between the positive electrode and the negative electrode, and the positive electrode comprises the above-mentioned preparation method for the modified nickel-cobalt-manganese ternary positive electrode material. The modified nickel-cobalt-manganese ternary positive electrode material, or the above-mentioned modified nickel-cobalt-manganese ternary positive electrode material.
应用本发明的技术方案,通过原位反应方法,将制得的预烧结产物作为改性材料包覆在内核的表面,进而得到改性镍钴锰三元正极材料。这能够提高正极材料的稳定性,从而有效缓冲正极材料的内应力,且能够有效抑制阳离子混排以达到稳定晶体结构的目的,进而抑制锂离子电池循环稳定性和安全性能的下降;同时,还能够有效抑制过渡金属离子的溶解,提升正极材料的电化学性能。By applying the technical scheme of the present invention, through the in-situ reaction method, the prepared pre-sintered product is coated on the surface of the inner core as a modified material, thereby obtaining a modified nickel-cobalt-manganese ternary positive electrode material. This can improve the stability of the positive electrode material, thereby effectively buffering the internal stress of the positive electrode material, and can effectively inhibit the mixing of cations to achieve the purpose of stabilizing the crystal structure, thereby inhibiting the degradation of the cycle stability and safety performance of the lithium-ion battery; It can effectively inhibit the dissolution of transition metal ions and improve the electrochemical performance of cathode materials.
总之,采用上述制备方法制得的改性镍钴锰三元正极材料具有较高的反应活性和结构稳定性,将其应用在锂离子电池中能够实现优异的综合电化学性能。上述制备方法制得的镍钴锰三元正极材料尤其适用于提高锂离子电池的高温循环稳定性。In conclusion, the modified nickel-cobalt-manganese ternary cathode material prepared by the above preparation method has high reactivity and structural stability, and its application in lithium-ion batteries can achieve excellent comprehensive electrochemical performance. The nickel-cobalt-manganese ternary positive electrode material prepared by the above preparation method is especially suitable for improving the high temperature cycle stability of the lithium ion battery.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings forming a part of the present application are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention. In the attached image:
图1示出了实施例1和对比例1中分别制得的锂离子电池的高温(45℃)循环稳定性测试曲线图(循环1至1350周对应的容量保持率)。FIG. 1 shows the high temperature (45° C.) cycle stability test curves (capacity retention rates corresponding to cycles 1 to 1350 cycles) of the lithium ion batteries prepared in Example 1 and Comparative Example 1, respectively.
具体实施方式Detailed ways
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。It should be noted that the embodiments in the present application and the features of the embodiments may be combined with each other in the case of no conflict. The present invention will be described in detail below with reference to the embodiments.
正如背景技术所描述的,现有的镍钴锰三元正极材料存在结构稳定性差,容易生成表面残碱,进而导致锂离子电池循环性差等问题。为了解决上述技术问题,本申请提供了一种改性镍钴锰三元正极材料的制备方法,该改性镍钴锰三元正极材料的制备方法包括:将可选的钠源、锌源、锆源、磷源与第一溶剂混合,经预烧结处理后得到预烧结产物,预烧结产物的化学式为Na2(1-x)ZnxZr4(PO4)6,其中x为0.5~1;将预烧结产物与锂源、镍源、钴源、锰源以及第二溶剂混合,经煅烧处理后得到改性镍钴锰三元正极材料;锂源、镍源、钴源与锰源的摩尔比为1.012:a:b:c,其中0.5≤a≤0.8,0.1≤b≤0.2,a+b<1,c=1-a-b。As described in the background art, the existing nickel-cobalt-manganese ternary positive electrode materials have poor structural stability and are prone to generate surface residual alkali, which in turn leads to problems such as poor cyclability of lithium ion batteries. In order to solve the above-mentioned technical problems, the present application provides a preparation method of a modified nickel-cobalt-manganese ternary positive electrode material. The preparation method of the modified nickel-cobalt-manganese ternary positive electrode material comprises: combining an optional sodium source, a zinc source, a The zirconium source, the phosphorus source and the first solvent are mixed, and a pre-sintered product is obtained after pre-sintering treatment. The chemical formula of the pre-sintered product is Na 2(1-x) Zn x Zr 4 (PO 4 ) 6 , wherein x is 0.5-1 ; Mix the pre-sintered product with lithium source, nickel source, cobalt source, manganese source and the second solvent, and obtain modified nickel-cobalt-manganese ternary positive electrode material after calcination treatment; lithium source, nickel source, cobalt source and manganese source The molar ratio is 1.012:a:b:c, wherein 0.5≤a≤0.8, 0.1≤b≤0.2, a+b<1, c=1-ab.
将可选的钠源、锌源、锆源、磷源与第一溶剂混合,经预烧结处理后能够得到预烧结产物Na2(1-x)ZnxZr4(PO4)6。在第二溶剂中,特定摩尔比的锂源、镍源、钴源以及锰源能够结合形成特定成分的正极材料前驱体晶核,在正极材料前驱体晶核生长为正极材料前驱体的过程中,预烧结产物能够原位包覆在正极材料前驱体的表面,经煅烧处理后能够形成特定成分的内核(或镍钴锰三元正极材料)以及位于内核表面的改性材料,即改性镍钴锰三元正极材料。The optional sodium source, zinc source, zirconium source, and phosphorus source are mixed with the first solvent, and the pre-sintered product Na 2 (1-x) Zn x Zr 4 (PO 4 ) 6 can be obtained after pre-sintering. In the second solvent, a lithium source, a nickel source, a cobalt source and a manganese source in a specific molar ratio can combine to form a cathode material precursor crystal nucleus with a specific composition. During the process of the cathode material precursor crystal nucleus growing into a cathode material precursor , the pre-sintered product can be coated on the surface of the cathode material precursor in situ, and after calcination, it can form a core (or nickel-cobalt-manganese ternary cathode material) with a specific composition and a modified material located on the surface of the core, that is, modified nickel Cobalt manganese ternary cathode material.
通过原位反应方法,将制得的预烧结产物作为改性材料包覆在内核的表面,进而得到改性镍钴锰三元正极材料。这能够提高正极材料的稳定性,从而有效缓冲正极材料的内应力,且能够有效抑制阳离子混排以达到稳定晶体结构的目的,进而抑制锂离子电池循环稳定性和安全性能的下降;同时,还能够有效抑制过渡金属离子的溶解,提升正极材料的电化学性能。Through an in-situ reaction method, the prepared pre-sintered product is used as a modified material to coat the surface of the inner core, thereby obtaining a modified nickel-cobalt-manganese ternary positive electrode material. This can improve the stability of the positive electrode material, thereby effectively buffering the internal stress of the positive electrode material, and can effectively inhibit the mixing of cations to achieve the purpose of stabilizing the crystal structure, thereby inhibiting the degradation of the cycle stability and safety performance of the lithium-ion battery; It can effectively inhibit the dissolution of transition metal ions and improve the electrochemical performance of cathode materials.
总之,采用上述制备方法制得的改性镍钴锰三元正极材料具有较高的反应活性和结构稳定性,将其应用在锂离子电池中能够实现优异的综合电化学性能。上述制备方法制得的镍钴锰三元正极材料尤其适用于提高锂离子电池的高温循环稳定性。In conclusion, the modified nickel-cobalt-manganese ternary cathode material prepared by the above preparation method has high reactivity and structural stability, and its application in lithium-ion batteries can achieve excellent comprehensive electrochemical performance. The nickel-cobalt-manganese ternary positive electrode material prepared by the above preparation method is especially suitable for improving the high temperature cycle stability of the lithium ion battery.
