CN114998621B - SERS quantitative analysis method based on coffee ring concentration effect and image processing technology - Google Patents
SERS quantitative analysis method based on coffee ring concentration effect and image processing technology Download PDFInfo
- Publication number
- CN114998621B CN114998621B CN202210589126.1A CN202210589126A CN114998621B CN 114998621 B CN114998621 B CN 114998621B CN 202210589126 A CN202210589126 A CN 202210589126A CN 114998621 B CN114998621 B CN 114998621B
- Authority
- CN
- China
- Prior art keywords
- sers
- intensity
- substrate
- sers substrate
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 title claims abstract description 129
- 238000000034 method Methods 0.000 title claims abstract description 64
- 230000000694 effects Effects 0.000 title claims abstract description 36
- 238000012545 processing Methods 0.000 title claims abstract description 35
- 238000005516 engineering process Methods 0.000 title claims abstract description 29
- 238000004445 quantitative analysis Methods 0.000 title claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 116
- 238000001514 detection method Methods 0.000 claims abstract description 32
- 238000003384 imaging method Methods 0.000 claims abstract description 27
- 239000000523 sample Substances 0.000 claims abstract description 21
- 238000002360 preparation method Methods 0.000 claims abstract description 13
- 238000005507 spraying Methods 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 28
- 229910052802 copper Inorganic materials 0.000 claims description 28
- 239000010949 copper Substances 0.000 claims description 28
- 239000008367 deionised water Substances 0.000 claims description 24
- 229910021641 deionized water Inorganic materials 0.000 claims description 24
- 229910052709 silver Inorganic materials 0.000 claims description 24
- 239000004332 silver Substances 0.000 claims description 24
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 23
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims description 19
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 claims description 18
- 229910052727 yttrium Inorganic materials 0.000 claims description 18
- 238000004070 electrodeposition Methods 0.000 claims description 16
- 238000005406 washing Methods 0.000 claims description 15
- 150000001356 alkyl thiols Chemical class 0.000 claims description 14
- 238000007747 plating Methods 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000008139 complexing agent Substances 0.000 claims description 12
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 10
- 239000012224 working solution Substances 0.000 claims description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 238000001069 Raman spectroscopy Methods 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 8
- 238000004381 surface treatment Methods 0.000 claims description 8
- NEJMTSWXTZREOC-UHFFFAOYSA-N 4-sulfanylbutan-1-ol Chemical compound OCCCCS NEJMTSWXTZREOC-UHFFFAOYSA-N 0.000 claims description 7
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 6
- 238000001237 Raman spectrum Methods 0.000 claims description 6
- 229910001431 copper ion Inorganic materials 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 6
- 229960003638 dopamine Drugs 0.000 claims description 6
- 239000010413 mother solution Substances 0.000 claims description 6
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 claims description 6
- 238000002791 soaking Methods 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 4
- 238000005238 degreasing Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- ZXSQEZNORDWBGZ-UHFFFAOYSA-N 1,3-dihydropyrrolo[2,3-b]pyridin-2-one Chemical compound C1=CN=C2NC(=O)CC2=C1 ZXSQEZNORDWBGZ-UHFFFAOYSA-N 0.000 claims description 3
- KPIVDNYJNOPGBE-UHFFFAOYSA-N 2-aminonicotinic acid Chemical compound NC1=NC=CC=C1C(O)=O KPIVDNYJNOPGBE-UHFFFAOYSA-N 0.000 claims description 3
- VPHOYLOAYAAPCO-UHFFFAOYSA-N 4-[3-[[2-(4-hydroxyphenyl)-2-methoxyethyl]amino]butyl]phenol Chemical compound C=1C=C(O)C=CC=1C(OC)CNC(C)CCC1=CC=C(O)C=C1 VPHOYLOAYAAPCO-UHFFFAOYSA-N 0.000 claims description 3
- DJDHHXDFKSLEQY-UHFFFAOYSA-N 5-methylpyridine-3-carboxylic acid Chemical compound CC1=CN=CC(C(O)=O)=C1 DJDHHXDFKSLEQY-UHFFFAOYSA-N 0.000 claims description 3
- FCKYPQBAHLOOJQ-UHFFFAOYSA-N Cyclohexane-1,2-diaminetetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)C1CCCCC1N(CC(O)=O)CC(O)=O FCKYPQBAHLOOJQ-UHFFFAOYSA-N 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 239000012141 concentrate Substances 0.000 claims description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 3
- 235000018417 cysteine Nutrition 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000001788 irregular Effects 0.000 claims description 3
- JACPDLJUQLKABC-UHFFFAOYSA-N methyl 6-aminopyridine-3-carboxylate Chemical compound COC(=O)C1=CC=C(N)N=C1 JACPDLJUQLKABC-UHFFFAOYSA-N 0.000 claims description 3
- LKZMBDSASOBTPN-UHFFFAOYSA-L silver carbonate Substances [Ag].[O-]C([O-])=O LKZMBDSASOBTPN-UHFFFAOYSA-L 0.000 claims description 3
- 229910001958 silver carbonate Inorganic materials 0.000 claims description 3
- 229910001923 silver oxide Inorganic materials 0.000 claims description 3
- FHTDDANQIMVWKZ-UHFFFAOYSA-N 1h-pyridine-4-thione Chemical compound SC1=CC=NC=C1 FHTDDANQIMVWKZ-UHFFFAOYSA-N 0.000 claims description 2
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 claims description 2
- WYLQRHZSKIDFEP-UHFFFAOYSA-N benzene-1,4-dithiol Chemical compound SC1=CC=C(S)C=C1 WYLQRHZSKIDFEP-UHFFFAOYSA-N 0.000 claims description 2
- 150000001768 cations Chemical class 0.000 claims description 2
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 claims description 2
- 229940012189 methyl orange Drugs 0.000 claims description 2
- 238000002203 pretreatment Methods 0.000 claims 1
- 239000002105 nanoparticle Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000012935 Averaging Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 238000001338 self-assembly Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000003491 array Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 238000000609 electron-beam lithography Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- 238000005329 nanolithography Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000002135 nanosheet Substances 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 101710134784 Agnoprotein Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001749 colloidal lithography Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 239000002061 nanopillar Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000012764 semi-quantitative analysis Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- -1 silver ions Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/56—Extraction of image or video features relating to colour
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/46—Electroplating: Baths therefor from solutions of silver
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法,包括以下步骤:S1、SERS基底制备;S2、SERS基底前处理:S3、将探针分子均匀的喷洒在SERS基底上;S4、以探针分子最高散射峰进行二维SERS成像,获得成像图;S5、根据成像图获知不同位置的强度数据[x,y,s],获得对应的二维伪色彩图像。本发明中,通过二维SERS成像检测采集大量数据,通过图像处理技术,获取SERS基底不同环状结构的至少24条强度曲线,记录每条曲线的最大强度值,在最大强度值中去除3个最大值和3个最小值,对剩余的强度值求平均值,该平均值即为SERS基底上的探针分子溶液的浓度强度值,改善了测量浓度的准确度。
The invention discloses a SERS quantitative analysis method based on coffee ring concentration effect and image processing technology, comprising the following steps: S1, SERS substrate preparation; S2, SERS substrate pretreatment; S3, uniformly spraying probe molecules on the SERS substrate; S4, performing two-dimensional SERS imaging with the highest scattering peak of the probe molecules to obtain an imaging image; S5, obtaining intensity data [x, y, s] at different positions according to the imaging image, and obtaining a corresponding two-dimensional pseudo-color image. In the invention, a large amount of data is collected through two-dimensional SERS imaging detection, and at least 24 intensity curves of different ring structures of the SERS substrate are obtained through image processing technology, and the maximum intensity value of each curve is recorded, and 3 maximum values and 3 minimum values are removed from the maximum intensity value, and the remaining intensity values are averaged, and the average value is the concentration intensity value of the probe molecule solution on the SERS substrate, thereby improving the accuracy of measuring the concentration.
Description
技术领域Technical Field
本发明涉及表面增强拉曼散射技术领域,尤其涉及基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法。The invention relates to the technical field of surface enhanced Raman scattering, and in particular to a SERS quantitative analysis method based on coffee ring concentration effect and image processing technology.
背景技术Background technique
表面增强拉曼散射(SERS)技术作为一种新型的光谱分析手段,目前已逐渐被广泛应用于在化学、催化、环境科学、生物医学及分析检测等领域。同传统的一些光谱技术相比,SERS技术具有指纹信息识别、单分子水平检测且可实现实时原位探测等优点,并且不受光漂白、光谱重叠和生物体内水分子背景的影响,使得该技术在分析检测方面具有更大的潜力。As a new type of spectral analysis method, surface enhanced Raman scattering (SERS) technology has been gradually widely used in the fields of chemistry, catalysis, environmental science, biomedicine, and analytical detection. Compared with some traditional spectral techniques, SERS technology has the advantages of fingerprint information recognition, single-molecule level detection, and real-time in-situ detection, and is not affected by photobleaching, spectral overlap, and the background of water molecules in the body, which makes this technology have greater potential in analytical detection.
