[go: up one dir, main page]

CN115011600B - An inducible promoter GmbHLH47 promoter responding to iron deficiency stress and its application - Google Patents

An inducible promoter GmbHLH47 promoter responding to iron deficiency stress and its application Download PDF

Info

Publication number
CN115011600B
CN115011600B CN202210690238.6A CN202210690238A CN115011600B CN 115011600 B CN115011600 B CN 115011600B CN 202210690238 A CN202210690238 A CN 202210690238A CN 115011600 B CN115011600 B CN 115011600B
Authority
CN
China
Prior art keywords
promoter
gmbhlh47
iron
plant
pbi121
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210690238.6A
Other languages
Chinese (zh)
Other versions
CN115011600A (en
Inventor
郭东林
张丽婷
邓国伟
牛婷婷
王宇
李彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Normal University
Original Assignee
Harbin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Normal University filed Critical Harbin Normal University
Priority to CN202210690238.6A priority Critical patent/CN115011600B/en
Publication of CN115011600A publication Critical patent/CN115011600A/en
Application granted granted Critical
Publication of CN115011600B publication Critical patent/CN115011600B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • C12N15/8238Externally regulated expression systems chemically inducible, e.g. tetracycline
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/002Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种响应缺铁胁迫的诱导型启动子GmbHLH47启动子及其应用,属于基因工程技术领域。为了提高植物的抗铁胁迫能力,本发明提供了一种响应缺铁胁迫的诱导型启动子GmbHLH47启动子,该启动子从大豆GmbHLH47基因启动子区域克隆得到,核苷酸序列如SEQ ID NO.1所示。通过对该启动子区的分析发现其中含有多种可能参与多重逆境胁迫的顺式作用元件。当用缺铁培养基对转基因植株进行处理后,发现GmbHLH47启动子可以增加外源基因GUS的表达,致使转基因植株的染色加深,证明GmbHLH47启动子受缺铁胁迫诱导。作为一个受缺铁胁迫诱导的启动子,其启动子区域和上游调控序列在基因工程和提高植物抵抗缺铁方面起着重要作用。

An inducible promoter GmbHLH47 promoter responding to iron deficiency stress and its application belong to the technical field of genetic engineering. In order to improve the iron stress resistance of plants, the invention provides an inducible promoter GmbHLH47 promoter in response to iron deficiency stress, which is cloned from the promoter region of soybean GmbHLH47 gene, and the nucleotide sequence is as SEQ ID NO. 1. Through the analysis of the promoter region, it was found that it contains a variety of cis-acting elements that may be involved in multiple stresses. When the transgenic plants were treated with iron-deficiency medium, it was found that the GmbHLH47 promoter could increase the expression of the exogenous gene GUS, resulting in a deeper staining of the transgenic plants, which proved that the GmbHLH47 promoter was induced by iron-deficiency stress. As a promoter induced by iron deficiency stress, its promoter region and upstream regulatory sequences play an important role in genetic engineering and improving plant resistance to iron deficiency.

Description

一种响应缺铁胁迫的诱导型启动子GmbHLH47启动子及其应用An inducible promoter GmbHLH47 promoter responding to iron deficiency stress and its application

技术领域technical field

本发明属于基因工程技术领域,具体涉及一种响应缺铁胁迫的诱导型启动子GmbHLH47启动子及其应用。The invention belongs to the technical field of genetic engineering, in particular to an inducible promoter GmbHLH47 promoter responding to iron deficiency stress and its application.

背景技术Background technique

大豆(Glycine Max L)是世界五大粮食作物之一,是一年生草本双子叶植物,大豆籽粒营养丰富。铁是植物生长发育必须的微量元素之一,其在植物体的光合作用、呼吸作用、氮的固定、蛋白质和核酸合成等生理代谢过程中发挥着重要作用。虽然铁在大多数土壤中含量都是丰富的,但铁在不溶性氧化铁的形式中不能被生物所利用。在缺铁条件下,大豆地下部分根系发育较差,生长不良,根短而细少,根瘤数量较少,进而导致减产,严重时会导致植株早期枯萎甚至死亡。Soybean (Glycine Max L) is one of the five major food crops in the world. It is an annual herbaceous dicotyledonous plant, and soybean seeds are rich in nutrition. Iron is one of the essential trace elements for plant growth and development, and it plays an important role in physiological metabolic processes such as photosynthesis, respiration, nitrogen fixation, protein and nucleic acid synthesis in plants. Although iron is abundant in most soils, iron is not bioavailable in the form of insoluble iron oxide. Under iron-deficiency conditions, the underground parts of soybean have poor root development, poor growth, short and thin roots, and fewer root nodules, which in turn lead to yield reduction, and in severe cases, early wilting or even death of plants.

植物启动子是一段能与RNA聚合酶及其转录因子特异结合、决定基因转录起始的DNA序列。诱导型启动子可以接受诱导信号快速有效的诱导基因的表达,也可以随时解除胁迫停止表达。如在非生物胁迫下与逆境胁迫相关的转录因子(调节蛋白)与基因上游启动子中关键顺式元件特异结合,增强启动子活性,提高目的基因表达量,提高植株抗逆性。A plant promoter is a DNA sequence that can specifically bind to RNA polymerase and its transcription factors and determine the initiation of gene transcription. The inducible promoter can accept the induction signal to induce the expression of the gene quickly and effectively, and can also relieve the stress at any time to stop the expression. For example, under abiotic stress, transcription factors (regulatory proteins) related to adversity stress specifically combine with key cis-elements in the upstream promoter of genes to enhance promoter activity, increase the expression of target genes, and improve plant stress resistance.

发明内容Contents of the invention

为了提高植物的抗铁胁迫能力,本发明提供了在缺铁胁迫下启动外源基因的转录的诱导型启动子GmbHLH47启动子,GmbHLH47启动子能在缺铁条件下驱动基因的表达,所述GmbHLH47启动子的核苷酸序列如SEQ ID NO.1所示。In order to improve the iron stress resistance of plants, the invention provides an inducible promoter GmbHLH47 promoter that starts the transcription of foreign genes under iron deficiency stress, and the GmbHLH47 promoter can drive the expression of genes under iron deficiency conditions, and the GmbHLH47 The nucleotide sequence of the promoter is shown in SEQ ID NO.1.

本发明还提供了上述GmbHLH47启动子在提高植物抗铁胁迫能力中的应用。The present invention also provides the application of the above-mentioned GmbHLH47 promoter in improving the ability of plants to resist iron stress.

进一步地限定,所述植物为拟南芥或大豆。Further defined, the plant is Arabidopsis or soybean.

本发明还提供了含有上述GmbHLH47启动子的重组载体。The present invention also provides a recombinant vector containing the above-mentioned GmbHHLH47 promoter.

本发明还提供了上述重组载体在提高植物抗铁胁迫能力中的应用。The present invention also provides the application of the above-mentioned recombinant vector in improving the iron stress resistance ability of plants.

本发明还提供了含有上述GmbHLH47启动子的转基因细胞系或重组菌。The present invention also provides a transgenic cell line or a recombinant bacterium containing the above-mentioned GmbHHLH47 promoter.

本发明还提供了上述转基因细胞系或重组菌在提高植物抗铁胁迫能力中的应用。The present invention also provides the application of the above-mentioned transgenic cell line or recombinant bacteria in improving the iron stress resistance of plants.

本发明还提供了一种提高植物抗铁胁迫能力的方法,所述方法包括如下步骤:The present invention also provides a method for improving plant resistance to iron stress, said method comprising the steps of:

(1)构建含有GmbHLH47启动子的重组载体,所述GmbHLH47启动子的核苷酸序列如SEQ ID NO.1所示;(1) constructing a recombinant vector containing the GmbHLH47 promoter, the nucleotide sequence of the GmbHLH47 promoter is shown in SEQ ID NO.1;

(2)制备携带GmbHLH47启动子的农杆菌:将步骤(1)得到的重组载体转入到农杆菌感受态中培养,得到携带GmbHLH47启动子的农杆菌;(2) Prepare the Agrobacterium carrying the GmbHLH47 promoter: transfer the recombinant vector obtained in step (1) into Agrobacterium competent for cultivation to obtain the Agrobacterium carrying the GmbHLH47 promoter;

(3)制备携带GmbHLH47启动子的转基因植物:利用将步骤(2)得到的农杆菌侵染植物,得到携带GmbHLH47启动子的植物。(3) Preparation of transgenic plants carrying the GmbHLH47 promoter: using the Agrobacterium obtained in step (2) to infect plants to obtain plants carrying the GmbHLH47 promoter.