预烧结产物占改性镍钴锰三元正极材料的重量百分比会直接影响包覆效果,如果包覆量过多,会影响改性镍钴锰三元正极材料表面的Li+传输,难以发挥内核的电化学比容量,进而影响其电化学性能;相反,如果包覆量过少,内核(未改性的镍钴锰三元正极材料)的表面会部分裸露出来,应用在锂离子电池中长期受到电解液的侵蚀后,容易发生溶解和脱落,这使得位于内核表面的预烧结产物难以实现对内核的保护作用。在一种优选的实施方式中,以预烧结产物、锂源、镍源、钴源、锰源以及第二溶剂的总重量计,预烧结产物的重量百分含量为1~5wt%。预烧结产物的重量百分含量包括但不限于上述范围,将其限定在上述范围内有利于形成厚度适宜的包覆层,进而提高正极材料的稳定性;同时有利于抑制过渡金属离子的溶解,提升正极材料的电化学性能。The weight percentage of the pre-sintered product in the modified nickel-cobalt-manganese ternary cathode material will directly affect the coating effect. If the coating amount is too large, it will affect the Li + transport on the surface of the modified nickel-cobalt-manganese ternary cathode material, and it is difficult to play the core On the contrary, if the coating amount is too small, the surface of the inner core (unmodified nickel-cobalt-manganese ternary cathode material) will be partially exposed, which can be used in lithium-ion batteries for a long time. After being eroded by the electrolyte, it is easy to dissolve and fall off, which makes it difficult for the pre-sintered product located on the surface of the core to protect the core. In a preferred embodiment, based on the total weight of the pre-sintered product, the lithium source, the nickel source, the cobalt source, the manganese source and the second solvent, the weight percentage of the pre-sintered product is 1-5 wt %. The weight percent content of the pre-sintered product includes but is not limited to the above range, and limiting it within the above range is conducive to forming a coating layer with a suitable thickness, thereby improving the stability of the positive electrode material; at the same time, it is conducive to inhibiting the dissolution of transition metal ions, Improve the electrochemical performance of cathode materials.
为了进一步发挥预烧结产物对内核的保护作用,进一步提高内核的结构稳定性,优选地,预烧结产物中x为0.6~0.9;更优选为0.7~0.8。In order to further exert the protective effect of the pre-sintered product on the inner core and further improve the structural stability of the inner core, preferably, x in the pre-sintered product is 0.6-0.9; more preferably 0.7-0.8.
在一种优选的实施方式中,预烧结处理过程的真空度为10-3~10-4Pa,温度为400~600℃,时间为5~10h。预烧结处理过程的真空度包括但不限于上述范围,将其限定在上述范围内有利于抑制空气中的杂质对预烧结处理过程的影响,进而提高预烧结产物的纯度;同时,将预烧结处理过程的温度和时间限定在上述范围内有利于提高预烧结产物结构的均一性,进而有利于提高锂离子电池的高温(45℃条件下)循环稳定性和高温(55℃)搁置性能。In a preferred embodiment, the vacuum degree of the pre-sintering process is 10 -3 -10 -4 Pa, the temperature is 400-600° C., and the time is 5-10 h. The vacuum degree of the pre-sintering process includes but is not limited to the above range, and limiting it to the above range is beneficial to suppress the influence of impurities in the air on the pre-sintering process, thereby improving the purity of the pre-sintering product; at the same time, the pre-sintering process Limiting the temperature and time of the process within the above ranges is beneficial to improve the uniformity of the structure of the pre-sintered product, which in turn is beneficial to improve the high temperature (at 45°C) cycle stability and high temperature (55°C) shelf performance of the lithium ion battery.
在一种优选的实施方式中,煅烧处理的温度为900~1000℃,时间为8~12h。煅烧处理的温度和时间包括但不限于上述范围,将其限定在上述范围内有利于进一步提高改性镍钴锰三元正极材料的结构稳定性,进而不仅有利于抑制生成表面残碱,还有利于提高锂离子电池的循环稳定性。In a preferred embodiment, the temperature of the calcination treatment is 900-1000° C., and the time is 8-12 hours. The temperature and time of the calcination treatment include but are not limited to the above-mentioned ranges. Limiting them to the above-mentioned ranges is conducive to further improving the structural stability of the modified nickel-cobalt-manganese ternary positive electrode material, which is not only conducive to suppressing the generation of surface residual alkali, but also It is beneficial to improve the cycle stability of lithium-ion batteries.
在一种优选的实施方式中,预烧结处理过程的温度与煅烧处理的温度呈正相关;更优选地,当预烧结处理过程的温度为400~500℃时,煅烧处理的温度为920~950℃,当预烧结处理过程的温度为500~600℃时,煅烧处理的温度为900~920℃。相比于其它范围,采用上述优选范围条件下的预烧结处理后得到的预烧结产物与煅烧处理后形成的内核更加匹配,有利于使改性材料更紧密地包覆在内核表面,进而发挥位于内核表面的改性材料的作用。In a preferred embodiment, the temperature of the pre-sintering process is positively correlated with the temperature of the calcination process; more preferably, when the temperature of the pre-sintering process is 400-500°C, the temperature of the calcination process is 920-950°C , when the temperature of the pre-sintering process is 500-600°C, the temperature of the calcination process is 900-920°C. Compared with other ranges, the pre-sintered product obtained after the pre-sintering treatment under the conditions of the above preferred range is more suitable for the inner core formed after the calcination treatment, which is beneficial to make the modified material more closely cover the surface of the inner core, and then exert its position in the inner core. The role of modifying materials on the inner core surface.
在一种优选的实施方式中,改性镍钴锰三元正极材料的制备方法还包括:将可选的钠源、锌源、锆源、磷源与第一溶剂混合,得到第一混合液;对第一混合液依次进行第一球磨处理、第一干燥处理以及预烧结处理,得到预烧结产物;将锂源、镍源、钴源、锰源以及第二溶剂混合,得到第二混合液;将预烧结产物与第二混合液混合并依次进行第二球磨处理、第二干燥处理以及煅烧处理,得到改性镍钴锰三元正极材料。In a preferred embodiment, the preparation method of the modified nickel-cobalt-manganese ternary positive electrode material further comprises: mixing the optional sodium source, zinc source, zirconium source, and phosphorus source with a first solvent to obtain a first mixed solution Perform the first ball milling treatment, the first drying treatment and the pre-sintering treatment on the first mixed solution to obtain a pre-sintered product; Mix the lithium source, the nickel source, the cobalt source, the manganese source and the second solvent to obtain the second mixed solution ; Mix the pre-sintered product with the second mixed solution and sequentially perform the second ball milling treatment, the second drying treatment and the calcining treatment to obtain a modified nickel-cobalt-manganese ternary positive electrode material.
对第一混合液进行第一球磨处理能够减小第一混合液中不溶性颗粒物的粒度,第一干燥处理能够挥发除去第一混合液中的第一溶剂,以便使得后续预烧结处理过程顺利进行。在锂源、镍源、钴源、锰源与第二溶剂的混合过程中,能够结合形成特定成分的正极材料前驱体晶核,进而生长形成镍钴锰三元正极材料前驱体颗粒,在该过程中预烧结产物能够同时原位包覆在正极材料前驱体的表面,进而形成具有复合结构的材料。The first ball milling treatment on the first mixed solution can reduce the particle size of the insoluble particles in the first mixed solution, and the first drying treatment can volatilize and remove the first solvent in the first mixed solution, so that the subsequent pre-sintering process can be smoothly performed. During the mixing process of the lithium source, the nickel source, the cobalt source, the manganese source and the second solvent, the positive electrode material precursor crystal nucleus of a specific composition can be formed by combining, and then the precursor particles of the nickel-cobalt-manganese ternary positive electrode material can be grown and formed. During the process, the pre-sintered product can simultaneously coat the surface of the positive electrode material precursor in situ, thereby forming a material with a composite structure.