然而,SERS信号在基底表面并非均匀分布,在实际应用过程中,由于拉曼光谱是随机取点采样,且通过移液枪或微量进样器移取探针分子滴加在基底上时,样品数量十分单一,使得实验过程中的随机性、无法定量和不确定性大大增加,基底用于实际分析检测中的效果较差。为改善研究中存在的随机性、无法定量和不确定性等问题,本发明提供一种基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法,首先,将“咖啡环”效应应用于分离分析中,其次,通过二维图像的处理技术改善了SERS检测的灵敏度,进一步降低了电沉积银基底的检出限,同时提高了浓度测量的准确性。However, the SERS signal is not evenly distributed on the substrate surface. In actual application, since Raman spectroscopy is randomly sampled, and the number of samples is very single when the probe molecules are pipetted and dripped on the substrate by a pipette gun or a micro-injector, the randomness, inability to quantify and uncertainty in the experimental process are greatly increased, and the effect of the substrate in actual analysis and detection is poor. In order to improve the problems of randomness, inability to quantify and uncertainty in the research, the present invention provides a SERS quantitative analysis method based on the coffee ring concentration effect and image processing technology. First, the "coffee ring" effect is applied to separation analysis. Secondly, the sensitivity of SERS detection is improved by two-dimensional image processing technology, and the detection limit of the electrodeposited silver substrate is further reduced, while the accuracy of concentration measurement is improved.
发明内容Summary of the invention
为了解决上述背景技术中所提到的技术问题,而提出的基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法。In order to solve the technical problems mentioned in the above background technology, a SERS quantitative analysis method based on coffee ring concentration effect and image processing technology is proposed.
为了实现上述目的,本发明采用了如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法,包括以下步骤:The SERS quantitative analysis method based on the coffee ring concentration effect and image processing technology includes the following steps:
S1、SERS基底制备:在室温下,对紫铜片利用脉冲电沉积制备SERS基底,所用工作液浓度为V母液:V去离子水=1:1,其中,母液为无氰镀银液,工作液的pH为9.5~10.5,阴阳面积比为1:10,峰值电流密度为1~2A·dm-2,占空比为40%~50%,脉冲周期为0.05~0.1s,脉冲电镀时长为600~750s;S1. Preparation of SERS substrate: At room temperature, a SERS substrate was prepared on a copper sheet by pulse electrodeposition. The working solution concentration was V mother solution : V deionized water = 1:1, wherein the mother solution was a cyanide-free silver plating solution, the pH of the working solution was 9.5-10.5, the cation and cathode area ratio was 1:10, the peak current density was 1-2 A·dm -2 , the duty cycle was 40%-50%, the pulse period was 0.05-0.1s, and the pulse plating time was 600-750s;
S2、SERS基底前处理:S2. SERS substrate pretreatment:
S21、使用去离子水和乙醇对SERS基底进行洗涤;S21, washing the SERS substrate with deionized water and ethanol;
S22、将清洗后的SERS基底浸泡在表面处理液中3~5h,所述表面处理液包括0.5mmol·L-1烷基硫醇和0.15mmol·L-14-疏基-1-丁醇,烷基硫醇和4-疏基-1-丁醇的浓度比=1:2.5~1:3,其中,烷基硫醇的化学表达式为:HS(CH2)nCH3,n=5~7;S22, immersing the cleaned SERS substrate in a surface treatment solution for 3 to 5 hours, wherein the surface treatment solution comprises 0.5 mmol·L -1 alkylthiol and 0.15 mmol·L -1 4-mercapto-1-butanol, and the concentration ratio of alkylthiol to 4-mercapto-1-butanol is 1:2.5 to 1:3, wherein the chemical expression of alkylthiol is: HS(CH 2 ) n CH 3 , n=5 to 7;
S23、浸泡3~5h后,取出SERS基底,并先后利用乙醇和去离子水对SERS基底进行洗涤;S23, after soaking for 3 to 5 hours, take out the SERS substrate, and wash the SERS substrate with ethanol and deionized water in turn;
S3、将探针分子均匀的喷洒在SERS基底上,控制液滴大小为100~200μm,单次喷洒的液滴数量为15~20个/mm2,探针分子蒸发浓缩后粒子沉积,在SERS基底表面出现环状结构,其中,探针分子包括罗丹明6G分子、甲基橙分子、2,2'-联吡啶分子、4-疏基吡啶分子和1,4-苯二硫醇;S3, spraying the probe molecules uniformly on the SERS substrate, controlling the droplet size to be 100-200 μm, and the number of droplets sprayed at a single time to be 15-20/mm 2 , and the probe molecules evaporate and concentrate to form particles, and a ring structure appears on the surface of the SERS substrate, wherein the probe molecules include rhodamine 6G molecules, methyl orange molecules, 2,2'-bipyridine molecules, 4-mercaptopyridine molecules and 1,4-benzenedithiol;
S4、选择探针分子沉积下来形成的环状结构,并以其最高散射峰进行二维SERS成像,获得成像图,成像范围为100μm×100μm,结合液滴大小,拉曼激光强度选择3.5~4.0mW,成像图用于表达SERS基底上某个区域的SERS信号的强弱分布,红色区域表示拉曼光谱中SERS信号强,蓝色区域表示拉曼光谱中SERS信号弱;S4, select the ring structure formed by the deposition of the probe molecule, and perform two-dimensional SERS imaging with its highest scattering peak to obtain an imaging map. The imaging range is 100μm×100μm. Combined with the droplet size, the Raman laser intensity is selected to be 3.5-4.0mW. The imaging map is used to express the strength distribution of the SERS signal in a certain area on the SERS substrate. The red area indicates a strong SERS signal in the Raman spectrum, and the blue area indicates a weak SERS signal in the Raman spectrum.
S5、根据成像图获知不同位置的强度数据[x,y,s],其中,(x,y)表示位置坐标,s表示不同(x,y)处的SERS信号强度,通过位置坐标(x,y)和强度值s获得对应的二维伪色彩图像;S5. Obtain intensity data [x, y, s] at different positions according to the imaging image, wherein (x, y) represents the position coordinates, s represents the SERS signal intensity at different (x, y) positions, and obtain a corresponding two-dimensional pseudo-color image through the position coordinates (x, y) and the intensity value s;
S6、通过图像处理技术对SERS基底做定量或者半定量检测:S6. Quantitative or semi-quantitative detection of SERS substrates by image processing technology:
S61、提取二维伪色彩图像中的目标区域,即表示浓度的不规则环状结构,将目标区域的图像坐标系[x,y,s]数据转换为相应地像素坐标系[X,Y,s],基于原点对像素坐标(X,Y)进行归一化,各点的强度值s保持不变;S61, extracting the target area in the two-dimensional pseudo-color image, that is, the irregular ring structure representing the concentration, converting the image coordinate system [x, y, s] data of the target area into the corresponding pixel coordinate system [X, Y, s], normalizing the pixel coordinates (X, Y) based on the origin, and keeping the intensity value s of each point unchanged;
S62、确定目标区域的中心点:将二维伪色彩图像由RGB颜色空间转换为HSV空间,通过设置HSV空间的三个通道取值范围,三个通道分别为:色调、饱和度和明度,在RGB颜色空间中,蓝色的RGB值为[0,0,255],在HSV空间中,蓝色色调取值范围为:Hmin=100,Hmax=124,饱和度取值范围为:Smin=43,Smax=255,明度取值范围为:Vmin=46,Vmax=255,提取蓝色区域作为目标区域;S62, determining the center point of the target area: converting the two-dimensional pseudo-color image from the RGB color space to the HSV space, by setting the value ranges of the three channels of the HSV space, the three channels are: hue, saturation and brightness. In the RGB color space, the RGB value of blue is [0,0,255]. In the HSV space, the value range of the blue hue is: H min =100, H max =124, the saturation value range is: S min =43, S max =255, and the brightness value range is: V min =46, V max =255. Extract the blue area as the target area;
遍历目标区域的所有像素坐标(X,Y),搜索在三个通道取值范围内的n个点,计算n个点的坐标的平均值作为中心点(x0,y0),其计算公式如下所示:Traverse all pixel coordinates (X, Y) of the target area, search for n points within the value range of the three channels, and calculate the average value of the coordinates of the n points as the center point (x 0 , y 0 ). The calculation formula is as follows:
x0=(x1+x2+···+xn)/n;x 0 =(x 1 +x 2 +···+x n )/n;
y0=(y1+y2+···+yn)/n;y 0 =(y 1 +y 2 +···+ yn )/n;
其中,x表示在三个通道取值范围内的某点的横坐标,y表示在三个通道取值范围内的某点的纵坐标,x,y的下标表示在三个通道取值范围内的第1、2、···、n个点;Wherein, x represents the abscissa of a point within the value range of the three channels, y represents the ordinate of a point within the value range of the three channels, and the subscripts of x and y represent the 1st, 2nd, ..., nth points within the value range of the three channels;
S63、归一化中心点(x0,y0)到环边界的距离:按照像素坐标系[X,Y,s],从中心点(x0,y0)到环边界,每间隔15°向四周发散360°,依次获取像素坐标(X,Y),基于中心点(x0,y0)将像素坐标(X,Y)归一化处理(X',Y'),强度值s不变,遍历像素坐标(X',Y')获得对应的强度值s,绘制由中心点(x0,y0)到环边界的强度曲线;S63, normalize the distance from the center point ( x0 , y0 ) to the ring boundary: according to the pixel coordinate system [X, Y, s], from the center point ( x0 , y0 ) to the ring boundary, diverge 360° in all directions at intervals of 15°, obtain pixel coordinates (X, Y) in sequence, normalize the pixel coordinates (X, Y) based on the center point ( x0 , y0 ), and the intensity value s remains unchanged. The pixel coordinates (X', Y') are traversed to obtain the corresponding intensity value s, and an intensity curve from the center point ( x0 , y0 ) to the ring boundary is drawn;
S64、重复上述步骤,获取SERS基底不同环状结构的至少24条强度曲线,记录每条曲线的最大强度值,在最大强度值中去除3个最大值和3个最小值,对剩余的强度值求平均值,该平均值即为SERS基底上的探针分子溶液的浓度强度值。S64. Repeat the above steps to obtain at least 24 intensity curves of different ring structures of the SERS substrate, record the maximum intensity value of each curve, remove the 3 maximum values and 3 minimum values from the maximum intensity values, and calculate the average value of the remaining intensity values. The average value is the concentration intensity value of the probe molecule solution on the SERS substrate.