进一步地限定,步骤(1)所述重组载体的构建方法具体如下:利用限制性内切酶分别酶切载体pMD18T-GmbHLH47启动子和pBI121-GUS质粒,得到GmbHLH47启动子的序列片段与pBI121-GUS质粒的酶切产物,然后将GmbHLH47启动子的序列片段与pBI121-GUS质粒的酶切产物进行连接,获得pBI121-GmbHLH47pro::GUS。To further define, the construction method of the recombinant vector described in step (1) is as follows: use restriction endonucleases to digest the vector pMD18T-GmbHLH47 promoter and pBI121-GUS plasmid respectively to obtain the sequence fragment of the GmbHLH47 promoter and pBI121-GUS The digested product of the plasmid, and then the sequence fragment of the GmbHLH47 promoter was ligated with the digested product of the pBI121-GUS plasmid to obtain pBI121-GmbHLH47pro::GUS.

进一步地限定,上述连接反应的体系是:5μL的pBI121-GUS质粒酶切产物、3μL的GmbHLH47启动子的序列片段、1μL的10×T4 DNA连接缓冲液和1μL的T4 DNA连接酶,反应温度为16℃,反应时间为12h。To further define, the system of the above ligation reaction is: 5 μL of pBI121-GUS plasmid digestion product, 3 μL of the sequence fragment of the GmbHLH47 promoter, 1 μL of 10×T4 DNA ligation buffer and 1 μL of T4 DNA ligase, and the reaction temperature is 16°C, the reaction time is 12h.

进一步的限定,所述限制性内切酶为HindⅢ和BamH1。Further defined, the restriction endonucleases are HindIII and BamH1.

进一步地限定,所述植物为拟南芥或大豆。Further defined, the plant is Arabidopsis or soybean.

进一步地限定,所述植物为拟南芥时,步骤(3)所述侵染的时机为拟南芥达到开花期;所述植物为大豆时,步骤(3)所述侵染的时机为大豆长出子叶节时。It is further defined that when the plant is Arabidopsis, the timing of the infection in step (3) is that Arabidopsis reaches the flowering stage; when the plant is soybean, the timing of the infection in step (3) is soybean When cotyledons emerge.

进一步的限定,上述步骤(3)中农杆菌侵染拟南芥的步骤如下:To further define, the steps of Agrobacterium infecting Arabidopsis in the above step (3) are as follows:

(1)在超净工作台中取保存的pBI121-GmbHLH47pro::GUS农杆菌菌液50μL,接种于25mL含有Km、Str、Rif的YEB液体培养中,28℃,200rpm摇床培养17h左右,取上述活化后的菌液500μL置于50mL含有Km、Str、Rif的YEB液体培养中,28℃,200rpm摇床培养15h左右,OD600至1.2-1.5停止。(1) Take 50 μL of the preserved pBI121-GmbHLH47pro::GUS Agrobacterium liquid in the ultra-clean workbench, inoculate it into 25 mL of YEB liquid culture containing Km, Str, and Rif, and cultivate it on a shaker at 28°C for about 17 hours at 200 rpm. Place 500 μL of the activated bacterial solution in 50 mL of YEB liquid culture containing Km, Str, and Rif, and culture on a shaker at 200 rpm at 28°C for about 15 hours, and stop when the OD 600 reaches 1.2-1.5.

(2)将活化的农杆菌放于离心机中5000rpm离心10min,弃掉上清,收集离心管中的菌体,加5%蔗糖(现用现配)20mL吸打重悬浮,取2mL重悬浮菌液,于600nm测其OD值,使其OD值达到0.9便可用于转化,在转化前向转化液中加入0.04%比例的Silwet L-77。(2) Put the activated Agrobacterium in a centrifuge and centrifuge at 5000rpm for 10min, discard the supernatant, collect the bacteria in the centrifuge tube, add 5% sucrose (prepared for current use) 20mL to resuspend, take 2mL to resuspend Bacteria solution, its OD value was measured at 600nm, and the OD value reached 0.9 before it could be used for transformation, and 0.04% Silwet L-77 was added to the transformation solution before transformation.

(3)选取长势健壮植株,当拟南芥的花蕾将要打开的时候,转化的效果最好,做转化时,用移液器吸取200μL新配置的转化液,向拟南芥的花蕾滴加2-3滴,并重复操作2-3次。(3) Select healthy and vigorous plants. When the flower buds of Arabidopsis thaliana are about to open, the transformation effect is the best. When doing transformation, use a pipette to draw 200 μL of the newly prepared transformation solution, and add 2 drops to the flower buds of Arabidopsis thaliana. -3 drops and repeat the operation 2-3 times.

(4)蘸花完毕后,将植株移到黑暗处保湿24h,之后将植株移到光照培养室(温度22℃、光照16h/黑暗8h)正常培养,3d后再次配制转化液进行二次转化。(4) After dipping the flowers, move the plants to a dark place to keep moisture for 24 hours, then move the plants to a light culture room (temperature 22°C, light 16 hours/darkness 8 hours) for normal cultivation, and prepare transformation solution again after 3 days for secondary transformation.

(5)将T0拟南芥种子置于含有Km抗性的1/2MS培养基中筛选。(5) Place T0 Arabidopsis seeds in 1/2MS medium containing Km resistance for selection.

进一步的限定,步骤(3)中农杆菌侵染大豆的步骤如下:Further definition, the step of Agrobacterium infecting soybean in step (3) is as follows:

(1)挑选黑农53大豆种子,在超净工作台中用无菌28%次氯酸钠消毒5min后用无菌水冲洗数遍,种脐向下放入MS培养基中,暗培养6天。(1) Select Heinong 53 soybean seeds, disinfect them with sterile 28% sodium hypochlorite for 5 minutes in an ultra-clean workbench, rinse them several times with sterile water, put them into MS medium with the hilum down, and culture them in dark for 6 days.

(2)在超净工作台中将pBI121-GmbHLH47pro::GUS K599农杆菌重悬后得到OD600为0.5-0.7菌液,用于侵染大豆子叶节。(2) The pBI121-GmbHLH47pro::GUS K599 Agrobacterium was resuspended in an ultra-clean bench to obtain a bacterial solution with an OD 600 of 0.5-0.7, which was used to infect soybean cotyledon nodes.

(3)取暗培养的无菌大豆,用刀在距离子叶0.3-0.5cm处切下,并将子叶从子叶节处切开,切掉顶芽。用组培刀在子叶和子叶节表面划几刀,称为外植体。(3) Take dark-cultured sterile soybeans, cut off the cotyledon at a distance of 0.3-0.5 cm with a knife, cut the cotyledon from the cotyledon node, and cut off the terminal bud. Use a tissue culture knife to make several cuts on the surface of the cotyledons and cotyledon nodes, which are called explants.

(4)把外植体放在菌液里浸泡30min,不定期晃动菌液。侵染后的子叶节用滤纸吸干后将其放在MS1固体培养基上,封膜,暗培养5天。(4) Soak the explants in the bacterial solution for 30 minutes, and shake the bacterial solution from time to time. After infection, the cotyledon nodes were blotted dry with filter paper, placed on MS1 solid medium, sealed, and cultured in the dark for 5 days.

(5)暗培养后用含有Cef和Km抗性MS3液体培养基冲洗子叶节,先冲洗两遍,为了将菌彻底洗净再泡半小时,洗净后将子叶节吸干,将下胚轴切至0.5cm,将子叶下胚轴朝下,倾斜着插入MS3固体培养基,25℃,16h光照培养。(5) After dark culture, wash the cotyledon nodes with MS3 liquid medium containing Cef and Km resistance, first rinse twice, and then soak for half an hour in order to thoroughly wash the bacteria. Cut to 0.5 cm, place the hypocotyl of the cotyledon downwards, insert it into MS3 solid medium obliquely, and culture at 25°C for 16 hours under light.