对第二混合液进行第二球磨处理能够使预烧结产物与镍钴锰三元正极材料前驱体颗粒充分接触并包覆在其表面,经过第二干燥处理挥发去除第二溶剂之后,随着煅烧过程的进行,预烧结产物转变为改性材料包覆在镍钴锰三元正极材料(或内核)表面,形成改性镍钴锰三元正极材料。The second ball milling treatment of the second mixed solution can make the pre-sintered product fully contact with the nickel-cobalt-manganese ternary cathode material precursor particles and coat the surface thereof. During the process, the pre-sintered product is transformed into a modified material and coated on the surface of the nickel-cobalt-manganese ternary positive electrode material (or inner core) to form a modified nickel-cobalt-manganese ternary positive electrode material.
第一混合液的固含量太高或者太低均会降低预烧结产物的产率,同时,第二混合液的固含量太高或者太低会对改性材料的包覆效果产生不利影响,从而降低改性镍钴锰三元正极材料的产率,不利于其结构稳定性的提高。在一种优选的实施方式中,第一混合液和第二混合液的固含量分别独立地包括但不限于30~60wt%,优选为40~50wt%。If the solid content of the first mixed solution is too high or too low, the yield of the pre-sintered product will be reduced. At the same time, if the solid content of the second mixed solution is too high or too low, the coating effect of the modified material will be adversely affected. Reducing the yield of the modified nickel-cobalt-manganese ternary cathode material is not conducive to the improvement of its structural stability. In a preferred embodiment, the solid content of the first mixed solution and the second mixed solution independently includes, but is not limited to, 30-60 wt %, preferably 40-50 wt %.
在一种优选的实施方式中,第一球磨处理和第二球磨处理过程的球磨转速分别独立地包括但不限于600~750rpm,球磨时间分别独立地包括但不限于1~4h。In a preferred embodiment, the ball milling rotational speed of the first ball milling treatment and the second ball milling treatment process independently includes but not limited to 600-750 rpm, and the ball milling time includes but is not limited to 1-4 h, respectively.
第一球磨处理的球磨转速和球磨时间分别包括但不限于上述范围,将其限定在上述范围内有利于减小第一混合液中不溶性颗粒物的粒度,同时还有利于使钠源、锌源、锆源与磷源之间充分接触并反应形成待预烧结处理的产物,便于后续进行预烧结处理得到晶型更加均一的Na2(1-x)ZnxZr4(PO4)6预烧结产物。The ball milling speed and ball milling time of the first ball milling treatment respectively include but are not limited to the above ranges. Limiting them to the above ranges is beneficial to reduce the particle size of the insoluble particles in the first mixed solution, and is also beneficial to make the sodium source, zinc source, The zirconium source and the phosphorus source are fully contacted and reacted to form a product to be pre-sintered, which is convenient for subsequent pre-sintering to obtain a more uniform Na 2(1-x) Zn x Zr 4 (PO 4 ) 6 pre-sintered product .
第二球磨处理的球磨转速和球磨时间分别包括但不限于上述范围,将其限定在上述范围内有利于改善包覆效果,进而有利于提高镍钴锰三元正极材料内核以及改性镍钴锰三元正极材料的结构稳定性,进而提高改性镍钴锰三元正极材料的高温(45℃条件下)循环稳定性和高温(55℃)搁置性能。The ball-milling speed and ball-milling time of the second ball-milling treatment include but are not limited to the above-mentioned ranges, respectively. Limiting them within the above-mentioned ranges is conducive to improving the coating effect, which in turn is conducive to improving the inner core of the nickel-cobalt-manganese ternary positive electrode material and the modified nickel-cobalt-manganese The structural stability of the ternary cathode material, thereby improving the high temperature (45°C) cycle stability and high temperature (55°C) shelving performance of the modified nickel-cobalt-manganese ternary cathode material.
在一种优选的实施方式中,第一干燥处理和第二干燥处理的温度分别独立地包括但不限于90~120℃,时间分别独立地包括但不限于4~6h。In a preferred embodiment, the temperature of the first drying process and the second drying process independently includes but is not limited to 90-120° C., and the time independently includes but is not limited to 4-6 hours.
第一干燥处理的温度和时间分别包括但不限于上述范围,将其限定在上述范围内有利于抑制第一溶剂挥发过程对产物晶型结构的影响,从而有利于改善改性镍钴锰三元正极材料的晶型结构,提高其结构稳定性。The temperature and time of the first drying treatment respectively include but are not limited to the above-mentioned ranges. Limiting them to the above-mentioned ranges is beneficial to suppress the influence of the first solvent volatilization process on the crystal structure of the product, thereby helping to improve the modified nickel-cobalt-manganese ternary. The crystal structure of the cathode material improves its structural stability.
本申请中可选的钠源、锌源、锆源和磷源分别可以为本领域常用种类。在一种优选的实施方式中,当x不为1时,钠源包括但不限于碳酸钠、碳酸氢钠和硫酸钠组成的组中的一种或多种;锌源包括但不限于硫化锌;锆源包括但不限于氧化锆和/或氧氯化锆;磷源包括但不限于磷酸二氢铵和/或磷酸氢二铵。The optional sodium source, zinc source, zirconium source and phosphorus source in the present application can be commonly used in the field. In a preferred embodiment, when x is not 1, the sodium source includes but is not limited to one or more of the group consisting of sodium carbonate, sodium bicarbonate and sodium sulfate; the zinc source includes but is not limited to zinc sulfide ; Zirconium sources include but are not limited to zirconium oxide and/or zirconium oxychloride; Phosphorus sources include but are not limited to ammonium dihydrogen phosphate and/or diammonium hydrogen phosphate.
本申请中锂源、镍源、钴源和锰源分别可以为本领域常用种类。在一种优选的实施方式中,锂源包括但不限于氢氧化锂、碳酸锂和氯化锂组成的组中的一种或多种;镍源包括但不限于硫酸镍、硝酸镍和氯化镍组成的组中的一种或多种;钴源包括但不限于硫酸钴、硝酸钴和氯化钴组成的组中的一种或多种;锰源为硫酸锰、硝酸锰和氯化锰组成的组中的一种或多种。In the present application, the lithium source, nickel source, cobalt source and manganese source can be of common types in the field. In a preferred embodiment, the lithium source includes but is not limited to one or more of the group consisting of lithium hydroxide, lithium carbonate and lithium chloride; the nickel source includes but is not limited to nickel sulfate, nickel nitrate and chloride One or more of the group consisting of nickel; cobalt source includes but not limited to one or more of the group consisting of cobalt sulfate, cobalt nitrate and cobalt chloride; manganese source is manganese sulfate, manganese nitrate and manganese chloride one or more of the group consisting of.
在一种优选的实施方式中,第一溶剂和第二溶剂分别独立地包括但不限于无水乙醇和/或水。相比于其它溶剂,采用上述优选种类的第一溶剂和第二溶剂有利于各原料成分的分散,进而提高第一混合液和第二混合液中原料的分散均一性。In a preferred embodiment, the first solvent and the second solvent each independently include, but are not limited to, absolute ethanol and/or water. Compared with other solvents, the use of the above-mentioned preferred first solvent and second solvent is beneficial to the dispersion of each raw material component, thereby improving the dispersion uniformity of the raw materials in the first mixed solution and the second mixed solution.
本申请第二方面还提供了一种改性镍钴锰三元正极材料,该改性镍钴锰三元正极材料由本申请提供的上述改性镍钴锰三元正极材料的制备方法制得。The second aspect of the present application also provides a modified nickel-cobalt-manganese ternary positive electrode material, the modified nickel-cobalt-manganese ternary positive electrode material is prepared by the above-mentioned preparation method of the modified nickel-cobalt-manganese ternary positive electrode material provided by the present application.