作为上述技术方案的进一步描述:As a further description of the above technical solution:
在步骤S1中,所述无氰镀银液包括40~50g·L-1银离子络合剂、5~10g·L-1铜离子络合剂、0.01~0.05g·L-1有机光亮剂、15~25g·L-1银离子来源物和pH调节剂,所述银离子络合剂包括氨基烟酸、6-氨基烟酸甲酯、5-甲基烟酸中的至少一种,所述铜离子络合剂半胱氨酸、Z-脯氨酸-NH2或1,2环己二胺四乙酸中的至少一种,所述有机光亮剂包括3-甲基丙烯酰多巴胺、多巴胺4-0-硫酸盐或者莱克多巴胺甲醚中的至少一种,所述银离子来源物包括氧化银或者碳酸银中的一种,所述pH调节剂包括氢氧化钾或者氢氧化钠中的至少一种。In step S1, the cyanide-free silver plating solution includes 40-50 g·L -1 silver ion complexing agent, 5-10 g·L -1 copper ion complexing agent, 0.01-0.05 g·L -1 organic brightener, 15-25 g·L -1 silver ion source and pH adjuster, the silver ion complexing agent includes at least one of aminonicotinic acid, 6-aminonicotinic acid methyl ester, and 5-methylnicotinic acid, the copper ion complexing agent includes at least one of cysteine, Z-proline- NH2 or 1,2-cyclohexanediaminetetraacetic acid, the organic brightener includes at least one of 3-methacryloyl dopamine, dopamine 4-0-sulfate or ractopamine methyl ether, the silver ion source includes one of silver oxide or silver carbonate, and the pH adjuster includes at least one of potassium hydroxide or sodium hydroxide.
作为上述技术方案的进一步描述:As a further description of the above technical solution:
在步骤S1中,还包括紫铜片的前处理,其具体处理步骤如下所示:In step S1, the copper sheet is also pre-processed, and the specific processing steps are as follows:
S11、在室温下使用丙酮及去离子水分别超声清洗10~20min;S11, ultrasonic cleaning with acetone and deionized water at room temperature for 10 to 20 minutes respectively;
S12、在35~45℃水浴加热条件下,对超声清洗后的紫铜片,进行阴极电解除油5min,电流密度为3~5A·dm-2;S12, under the condition of 35-45°C water bath heating, the copper sheet after ultrasonic cleaning was subjected to cathodic electrolytic degreasing for 5 minutes, with a current density of 3-5A·dm -2 ;
S13、用去离子水洗涤除油后的紫铜片,并在室温下进行阳极电化学抛光40~60s至紫铜片表面平滑光亮,电流密度5~7A·dm-2;S13, washing the degreased copper sheet with deionized water, and performing anodic electrochemical polishing at room temperature for 40 to 60 seconds until the surface of the copper sheet is smooth and bright, with a current density of 5 to 7 A·dm -2 ;
S14、用去离子水洗涤平滑光亮的紫铜片,并在室温搅拌下恒流电沉积酸铜5min,电流密度2A·dm-2;S14, washing the smooth and bright copper sheet with deionized water, and electro-depositing acid copper at a constant current for 5 min at room temperature with stirring, and the current density is 2A·dm -2 ;
S15、用去离子水清洗电沉积后的紫铜片,并在室温下用体积分数为5~7%的稀盐酸溶液浸泡5min,取出后用去离子水清洗,完成紫铜片的前处理。S15, washing the electrodeposited copper sheet with deionized water, and soaking it in a dilute hydrochloric acid solution with a volume fraction of 5-7% for 5 minutes at room temperature, taking it out and washing it with deionized water, thereby completing the pretreatment of the copper sheet.
作为上述技术方案的进一步描述:As a further description of the above technical solution:
在步骤S22中,探针分子与SERS基底的接触角在110°~130°之间。In step S22, the contact angle between the probe molecule and the SERS substrate is between 110° and 130°.
综上所述,由于采用了上述技术方案,本发明的有益效果是:本发明中,首先,选择简便易操作的脉冲电沉积法制备优异的SERS基底,脉冲电沉积过程中由于脉冲间隔的存在,阻碍了晶体的连续生长,从而更易获得细腻的纳米颗粒,其次,为改善基底表面的亲水性,通过表面处理液对基底进行表面处理,且为消除滴加样品的数量单一或浸泡过程中随机性强的影响,结合喷洒液滴的方式,可提高采样及平均化,通过上述操作并结合统计平均的方式消除随机产生的影响,最后,二维SERS成像检测采集大量数据,展示基底上拉曼信号的分布状况及便于图像处理,使用图像处理技术,获取SERS基底不同环状结构的至少24条强度曲线,记录每条曲线的最大强度值,在最大强度值中去除3个最大值和3个最小值,对剩余的强度值求平均值,该平均值即为SERS基底上探针分子罗丹明6G分子浓度的强度值,采用这样平均化的方法,去除了部分过浓缩或者与浓度关系不大的强度值,提取了代表浓度的强度值,降低了SERS基底的检出限,提高浓度测量的准确性。In summary, due to the adoption of the above technical scheme, the beneficial effects of the present invention are as follows: in the present invention, firstly, a simple and easy-to-operate pulse electrodeposition method is selected to prepare an excellent SERS substrate. During the pulse electrodeposition process, the continuous growth of crystals is hindered due to the existence of pulse intervals, so that fine nanoparticles are more easily obtained. Secondly, in order to improve the hydrophilicity of the substrate surface, the substrate is surface treated with a surface treatment liquid, and in order to eliminate the influence of a single number of added samples or strong randomness during the immersion process, the method of spraying droplets is combined to improve sampling and averaging. The above operation is combined with the statistical average method to eliminate the influence of randomness. Finally, the two-dimensional SE RS imaging detection collects a large amount of data to display the distribution of Raman signals on the substrate and facilitate image processing. Using image processing technology, at least 24 intensity curves of different ring structures of the SERS substrate are obtained, and the maximum intensity value of each curve is recorded. The 3 maximum values and 3 minimum values are removed from the maximum intensity value, and the remaining intensity values are averaged. The average value is the intensity value of the concentration of the probe molecule Rhodamine 6G on the SERS substrate. This averaging method is used to remove some intensity values that are too concentrated or have little to do with the concentration, and extract the intensity value representing the concentration, thereby reducing the detection limit of the SERS substrate and improving the accuracy of concentration measurement.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1示出了根据本发明实施例提供的基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法的流程示意图;FIG1 shows a schematic flow chart of a SERS quantitative analysis method based on the coffee ring concentration effect and image processing technology according to an embodiment of the present invention;
图2示出了根据本发明实施例提供的基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法的图像处理技术的流程示意图;FIG2 is a schematic diagram showing a flow chart of an image processing technique of a SERS quantitative analysis method based on a coffee ring concentration effect and an image processing technique provided in an embodiment of the present invention;
图3示出了根据本发明实施例提供的基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法的SERS基底局部增强效果示意图;FIG3 shows a schematic diagram of a local enhancement effect of a SERS substrate according to a SERS quantitative analysis method based on a coffee ring concentration effect and an image processing technique provided in an embodiment of the present invention;
图4示出了根据本发明实施例提供的基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法的罗丹明6G分子的疏水性示意图;FIG4 shows a schematic diagram of the hydrophobicity of a Rhodamine 6G molecule according to a SERS quantitative analysis method based on the coffee ring concentration effect and image processing technology provided in an embodiment of the present invention;
图5示出了根据本发明实施例提供的基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法的罗丹明6G分子的亲水性示意图;FIG5 shows a schematic diagram of the hydrophilicity of Rhodamine 6G molecules according to a SERS quantitative analysis method based on the coffee ring concentration effect and image processing technology provided in an embodiment of the present invention;