本发明的有益效果:Beneficial effects of the present invention:

GmbHLH47启动子从大豆GmbHLH47基因启动子区域克隆得到。通过对该启动子区的分析发现其中含有多种可能参与多重逆境胁迫的顺式作用元件。当用缺铁培养基对转基因植株进行处理后,发现GmbHLH47启动子可以增加外源基因GUS的表达,致使转基因植物的染色加深,证明GmbHLH47启动子受缺铁胁迫诱导。作为一个受缺铁胁迫诱导的启动子,其启动子区域和上游调控序列在基因工程和提高植物抵抗缺铁方面起着重要作用。The GmbHLH47 promoter was cloned from the promoter region of soybean GmbHLH47 gene. Through the analysis of the promoter region, it was found that it contains a variety of cis-acting elements that may be involved in multiple stresses. When the transgenic plants were treated with iron-deficiency medium, it was found that the GmbHLH47 promoter could increase the expression of the exogenous gene GUS, resulting in a deeper staining of the transgenic plants, which proved that the GmbHLH47 promoter was induced by iron-deficiency stress. As a promoter induced by iron deficiency stress, its promoter region and upstream regulatory sequences play an important role in genetic engineering and improving plant resistance to iron deficiency.

附图说明Description of drawings

图1为启动子GmbHLH47的PCR扩增结果图;Fig. 1 is the result figure of the PCR amplification of promoter GmbHHLH47;

图2为植物表达载体pBI121-proGmbHLH47::GUS重组质粒结构图;Figure 2 is a structural diagram of the plant expression vector pBI121-proGmbHLH47::GUS recombinant plasmid;

图3为转pBI121-proGmbHLH47::GUS大豆毛状根GUS染色结果图;其中,图3中的A为缺铁横截面,图3中的B为缺铁纵截面,图3中的C为缺铁根尖,图3中的D为正常横截面,图3中的E为正常纵截面,图3中的F为正常根尖;Fig. 3 is the graph of the GUS staining results of soybean hairy roots transformed with pBI121-proGmbHLH47::GUS; wherein, A in Fig. 3 is the cross section of iron deficiency, B in Fig. 3 is the longitudinal section of iron deficiency, and C in Fig. 3 is Iron root tip, D in Figure 3 is a normal cross section, E in Figure 3 is a normal longitudinal section, and F in Figure 3 is a normal root tip;

图4为转pBI121-proGmbHLH47::GUS拟南芥GUS染色结果图;其中,图4中的A为野生型拟南芥GUS染色结果图,图4中的B为缺铁转pBI121-proGmbHLH47::GUS拟南芥染色结果图;Figure 4 is the GUS staining results of Arabidopsis thaliana transfected with pBI121-proGmbHLH47::GUS; wherein, A in Figure 4 is the GUS staining results of wild-type Arabidopsis thaliana, and B in Figure 4 is the iron-deficiency transfected pBI121-proGmbHLH47:: GUS Arabidopsis staining results;

图5为转proGmbHLH47基因阳性拟南芥;Fig. 5 is transproGmbHLH47 gene-positive Arabidopsis;

图6为转proGmbHLH47基因阳性大豆毛状根。Fig. 6 is the hairy root of transproGmbHLH47 gene-positive soybean.

具体实施方式Detailed ways

以下结合具体实施例和附图,对本发明作进一步的详细说明,以下的实施例便于更好地理解本发明,但并用于不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的药品试剂,如无特殊说明,均为自常规生化试剂商店购买得到的。The present invention will be described in further detail below in conjunction with specific examples and accompanying drawings. The following examples are convenient for a better understanding of the present invention, but are not intended to limit the present invention. The experimental methods in the following examples are conventional methods unless otherwise specified. The pharmaceutical reagents used in the following examples, unless otherwise specified, were purchased from conventional biochemical reagent stores.

实验材料:野生型拟南芥种子(Arabidopsis thaliana)由本实验室保存,大豆(Glycine max)材料黑农51由黑龙江省农业科学院耕作与栽培所大豆研究室惠赠。Experimental materials: wild-type Arabidopsis thaliana seeds were preserved by our laboratory, and soybean (Glycine max) material Heinong 51 was kindly donated by the Soybean Research Laboratory of the Farming and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences.

试验试剂:胶回收试剂盒(TIANGEN)、RNA提取试剂盒(TIANGEN)、PCR试剂盒(TAKARA)、载体连接试剂盒(TAKARA)、质粒提取试剂盒购自AXYGEN生物公司、GUS染色试剂盒。Test reagents: gel recovery kit (TIANGEN), RNA extraction kit (TIANGEN), PCR kit (TAKARA), vector ligation kit (TAKARA), plasmid extraction kit were purchased from AXYGEN Biological Company, and GUS staining kit.

实施例1:GmbHLH47启动子的获得Example 1: Obtaining of the GmbHHLH47 promoter

1、提取大豆DNA的方法:1. The method of extracting soybean DNA:

(1)将0.1g大豆叶片放入经液氮预冷的研钵中,研磨至细碎的粉末状。(1) Put 0.1 g of soybean leaves into a mortar precooled with liquid nitrogen, and grind to a fine powder.

(2)将50mg粉末转移到1.5mL的无菌离心管中,加入400μL SP1 Buffer和5μLRNase A,最大速度涡旋混匀。(2) Transfer 50 mg of powder to a 1.5 mL sterile centrifuge tube, add 400 μL SP1 Buffer and 5 μL RNase A, and vortex at maximum speed to mix.

(3)65℃孵育10min,孵育期间取出颠倒混匀2次。(3) Incubate at 65°C for 10 minutes, remove and mix twice during incubation.

(4)加入140μL SP2 Buffer,最大速度涡旋混匀。(4) Add 140 μL SP2 Buffer, vortex and mix at maximum speed.

(5)冰浴5min,最大速度离心10min。(5) Cool in ice for 5 minutes, and centrifuge at maximum speed for 10 minutes.

(6)将Homogenizer Comuln套入到2mL收集管中,小心转移上清液至HomogenizerComuln,注意不要转移沉淀,最大速度离心2min。(6) Put the Homogenizer Comuln into a 2mL collection tube, carefully transfer the supernatant to the Homogenizer Comuln, be careful not to transfer the precipitate, and centrifuge at the maximum speed for 2 minutes.

(7)转移澄清的裂解液到新的1.5mL离心管中,注意不要转移沉淀,测量转移的体积。(7) Transfer the clarified lysate to a new 1.5mL centrifuge tube, taking care not to transfer the precipitate, and measure the transferred volume.

(8)加入裂解液1.5倍体积的SP3 Buffer,涡旋混匀。(8) Add SP3 Buffer 1.5 times the volume of the lysate, and vortex to mix.

(9)将Mini Column套入到2mL收集管中,加入650μL混合裂解液到Mini Column中,最大速度离心1min,弃滤液。(9) will Insert the Mini Column into a 2mL collection tube, add 650μL of mixed lysate to In the Mini Column, centrifuge at maximum speed for 1 min and discard the filtrate.

(10)重复步骤(10)。(10) Repeat step (10).

(11)将Mini Column套入到2mL收集管中,加入650μL SPW WashBuffer到/>Mini Column中,最大速度离心1min,弃滤液。(11) will Insert the Mini Column into a 2mL collection tube, add 650μL SPW WashBuffer to /> In the Mini Column, centrifuge at maximum speed for 1 min and discard the filtrate.

(12)重复步骤(11)。(12) Repeat step (11).

(13)将Mini Column套入到2mL收集管中,最大速度空柱离心2min。(13) will Set the Mini Column into a 2mL collection tube, and centrifuge the empty column at the maximum speed for 2 minutes.

(14)将Mini Column套入到新的1.5mL离心管中,加入50-100μL 65℃预热的Elution Buffer,室温放置3-5min,最大速度离心1min。(14) will Set the Mini Column into a new 1.5mL centrifuge tube, add 50-100μL 65℃ preheated Elution Buffer, place at room temperature for 3-5min, and centrifuge at maximum speed for 1min.

(15)重复步骤(14)。(15) Repeat step (14).

2、获得GmbHLH47启动子的方法:2. The method of obtaining the GmbHH47 promoter:

从大豆基因组数据库中找到proGmbHLH47序列,设计了1510bp长度的核苷酸序列,利用proGmbHLH47-S和proGmbHLH47-A进行PCR扩增,proGmbHLH47-S的核苷酸序列为:3’-AATGGAAGATGAGGAGGAT5’(如SEQ ID NO.2所示),proGmbHLH47-A的核苷酸序列为:3’-GTGATTAAAGCCAGTTATATG-5’(如SEQ ID NO.3所示)。Find proGmbHLH47 sequence from soybean genome database, design the nucleotide sequence of 1510bp length, utilize proGmbHLH47-S and proGmbHLH47-A to carry out PCR amplification, the nucleotide sequence of proGmbHLH47-S is: 3'-AATGGAAGATGAGGAGGAT5' (as SEQ ID NO.2), the nucleotide sequence of proGmbHLH47-A is: 3'-GTGATTAAAGCCAGTTATATG-5' (shown in SEQ ID NO.3).