本申请提供的改性镍钴锰三元正极材料具有较高的反应活性和结构稳定性,将其应用在锂离子电池中能够实现优异的综合电化学性能。上述制备方法制得的镍钴锰三元正极材料尤其适用于提高锂离子电池的高温(45℃条件下)循环稳定性和高温(55℃)搁置性能。The modified nickel-cobalt-manganese ternary cathode material provided in the present application has high reactivity and structural stability, and can achieve excellent comprehensive electrochemical performance when applied in a lithium-ion battery. The nickel-cobalt-manganese ternary cathode material prepared by the above preparation method is especially suitable for improving the high temperature (45°C) cycle stability and high temperature (55°C) shelf performance of lithium ion batteries.
在一种优选的实施方式中,改性镍钴锰三元正极材料包括内核和位于内核表面的改性材料;内核为LiNiaCobMncO2(I),其中0.5≤a≤0.8,0.1≤b≤0.2,a+b<1,c=1-a-b;改性材料为Na2(1-x)ZnxZr4(PO4)6(II),其中x为0.5~1。In a preferred embodiment, the modified nickel-cobalt-manganese ternary cathode material includes an inner core and a modified material located on the surface of the inner core; the inner core is LiNi a Co b Mn c O 2 (I), where 0.5≤a≤0.8, 0.1≤b≤0.2, a+b<1, c=1-ab; the modified material is Na 2(1-x) Zn x Zr 4 (PO 4 ) 6 (II), where x is 0.5-1.
本申请第三方面还提供了一种锂离子电池,包括正极、负极、电解液以及设置于正极和负极之间的隔膜,该正极包括本申请提供的上述改性镍钴锰三元正极材料的制备方法制得的改性镍钴锰三元正极材料,或本申请提供的上述改性镍钴锰三元正极材料。本申请提供的上述锂离子电池具有优异的高温(45℃条件下)循环稳定性和高温(55℃)搁置性能。A third aspect of the present application also provides a lithium ion battery, comprising a positive electrode, a negative electrode, an electrolyte, and a separator disposed between the positive electrode and the negative electrode, the positive electrode comprising the modified nickel-cobalt-manganese ternary positive electrode material provided in the present application. The modified nickel-cobalt-manganese ternary positive electrode material prepared by the preparation method, or the above-mentioned modified nickel-cobalt-manganese ternary positive electrode material provided in this application. The above-mentioned lithium ion battery provided by the present application has excellent high temperature (45°C) cycle stability and high temperature (55°C) shelf performance.
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。The present application will be described in further detail below with reference to specific embodiments, which should not be construed as limiting the scope of protection claimed by the present application.
实施例1Example 1
一种改性LiNi0.6Co0.2Mn0.2O2三元正极材料的制备方法,包括如下步骤:A preparation method of a modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary positive electrode material, comprising the following steps:
S1,按Na:Zn:Zr:P的摩尔比为1:0.5:4:6称取Na2CO3、ZnS、ZrO2(平均粒径不超过50nm)以及NH4H2PO4并分散在无水乙醇中,得到第一混合液,该第一混合液的固含量为45wt%;S1, weigh Na 2 CO 3 , ZnS, ZrO 2 (average particle size not more than 50 nm) and NH 4 H 2 PO 4 according to the molar ratio of Na:Zn:Zr:P of 1:0.5:4:6 and disperse them in In absolute ethanol, a first mixed solution is obtained, and the solid content of the first mixed solution is 45wt%;
S2,对第一混合液进行第一球磨处理,球磨转速为750rpm且时间为2h,100℃条件下干燥5h,在真空度为10-3Pa的条件下,500℃预烧结处理8h后得到预烧结产物NaZn0.5Zr4(PO4)6;S2, perform the first ball milling treatment on the first mixed solution, the ball milling speed is 750 rpm and the time is 2 h, dried at 100 ° C for 5 h, and under the condition of vacuum degree of 10 -3 Pa, pre-sintered at 500 ° C for 8 h, and then the pre-sintered solution is obtained. Sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 ;
S3,按Li:Ni:Co:Mn的摩尔比为1.012:0.6:0.2:0.2称取氢氧化锂、无水硫酸镍、无水硫酸钴、无水硫酸锰,并分散在去无水乙醇中,得到第二混合液,该第二混合液的固含量为45wt%;S3, the molar ratio of Li:Ni:Co:Mn is 1.012:0.6:0.2:0.2 to weigh lithium hydroxide, anhydrous nickel sulfate, anhydrous cobalt sulfate, anhydrous manganese sulfate, and disperse them in dehydrated ethanol , obtain the second mixed solution, the solid content of this second mixed solution is 45wt%;
S4,将制得的预烧结产物NaZn0.5Zr4(PO4)6加入第二混合液中,预烧结产物NaZn0.5Zr4(PO4)6与第二混合液的重量比为0.025:1(即预烧结产物的重量百分含量为2.5wt%),进行第二球磨处理,球磨转速为750rpm且时间为2h;100℃干燥5h;在空气气氛中,950℃煅烧处理10h,自然冷却后,得到改性LiNi0.6Co0.2Mn0.2O2三元正极材料。最终制得的改性LiNi0.6Co0.2Mn0.2O2三元正极材料中,预烧结产物占改性LiNi0.6Co0.2Mn0.2O2三元正极材料的重量百分比为5wt%。S4, adding the obtained pre-sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 to the second mixed solution, and the weight ratio of the pre-sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 to the second mixed solution is 0.025:1 ( That is, the weight percentage of the pre-sintered product is 2.5 wt%), and the second ball milling treatment is carried out. The ball milling speed is 750 rpm and the time is 2 h; drying at 100 ° C for 5 h; The modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary positive electrode material was obtained. In the final modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary positive electrode material, the weight percentage of the pre-sintered product in the modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary positive electrode material is 5wt%.
实施例2Example 2
一种改性LiNi0.6Co0.2Mn0.2O2三元正极材料的制备方法,包括如下步骤:A preparation method of a modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary positive electrode material, comprising the following steps:
S1,按Na:Zn:Zr:P的摩尔比为1:0.5:4:6称取Na2CO3、ZnS、ZrO2(平均粒径不超过50nm)以及NH4H2PO4分散在无水乙醇中,得到第一混合液,该第一混合液的固含量为50wt%;S1, according to the mole ratio of Na:Zn:Zr:P is 1:0.5:4:6, weigh Na 2 CO 3 , ZnS, ZrO 2 (average particle size does not exceed 50nm) and NH 4 H 2 PO 4 dispersed in the In the water ethanol, a first mixed solution is obtained, and the solid content of the first mixed solution is 50wt%;
S2,对第一混合液进行第一球磨处理,球磨转速为750rpm且时间为4h,100℃条件下干燥6h,在真空度为10-4Pa的条件下,600℃预烧结处理10h得到预烧结产物NaZn0.5Zr4(PO4)6;S2, perform the first ball milling treatment on the first mixed solution. The ball milling speed is 750 rpm and the time is 4 h, drying at 100 °C for 6 h, and under the condition of vacuum degree of 10 -4 Pa, pre-sintering at 600 ° C for 10 h to obtain pre-sintering Product NaZn 0.5 Zr 4 (PO 4 ) 6 ;
S3,按Li:Ni:Co:Mn的摩尔比为1.012:0.6:0.2:0.2称取氢氧化锂、无水硫酸镍、无水硫酸钴、无水硫酸锰,并分散在去无水乙醇中,得到第二混合液,该第二混合液的固含量为50wt%;;S3, the molar ratio of Li:Ni:Co:Mn is 1.012:0.6:0.2:0.2 to weigh lithium hydroxide, anhydrous nickel sulfate, anhydrous cobalt sulfate, anhydrous manganese sulfate, and disperse them in dehydrated ethanol , obtain the second mixed solution, the solid content of this second mixed solution is 50wt%;
S4,将制得的预烧结产物NaZn0.5Zr4(PO4)6加入第二混合液中,预烧结产物NaZn0.5Zr4(PO4)6与第二混合液的重量比为0.025:1,进行第二球磨处理,球磨转速为750rpm且时间为4h;120℃干燥6h;在空气气氛中,950℃煅烧处理12h,自然冷却后,得到改性LiNi0.6Co0.2Mn0.2O2三元正极材料。S4, adding the obtained pre-sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 to the second mixed solution, and the weight ratio of the pre-sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 to the second mixed solution is 0.025:1, The second ball milling treatment was carried out, the ball milling speed was 750 rpm and the time was 4 h; drying at 120 °C for 6 h; calcination treatment at 950 °C for 12 h in an air atmosphere, and after natural cooling, the modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary cathode material was obtained .