图6示出了根据本发明实施例提供的基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法的第一二维SERS成像图;FIG6 shows a first two-dimensional SERS imaging diagram of a SERS quantitative analysis method based on a coffee ring concentration effect and an image processing technique provided in an embodiment of the present invention;
图7示出了根据本发明实施例提供的基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法的第二二维SERS成像;FIG. 7 shows a second two-dimensional SERS imaging of the SERS quantitative analysis method based on the coffee ring concentration effect and image processing technology provided in an embodiment of the present invention;
图8示出了根据本发明实施例提供的基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法的第三二维SERS成像示意图;FIG8 shows a third two-dimensional SERS imaging schematic diagram of a SERS quantitative analysis method based on the coffee ring concentration effect and image processing technology provided in an embodiment of the present invention;
图9示出了根据本发明实施例提供的基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法的探针分子罗丹明6G分子的线性范围示意图;FIG9 shows a schematic diagram of the linear range of the probe molecule Rhodamine 6G molecule of the SERS quantitative analysis method based on the coffee ring concentration effect and image processing technology provided in an embodiment of the present invention;
图10示出了根据本发明实施例提供的基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法的不同脉冲周期下快速电流脉冲电沉积SERS基底的SEM图。FIG. 10 shows SEM images of a fast current pulse electrodeposited SERS substrate at different pulse periods according to a SERS quantitative analysis method based on the coffee ring concentration effect and image processing technology provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
实施例一Embodiment 1
请参阅图1-10,本发明提供一种技术方案:基于咖啡环浓缩效应及图像处理技术的SERS定量分析方法,包括以下步骤:Please refer to Figures 1-10. The present invention provides a technical solution: a SERS quantitative analysis method based on coffee ring concentration effect and image processing technology, comprising the following steps:
S1、SERS基底制备:在室温下,对紫铜片利用脉冲电沉积制备SERS基底,所用工作液浓度为V母液:V去离子水=1:1,其中,母液为无氰镀银液,无氰镀银液包括40~50g·L-1银离子络合剂、5~10g·L-1铜离子络合剂、0.01~0.05g·L-1有机光亮剂、15~25g·L-1银离子来源物和pH调节剂,银离子络合剂包括氨基烟酸、6-氨基烟酸甲酯、5-甲基烟酸中的至少一种,铜离子络合剂半胱氨酸、Z-脯氨酸-NH2或1,2环己二胺四乙酸中的至少一种,有机光亮剂包括3-甲基丙烯酰多巴胺、多巴胺4-0-硫酸盐或者莱克多巴胺甲醚中的至少一种,银离子来源物包括氧化银或者碳酸银中的一种,pH调节剂包括氢氧化钾或者氢氧化钠中的至少一种;S1. Preparation of SERS substrate: at room temperature, a SERS substrate is prepared by pulse electrodeposition on a copper sheet, and the working solution concentration used is V mother solution : V deionized water = 1:1, wherein the mother solution is a cyanide-free silver plating solution, and the cyanide-free silver plating solution includes 40-50 g·L -1 silver ion complexing agent, 5-10 g·L -1 copper ion complexing agent, 0.01-0.05 g·L -1 organic brightener, 15-25 g·L -1 silver ion source and pH regulator, the silver ion complexing agent includes at least one of aminonicotinic acid, 6-aminonicotinic acid methyl ester, and 5-methylnicotinic acid, the copper ion complexing agent includes at least one of cysteine, Z-proline- NH2 or 1,2-cyclohexanediaminetetraacetic acid, the organic brightener includes at least one of 3-methacryloyl dopamine, dopamine 4-0-sulfate or ractopamine methyl ether, the silver ion source includes one of silver oxide or silver carbonate, and the pH regulator includes at least one of potassium hydroxide or sodium hydroxide;
工作液的pH为9.5~10.5,阴阳面积比为1:10,峰值电流密度为1~2A·dm-2,占空比为40%~50%,脉冲周期为0.05~0.1s,脉冲电镀时长为600~750s;The pH of the working solution is 9.5-10.5, the ratio of the positive and negative areas is 1:10, the peak current density is 1-2A·dm -2 , the duty cycle is 40%-50%, the pulse period is 0.05-0.1s, and the pulse plating time is 600-750s;
具体的,本实施例一选用的工作液的配比如下表1所示:Specifically, the composition of the working fluid selected in this embodiment is shown in Table 1 below:
表1Table 1
活性基底的制备是获得高质量SERS信号的前提,优异的SERS基底应具有以下特征,首先,基底具有较高的SERS活性即灵敏度,控制金属纳米粒子尺寸(小于50nm)和粒子间隙(小于10nm),其次,基底应具有较好的均匀性及重现性,表面的纳米粒子有序排列,以保证整个表面增强效果的偏差小于20%;The preparation of active substrate is the premise of obtaining high-quality SERS signals. Excellent SERS substrate should have the following characteristics: first, the substrate has high SERS activity, i.e., sensitivity, and controlled metal nanoparticle size (less than 50nm) and particle gap (less than 10nm); second, the substrate should have good uniformity and reproducibility, and the nanoparticles on the surface should be arranged in an orderly manner to ensure that the deviation of the entire surface enhancement effect is less than 20%;
目前的研究中有很多SERS基底的制备方法,如金属纳米溶胶法(存在重复性差及潜在的取样挑战)、自组装法(易受到实验环境的影响)、纳米刻蚀法(过程耗时,产出量低)及模板法(实验影响因素较多,重复性差)等,一些SERS基底可以获得低检出限和宽的线性范围,但制备方法操作复杂、过程耗时难以批量化生产,有些方法制备的基底则易受环境影响,重复性差,无法获得低的检出限,故而本发明中选择简便易操作、可批量生产的脉冲电沉积法制备基底,其中脉冲电沉积由于脉冲间隔的存在,阻碍了晶体的连续生长,从而更易获得细腻的纳米颗粒;There are many methods for preparing SERS substrates in current research, such as metal nanosol method (poor repeatability and potential sampling challenges), self-assembly method (susceptible to the influence of experimental environment), nano-etching method (time-consuming process, low output) and template method (many experimental influencing factors, poor repeatability), etc. Some SERS substrates can obtain low detection limits and wide linear ranges, but the preparation methods are complicated to operate, time-consuming and difficult to mass produce. The substrates prepared by some methods are easily affected by the environment, have poor repeatability, and cannot obtain low detection limits. Therefore, the present invention selects a simple, easy-to-operate, mass-producible pulse electrodeposition method to prepare the substrate, wherein pulse electrodeposition hinders the continuous growth of crystals due to the existence of pulse intervals, thereby making it easier to obtain fine nanoparticles;
其次,控制温度在室温或者低于室温进行,便于控制且制备的基底增强效果较好,降低工作液中银离子的浓度,可以节省实验成本;Secondly, the temperature is controlled at room temperature or below room temperature, which is easy to control and has a better substrate enhancement effect. The concentration of silver ions in the working solution is reduced, which can save experimental costs.
制备过程中同样受到多种实验因素的影响,如电流密度、温度、工作液浓度、阴阳极面积比、工作液pH、工作液中银离子的浓度及电沉积方式等,通过调节这些影响因素使得制备的基底的颗粒尺寸可以满足理想SERS基底的条件,同时基底上存在细窄的可以产生SERS热点的颗粒间隙,本发明中,基底的制备流程简单、生产环保,同时可批量化制备基底,提高分析检测效率;The preparation process is also affected by a variety of experimental factors, such as current density, temperature, working solution concentration, anode and cathode area ratio, working solution pH, silver ion concentration in the working solution, and electrodeposition method. By adjusting these influencing factors, the particle size of the prepared substrate can meet the conditions of an ideal SERS substrate, and at the same time, there are narrow particle gaps on the substrate that can generate SERS hotspots. In the present invention, the preparation process of the substrate is simple, the production is environmentally friendly, and the substrate can be prepared in batches, thereby improving the efficiency of analysis and detection.