反应体系为7.2μL的Distilled sterile water、1μL的10×PCR Buffer、0.5μL的大豆基因组DNA、0.8μL的dNTP Mix(2.5mmol/L)、0.2μL的proGmbHLH47-S(10μmol/L)、0.2μL的proGmbHLH47-A(10μmol/L)和0.1μL的rTaq DNApolymerase(5U/μL)。反应程序为94℃5min、94℃30s、58.3℃30s、72℃2min、72℃10min、4℃1h,30cycles。The reaction system was 7.2 μL of Distilled sterile water, 1 μL of 10×PCR Buffer, 0.5 μL of soybean genomic DNA, 0.8 μL of dNTP Mix (2.5 mmol/L), 0.2 μL of proGmbHLH47-S (10 μmol/L), 0.2 μL proGmbHLH47-A (10 μmol/L) and 0.1 μL rTaq DNA polymerase (5U/μL). The reaction program was 94°C for 5min, 94°C for 30s, 58.3°C for 30s, 72°C for 2min, 72°C for 10min, 4°C for 1h, and 30 cycles.

GmbHLH47启动子的核苷酸序列如SEQ ID NO.1所示:The nucleotide sequence of the GmbHLH47 promoter is shown in SEQ ID NO.1:

ATGAAGAACAATAATTCTAAGAGAAGTGGTGTAAGAAAATACCACAAATCAAAACAAATGGAAGATGAGGAGGATGATAAATTATAAAATTTGCATTATTTCAATGCTGAGATGGATTATAAAAGTTGAGTTGCTATTTGATAGAAAGGACTACATAACCAAGACGAGTGATTAGCTAGTAATCAAATTAAAATAATACGAATTCACAAAAAAAGTAATAATTAAATAATACGTGGACGAGCATGATGATGGCTGCGAGCAAGTAAAGCAATTTTAGTATCCGAACGTTTTTGCCTTTTTGGTTTGCTTAGACTCAAAATTAAAATAAAAATTACTTTAATTTTTCGTTCTACACATTTAATAATTCTATATTAAGAACTTTTAATAAAGAATATAAATAATATTTATAAAAAACATAAATATTTTTAAAAATATAAATTTTACGTGAATGATGTGATGATATATACAAAAGGAAAAGAGAAAAATATGTAAACAAACGAGAAAAATAAAAAAGGGAATCATGAAAATGTACAAAAAGAAATTAATAGAAAAAATGACTCAAATGAGTAACAATAAATACTGTATTCAAATGGATAAAAAGATAATTGTAAAAACGAGTAAAAAAGTTAGTACAAAAATATATAAACGGGCAAAAAAATTGTAGAAAAAAATTAATAAGCTGCCAAAAAACAATACAAATGGGGAGGAAAAAAATATTCAAATAAGTAGAAAAGTAGAAAATGTGTACATGAAGGAGAAATGGATCAACAAATTATGCAAATGGATAAAAAATGGGCTGAAAAAATACAGATAGATAGAACAGAAATAATGAAAATGGATTGAAAATTGTCATTTAAATTGAGAGAAAACATGTATAACCAAAAATAAAATATTCATAATAAAAAATTATATTATTATTATTACAAAAAGACCTAAAAAAGAAAAGGATCACGTGGGGAACTCATTGGTGGTTGTTGATTGAAGCGAAGGAGCATGACCTCGCCACGCGCCTTCGCGTGACAGATGCCCTCCCGCCACACTCCATCACCACAACCCCAATCTTCTTTTCTCTCTCCTCTGCCCTAATTCCCATTTTCCCAACTTCAATTTCATTCTCAAATATTCCTATTCCAATTCCAATCCTATTCCTTTCGATTCCTCTTCCCCCAGTTTGGTAAGCAAAAAACCACTTTCCCTCTTTCTGCACACAATTTATCTTCCCTCTTTTTTCTATTCGGTCGTTTTCTGTTTGATCCTTGGAATTTCTCGATGCTCTGTTTTGGCTGCTATGAAGTGTGGAAATTAAAATTGGGAACTTGGTTTGTTGTTTTTTTTTACCCCTTTCTCTGATTGGATTGCGATAAAGGGAATTGATTTAATCAGGAAACATGGATTTTACTTTTTCATTGACCGTAAAAAGAAATTTCCATTTCTTGGGGTGTTCGAATTACTTCTCCTTTCGTTGTAAGAATAAAAAGTACATTATTGAAGTAGTTTTGTTTTTCTACTTTAGGAAATTTTGTTGCTGGAAGAATTGCTTAAGGGCATATAACTGGCTTTAATCACATGAAGAACAATAATTCTAAGAGAAGTGGTGTAAGAAAATACCACAAATCAAAACAAATGGAAGATGAGGAGGATGATAAATTATAAAATTTGCATTATTTCAATGCTGAGATGGATTATAAAAGTTGAGTTGCTATTTGATAGAAAGGACTACATAACCAAGACGGTGATTAAGCTAGTAATCAAATTAAAATAATACGAATTCACAAAAAAAGTAATAATTA AATAATACGTGGACGAGCATGATGATGGCTGCGAGCAAGTAAAGCAATTTTAGTATCCGAACGTTTTTTGCCTTTTTGGTTTGCTTAGACTCAAAATTAAAATAAAAATTACTTTAATTTTTCGTTCTACACATTTAATAATTCTATATTAAGAACTTTTAATAAAGAATAAATAATTTTAAAAAACATAAATATTTTTAAAAATAAATTTTACGTGAATGATGTGATGA TATATACAAAAGGAAAAGAGAAAAATATGTAAACAAACGAGAAAAATAAAAAAGGGAATCATGAAAATGTACAAAAAAGAAATTAATAGAAAAAATGACTCAAATGAGTAACAATAAATACTGTATTCAAATGGATAAAAAGATAATTGTAAAAACGAGTAAAAAAGTTAGTACAAAATATAAACGGGCAAAAAAATTGTAGAAAAAAAATTAATAAGCTGCCAAAAAACAAT ACAAATGGGGAGGAAAAAAATATTCAAATAAGTAGAAAAGTAGAAAATGTGTACATGAAGGAGAAATGGATCAACAAATTATGCAAATGGATAAAAAATGGGCTGAAAAAATACAGATAGATAGAACAGAAATAATGAAAATGGATTGAAAATTGTCATTTAATTGAGAGAAAACATGTATAACCAAAATAAAATATTTCATAATAAAAAATTATATTATTATTATTACAAA AAGACCTAAAAAAAAAAAAGGATCACGTGGGGAACTCATTGGTGGTTGTTGATTGAAGCGAAGGAGCATGACCTCGCCACGCGCCTTCGCGTGACAGATGCCCTCCCGCCACACTCCATCACCACAACCCCAATCTTCTTTTCTCTCCTCTGCCCTAATTTTCCAACTTCAATTTCATTCCTATTCCAATCCTATTCCTTTCGATTCCTC TTCCCCAGTTTGGTAAGCAAAAAACCACTTTCCCTCTTTCTGCACACAATTTATCTTCCCTCTTTTTTCTATTCGGTCGTTTTCTGTTTGATCCTTGGAATTTCTCGATGCTCTGTTTTGGCTGCTATGAAGTGTGGAAATTAAAATTGGGAACTTGGTTTTGTTGTTTTTTTACCCTTTCTCTGATTGGATTGCGATAAAGGGAATTGATTTAATCA GGAAACATGGATTTTACTTTTTCATTGACCGTAAAAAAGAAATTTCCATTTCTTGGGGTGTTCGAATTACTTCTCCTTTCGTTGTAAGAATAAAAAGTACATTATTGAAGTAGTTTTGTTTTTTCTACTTTAGGAAATTTTGTTGCTGGAAGAATTGCTTAAGGGCATATAACTGGCTTTAATCAC

使用PlantCARE在线软件对GmbHLH47基因启动子片段序列进行转录调控元件分析,发现GmbHLH47基因启动子共有26个顺式作用元件,主要有核心元件、激素应答元件、光响应元件、MYB响应元件、其他元件和三个未命名元件。Using the PlantCARE online software to analyze the transcriptional regulatory elements of the promoter fragment sequence of the GmbHH47 gene, it was found that there are 26 cis-acting elements in the promoter of the GmbHH47 gene, mainly including core elements, hormone response elements, light response elements, MYB response elements, other elements and Three unnamed components.