实施例3Example 3
一种改性LiNi0.6Co0.2Mn0.2O2三元正极材料的制备方法,包括如下步骤:A preparation method of a modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary positive electrode material, comprising the following steps:
S1,按Na:Zn:Zr:P的摩尔比为1:0.5:4:6称取Na2CO3、ZnS、ZrO2(平均粒径不超过50nm)以及NH4H2PO4并分散在无水乙醇中,得到第一混合液,该第一混合液的固含量为40wt%;S1, weigh Na 2 CO 3 , ZnS, ZrO 2 (average particle size not more than 50 nm) and NH 4 H 2 PO 4 according to the molar ratio of Na:Zn:Zr:P of 1:0.5:4:6 and disperse them in In absolute ethanol, a first mixed solution is obtained, and the solid content of the first mixed solution is 40wt%;
S2,对第一混合液进行第一球磨处理,球磨转速为600rpm且时间为1h,90℃条件下干燥4h,在真空度为10-3Pa的条件下,400℃预烧结处理5h后得到预烧结产物NaZn0.5Zr4(PO4)6;S2, perform the first ball milling treatment on the first mixed solution, the ball milling speed is 600 rpm and the time is 1 h, dried at 90°C for 4h, and under the condition of vacuum degree of 10 -3 Pa, pre-sintered at 400°C for 5h, the pre-sintered solution is obtained. Sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 ;
S3,按Li:Ni:Co:Mn的摩尔比为1.012:0.6:0.2:0.2称取氢氧化锂、无水硫酸镍、无水硫酸钴、无水硫酸锰,并分散在去无水乙醇中,得到第二混合液,该第二混合液的固含量为40wt%;S3, the molar ratio of Li:Ni:Co:Mn is 1.012:0.6:0.2:0.2 to weigh lithium hydroxide, anhydrous nickel sulfate, anhydrous cobalt sulfate, anhydrous manganese sulfate, and disperse them in dehydrated ethanol , obtain the second mixed solution, the solid content of this second mixed solution is 40wt%;
S4,将制得的预烧结产物NaZn0.5Zr4(PO4)6加入第二混合液中,预烧结产物NaZn0.5Zr4(PO4)6与第二混合液的重量比为0.025:1,进行第二球磨处理,球磨转速为600rpm且时间为1h;90℃干燥4h;在空气气氛中,900℃煅烧处理8h,自然冷却后,得到改性LiNi0.6Co0.2Mn0.2O2三元正极材料。S4, adding the obtained pre-sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 to the second mixed solution, and the weight ratio of the pre-sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 to the second mixed solution is 0.025:1, The second ball milling treatment was carried out, the ball milling speed was 600 rpm and the time was 1 h; drying at 90 °C for 4 h; calcination treatment at 900 °C for 8 h in an air atmosphere, and after natural cooling, the modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary cathode material was obtained .
实施例4Example 4
一种改性LiNi0.6Co0.2Mn0.2O2三元正极材料的制备方法,包括如下步骤:A preparation method of a modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary positive electrode material, comprising the following steps:
S1,按Zn:Zr:P的摩尔比为1:4:6称取ZnS、ZrO2(平均粒径不超过50nm)以及NH4H2PO4并分散在无水乙醇中,得到第一混合液,该第一混合液的固含量为45wt%;S1, weigh ZnS, ZrO 2 (average particle size not more than 50nm) and NH 4 H 2 PO 4 and disperse in absolute ethanol according to the molar ratio of Zn:Zr:P as 1:4:6 to obtain the first mixture liquid, the solid content of the first mixed liquid is 45wt%;
S2,对第一混合液进行第一球磨处理,球磨转速为750rpm且时间为2h,100℃条件下干燥5h,在真空度为10-3Pa的条件下,500℃预烧结处理8h后得到预烧结产物ZnZr4(PO4)6;S2, perform the first ball milling treatment on the first mixed solution, the ball milling speed is 750 rpm and the time is 2 h, dried at 100 ° C for 5 h, and under the condition of vacuum degree of 10 -3 Pa, pre-sintered at 500 ° C for 8 h, and then the pre-sintered solution is obtained. Sintered product ZnZr 4 (PO 4 ) 6 ;
S3,按Li:Ni:Co:Mn的摩尔比为1.012:0.6:0.2:0.2称取氢氧化锂、无水硫酸镍、无水硫酸钴、无水硫酸锰,并分散在去无水乙醇中,得到第二混合液,该第二混合液的固含量为45wt%;S3, the molar ratio of Li:Ni:Co:Mn is 1.012:0.6:0.2:0.2 to weigh lithium hydroxide, anhydrous nickel sulfate, anhydrous cobalt sulfate, anhydrous manganese sulfate, and disperse them in dehydrated ethanol , obtain the second mixed solution, the solid content of this second mixed solution is 45wt%;
S4,将制得的预烧结产物ZnZr4(PO4)6加入第二混合液中,预烧结产物NaZn0.5Zr4(PO4)6与第二混合液的重量比为0.025:1,进行第二球磨处理,球磨转速为750rpm且时间为2h;100℃干燥5h;在空气气氛中,950℃煅烧处理10h,自然冷却后,得到改性LiNi0.6Co0.2Mn0.2O2三元正极材料。S4, adding the obtained pre-sintered product ZnZr 4 (PO 4 ) 6 to the second mixed solution, the weight ratio of the pre-sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 to the second mixed solution is 0.025:1, and the first Two ball milling treatment, the ball milling speed is 750rpm and the time is 2h; drying at 100°C for 5h; calcination at 950°C for 10h in an air atmosphere, and after natural cooling, the modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary cathode material is obtained.