具体的,在步骤S1中,还包括紫铜片的前处理,其具体处理步骤如下所示:Specifically, in step S1, the copper sheet is also pre-processed, and the specific processing steps are as follows:
S11、在室温下使用丙酮及去离子水分别超声清洗10~20min;S11, ultrasonic cleaning with acetone and deionized water at room temperature for 10 to 20 minutes respectively;
S12、在35~45℃水浴加热条件下,对超声清洗后的紫铜片,进行阴极电解除油5min,电流密度为3~5A·dm-2;S12, under the condition of 35-45°C water bath heating, the copper sheet after ultrasonic cleaning was subjected to cathodic electrolytic degreasing for 5 minutes, with a current density of 3-5A·dm -2 ;
S13、用去离子水洗涤除油后的紫铜片,并在室温下进行阳极电化学抛光40~60s至紫铜片表面平滑光亮,电流密度5~7A·dm-2;S13, washing the degreased copper sheet with deionized water, and performing anodic electrochemical polishing at room temperature for 40 to 60 seconds until the surface of the copper sheet is smooth and bright, with a current density of 5 to 7 A·dm -2 ;
S14、用去离子水洗涤平滑光亮的紫铜片,并在室温搅拌下恒流电沉积酸铜5min,电流密度2A·dm-2;S14, washing the smooth and bright copper sheet with deionized water, and electro-depositing acid copper at a constant current for 5 min at room temperature with stirring, and the current density is 2A·dm -2 ;
S15、用去离子水清洗电沉积后的紫铜片,并在室温下用体积分数为5~7%的稀盐酸溶液浸泡5min,取出后用去离子水清洗,完成紫铜片的前处理;S15, washing the electrodeposited copper sheet with deionized water, and soaking it in a dilute hydrochloric acid solution with a volume fraction of 5-7% for 5 minutes at room temperature, taking it out and washing it with deionized water, thereby completing the pretreatment of the copper sheet;
脉冲电沉积银基底在制备之前,通过超声清洗、阴极除油、阳极电解抛光、稀酸活化等方式,使得紫铜片镀件表面更加平整光滑明亮且结合力更强;Before the preparation of the pulse electrodeposition silver substrate, ultrasonic cleaning, cathode degreasing, anode electrolytic polishing, dilute acid activation and other methods are used to make the surface of the copper plated piece smoother, brighter and more bonded;
具体的,在脉冲电沉积过程中,当电流导通时,电化学阴极极化增大,阴极区附近金属离子充分被沉积,沉积层结晶细致、光亮,当电流关断时,阴极区附近放电离子又恢复到初始浓度,浓差极化消除,且峰值电流密度往往是越大则得到更高的过电势,这也使得晶粒更加不易长大;Specifically, during the pulse electrodeposition process, when the current is turned on, the electrochemical cathode polarization increases, the metal ions near the cathode area are fully deposited, and the deposited layer is finely crystalline and bright. When the current is turned off, the discharge ions near the cathode area return to the initial concentration, the concentration polarization is eliminated, and the peak current density is often higher, the higher the overpotential is, which also makes it more difficult for the grains to grow;
进一步地,目前仍普遍认为SERS效应与局域表面等离子体共振(Loca l i zedsurface p l asma resonance,LSPR)产生的电磁增强和基于电荷转移的化学增强有关,通常电磁场增强被认为是SERS增强的主要贡献者,且电磁场增强中局域表面等离子体共振的贡献最大,SERS基底中颗粒的形状、尺寸对LSPR效应的影响尤为显著,图10a-d展示了脉冲周期分别为5、0.5、0.1和0.01s的脉冲电沉积银基底的SEM图,不同脉冲周期的脉冲电沉积制备的银基底表面均十分均匀平整,且外观光滑明亮,这是由于脉冲电沉积增加了阴极的活化极化及降低了阴极的浓差极化,极大地改善了沉积银层的物理化学性能,使得沉积层纯度高、组织致密、孔隙率低,在脉冲周期为0.01~2.5s时,银基底外观同时呈现出深蓝或微蓝色,而在5~10s时,银基底则呈银白色,且其SEM图中的银纳米颗粒相对更大,但整体来看,脉冲电沉积制备的基底,银纳米粒子尺寸均未超过50nm且制备的银基底外观呈蓝色时,银纳米颗粒的尺寸更小且细腻,用于拉曼光谱检测时,基底或许表现出更加显著的增强效果,直接观察SEM图可看出0.1s脉冲周期下的银纳米粒子尺寸明显比其他脉冲周期下制备的银基底更小,由SEM图的结果,不同脉冲周期下制备得到的沉积银层均由细腻的球形晶粒组成,形状相对规则且颗粒尺寸相对均匀,颗粒之间排列十分紧密且在部分相邻颗粒之间存在窄小gap,其尺寸均在10nm到几十纳米不等,这些特征均表明脉冲电沉积制备的基底沉积层性能十分优异;Furthermore, it is still generally believed that the SERS effect is related to the electromagnetic enhancement generated by localized surface plasmon resonance (LSPR) and chemical enhancement based on charge transfer. Electromagnetic field enhancement is usually considered to be the main contributor to SERS enhancement, and localized surface plasmon resonance contributes the most to electromagnetic field enhancement. The shape and size of the particles in the SERS substrate have a particularly significant effect on the LSPR effect. Figure 10a-d shows SEM images of pulsed electrodeposited silver substrates with pulse periods of 5, 0.5, 0.1 and 0.01 s, respectively. The surfaces of the silver substrates prepared by pulsed electrodeposition with different pulse periods are very uniform and flat, and their appearance is smooth and bright. This is because pulsed electrodeposition increases the activation polarization of the cathode and reduces the concentration polarization of the cathode, which greatly improves the physical and chemical properties of the deposited silver layer, making the deposited layer high in purity, dense in structure and low in porosity. When the pulse period is 0.01 to 2.5 s, the appearance of the silver substrate also presents a dark blue or slightly blue color. The silver substrate is silvery white at 5-10s, and the silver nanoparticles in its SEM image are relatively larger. However, overall, the size of the silver nanoparticles in the substrate prepared by pulse electrodeposition does not exceed 50nm, and the appearance of the prepared silver substrate is blue. The size of the silver nanoparticles is smaller and more delicate. When used for Raman spectroscopy detection, the substrate may show a more significant enhancement effect. Direct observation of the SEM image shows that the size of the silver nanoparticles under the 0.1s pulse period is significantly smaller than that of the silver substrate prepared under other pulse periods. From the results of the SEM image, the deposited silver layers prepared under different pulse periods are composed of delicate spherical grains with relatively regular shapes and relatively uniform particle sizes. The particles are arranged very closely and there are narrow gaps between some adjacent particles. The sizes range from 10nm to tens of nanometers. These characteristics indicate that the performance of the substrate deposition layer prepared by pulse electrodeposition is very excellent.