实施例2:含有GmbHLH47启动子的重组载体的构建Embodiment 2: Construction of the recombinant vector containing the GmbHLH47 promoter

1、构建载体pMD18T-proGmbHLH471. Construct the vector pMD18T-proGmbHLH47

(1)反应体系:1μL的pMD18 T vector、3μL的目标基因片段溶液、1μL的ddH2O、5μL的Solution I。反应温度16℃,反应时间12h以上(过夜)。(1) Reaction system: 1 μL of pMD18 T vector, 3 μL of target gene fragment solution, 1 μL of ddH 2 O, 5 μL of Solution I. The reaction temperature is 16°C, and the reaction time is more than 12h (overnight).

(2)连接proGmbHLH47质粒片段到克隆载体pMD18T上,连接产物利用热激法转入到大肠杆菌感受态中,其具体内容为:(2) Ligate the proGmbHLH47 plasmid fragment to the cloning vector pMD18T, and transfer the ligated product into Escherichia coli competent by the heat shock method. The specific content is as follows:

大肠杆菌感受态从80℃冰箱中取出后迅速放到冰上,待其溶化后加入10μL的连接产物,冰浴30min;取出后快速放于42℃水浴热激1min 15s后,迅速插入冰中,冰浴2min。加入800μL LB液体培养基,置于200rpm摇床,37℃,振荡1h;取出离心管,4000rpm离心5min,取出上清800μL,重悬剩余菌体,将剩余约200μL的菌液以体积比为3:1的比例涂于含有氨苄抗性的两个LB固体培养基上;37℃培养箱中倒置培养,过夜;挑取培养基上的单菌落进行鉴定,挑取阳性菌落进行扩增培养,利用质粒提取试剂盒提取pMD18T-proGmbHLH47质粒。Take the competent E. coli out of the 80°C refrigerator and put it on ice quickly. After it melts, add 10 μL of the ligation product, and bathe in ice for 30 minutes; after taking it out, put it in a water bath at 42°C for 1 minute and 15 seconds, and then quickly insert it into the ice. Ice bath for 2min. Add 800 μL of LB liquid medium, place on a shaker at 200 rpm, 37°C, and shake for 1 hour; take out the centrifuge tube, centrifuge at 4000 rpm for 5 minutes, take out 800 μL of supernatant, resuspend the remaining bacteria, and dissolve the remaining about 200 μL of bacterial solution at a volume ratio of 3 Smear on two LB solid media containing ampicillin resistance at a ratio of :1; culture upside down in a 37°C incubator overnight; pick a single colony on the culture medium for identification, and pick a positive colony for amplification and culture, use The plasmid extraction kit was used to extract the pMD18T-proGmbHLH47 plasmid.

2、构建重组载体pBI121-GmbHLH47pro::GUS2. Construction of recombinant vector pBI121-GmbHLH47pro::GUS

(1)对pMD18T-proGmbHLH47和pBI121的质粒进行酶切:(1) Digest the plasmids of pMD18T-proGmbHLH47 and pBI121:

采用限制性内切酶分别酶切pMD18T-proGmbHLH47质粒和pBI121-GUS质粒,得到GmbHLH47启动子的序列片段与pBI121-GUS质粒的酶切产物。然后将GmbHLH47启动子的序列片段与pBI121-GUS质粒的酶切产物进行连接反应,获得pBI121-GmbHLH47pro::GUS,该重组载体的结构见图2。The pMD18T-proGmbHLH47 plasmid and the pBI121-GUS plasmid were respectively digested with restriction endonucleases to obtain the sequence fragment of the GmbHLH47 promoter and the digestion product of the pBI121-GUS plasmid. Then, the sequence fragment of the GmbHLH47 promoter was ligated with the digested product of the pBI121-GUS plasmid to obtain pBI121-GmbHLH47pro::GUS. The structure of the recombinant vector is shown in FIG. 2 .

双酶切的反应体系为:70μL的pMD18T-proGmbHLH47/pBI121-GUS质粒、10μL的TAKARA10×KBuffer、4μL的Hind III、4μL的BamHΙ和12μL的ddH2O。The reaction system for double digestion was: 70 μL of pMD18T-proGmbHLH47/pBI121-GUS plasmid, 10 μL of TAKARA10×KBuffer, 4 μL of Hind III, 4 μL of BamHI and 12 μL of ddH 2 O.

连接反应的体系是:5μL的pBI121-GUS质粒酶切产物、3μL的GmbHLH47启动子的序列片段、1μL的10×T4 DNA连接缓冲液和1μL的T4 DNA连接酶,反应温度为16℃,反应时间为12h。The system for the ligation reaction is: 5 μL of pBI121-GUS plasmid digestion product, 3 μL of the sequence fragment of the GmbHLH47 promoter, 1 μL of 10×T4 DNA ligation buffer and 1 μL of T4 DNA ligase, the reaction temperature is 16°C, and the reaction time is for 12h.

重组质粒的鉴定:Identification of recombinant plasmids:

双酶切鉴定,提取pBI121-proGmbHLH47::GUS阳性质粒,并利用Hind III和BamHΙ进行双酶切鉴定,反应体系为:32μL pBI121-proGmbHLH47::GUS重组质粒、5μLTAKARA10×KBuffer、2μL的Hind III、2μL的BamHΙ和9μL的ddH2O得到约1510bp左右的目的条带(见图1)。Double enzyme digestion identification, extract pBI121-proGmbHLH47::GUS positive plasmid, and use Hind III and BamHI for double enzyme digestion identification, the reaction system is: 32 μL pBI121-proGmbHLH47::GUS recombinant plasmid, 5 μL T AKARA10×KBuffer, 2 μL Hind III, 2 μL of BamHI and 9 μL of ddH 2 O yielded a target band of about 1510 bp (see Figure 1).

实施例3:携带proGmbHLH47的GV3101农杆菌制备方法Embodiment 3: the preparation method of GV3101 Agrobacterium carrying proGmbHLH47

冻融法转化重组质粒pBI121-proGmbHLH47::GUS,方法如下:Freeze-thaw method to transform the recombinant plasmid pBI121-proGmbHLH47::GUS, the method is as follows:

(1)取-80℃保存的感受态细胞置于冰中融化。(1) Thaw competent cells stored at -80°C in ice.

(2)将10μLpBI121-GmbHLH47pro::GUS重组质粒加入到100μL农杆菌感受态细胞GV3101中,用手拨打管底混匀。(2) Add 10 μL of the pBI121-GmbHLH47pro::GUS recombinant plasmid to 100 μL of Agrobacterium competent cells GV3101, and mix by hand at the bottom of the tube.

(3)依次置于冰上静置5min,液氮5min,37℃水浴5min,冰浴5min。(3) Put them on ice for 5 minutes, liquid nitrogen for 5 minutes, 37°C water bath for 5 minutes, and ice bath for 5 minutes.

(4)加入700μL无抗生素的YEB液体培养基,于28℃振荡培养2-3h。(4) Add 700 μL of antibiotic-free YEB liquid medium, and shake and culture at 28° C. for 2-3 hours.

(5)6000rmp离心1min收菌,留取100μL上清重悬菌块,将菌液涂布于含有卡那霉素(50mg/mL)+链霉素(50mg/mL)+利福平(50mg/mL)的YEB固体培养基上,倒置放于28℃培养箱中暗培养2-3d。鉴定转化后的农杆菌;其鉴定方式为:挑取生长较为均匀的单菌落,用基因特异性引物进行菌落PCR扩增;鉴定的反应体系为:Template DNA菌落、1μL的10×Buffer、0.8μL的dNTP Mix、0.2μL的proGmbHLH47-HindIII、0.2μL的proGmbHLH47-BamHΙ、0.1μL的rTaq和7.μL的ddH2O;反应条件为:①94℃、min;②94℃、3s;③58.3℃、3s;④72℃、1min30s;⑤72℃、10min;⑥4℃、1h;①~⑥循环30次。(5) Collect the bacteria by centrifuging at 6000rmp for 1min, take 100μL of the supernatant to resuspend the bacterial mass, and spread the bacterial solution on a medium containing kanamycin (50mg/mL) + streptomycin (50mg/mL) + rifampicin (50mg/mL) mL) of YEB solid medium, placed upside down and placed in a 28°C incubator for 2-3 days in the dark. Identify the transformed Agrobacterium; the identification method is: pick a single colony with relatively uniform growth, and perform colony PCR amplification with gene-specific primers; the reaction system for identification is: Template DNA colony, 1 μL of 10×Buffer, 0.8 μL dNTP Mix, 0.2 μL of proGmbHLH47-HindIII, 0.2 μL of proGmbHLH47-BamHΙ, 0.1 μL of rTaq and 7. μL of ddH 2 O; the reaction conditions are: ①94℃, min; ②94℃, 3s; ③58.3℃, 3s; ④72°C, 1min30s; ⑤72°C, 10min; ⑥4°C, 1h; ①~⑥cycle 30 times.