实施例5Example 5
一种改性LiNi0.6Co0.2Mn0.2O2三元正极材料的制备方法,包括如下步骤:A preparation method of a modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary positive electrode material, comprising the following steps:
S1,按Na:Zn:Zr:P的摩尔比为1:0.5:4:6称取Na2CO3、ZnS、ZrO2(平均粒径不超过50nm)以及NH4H2PO4并分散在无水乙醇中,得到第一混合液,该第一混合液的固含量为45wt%;S1, weigh Na 2 CO 3 , ZnS, ZrO 2 (average particle size not more than 50 nm) and NH 4 H 2 PO 4 according to the molar ratio of Na:Zn:Zr:P of 1:0.5:4:6 and disperse them in In absolute ethanol, a first mixed solution is obtained, and the solid content of the first mixed solution is 45wt%;
S2,对第一混合液进行第一球磨处理,球磨转速为750rpm且时间为2h,100℃条件下干燥5h,在真空度为10-3Pa的条件下,500℃预烧结处理8h后得到预烧结产物NaZn0.5Zr4(PO4)6;S2, perform the first ball milling treatment on the first mixed solution, the ball milling speed is 750 rpm and the time is 2 h, dried at 100 ° C for 5 h, and under the condition of vacuum degree of 10 -3 Pa, pre-sintered at 500 ° C for 8 h, and then the pre-sintered solution is obtained. Sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 ;
S3,按Li:Ni:Co:Mn的摩尔比为1.012:0.6:0.2:0.2称取碳酸锂、无水硫酸镍、无水硫酸钴、无水硫酸锰,并分散在去无水乙醇中,得到第二混合液,该第二混合液的固含量为45wt%;S3, the molar ratio of Li:Ni:Co:Mn is 1.012:0.6:0.2:0.2 to weigh lithium carbonate, anhydrous nickel sulfate, anhydrous cobalt sulfate, anhydrous manganese sulfate, and disperse in dehydrated ethanol, Obtain the second mixed solution, the solid content of this second mixed solution is 45wt%;
S4,将制得的预烧结产物NaZn0.5Zr4(PO4)6加入第二混合液中,预烧结产物NaZn0.5Zr4(PO4)6与第二混合液的重量比为0.025:1,进行第二球磨处理,球磨转速为750rpm且时间为2h;100℃干燥5h;在空气气氛中,950℃煅烧处理10h,自然冷却后,得到改性LiNi0.6Co0.2Mn0.2O2三元正极材料。S4, adding the obtained pre-sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 to the second mixed solution, and the weight ratio of the pre-sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 to the second mixed solution is 0.025:1, The second ball milling treatment was carried out, the ball milling speed was 750 rpm and the time was 2 h; drying at 100 °C for 5 h; calcination treatment at 950 °C for 10 h in an air atmosphere, and after natural cooling, the modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary cathode material was obtained .
实施例5Example 5
与实施例1的区别在于:Na:Zn:Zr:P的摩尔比为1:0.6:4:6,制得的预烧结产物为Na0.4Zn0.7Zr4(PO4)6。The difference from Example 1 is that the molar ratio of Na:Zn:Zr:P is 1:0.6:4:6, and the obtained pre-sintered product is Na 0.4 Zn 0.7 Zr 4 (PO 4 ) 6 .
实施例6Example 6
与实施例1的区别在于:Na:Zn:Zr:P的摩尔比为1:0.7:4:6,制得的预烧结产物为Na0.4Zn0.7Zr4(PO4)6。The difference from Example 1 is that the molar ratio of Na:Zn:Zr:P is 1:0.7:4:6, and the obtained pre-sintered product is Na 0.4 Zn 0.7 Zr 4 (PO 4 ) 6 .
实施例7Example 7
与实施例1的区别在于:Na:Zn:Zr:P的摩尔比为1:0.8:4:6,制得的预烧结产物为Na0.4Zn0.8Zr4(PO4)6。The difference from Example 1 is that the molar ratio of Na:Zn:Zr:P is 1:0.8:4:6, and the obtained pre-sintered product is Na 0.4 Zn 0.8 Zr 4 (PO 4 ) 6 .
实施例8Example 8
与实施例1的区别在于:Na:Zn:Zr:P的摩尔比为1:0.9:4:6,制得的预烧结产物为Na0.4Zn0.8Zr4(PO4)6。The difference from Example 1 is that the molar ratio of Na:Zn:Zr:P is 1:0.9:4:6, and the obtained pre-sintered product is Na 0.4 Zn 0.8 Zr 4 (PO 4 ) 6 .
实施例9Example 9
与实施例1的区别在于:预烧结产物NaZn0.5Zr4(PO4)6与第二混合液的重量比为0.01:1,最终制得的预烧结产物占改性镍钴锰三元正极材料的重量百分比为2wt%。The difference from Example 1 is that the weight ratio of the pre-sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 to the second mixed solution is 0.01:1, and the final pre-sintered product accounts for the modified nickel-cobalt-manganese ternary positive electrode material. The weight percent is 2wt%.
实施例10Example 10
与实施例1的区别在于:预烧结产物NaZn0.5Zr4(PO4)6与第二混合液的重量比为0.05:1,最终制得的预烧结产物占改性镍钴锰三元正极材料的重量百分比为10wt%。The difference from Example 1 is that the weight ratio of the pre-sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 to the second mixed solution is 0.05:1, and the final pre-sintered product accounts for the modified nickel-cobalt-manganese ternary positive electrode material. The weight percent is 10wt%.
实施例11Example 11
与实施例1的区别在于:预烧结产物NaZn0.5Zr4(PO4)6与第二混合液的重量比为0.005:1,最终制得的预烧结产物占改性镍钴锰三元正极材料的重量百分比为1wt%。The difference from Example 1 is that the weight ratio of the pre-sintered product NaZn 0.5 Zr 4 (PO 4 ) 6 to the second mixed solution is 0.005:1, and the final pre-sintered product accounts for the modified nickel-cobalt-manganese ternary positive electrode material. The weight percent is 1wt%.
实施例12Example 12
与实施例1的区别在于:预烧结处理过程的温度为400℃,时间为10h。The difference from Example 1 is that the temperature of the pre-sintering process is 400° C. and the time is 10 h.
实施例13Example 13
与实施例1的区别在于:预烧结处理过程的温度为600℃,时间为5h。The difference from Example 1 is that the temperature of the pre-sintering process is 600° C. and the time is 5 hours.
实施例14Example 14
与实施例1的区别在于:预烧结处理过程的温度为300℃,时间为3h。The difference from Example 1 is that the temperature of the pre-sintering process is 300° C. and the time is 3 hours.
实施例15Example 15
与实施例1的区别在于:步骤S3中,按Li:Ni:Co:Mn的摩尔比为1.012:0.5:0.2:0.3称取氢氧化锂、无水硫酸镍、无水硫酸钴、无水硫酸锰,并分散在去无水乙醇中,得到第二混合液,该第二混合液的固含量为45wt%;The difference with Example 1 is: in step S3, the mol ratio of Li:Ni:Co:Mn is 1.012:0.5:0.2:0.3 to weigh lithium hydroxide, anhydrous nickel sulfate, anhydrous cobalt sulfate, anhydrous sulfuric acid. manganese, and dispersed in dehydrated ethanol to obtain a second mixed solution, and the solid content of the second mixed solution is 45wt%;
最终制得改性LiNi0.5Co0.2Mn0.3O2三元正极材料。Finally, the modified LiNi 0.5 Co 0.2 Mn 0.3 O 2 ternary cathode material was obtained.
实施例16Example 16
与实施例1的区别在于:步骤S3中,按Li:Ni:Co:Mn的摩尔比为1.012:0.8:0.1:0.1称取氢氧化锂、无水硫酸镍、无水硫酸钴、无水硫酸锰,并分散在去无水乙醇中,得到第二混合液,该第二混合液的固含量为45wt%;The difference with Example 1 is: in step S3, the mol ratio of Li:Ni:Co:Mn is 1.012:0.8:0.1:0.1 to weigh lithium hydroxide, anhydrous nickel sulfate, anhydrous cobalt sulfate, anhydrous sulfuric acid. manganese, and dispersed in dehydrated ethanol to obtain a second mixed solution, and the solid content of the second mixed solution is 45wt%;
最终制得改性LiNi0.8Co0.1Mn0.1O2三元正极材料。Finally, the modified LiNi 0.8 Co 0.1 Mn 0.1 O 2 ternary cathode material was obtained.
实施例17Example 17
与实施例1的区别在于:步骤S4中,煅烧处理的温度为1000℃。The difference from Example 1 is that in step S4, the temperature of the calcination treatment is 1000°C.