S2、SERS基底前处理:S2. SERS substrate pretreatment:
S21、使用去离子水和乙醇对SERS基底进行洗涤;S21, washing the SERS substrate with deionized water and ethanol;
S22、将清洗后的SERS基底浸泡在表面处理液中3~5h,表面处理液包括0.5mmol·L-1烷基硫醇和0.15mmol·L-14-疏基-1-丁醇,烷基硫醇和4-疏基-1-丁醇的浓度比=1:2.5~1:3,其中,烷基硫醇的化学表达式为:HS(CH2)nCH3,n=5~7;S22, immersing the cleaned SERS substrate in a surface treatment solution for 3 to 5 hours, wherein the surface treatment solution includes 0.5 mmol·L -1 alkylthiol and 0.15 mmol·L -1 4-mercapto-1-butanol, and the concentration ratio of alkylthiol to 4-mercapto-1-butanol is 1:2.5 to 1:3, wherein the chemical expression of alkylthiol is: HS(CH 2 ) n CH 3 , n=5 to 7;
S23、浸泡3~5h后,取出SERS基底,并先后利用乙醇和去离子水对SERS基底进行洗涤;S23, after soaking for 3 to 5 hours, take out the SERS substrate, and wash the SERS substrate with ethanol and deionized water in turn;
S3、将罗丹明6G分子均匀的喷洒在SERS基底上,控制液滴大小为100~200μm,单次喷洒的液滴数量为15~20个/mm2,罗丹明6G分子蒸发浓缩后粒子沉积,在SERS基底表面出现环状结构,罗丹明6G分子与SERS基底的接触角在110°~130°之间;S3, spraying Rhodamine 6G molecules uniformly on the SERS substrate, controlling the droplet size to be 100-200 μm, and the number of droplets sprayed at a single time to be 15-20/mm 2 , and the Rhodamine 6G molecules evaporate and concentrate to form particles, and a ring structure appears on the surface of the SERS substrate, and the contact angle between the Rhodamine 6G molecules and the SERS substrate is between 110° and 130°;
制备的基底表面存在一定的亲水性,滴加罗丹明6G分子或基底浸泡在罗丹明6G分子中均导致在自然晾干基底的过程,实验结果易受操作影响且蒸发浓缩存在不可控因素,因此,本发明中,首先,为改善基底表面的亲水性,通过表面处理液对基底进行表面处理,4-巯基-1-丁醇可调节探针分子同基底的接触角在110°~130°之间,结合链长为C6~C8的烷基硫醇进行自组装,3~5h后,烷基硫醇有序地自组装在基底上,基底上存在一定的疏水性,干涸后由于表面张力的作用基底上会出现环状结构;The prepared substrate surface has a certain hydrophilicity. The addition of rhodamine 6G molecules or the immersion of the substrate in rhodamine 6G molecules leads to a process of naturally drying the substrate. The experimental results are easily affected by the operation and there are uncontrollable factors in evaporation and concentration. Therefore, in the present invention, first, in order to improve the hydrophilicity of the substrate surface, the substrate is surface treated with a surface treatment liquid. 4-mercapto-1-butanol can adjust the contact angle between the probe molecule and the substrate to between 110° and 130°, and self-assemble with alkylthiols with a chain length of C6 to C8. After 3 to 5 hours, the alkylthiols are orderly self-assembled on the substrate. There is a certain hydrophobicity on the substrate. After drying, a ring structure will appear on the substrate due to the action of surface tension;
首先,若只选则烷基硫醇修饰活性基底,探针分子与基底表面形成的接触角在175°~177°,晾干后溶液只会形成较浅的小范围“水渍”,不利于图像处理,其次,链长低于C6的烷基硫醇存在极强的臭味,难以消除,不推荐使用,而高于C8的烷基硫醇自组装效果较差,影响实验效率,同样的,为消除滴加时测量样品的数量单一或浸泡过程中产生随机性的影响,通过喷洒液滴的方式进行,提高采样及平均化,通过上述操作并结合统计平均的方式消除随机强产生的影响;First, if only alkylthiols are selected to modify the active substrate, the contact angle between the probe molecule and the substrate surface is 175° to 177°. After drying, the solution will only form a shallow small-scale "water stain", which is not conducive to image processing. Secondly, alkylthiols with a chain length lower than C6 have a very strong odor that is difficult to eliminate and are not recommended. Alkylthiols with a chain length higher than C8 have a poor self-assembly effect, which affects the experimental efficiency. Similarly, in order to eliminate the influence of the single number of measured samples during dropwise addition or the randomness generated during the immersion process, the droplets are sprayed to improve sampling and averaging. The above operation is combined with statistical averaging to eliminate the influence of randomness.
S4、选择探针分子沉积下来形成的环状结构,并以罗丹明6G分子最高散射峰611cm-1进行二维SERS成像,获得成像图,成像范围为100μm×100μm,结合液滴大小,拉曼激光强度选择3.5~4.0mW,这使得开始测试SERS成像图时,基底刚进入干燥的状态,液滴蒸发不会过快而影响增强效果,成像图用于表达SERS基底上某个区域的SERS信号的强弱分布,红色区域表示拉曼光谱中SERS信号较强的位置,蓝色区域表示拉曼光谱中SERS信号较弱的位置,二维SERS成像的方式可以采集大量数据,展示基底上信号的分布状况及便于图像识别处理;S4. Select the ring structure formed by the deposition of probe molecules, and perform two-dimensional SERS imaging with the highest scattering peak of rhodamine 6G molecules at 611 cm -1 to obtain an imaging image. The imaging range is 100 μm × 100 μm. Combined with the droplet size, the Raman laser intensity is selected to be 3.5-4.0 mW. This allows the substrate to just enter a dry state when the SERS imaging image is tested, and the droplet will not evaporate too quickly to affect the enhancement effect. The imaging image is used to express the strength distribution of the SERS signal in a certain area on the SERS substrate. The red area indicates the position where the SERS signal is stronger in the Raman spectrum, and the blue area indicates the position where the SERS signal is weaker in the Raman spectrum. The two-dimensional SERS imaging method can collect a large amount of data, display the distribution of signals on the substrate, and facilitate image recognition processing;
喷洒的液滴进行二维SERS成像后,由于表面张力的作用,得到的成像图大体是类“咖啡环”的分布,中间部分拉曼信号弱些,环上的拉曼信号更强;After the sprayed droplets were subjected to two-dimensional SERS imaging, due to the effect of surface tension, the obtained image was generally a "coffee ring" distribution, with a weaker Raman signal in the middle and a stronger Raman signal on the ring.
S5、根据成像图获知不同位置的强度数据[x,y,s],其中,(x,y)表示位置坐标,s表示不同(x,y)处的SERS信号强度,通过位置坐标(x,y)和强度值s获得对应的二维伪色彩图像;S5. Obtain intensity data [x, y, s] at different positions according to the imaging image, wherein (x, y) represents the position coordinates, s represents the SERS signal intensity at different (x, y) positions, and obtain a corresponding two-dimensional pseudo-color image through the position coordinates (x, y) and the intensity value s;
S6、通过图像处理技术对SERS基底做定量或者半定量检测:S6. Quantitative or semi-quantitative detection of SERS substrates by image processing technology:
S61、提取二维伪色彩图像中的目标区域,即表示浓度的不规则环状结构,将目标区域的图像坐标系[x,y,s]数据转换为相应地像素坐标系[X,Y,s],基于原点对像素坐标(X,Y)进行归一化,各点的强度值s保持不变;S61, extracting the target area in the two-dimensional pseudo-color image, that is, the irregular ring structure representing the concentration, converting the image coordinate system [x, y, s] data of the target area into the corresponding pixel coordinate system [X, Y, s], normalizing the pixel coordinates (X, Y) based on the origin, and keeping the intensity value s of each point unchanged;
S62、确定目标区域的中心点:将二维伪色彩图像由RGB颜色空间转换为HSV空间,通过设置HSV空间的三个通道取值范围,三个通道分别为:色调、饱和度和明度,在RGB颜色空间中,红色的RGB值为[255,0,0],在HSV空间中,红色色调取值范围为:Hmin=0,Hmax=10或者Hmin=156,Hmax=180,饱和度取值范围为:Smin=43,Smax=255,明度取值范围为:Vmin=46,Vmax=255;S62, determining the center point of the target area: converting the two-dimensional pseudo-color image from the RGB color space to the HSV space, by setting the value ranges of the three channels of the HSV space, the three channels are: hue, saturation and brightness. In the RGB color space, the RGB value of red is [255,0,0]. In the HSV space, the value range of the red hue is: H min = 0, H max = 10 or H min = 156, H max = 180, the value range of the saturation is: S min = 43, S max = 255, and the value range of the brightness is: V min = 46, V max = 255;
在RGB颜色空间中,蓝色的RGB值为[0,0,255],在HSV空间中,蓝色色调取值范围为:Hmin=100,Hmax=124,饱和度取值范围为:Smin=43,Smax=255,明度取值范围为:Vmin=46,Vmax=255,本发明中提取蓝色区域作为目标区域;In the RGB color space, the RGB value of blue is [0, 0, 255]. In the HSV space, the blue hue value range is: H min = 100, H max = 124, the saturation value range is: S min = 43, S max = 255, and the lightness value range is: V min = 46, V max = 255. In the present invention, the blue area is extracted as the target area;
遍历目标区域的所有像素坐标(X,Y),搜索在三个通道取值范围内的n个点,计算n个点的坐标的平均值作为中心点(x0,y0),其计算公式如下所示:Traverse all pixel coordinates (X, Y) of the target area, search for n points within the value range of the three channels, and calculate the average value of the coordinates of the n points as the center point (x 0 , y 0 ). The calculation formula is as follows:
x0=(x1+x2+···+xn)/n;x 0 =(x 1 +x 2 +···+x n )/n;
y0=(y1+y2+···+yn)/n;y 0 =(y 1 +y 2 +···+ yn )/n;
其中,x表示在三个通道取值范围内的某点的横坐标,y表示在三个通道取值范围内的某点的纵坐标,x,y的下标表示在三个通道取值范围内的第1、2、···、n个点;Wherein, x represents the abscissa of a point within the value range of the three channels, y represents the ordinate of a point within the value range of the three channels, and the subscripts of x and y represent the 1st, 2nd, ..., nth points within the value range of the three channels;
S63、归一化中心点(x0,y0)到环边界的距离:按照像素坐标系[X,Y,s],从中心点(x0,y0)到环边界,每间隔15°向四周发散360°,依次获取像素坐标(X,Y),基于中心点(x0,y0)将像素坐标(X,Y)归一化处理(X',Y'),强度值s不变,遍历像素坐标(X',Y')获得对应的强度值s,绘制由中心点(x0,y0)到环边界的强度曲线;S63, normalize the distance from the center point ( x0 , y0 ) to the ring boundary: according to the pixel coordinate system [X, Y, s], from the center point ( x0 , y0 ) to the ring boundary, diverge 360° in all directions at intervals of 15°, obtain pixel coordinates (X, Y) in sequence, normalize the pixel coordinates (X, Y) based on the center point ( x0 , y0 ), and the intensity value s remains unchanged. The pixel coordinates (X', Y') are traversed to obtain the corresponding intensity value s, and an intensity curve from the center point ( x0 , y0 ) to the ring boundary is drawn;
S64、重复上述步骤,获取SERS基底不同环状结构的至少24条强度曲线,记录每条曲线的最大强度值,在最大强度值中去除3个最大值和3个最小值,对剩余的强度值求平均值,该平均值即为SERS基底上罗丹明6G分子浓度的强度值,采用这样平均化的方法,去除了部分过浓缩或者与浓度关系不大的强度值,提取了真正代表浓度的强度值,改善了测量浓度的准确度。S64. Repeat the above steps to obtain at least 24 intensity curves of different ring structures of the SERS substrate, record the maximum intensity value of each curve, remove the 3 maximum values and the 3 minimum values from the maximum intensity value, and average the remaining intensity values. The average value is the intensity value of the concentration of Rhodamine 6G molecules on the SERS substrate. By using this averaging method, some intensity values that are too concentrated or have little to do with the concentration are removed, and the intensity values that truly represent the concentration are extracted, thereby improving the accuracy of measuring the concentration.