实施例4:携带proGmbHLH47的K599农杆菌制备方法Embodiment 4: the preparation method of K599 Agrobacterium carrying proGmbHLH47

冻融法转化重组质粒pBI121-proGmbHLH47::GUS,方法如下:Freeze-thaw method to transform the recombinant plasmid pBI121-proGmbHLH47::GUS, the method is as follows:

(1)取-80℃保存的感受态细胞置于冰中融化。(1) Thaw competent cells stored at -80°C in ice.

(2)将1μL pBI121-GmbHLH47pro::GUS重组质粒加入到100μL农杆菌感受态细胞K599中,用手拨打管底混匀。(2) Add 1 μL of the pBI121-GmbHLH47pro::GUS recombinant plasmid to 100 μL of Agrobacterium competent cells K599, and mix by hand at the bottom of the tube.

(3)依次置于冰上静置5min,液氮5min,37℃水浴5min,冰浴5min。(3) Put them on ice for 5 minutes, liquid nitrogen for 5 minutes, 37°C water bath for 5 minutes, and ice bath for 5 minutes.

(4)加入700μL无抗生素的TY液体培养基,于28℃振荡培养2-3h。(4) Add 700 μL of TY liquid medium without antibiotics, shake and culture at 28°C for 2-3h.

(5)6000rmp离心1min收菌,留取100μL上清重悬菌块,将菌液涂布于含有卡那霉素(50mg/mL)+链霉素(50mg/mL)+利福平(50mg/mL)的TY固体培养基上,倒置放于28℃培养箱中暗培养2-3d。鉴定转化后的农杆菌;其鉴定方式为:挑取生长较为均匀的单菌落,用基因特异性引物进行菌落PCR扩增;鉴定的反应体系为:Template DNA菌落、1μL的10×Buffer、0.8μL的dNTP Mix、0.2μL的proGmbHLH47-HindIII、0.2μL的proGmbHLH47-BamHΙ、0.1μL的rTaq和7.7μL的ddH2O;反应条件为:①94℃、5min;②94℃、30s;③58.3℃、30s;④72℃、1min30s;⑤72℃、10min;⑥4℃、1h;①~⑥循环30次。(5) Collect the bacteria by centrifuging at 6000rmp for 1min, take 100μL of the supernatant to resuspend the bacterial mass, and spread the bacterial solution on a medium containing kanamycin (50mg/mL) + streptomycin (50mg/mL) + rifampicin (50mg/mL) mL) of TY solid medium, placed upside down and placed in a 28°C incubator for 2-3 days in the dark. Identify the transformed Agrobacterium; the identification method is: pick a single colony with relatively uniform growth, and perform colony PCR amplification with gene-specific primers; the reaction system for identification is: Template DNA colony, 1 μL of 10×Buffer, 0.8 μL dNTP Mix, 0.2 μL of proGmbHLH47-HindIII, 0.2 μL of proGmbHLH47-BamHΙ, 0.1 μL of rTaq and 7.7 μL of ddH 2 O; the reaction conditions are: ①94℃, 5min; ②94℃, 30s; ③58.3℃, 30s ; ④72°C, 1min30s; ⑤72°C, 10min; ⑥4°C, 1h; ①~⑥cycle 30 times.

实施例5:提高大豆毛状根抗铁胁迫能力的方法Embodiment 5: the method for improving soybean hairy root resistance to iron stress

①挑选黑农53大豆种子,在超净工作台中用无菌28%次氯酸钠消毒5min后用无菌水冲洗数遍,种脐向下放入MS培养基中,暗培养6天。① Select Heinong 53 soybean seeds, disinfect them with sterile 28% sodium hypochlorite for 5 minutes in an ultra-clean workbench, rinse them several times with sterile water, put them into MS medium with the hilum down, and culture them in dark for 6 days.

②在超净工作台中将实施例4获得的pBI121-GmbHLH47 K599农杆菌重悬后得到OD600为0.5-0.7菌液,用于侵染大豆子叶节。② Resuspend the pBI121-GmbHLH47 K599 Agrobacterium obtained in Example 4 in an ultra-clean workbench to obtain a bacterial solution with an OD600 of 0.5-0.7, which is used to infect soybean cotyledon nodes.

③取暗培养的无菌大豆,用刀在距离子叶0.3-0.5cm处切下,并将子叶从子叶节处切开,切掉顶芽。用组培刀在子叶和子叶节表面划几刀,称为外植体。③Take dark-cultured sterile soybeans, cut off the cotyledon 0.3-0.5cm away from the cotyledon with a knife, cut off the cotyledon from the cotyledon node, and cut off the terminal bud. Use a tissue culture knife to make several cuts on the surface of the cotyledons and cotyledon nodes, which are called explants.

④把外植体放在菌液里浸泡30min,不定期晃动菌液。侵染后的子叶节用滤纸吸干后将其放在MS1固体培养基上,封膜,暗培养5天。④ Soak the explants in the bacterial solution for 30 minutes, and shake the bacterial solution from time to time. After infection, the cotyledon nodes were blotted dry with filter paper, placed on MS1 solid medium, sealed, and cultured in the dark for 5 days.

⑤暗培养后用含有Cef和Km抗性MS3液体培养基冲洗子叶节,先冲洗两遍,为了将菌彻底洗净再泡半小时,洗净后将子叶节吸干,将下胚轴切至0.5cm,将子叶下胚轴朝下,倾斜着插入MS3固体培养基,25℃,16h光照培养。⑤ After dark culture, rinse the cotyledon nodes with MS3 liquid medium containing Cef and Km resistance, first rinse twice, and then soak for half an hour in order to thoroughly wash the bacteria, then dry the cotyledon nodes after washing, and cut the hypocotyls to 0.5cm, cotyledon hypocotyls facing down, inserted into MS3 solid medium obliquely, cultured at 25°C for 16h under light.

获得的转proGmbHLH47基因阳性大豆毛状根见图6。The obtained transproGmbHLH47 gene-positive soybean hairy roots are shown in FIG. 6 .

实施例6:提高拟南芥抗铁胁迫能力的方法Embodiment 6: the method for improving Arabidopsis resistance to iron stress

(1)活化农杆菌(1) Activated Agrobacterium

在超净工作台中取实施例3获得的pBI121-GmbHLH47pro::GUS农杆菌菌液50μl,接种于25mL含有Km、Str、Rif的YEB液体培养中,28℃,200rpm摇床培养17h左右。取上述活化后的菌液500μL置于50mL含有Km、Str、Rif的YEB液体培养中,28℃,200rpm摇床培养15h左右,OD600约为1.2-1.5之间停止。Take 50 μl of the pBI121-GmbHLH47pro::GUS Agrobacterium liquid obtained in Example 3 in the ultra-clean workbench, inoculate it into 25 mL of YEB liquid culture containing Km, Str, and Rif, and culture it on a shaker at 28°C and 200 rpm for about 17 hours. Take 500 μL of the above-mentioned activated bacterial solution and place it in 50 mL of YEB liquid culture containing Km, Str, and Rif. Cultivate it on a shaker at 28°C and 200 rpm for about 15 hours, and stop when the OD 600 is about 1.2-1.5.

(2)将活化的农杆菌放于离心机中5000rpm离心10min,弃掉上清,收集离心管中的菌体,加5%蔗糖(现用现配)20mL吸打重悬浮,取2mL重悬浮菌液,于600nm测其OD值,使OD值达到0.9便可用于转化,在转化前向转化液中加入0.04%比例的Silwet L-77。(2) Put the activated Agrobacterium in a centrifuge and centrifuge at 5000rpm for 10min, discard the supernatant, collect the bacteria in the centrifuge tube, add 5% sucrose (prepared for current use) 20mL to resuspend, take 2mL to resuspend Bacteria liquid, its OD value was measured at 600nm, and the OD value reached 0.9 before it could be used for transformation, and 0.04% Silwet L-77 was added to the transformation liquid before transformation.