对比例1Comparative Example 1
与实施例1的区别在于:对比例1制备得到的是未改性的LiNi0.6Co0.2Mn0.2O2三元正极材料,其制备过程包括:The difference from Example 1 is that the unmodified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary positive electrode material is prepared in Comparative Example 1, and the preparation process includes:
按Li:Ni:Co:Mn的摩尔比为1.012:0.6:0.2:0.2并称取碳酸锂、无水硝酸镍、无水硝酸钴、无水硝酸锰,并分散在去无水乙醇中,得到第三混合液,该第三混合液的固含量为45wt%;对第三混合液进行第一球磨处理,球磨转速为750rpm且时间为2h,100℃条件下干燥5h,在空气气氛中,950℃恒温10h,自然冷却后,得到未改性的LiNi0.6Co0.2Mn0.2O2三元正极材料。The molar ratio of Li:Ni:Co:Mn is 1.012:0.6:0.2:0.2, and lithium carbonate, anhydrous nickel nitrate, anhydrous cobalt nitrate, and anhydrous manganese nitrate are weighed, and dispersed in dehydrated ethanol to obtain The third mixed solution, the solid content of the third mixed solution is 45wt%; the third mixed solution is subjected to the first ball milling treatment, the ball milling speed is 750rpm and the time is 2h, dried at 100 ℃ for 5h, in an air atmosphere, 950 The temperature was kept constant for 10 h, and after natural cooling, an unmodified LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary cathode material was obtained.
对比例2Comparative Example 2
与实施例1的区别在于:Na:Zn:Zr:P的摩尔比为1:0.25:4:6,且制得的预烧结产物的化学式为Na1.5Zn0.25Zr4(PO4)6,其中x为0.25。The difference from Example 1 is that the molar ratio of Na:Zn:Zr:P is 1:0.25:4:6, and the chemical formula of the obtained pre-sintered product is Na 1.5 Zn 0.25 Zr 4 (PO 4 ) 6 , wherein x is 0.25.
将本申请全部实施例和对比例中制得的改性镍钴锰三元正极材料和未改性的镍钴锰三元正极材料组装成锂离子电池,并进行高温(45℃)循环稳定性和高温(55℃)搁置稳定性测试。The modified nickel-cobalt-manganese ternary positive electrode materials and unmodified nickel-cobalt-manganese ternary positive electrode materials prepared in all the examples and comparative examples of this application were assembled into lithium ion batteries, and the high temperature (45°C) cycle stability was carried out. and high temperature (55°C) shelf stability test.
锂离子电池的组装过程如下:以LiNi0.6Co0.2Mn0.2O2三元材料为正极,聚偏氟乙烯为粘结剂,导电炭黑为导电剂,三者重量比为8:1:1,以电池级锂片作为负极材料,以主成分为六氟磷酸锂的电解液进行组装,以高分子聚乙烯微孔膜为隔膜,组装成锂离子电池。The assembly process of the lithium-ion battery is as follows: the LiNi 0.6 Co 0.2 Mn 0.2 O 2 ternary material is used as the positive electrode, the polyvinylidene fluoride is used as the binder, and the conductive carbon black is used as the conductive agent. The weight ratio of the three is 8:1:1. A lithium-ion battery is assembled by using a battery-grade lithium sheet as the negative electrode material, using an electrolyte whose main component is lithium hexafluorophosphate, and using a polymer polyethylene microporous film as a separator.
测试条件如下:在45℃条件下,0.33C恒流充放电,充放电电化学窗口为3.0~4.3V,循环1350周后测试锂离子电池的容量保持率;锂离子电池处于满电状态(100%SOC)且在55℃条件下搁置28天后测试其容量保持率。本申请全部实施例和对比例中制得的锂离子电池的测试结果总结在表1中。The test conditions are as follows: under the condition of 45 ℃, 0.33C constant current charge and discharge, the charge and discharge electrochemical window is 3.0 ~ 4.3V, and the capacity retention rate of the lithium ion battery is tested after 1350 cycles of cycling; the lithium ion battery is in a fully charged state (100 %SOC) and the capacity retention rate was tested after standing at 55°C for 28 days. The test results of the lithium-ion batteries prepared in all the examples and comparative examples of the present application are summarized in Table 1.
表1Table 1
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:From the above description, it can be seen that the above-mentioned embodiments of the present invention achieve the following technical effects:
比较实施例1、15至17以及对比例1的测试结果可知,在45℃条件下,循环1350周后的容量保持率为86%,锂离子电池处于满电状态(100%SOC)且在55℃条件下搁置28天后其容量保持率为97.5%;而对比例1中由未改性的镍钴锰三元正极材料制成的锂离子电池,在45℃条件下循环1350周后其容量保持率为83%,锂离子电池处于满电状态(100%SOC)且在55℃条件下搁置28天后其容量保持率为92%。Comparing the test results of Examples 1, 15 to 17 and Comparative Example 1, it can be seen that under the condition of 45°C, the capacity retention rate after 1350 cycles of cycling is 86%, and the lithium-ion battery is in a fully charged state (100% SOC) and at 55%. The capacity retention rate was 97.5% after being left at ℃ for 28 days; while the lithium-ion battery made of unmodified nickel-cobalt-manganese ternary cathode material in Comparative Example 1 maintained its capacity after 1350 cycles at 45℃. The rate is 83%, and the lithium-ion battery is in a fully charged state (100% SOC) and has a capacity retention rate of 92% after being left at 55°C for 28 days.
比较实施例1至8和对比例1和2可知,通过原位反应方法,将制得的预烧结产物作为改性材料包覆在内核的表面,进而得到改性镍钴锰三元正极材料。这能够提高正极材料的稳定性,从而有效缓冲正极材料的内应力,且能够有效抑制阳离子混排以达到稳定晶体结构的目的,进而抑制锂离子电池循环稳定性和安全性能的下降;同时,还能够有效抑制过渡金属离子的溶解,提升正极材料的电化学性能。总之,采用本申请提供的上述制备方法制得的改性镍钴锰三元正极材料具有较高的反应活性和结构稳定性,将其应用在锂离子电池中能够实现优异的综合电化学性能。上述制备方法制得的镍钴锰三元正极材料尤其适用于提高锂离子电池的高温循环稳定性。Comparing Examples 1 to 8 and Comparative Examples 1 and 2, it can be seen that by in-situ reaction method, the prepared pre-sintered product is used as a modified material to coat the surface of the inner core, thereby obtaining a modified nickel-cobalt-manganese ternary positive electrode material. This can improve the stability of the positive electrode material, thereby effectively buffering the internal stress of the positive electrode material, and can effectively inhibit the mixing of cations to achieve the purpose of stabilizing the crystal structure, thereby inhibiting the degradation of the cycle stability and safety performance of the lithium-ion battery; It can effectively inhibit the dissolution of transition metal ions and improve the electrochemical performance of cathode materials. In conclusion, the modified nickel-cobalt-manganese ternary cathode material prepared by the above preparation method provided in this application has high reactivity and structural stability, and its application in lithium ion batteries can achieve excellent comprehensive electrochemical performance. The nickel-cobalt-manganese ternary positive electrode material prepared by the above preparation method is especially suitable for improving the high temperature cycle stability of the lithium ion battery.
比较实施例1、9至11可知,预烧结产物的重量百分含量包括但不限于本申请优选范围,将其限定在本申请优选范围内有利于形成厚度适宜的包覆层,进而提高正极材料的稳定性;同时有利于抑制过渡金属离子的溶解,提升正极材料的电化学性能。Comparing Examples 1, 9 to 11, it can be seen that the weight percentage of the pre-sintered product includes but is not limited to the preferred range of the present application, and limiting it to the preferred range of the present application is conducive to the formation of a coating layer with a suitable thickness, thereby improving the positive electrode material. At the same time, it is beneficial to inhibit the dissolution of transition metal ions and improve the electrochemical performance of cathode materials.