通过上述方式得到了罗丹明6G分子的线性范围在1.0×10-9~1.0×10-13mol·L-1(相关系数R2=0.995),实验中得到的检出限为1.0×10-13mol·L-1,目前通过实验获得的最低浓度检测值为1.0×10-13mol·L-1,是在该线性范围内可以获得的最低浓度值,而最低检出限是理论值,是通过标准试样作标准曲线,经过计算得到的检测可能达到的理想浓度,结合获得的最低浓度值是的信噪比(S/N)大于3,因此,可以说明理想检出限可能略低于1.0×10-13mol·L-1。Through the above method, it was obtained that the linear range of Rhodamine 6G molecule was 1.0×10 -9 ~1.0×10 -13 mol·L -1 (correlation coefficient R 2 =0.995), and the detection limit obtained in the experiment was 1.0×10 -13 mol·L -1 . The lowest concentration detection value currently obtained through experiments is 1.0×10 -13 mol·L -1 , which is the lowest concentration value that can be obtained within the linear range. The lowest detection limit is a theoretical value, which is the ideal concentration that can be achieved by calculating the standard curve made by standard samples. Combined with the lowest concentration value obtained, the signal-to-noise ratio (S/N) is greater than 3. Therefore, it can be shown that the ideal detection limit may be slightly lower than 1.0×10 -13 mol·L -1 .
进一步地,首先,在制备SERS基底的步骤中,分别存在不同的制备方法,如化学合成法、自组装法、纳米光刻法、模板法和脉冲电沉积法(本发明中的制备方法);Further, first, in the step of preparing the SERS substrate, there are different preparation methods, such as chemical synthesis, self-assembly, nanolithography, template method and pulse electrodeposition (the preparation method in the present invention);
其中,化学合成法:可以通过一些技术如化学还原、化学置换、光化学或热分解等制备出大小及形状各异的SERS基底。Chang等人在文献[A facile method to directlydeposit the large-scale Ag nanoparticles on a silicon substrate forsensitive,uniform,reproducible and stable SERS substrate]报告了一种简便的置换还原方法,可在室温和短反应时间(3min)下将大规模Ag纳米颗粒直接沉积在硅衬底上,该反应过程是一种直接的湿化学方法,分别使用硝酸银和氟化氢作为银源和还原剂;Among them, chemical synthesis method: SERS substrates of various sizes and shapes can be prepared through some techniques such as chemical reduction, chemical replacement, photochemistry or thermal decomposition. Chang et al. reported a simple replacement reduction method in the literature [A facile method to directly deposit the large-scale Ag nanoparticles on a silicon substrate for sensitive, uniform, reproducible and stable SERS substrate], which can directly deposit large-scale Ag nanoparticles on a silicon substrate at room temperature and a short reaction time (3min). The reaction process is a direct wet chemical method, using silver nitrate and hydrogen fluoride as the silver source and reducing agent respectively;
自组装法:是两个或多个组分通过共价或非共价键作用,自发组成更大的聚集体,组装成二维或三维有序结构即SERS基底,Zhang在文献[Self-assembly Ag nanoparticlemonolayer film as SERS Substrate for pesticide detection]中,通过在3-氨基丙基三甲氧基硅烷(APTMS)功能化ITO表面化学自组装银纳米粒子,制备了SERS活性基底。首先合成银纳米颗粒:200mL AgNO3水溶液(2.91×10-4mol·L-1)在剧烈搅拌下加热至沸腾,并添加1.3mL 1%柠檬酸三钠水溶液。最终得到灰色溶液,并准备好进行化学组装,在玻璃表面获得组装50nm的银纳米颗粒膜SERS基底;Self-assembly method: two or more components spontaneously form larger aggregates through covalent or non-covalent bonds, and assemble into a two-dimensional or three-dimensional ordered structure, namely the SERS substrate. In the literature [Self-assembly Ag nanoparticle monolayer film as SERS Substrate for pesticide detection], Zhang prepared a SERS active substrate by chemically self-assembling silver nanoparticles on the surface of ITO functionalized with 3-aminopropyltrimethoxysilane (APTMS). First, synthesize silver nanoparticles: 200mL of AgNO 3 aqueous solution (2.91×10 -4 mol·L -1 ) was heated to boiling under vigorous stirring, and 1.3mL of 1% trisodium citrate aqueous solution was added. Finally, a gray solution was obtained, which was ready for chemical assembly, and a 50nm silver nanoparticle film SERS substrate was obtained on the glass surface;
纳米光刻法:主要可通过聚焦离子束(FIB)和电子束光刻技术(EBL)在连续金属超薄膜上获得纳米孔,或在在可控光学性质的固体基底上获得纳米粒子,Guo等人在文献[Nafion stabilized Ag nanopillar arrays as a flexible SERS substrate fortrace chemical detection]中,首先通过胶体光刻及氧等离子体刻蚀在Nafion膜表面产生纳米结构阵列,后通过离子交换和原位还原这两个步骤均匀地将纳米结构阵列金属化,生成了微/纳米结构的SERS活性基底;Nanolithography: Nanopores can be obtained on continuous metal ultra-thin films, or nanoparticles can be obtained on solid substrates with controllable optical properties, mainly through focused ion beam (FIB) and electron beam lithography (EBL). In the literature [Nafion stabilized Ag nanopillar arrays as a flexible SERS substrate fortrace chemical detection], Guo et al. first produced nanostructure arrays on the surface of Nafion membranes through colloidal lithography and oxygen plasma etching, and then uniformly metallized the nanostructure arrays through ion exchange and in-situ reduction to generate micro/nanostructured SERS active substrates.
模板法:是一种通过将可控几何形状的金属纳米粒子沉积在模板上的方法,通常包括软模板法和硬模板法。Sun等人在文献[AAO Template-Assisted Fabrication ofOrdered Ag Nanoparticles-Decorated Au Nanotubes Array for Surface-EnhancedRaman Scattering Detection]中,通过多步阳极氧化和蚀刻实现锥形孔AAO模板的进一步氧化,制备漏斗孔AAO模板。然后使用所制备的漏斗孔AAO作为牺牲模板,使用物理溅射来组装Au-NTs和Ag-NPs,得到了SERS活性基底;Template method: It is a method of depositing metal nanoparticles of controllable geometry on a template, which usually includes soft template method and hard template method. In the literature [AAO Template-Assisted Fabrication of Ordered Ag Nanoparticles-Decorated Au Nanotubes Array for Surface-Enhanced Raman Scattering Detection], Sun et al. further oxidized the conical hole AAO template by multi-step anodization and etching to prepare a funnel hole AAO template. Then, the prepared funnel hole AAO was used as a sacrificial template, and physical sputtering was used to assemble Au-NTs and Ag-NPs to obtain a SERS active substrate;
通过上述方法获得罗丹明6G分子的检出限,具体的,如以下表2所示:The detection limit of the rhodamine 6G molecule was obtained by the above method, specifically, as shown in the following Table 2:
表2Table 2
通过表2可以看出:通过脉冲电沉积法制备的SERS基底结合二维SERS成像及图像处理技术获得的罗丹明6G分子的检出限明显低于或接近其他常用方法制备的基底获得的检出限,证明本发明在分析检测方面具有较好的灵敏度及较强的实用性。It can be seen from Table 2 that the detection limit of Rhodamine 6G molecules obtained by the SERS substrate prepared by pulse electrodeposition combined with two-dimensional SERS imaging and image processing technology is significantly lower than or close to the detection limit obtained by substrates prepared by other commonly used methods, which proves that the present invention has good sensitivity and strong practicality in analytical detection.