(3)选取长势健壮植株,当拟南芥的花蕾将要打开的时候,转化的效果最好,做转化时,用移液器吸取200μL新配置的转化液,向拟南芥的花蕾滴加2-3滴,并重复操作2-3次。(3) Select healthy and vigorous plants. When the flower buds of Arabidopsis thaliana are about to open, the transformation effect is the best. When doing transformation, use a pipette to draw 200 μL of the newly prepared transformation solution, and add 2 drops to the flower buds of Arabidopsis thaliana. -3 drops and repeat the operation 2-3 times.

(4)蘸花完毕后,将植株移到黑暗处保湿24h,之后将植株移到光照培养室(温度22℃、光照16h/黑暗8h)正常培养,3d后再次配制转化液进行二次转化。(4) After dipping the flowers, move the plants to a dark place to keep moisture for 24 hours, then move the plants to a light culture room (temperature 22°C, light 16 hours/darkness 8 hours) for normal cultivation, and prepare transformation solution again after 3 days for secondary transformation.

获得的转proGmbHLH47基因阳性拟南芥见图5。The obtained transproGmbHLH47 gene-positive Arabidopsis is shown in FIG. 5 .

转pBI121-proGmbHLH47::GUS植株GUS染色的方法Method for GUS staining of transfected pBI121-proGmbHLH47::GUS plants

将转pBI121-proGmbHLH47::GUS拟南芥放入含有Km的正常和缺铁的1/2MS培养基中进行筛选得到阳性植株并进行染色。侵染pBI121-proGmbHLH47::GUS K599发根农杆菌的大豆子叶节放入正常MS3培养基中培养约一周左右生出少量毛状根后,换入缺铁的MS3培养基中直至长出大量毛状根进行染色。The transgenic pBI121-proGmbHLH47::GUS Arabidopsis was placed in normal and iron-deficient 1/2MS medium containing Km for screening to obtain positive plants and stained. Soybean cotyledon nodes infected with pBI121-proGmbHLH47::GUS K599 Agrobacterium rhizogenes were cultured in normal MS3 medium for about a week. After a small amount of hairy roots were produced, they were replaced with iron-deficient MS3 medium until a large number of hairy roots grew. Roots are dyed.

正常培养和缺铁处理的阳性毛状根切片,将横切面、纵切面和根尖进行GUS染色,染色结果见图3,通过对大豆毛状根横切面和纵切面的观察,发现在缺铁条件下,毛状根的木质部和韧皮部有明显的蓝色信号,皮层有微弱的蓝色信号。大豆毛状根的根尖出现了蓝色信号,在正常条件下,仅在毛状根的维管束韧皮部中检测到GUS活性,说明proGmbHLH47具有启动子活性且受缺铁调控。The positive hairy root sections of normal culture and iron deficiency treatment were stained with GUS on the transverse section, longitudinal section and root tip. The staining results are shown in Fig. condition, the xylem and phloem of the hairy root had obvious blue signals, and the cortex had weak blue signals. The root tips of soybean hairy roots showed a blue signal, and under normal conditions, GUS activity was only detected in the phloem of the vascular bundles of the hairy roots, indicating that proGmbHLH47 has promoter activity and is regulated by iron deficiency.

对转pBI121-proGmbHLH47::GUS拟南芥及野生型拟南芥进行GUS染色,结果见图4,转pBI121-proGmbHLH47::GUS拟南芥植株中检测到蓝色信号,对照未检测到GUS活性。GUS staining was performed on the transgenic pBI121-proGmbHLH47::GUS Arabidopsis and wild-type Arabidopsis. The results are shown in Figure 4. A blue signal was detected in the transgenic pBI121-proGmbHLH47::GUS Arabidopsis plants, but no GUS activity was detected in the control .

SEQUENCE LISTINGSEQUENCE LISTING

<110> 哈尔滨师范大学<110> Harbin Normal University

<120> 一种响应缺铁胁迫的诱导型启动子GmbHLH47启动子及其应用<120> An Inducible Promoter GmbHLH47 Promoter Responding to Iron Deficiency Stress and Its Application

<160> 3<160> 3

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 1566<211> 1566

<212> DNA<212>DNA

<213> Glycine Max<213> Glycine Max

<400> 1<400> 1

atgaagaaca ataattctaa gagaagtggt gtaagaaaat accacaaatc aaaacaaatg 60atgaagaaca ataattctaa gagaagtggt gtaagaaaat accacaaatc aaaacaaatg 60

gaagatgagg aggatgataa attataaaat ttgcattatt tcaatgctga gatggattat 120gaagatgagg aggatgataa attataaaat ttgcattatt tcaatgctga gatggattat 120

aaaagttgag ttgctatttg atagaaagga ctacataacc aagacgagtg attagctagt 180aaaagttgag ttgctatttg atagaaagga ctacataacc aagacgagtg attagctagt 180

aatcaaatta aaataatacg aattcacaaa aaaagtaata attaaataat acgtggacga 240aatcaaatta aaataatacg aattcacaaa aaaagtaata attaaataat acgtggacga 240

gcatgatgat ggctgcgagc aagtaaagca attttagtat ccgaacgttt ttgccttttt 300gcatgatgat ggctgcgagc aagtaaagca attttagtat ccgaacgttt ttgccttttt 300

ggtttgctta gactcaaaat taaaataaaa attactttaa tttttcgttc tacacattta 360ggtttgctta gactcaaaat taaaataaaa attactttaa tttttcgttc tacacattta 360

ataattctat attaagaact tttaataaag aatataaata atatttataa aaaacataaa 420ataattctat attaagaact tttaataaag aatataaata atatttataa aaaacataaa 420

tatttttaaa aatataaatt ttacgtgaat gatgtgatga tatatacaaa aggaaaagag 480tatttttaaa aatataaatt ttacgtgaat gatgtgatga tatatacaaa aggaaaagag 480

aaaaatatgt aaacaaacga gaaaaataaa aaagggaatc atgaaaatgt acaaaaagaa 540aaaaatatgt aaacaaacga gaaaaataaa aaagggaatc atgaaaatgt acaaaaagaa 540

attaatagaa aaaatgactc aaatgagtaa caataaatac tgtattcaaa tggataaaaa 600attaatagaa aaaatgactc aaatgagtaa caataaatac tgtattcaaa tggataaaaa 600

gataattgta aaaacgagta aaaaagttag tacaaaaata tataaacggg caaaaaaatt 660gataattgta aaaacgagta aaaaagttag tacaaaaata tataaacggg caaaaaaatt 660

gtagaaaaaa attaataagc tgccaaaaaa caatacaaat ggggaggaaa aaaatattca 720gtagaaaaaa attaataagc tgccaaaaaa caatacaaat ggggaggaaa aaaatattca 720

aataagtaga aaagtagaaa atgtgtacat gaaggagaaa tggatcaaca aattatgcaa 780aataagtaga aaagtagaaa atgtgtacat gaaggagaaa tggatcaaca aattatgcaa 780

atggataaaa aatgggctga aaaaatacag atagatagaa cagaaataat gaaaatggat 840atggataaaa aatgggctga aaaaatacag atagatagaa cagaaataat gaaaatggat 840

tgaaaattgt catttaaatt gagagaaaac atgtataacc aaaaataaaa tattcataat 900tgaaaattgt catttaaatt gagagaaaac atgtataacc aaaaataaaa tattcataat 900

aaaaaattat attattatta ttacaaaaag acctaaaaaa gaaaaggatc acgtggggaa 960aaaaaattat atttattatta ttacaaaaag acctaaaaaa gaaaaggatc acgtggggaa 960

ctcattggtg gttgttgatt gaagcgaagg agcatgacct cgccacgcgc cttcgcgtga 1020ctcattggtg gttgttgatt gaagcgaagg agcatgacct cgccacgcgc cttcgcgtga 1020

cagatgccct cccgccacac tccatcacca caaccccaat cttcttttct ctctcctctg 1080cagatgccct cccgccacac tccatcacca caaccccaat cttcttttct ctctcctctg 1080

ccctaattcc cattttccca acttcaattt cattctcaaa tattcctatt ccaattccaa 1140ccctaattcc cattttccca acttcaattt cattctcaaa tattcctatt ccaattccaa 1140

tcctattcct ttcgattcct cttcccccag tttggtaagc aaaaaaccac tttccctctt 1200tcctattcct ttcgattcct cttcccccag tttggtaagc aaaaaaccac tttccctctt 1200

tctgcacaca atttatcttc cctctttttt ctattcggtc gttttctgtt tgatccttgg 1260tctgcacaca atttatcttc cctctttttt ctattcggtc gttttctgtt tgatccttgg 1260