比较实施例1、12至14可知,将预烧结处理过程的温度和时间限定在本申请优选范围内有利于提高预烧结产物结构的均一性,进而有利于提高锂离子电池的高温(45℃条件下)循环稳定性和高温(55℃)搁置性能。Comparing Examples 1, 12 to 14, it can be seen that limiting the temperature and time of the pre-sintering process to the preferred range of the present application is conducive to improving the uniformity of the structure of the pre-sintering product, which in turn is conducive to improving the high temperature (45°C condition of the lithium ion battery). Bottom) cycle stability and high temperature (55°C) shelf performance.
需要说明的是,本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里描述的那些以外的顺序实施。It should be noted that the terms "first", "second" and the like in the description and claims of the present application are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application described herein can, for example, be practiced in sequences other than those described herein.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210770068.2A CN115020673A (en) | 2022-07-01 | 2022-07-01 | Modified nickel-cobalt-manganese ternary positive electrode material, its preparation method and lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210770068.2A CN115020673A (en) | 2022-07-01 | 2022-07-01 | Modified nickel-cobalt-manganese ternary positive electrode material, its preparation method and lithium ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115020673A true CN115020673A (en) | 2022-09-06 |
Family
ID=83078591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210770068.2A Pending CN115020673A (en) | 2022-07-01 | 2022-07-01 | Modified nickel-cobalt-manganese ternary positive electrode material, its preparation method and lithium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115020673A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115472902A (en) * | 2022-10-18 | 2022-12-13 | 合肥国轩高科动力能源有限公司 | Solid electrolyte material and preparation thereof, lithium ion solid battery and application |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030211235A1 (en) * | 2002-05-13 | 2003-11-13 | Jun-Won Suh | Method of preparing positive active material for a lithium secondary battery |
CN101409342A (en) * | 2008-10-31 | 2009-04-15 | 深圳市贝特瑞新能源材料股份有限公司 | Method for preparing composite anode material |
CN102479952A (en) * | 2010-11-23 | 2012-05-30 | 清华大学 | Lithium ion battery electrode composite material and preparation method and battery thereof |
CN103779556A (en) * | 2014-01-26 | 2014-05-07 | 中信国安盟固利电源技术有限公司 | Doped and surface coating co-modified anode material for lithium ion battery and preparation method thereof |
JP2015082476A (en) * | 2013-10-24 | 2015-04-27 | 日立金属株式会社 | Positive electrode active material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary batteries |
CN105070907A (en) * | 2015-08-31 | 2015-11-18 | 宁波金和锂电材料有限公司 | High nickel anode material, preparation method thereof and lithium ion battery |
CN106602024A (en) * | 2016-12-28 | 2017-04-26 | 国联汽车动力电池研究院有限责任公司 | In-situ surface-modified lithium-rich material and preparation method thereof |
US20180183046A1 (en) * | 2016-12-28 | 2018-06-28 | Lg Chem, Ltd. | Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same |
CN114512661A (en) * | 2020-11-17 | 2022-05-17 | 松山湖材料实验室 | Modified positive electrode active material and preparation method, positive electrode, lithium ion secondary battery |
-
2022
- 2022-07-01 CN CN202210770068.2A patent/CN115020673A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030211235A1 (en) * | 2002-05-13 | 2003-11-13 | Jun-Won Suh | Method of preparing positive active material for a lithium secondary battery |
CN101409342A (en) * | 2008-10-31 | 2009-04-15 | 深圳市贝特瑞新能源材料股份有限公司 | Method for preparing composite anode material |
CN102479952A (en) * | 2010-11-23 | 2012-05-30 | 清华大学 | Lithium ion battery electrode composite material and preparation method and battery thereof |
JP2015082476A (en) * | 2013-10-24 | 2015-04-27 | 日立金属株式会社 | Positive electrode active material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary batteries |
CN103779556A (en) * | 2014-01-26 | 2014-05-07 | 中信国安盟固利电源技术有限公司 | Doped and surface coating co-modified anode material for lithium ion battery and preparation method thereof |
CN105070907A (en) * | 2015-08-31 | 2015-11-18 | 宁波金和锂电材料有限公司 | High nickel anode material, preparation method thereof and lithium ion battery |
CN106602024A (en) * | 2016-12-28 | 2017-04-26 | 国联汽车动力电池研究院有限责任公司 | In-situ surface-modified lithium-rich material and preparation method thereof |
US20180183046A1 (en) * | 2016-12-28 | 2018-06-28 | Lg Chem, Ltd. | Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same |
CN114512661A (en) * | 2020-11-17 | 2022-05-17 | 松山湖材料实验室 | Modified positive electrode active material and preparation method, positive electrode, lithium ion secondary battery |
Non-Patent Citations (2)
Title |
---|
ZHAO RUI等: ""One-Step Integrated Surface Modification To Build a Stable Interface on High-Voltage Cathode for Lithium-Ion Batteries"" * |
柏祥涛等: "高镍三元正极材料的包覆与掺杂改性研究进展" * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115472902A (en) * | 2022-10-18 | 2022-12-13 | 合肥国轩高科动力能源有限公司 | Solid electrolyte material and preparation thereof, lithium ion solid battery and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022007663A1 (en) | Lithium ion battery positive electrode active material and preparation method therefor | |
CN102738458B (en) | Surface modification method of lithium-rich cathode material | |
CN103066265B (en) | Sodium ion battery negative pole active substance and preparation method and application thereof | |
CN111082026A (en) | A kind of ternary cathode material coated with lithium tungstate and preparation method thereof | |
CN111293288B (en) | NaF/metal composite sodium-supplementing positive electrode active material, positive electrode, preparation method of positive electrode and application of positive electrode in sodium electrovoltaics | |
CN110459736A (en) | Positive electrode material and positive electrode sheet and lithium ion battery containing the positive electrode material | |
CN110890541A (en) | Preparation method of surface-modified lithium-rich manganese-based positive electrode material and lithium ion battery | |
CN103137976B (en) | Nano composite material and preparation method thereof and positive electrode and battery | |
CN109888252B (en) | Co-coated nickel-cobalt-manganese ternary positive electrode material and preparation method thereof | |
CN104852046B (en) | Nanometer piece shaped LMFP material, and manufacturing method and application thereof | |
CN115312885A (en) | Positive electrode lithium supplement additive and preparation method and application thereof | |
CN113937262A (en) | Metal oxide modified positive electrode material for sodium ion battery and preparation method and application thereof | |
CN112751033A (en) | Polar solvent-resistant lithium supplement additive and preparation method thereof | |
CN102332563A (en) | A kind of preparation method of positive electrode material of lithium ion battery | |
CN113603141B (en) | Composite positive electrode material, preparation method and application thereof | |
WO2025002026A1 (en) | Sodium ion battery positive electrode material, preparation method therefor, positive electrode and sodium ion battery | |
CN114349051A (en) | Multi-metal molybdate, preparation method thereof and lithium ion battery | |
CN114614012A (en) | Ternary composite material for all-solid-state battery, and preparation method and application thereof | |
CN116190626A (en) | Sodium ion cathode material and preparation method thereof, sodium ion battery | |
CN113437273A (en) | All-solid-state lithium ion battery positive electrode material with coating layer on outer layer and preparation method thereof | |
CN111640928A (en) | NCMA quaternary system material, preparation method thereof, lithium battery positive electrode material and lithium battery | |
CN115188945A (en) | Coated positive electrode material and preparation method and application thereof | |
CN115020673A (en) | Modified nickel-cobalt-manganese ternary positive electrode material, its preparation method and lithium ion battery | |
CN114989059A (en) | Lithium supplement for lithium ion battery, preparation method and application thereof | |
CN110563052A (en) | preparation method of carbon and lanthanum oxide co-coated modified lithium nickel manganese oxide positive electrode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220906 |