其次,在步骤S1中,改变无氰镀银液的配方,如配方一,获得罗丹明6G分子的检出限,具体的,如以下表3所示:Secondly, in step S1, the formula of the cyanide-free silver plating solution is changed to Formula 1, and the detection limit of the rhodamine 6G molecule is obtained, specifically, as shown in the following Table 3:
配方一:Zhang等人在文献[Preparation of Ag nanosheet hierarchicalclubbed micro/nanostructured arrays and their application based on the SERSeffect]中给出了一种镀银液配方包含0.5g·L-1硝酸银、3.75g·L-1聚乙烯吡咯烷酮(PVP)和0.75g·L-1柠檬酸钠,通过室温及低电流密度(-10μA·cm-2)的恒流装置下3h制备得到银纳米片的分层棒状微/纳米结构阵列。其中,采用石墨片作为阳极,镀金氧化锌纳米棒阵列作为阴极;Formula 1: Zhang et al. gave a silver plating solution formula in the literature [Preparation of Ag nanosheet hierarchicalclubbed micro/nanostructured arrays and their application based on the SERS effect], which contained 0.5g·L -1 silver nitrate, 3.75g·L -1 polyvinyl pyrrolidone (PVP) and 0.75g·L -1 sodium citrate. The hierarchical rod-shaped micro/nanostructured array of silver nanosheets was prepared by constant current device at room temperature and low current density (-10μA·cm -2 ) for 3h. Among them, graphite sheet was used as anode and gold-plated zinc oxide nanorod array was used as cathode;
表3table 3
通过表3可以看出:本发明中所用到的无氰镀银液配方同文献中报道的其他镀银液配方相比,制备的SERS基底均具有较高的SERS活性及灵敏度。It can be seen from Table 3 that the SERS substrates prepared by the cyanide-free silver plating solution formula used in the present invention have higher SERS activity and sensitivity than other silver plating solution formulas reported in the literature.
定性分析一般是通过如SERS及基底等手段检测到对应物质的特征,而本发明,实现操作简单、大尺度、重现性和稳定性高基底的制备,解决测试过程中的均匀性、可靠性及灵敏度问题,提高定量分析的可能性,实现准确的定量或半定量分析,在定性分析的基础上,优化检测手段,量化获取对应物质的最小值如浓度,来确认检出限,以便用于检测某些如水溶液中痕量存在的违禁的染料、色素等。Qualitative analysis is generally performed by detecting the characteristics of the corresponding substance through means such as SERS and substrates, while the present invention realizes the preparation of a substrate that is simple to operate, large-scale, reproducible and stable, solves the problems of uniformity, reliability and sensitivity in the test process, improves the possibility of quantitative analysis, and realizes accurate quantitative or semi-quantitative analysis. On the basis of qualitative analysis, the detection means are optimized, and the minimum value of the corresponding substance, such as concentration, is quantitatively obtained to confirm the detection limit, so as to be used for detecting certain prohibited dyes, pigments, etc. that exist in trace amounts in aqueous solutions.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above description is only a preferred specific implementation manner of the present invention, but the protection scope of the present invention is not limited thereto. Any technician familiar with the technical field can make equivalent replacements or changes according to the technical scheme and inventive concept of the present invention within the technical scope disclosed by the present invention, which should be covered by the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210589126.1A CN114998621B (en) | 2022-05-26 | 2022-05-26 | SERS quantitative analysis method based on coffee ring concentration effect and image processing technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210589126.1A CN114998621B (en) | 2022-05-26 | 2022-05-26 | SERS quantitative analysis method based on coffee ring concentration effect and image processing technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114998621A CN114998621A (en) | 2022-09-02 |
CN114998621B true CN114998621B (en) | 2024-04-16 |
Family
ID=83028683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210589126.1A Active CN114998621B (en) | 2022-05-26 | 2022-05-26 | SERS quantitative analysis method based on coffee ring concentration effect and image processing technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114998621B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100102273A (en) * | 2009-03-11 | 2010-09-24 | 서울대학교산학협력단 | Method for quantification of multiple markers using f-sers dots |
CN109142312A (en) * | 2018-07-23 | 2019-01-04 | 华东师范大学 | A kind of plasticiser neck phthalic acid ester detection method based on Surface enhanced Raman spectroscopy |
CN110899147A (en) * | 2019-11-28 | 2020-03-24 | 武汉工程大学 | A method for on-line sorting of conveyor belt stones based on laser scanning |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9546958B2 (en) * | 2014-04-29 | 2017-01-17 | University Of Houston System | Method of stamping surface-enhance Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging |
-
2022
- 2022-05-26 CN CN202210589126.1A patent/CN114998621B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100102273A (en) * | 2009-03-11 | 2010-09-24 | 서울대학교산학협력단 | Method for quantification of multiple markers using f-sers dots |
CN109142312A (en) * | 2018-07-23 | 2019-01-04 | 华东师范大学 | A kind of plasticiser neck phthalic acid ester detection method based on Surface enhanced Raman spectroscopy |
CN110899147A (en) * | 2019-11-28 | 2020-03-24 | 武汉工程大学 | A method for on-line sorting of conveyor belt stones based on laser scanning |
Non-Patent Citations (1)
Title |
---|
基于数字图像处理的pH试纸自动检测技术;赵亚;王震洲;;机械与电子;20170724(07);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114998621A (en) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101216430B (en) | Nanoporous metal substrate with surface-enhanced Raman scattering activity and preparation method thereof | |
CN208399384U (en) | A kind of SERS unit, SERS chip and SERS detection system | |
CN108277484B (en) | Preparation method of hollow Ag-Au alloy composite structure micro-nano array | |
CN110016700B (en) | A kind of surface-enhanced Raman spectroscopy silver-plating active substrate and preparation method thereof | |
CN105973865A (en) | Au nano dendrites surface-reinforced Raman scattering substrate and preparation method thereof | |
CN103331440B (en) | Silver-gold porous nanorod array, preparation method and purpose of silver-gold porous nanorod array | |
CN103361601B (en) | A kind of method making surface enhanced Raman scattering substrate | |
CN104807802B (en) | A kind of surface enhanced Raman scattering substrate and its growth in situ method | |
CN108226138A (en) | A kind of hollow pipe array surface enhancing Raman scattering substrate of Ag nanometer sheets assembling | |
CN101698961A (en) | Preparation method of surface plasmonic crystal | |
CN112647104A (en) | Preparation method of flower-shaped gold and silver nano composite structure array | |
CN111455319A (en) | Gold-silver nanocone array with body-enhanced Raman scattering effect and preparation method and application thereof | |
CN105954253B (en) | Glucose SERS detection substrate based on Ag@Ag nanodot hierarchical galaxy array and preparation method thereof | |
CN106672897B (en) | A kind of surface is coated with array type silver nanometer column of golden film and preparation method thereof | |
CN113125405A (en) | SERS substrate based on nano conical needle structure and preparation method | |
CN114998621B (en) | SERS quantitative analysis method based on coffee ring concentration effect and image processing technology | |
CN112481608B (en) | Titanium substrate with metal nanoparticles growing on surface in situ and application thereof | |
CN103257132A (en) | Silver nanoparticle cap array surface-enhanced raman activity substrate and preparation method thereof | |
CN113866151B (en) | A triple amplified SERS signal substrate, preparation method and application based on spiny nano-gold@silver | |
CN108254355A (en) | A kind of preparation method of salt bridge auxiliary primary battery induced growth gold nano grain surface enhanced Raman scattering substrate | |
CN108274014B (en) | Multi-branch-shaped nano alloy and preparation method thereof | |
CN111781188B (en) | Preparation method of SERS substrate with aluminum-based flower-shaped composite nanostructure and SERS substrate | |
CN114720448A (en) | Preparation method of surface enhanced Raman substrate with semiconductor oxide nano-particle modified precious metal nano-cone array structure | |
CN112126954A (en) | Surface-enhanced Raman spectroscopy SERS silver-coated active substrate based on brush plating and preparation method | |
CN106350058B (en) | Preparation method of nanoporous gold-based fluorescence-enhanced substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 314000 No. 899, guangqiong Road, Nanhu District, Jiaxing City, Zhejiang Province Patentee after: Jiaxing University Country or region after: China Patentee after: Jiaxing Ruize Surface Treatment Technology Co.,Ltd. Address before: No. 899 Guangqiong Road, Nanhu District, Jiaxing City, Zhejiang Province Patentee before: JIAXING University Country or region before: China Patentee before: Jiaxing Ruize Surface Treatment Technology Co.,Ltd. |
|
CP03 | Change of name, title or address |