aatttctcga tgctctgttt tggctgctat gaagtgtgga aattaaaatt gggaacttgg 1320aatttctcga tgctctgttt tggctgctat gaagtgtgga aattaaaatt gggaacttgg 1320

tttgttgttt ttttttaccc ctttctctga ttggattgcg ataaagggaa ttgatttaat 1380tttgttgttt ttttttaccc ctttctctga ttggattgcg ataaagggaa ttgattaat 1380

caggaaacat ggattttact ttttcattga ccgtaaaaag aaatttccat ttcttggggt 1440caggaaacat ggattttact ttttcattga ccgtaaaaag aaatttccat ttcttggggt 1440

gttcgaatta cttctccttt cgttgtaaga ataaaaagta cattattgaa gtagttttgt 1500gttcgaatta cttctccttt cgttgtaaga ataaaaagta cattattgaa gtagttttgt 1500

ttttctactt taggaaattt tgttgctgga agaattgctt aagggcatat aactggcttt 1560ttttctactt taggaaattt tgttgctgga agaattgctt aagggcatat aactggcttt 1560

aatcac 1566aatcac 1566

<210> 2<210> 2

<211> 19<211> 19

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 2<400> 2

aatggaagat gaggaggat 19aatggaagat gaggaggat 19

<210> 3<210> 3

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 3<400> 3

gtgattaaag ccagttatat g 21gtgattaaag ccagttatat g 21

Claims (9)

1. Inducible promoter responding to iron deficiency stressGmbHLH47A promoter, characterized in that theGmbHLH47The nucleotide sequence of the promoter is shown as SEQ ID NO. 1.
2. Claim 1 is a deviceGmbHLH47The application of the promoter in improving the iron stress resistance of plants.
3. Comprising the composition of claim 1GmbHLH47Recombinant vector of promoter.
4. Use of the recombinant vector of claim 3 for increasing the iron stress resistance of plants.
5. Comprising the composition of claim 1GmbHLH47The application of transgenic plant cell line or recombinant bacteria of promoter in raising iron stress resistance of plant.
6. A method of increasing the iron stress resistance of a plant, said method comprising the steps of:
(1) Construction of the inclusionGmbHLH47Recombinant vector of promoter, said recombinant vector comprising said promoterGmbHLH47The nucleotide sequence of the promoter is shown as SEQ ID NO. 1;
(2) Preparation of carrying bagGmbHLH47Agrobacterium of promoter: transferring the recombinant vector obtained in the step (1) into agrobacterium competence for culture to obtain the carrierGmbHLH47Agrobacterium of promoter;
(3) Preparation of carrying bagGmbHLH47Transgenic plant of promoter: infecting plants with the agrobacterium obtained in the step (2) to obtain the carrying productGmbHLH47A plant of the promoter.
7. The method of claim 6, wherein the recombinant vector of step (1) is constructed by the following steps: the vector pMD18T-GmbHLH47 promoter and pBI121-GUS plasmid are digested with restriction enzymes, respectively, to obtainGmbHLH47The sequence fragment of the promoter was digested with pBI121-GUS plasmid, and thenGmbHLH47The sequence fragment of the promoter was ligated with the cleavage product of the pBI121-GUS plasmid.
8. The method of claim 6, wherein the plant is arabidopsis thaliana or soybean.
9. The method of claim 8, wherein when the plant is arabidopsis thaliana, the timing of the infestation of step (3) is when arabidopsis thaliana reaches anthesis; when the plant is soybean, the infection time in the step (3) is when the soybean grows out of cotyledonary node.
CN202210690238.6A 2022-06-17 2022-06-17 An inducible promoter GmbHLH47 promoter responding to iron deficiency stress and its application Active CN115011600B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210690238.6A CN115011600B (en) 2022-06-17 2022-06-17 An inducible promoter GmbHLH47 promoter responding to iron deficiency stress and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210690238.6A CN115011600B (en) 2022-06-17 2022-06-17 An inducible promoter GmbHLH47 promoter responding to iron deficiency stress and its application

Publications (2)

Publication Number Publication Date
CN115011600A CN115011600A (en) 2022-09-06
CN115011600B true CN115011600B (en) 2023-08-22

Family

ID=83075812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210690238.6A Active CN115011600B (en) 2022-06-17 2022-06-17 An inducible promoter GmbHLH47 promoter responding to iron deficiency stress and its application

Country Status (1)

Country Link
CN (1) CN115011600B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1737965A2 (en) * 2004-04-23 2007-01-03 Ceres, Inc. Nucleotide sequences and polypeptides encoded thereby useful for modifying nitrogen use efficiency characteristics in plants
CN104059912A (en) * 2014-06-06 2014-09-24 浙江省农业科学院 Rice iron-deficiency induction promoter and application thereof
CN104388433A (en) * 2014-12-05 2015-03-04 石家庄市农林科学研究院 Plant osmotic stress inducible promoter and application thereof
CN109311952A (en) * 2015-06-15 2019-02-05 马来西亚棕榈油委员会 Alleles of the MADS-BOX domain for control of palm shell phenotypes
CN110205331A (en) * 2019-06-26 2019-09-06 合肥工业大学 It is a kind of to enhance plant to iron deficiency tolerance and the encoding gene accumulated and application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1737965A2 (en) * 2004-04-23 2007-01-03 Ceres, Inc. Nucleotide sequences and polypeptides encoded thereby useful for modifying nitrogen use efficiency characteristics in plants
CN104059912A (en) * 2014-06-06 2014-09-24 浙江省农业科学院 Rice iron-deficiency induction promoter and application thereof
CN104388433A (en) * 2014-12-05 2015-03-04 石家庄市农林科学研究院 Plant osmotic stress inducible promoter and application thereof
CN109311952A (en) * 2015-06-15 2019-02-05 马来西亚棕榈油委员会 Alleles of the MADS-BOX domain for control of palm shell phenotypes
CN110205331A (en) * 2019-06-26 2019-09-06 合肥工业大学 It is a kind of to enhance plant to iron deficiency tolerance and the encoding gene accumulated and application

Also Published As

Publication number Publication date
CN115011600A (en) 2022-09-06

Similar Documents

Publication Publication Date Title
Verdaguer et al. Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoter
US9243260B2 (en) Fiber selective promoters
Szabados et al. Functional analysis of the Sesbania rostrata leghemoglobin glb3 gene 5'-upstream region in transgenic Lotus corniculatus and Nicotiana tabacum plants.
CN101063139B (en) A seed-specific high-efficiency promoter and its application
Chen et al. The characterization of GmTIP, a root-specific gene from soybean, and the expression analysis of its promoter
CN110117322A (en) The MYB class transcription factor and its encoding gene that are separated from purple plague purpura Trifolium repense and application
CN103403022A (en) Plant gene expression modulatory sequences from maize
CN103820445A (en) Identification and application of plant anther specific expression promoter
CN110229818B (en) CpSNAC1 Gene Promoter of Prunus chinensis and its Application
CN103981187B (en) The deletion mutant of corn phosphatidylinositols synthase gene promoter P-ZmPIS and application thereof
CN106967720B (en) Cloning and application of stress-induced promoter SlWRKY31P
CN102559677B (en) Tissue-specific promoter and application thereof
Santi et al. Comparison of nodule induction in legume and actinorhizal symbioses: the induction of actinorhizal nodules does not involve ENOD40
CN115011600B (en) An inducible promoter GmbHLH47 promoter responding to iron deficiency stress and its application
WO2007033587A1 (en) A method for isolating a bi-directional gene promotor and the use thereof
CN102965374B (en) Preparation method and applications of rape BnRabGDI3 promoter
CN102226181B (en) Method for preparing promoter of Brassica napus BnPABP2 and application thereof
CN102226180B (en) Preparation method and application of brassica napus BnPABP5-3 promoter
CN101182530B (en) A kind of inducible enhanced constitutive promoter and its application
CN114181941A (en) Peanut promoter P28 and application thereof
CN110106171A (en) Long-chain non-coding RNA and its application in regulation plant frigostabile
CN102517285A (en) Tissue-specific promoter and its application
CN112458091A (en) Rice constitutive expression promoter Os02g0752800 and application thereof
RU2766095C1 (en) Pro-smamp-x promoter from the chickweed (stellaria media l.) plant for expression of recombinant genes in plant cells
CN111621503A (en) Barley transcription factor HvWRKY70 gene and application thereof in stripe rust and powdery mildew resistance of wheat

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant