CN114995281B - Optimal tool position planning method and device for non-expandable straight line curved surface - Google Patents
Optimal tool position planning method and device for non-expandable straight line curved surface Download PDFInfo
- Publication number
- CN114995281B CN114995281B CN202210502537.2A CN202210502537A CN114995281B CN 114995281 B CN114995281 B CN 114995281B CN 202210502537 A CN202210502537 A CN 202210502537A CN 114995281 B CN114995281 B CN 114995281B
- Authority
- CN
- China
- Prior art keywords
- tool position
- bow height
- directrixes
- parameter
- guideline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35349—Display part, programmed locus and tool path, traject, dynamic locus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Abstract
一种基于等弓高误差法的非可展直纹曲面最优刀位规划方法及装置,适用于非可展直纹曲面的侧铣加工,该方法首先确定待加工直纹曲面的参数方程,并求导得到直纹曲面上下准线在当前刀具位置处的曲率,其次根据曲率与弓高允差计算上下准线各自对应的初始加工步长,并校核弓高误差,进一步迭代调整加工步长使其在弓高允差内最大化,最后比较上下准线在各自加工步长下的刀具位置,得到在弓高允差内最优加工步长下的刀具位置,遍历整个刀具路径轨迹,即完成了基于等弓高误差法的非可展直纹面最优刀位规划。所述发明以非可展直纹曲面的上下准线为约束获得在弓高允差内的最优刀位规划,弓高误差均匀一致,刀位点数量少,整体加工质量与加工效率提高。
A method and device for optimal tool position planning for non-developable ruled surfaces based on the equal bow height error method is suitable for side milling of non-developable ruled surfaces. The method first determines the parametric equation of the ruled surface to be processed, and derives the curvature of the upper and lower directrixes on the ruled surface at the current tool position. Secondly, the initial processing step corresponding to the upper and lower directrixes is calculated according to the curvature and the bow height tolerance, and the bow height error is checked. The processing step is further iteratively adjusted to maximize it within the bow height tolerance. Finally, the tool positions of the upper and lower directrixes under their respective processing steps are compared to obtain the tool position under the optimal processing step within the bow height tolerance. The entire tool path trajectory is traversed to complete the optimal tool position planning for non-developable ruled surfaces based on the equal bow height error method. The invention uses the upper and lower directrixes of the non-developable ruled surface as constraints to obtain the optimal tool position planning within the bow height tolerance. The bow height error is uniform and consistent, the number of tool position points is small, and the overall processing quality and processing efficiency are improved.
Description
技术领域Technical Field
本发明属于机械加工技术领域,本发明涉及一种非可展直纹曲面最优刀位规划方法及装置,对实现复杂非可展直纹曲面的高质量和高效率加工具有重要意义。The present invention belongs to the field of mechanical processing technology, and the present invention relates to a method and a device for optimal tool position planning of a non-developable ruled surface, which is of great significance for achieving high-quality and high-efficiency processing of complex non-developable ruled surfaces.
背景技术Background technique
如今,随着航空航天、运载等各个领域的发展,对优良高端装备的需求越来越迫切,广泛应用于该领域的精密复杂曲面零件在加工效率、成形精度及成品率等指标上被提出更高的要求。非可展直纹曲面是该类复杂零件的典型特征,一般都由多轴联动数控机床加工,多轴联动数控加工需要自动编程技术的支持,刀具路径规划方法作为自动编程的核心技术,其优劣决定了曲面的加工质量和加工效率。Nowadays, with the development of aerospace, transportation and other fields, the demand for high-quality high-end equipment is becoming more and more urgent. Precision complex curved surface parts widely used in this field are subject to higher requirements in terms of processing efficiency, forming accuracy and yield rate. Non-developable ruled surfaces are typical features of such complex parts, which are generally processed by multi-axis linkage CNC machine tools. Multi-axis linkage CNC machining requires the support of automatic programming technology. Tool path planning methods are the core technology of automatic programming, and their quality determines the processing quality and efficiency of the surface.
现有的各种刀具路径轨迹规划算法主要区别在于加工步长的确定方法不同,加工步长主要影响弓高误差。由于非可展直纹曲面在不同位置变化的曲率,采用定加工步长作为刀具路径轨迹进行曲面逼近时,为了保证加工精度要求,相同的走刀步长使得刀位点数量过多;如果减少刀位点的数量,则在曲率过大的位置上一个加工步长内的实际最大弓高误差范围会大于弓高允差。因此现有的刀具路径轨迹规划算法不能处理好零件整体加工质量与加工效率之间的平衡。The main difference between the various existing tool path trajectory planning algorithms is the different methods for determining the processing step length, which mainly affects the bow height error. Due to the curvature of non-developable ruled surfaces changing at different positions, when a fixed processing step length is used as the tool path trajectory for surface approximation, in order to ensure the processing accuracy requirements, the same tool step length results in too many tool position points; if the number of tool position points is reduced, the actual maximum bow height error range within a processing step length at the position with excessive curvature will be greater than the bow height tolerance. Therefore, the existing tool path trajectory planning algorithms cannot handle the balance between the overall processing quality and processing efficiency of the parts.
发明内容Summary of the invention
本发明基于对非可展直纹曲面的变化曲率以及在弓高允差内最优步长的分析,以非可展直纹曲面上下准线为约束条件,提出了一种基于等弓高误差法的直纹曲面最优刀位规划方法,实现了沿直纹曲面刀具路径轨迹的离散步长弓高误差均匀化,刀位点数量在弓高允差要求范围内最少,整体加工质量与加工效率得到了提高。Based on the analysis of the changing curvature of non-developable ruled surfaces and the optimal step length within the bow height tolerance, the present invention takes the upper and lower directrixes of the non-developable ruled surfaces as constraints, and proposes an optimal tool position planning method for ruled surfaces based on the equal bow height error method. The bow height errors of discrete steps along the tool path trajectory of the ruled surface are uniformed, the number of tool position points is minimized within the bow height tolerance requirement, and the overall processing quality and efficiency are improved.
本发明是通过如下技术方案实现的。The present invention is achieved through the following technical solutions.
一种非可展直纹曲面最优刀位规划方法,包括:An optimal tool position planning method for a non-developable ruled surface, comprising:
步骤S1,根据非可展直纹曲面的上下准线的各自控制点分别得到对应的三次B样条曲线参数方程,从而确定非可展直纹曲面采用上下准线表示的参数表达式;Step S1, obtaining corresponding cubic B-spline curve parameter equations according to respective control points of upper and lower directrixes of the non-developable ruled surface, thereby determining a parameter expression of the non-developable ruled surface represented by upper and lower directrixes;
步骤S2,分别计算上下准线在当前刀具位置处的曲率;Step S2, respectively calculating the curvature of the upper and lower directrixes at the current tool position;
步骤S3,根据上下准线在当前刀具位置处的曲率和弓高允差分别计算对应的初始加工步长,其中,以当前刀具位置处的曲率作为按照初始加工步长所得的下一刀具位置处与当前刀具位置处之间的曲率;Step S3, calculating the corresponding initial processing step lengths according to the curvatures of the upper and lower directrixes at the current tool position and the bow height tolerance, wherein the curvature at the current tool position is used as the curvature between the next tool position obtained according to the initial processing step length and the current tool position;
步骤S4,计算上下准线在所述初始加工步长下的实际最大弓高误差;Step S4, calculating the actual maximum bow height error of the upper and lower alignments under the initial processing step length;
步骤S5,分别校核上下准线的实际最大弓高误差,迭代调整各自的初始加工步长使得实际最大弓高误差在弓高允差内最大化,从而获得上下准线的最大加工步长;Step S5, respectively checking the actual maximum bow height errors of the upper and lower alignments, and iteratively adjusting the initial processing step lengths of each to maximize the actual maximum bow height error within the bow height tolerance, thereby obtaining the maximum processing step lengths of the upper and lower alignments;
步骤S6,比较上下准线在各自最大加工步长下的刀具位置,更靠近当前刀具位置的位置即为基于等弓高误差的当前最优加工步长下的刀具位置;Step S6, comparing the tool positions of the upper and lower alignments at their respective maximum processing step lengths, and the position closer to the current tool position is the tool position at the current optimal processing step length based on the equal bow height error;
步骤S7,遍历整个刀具路径轨迹,得到所有最优加工步长下的刀具位置,从而获得基于等弓高误差法的非可展直纹面最优刀位规划位置。Step S7, traverse the entire tool path trajectory to obtain the tool positions under all optimal processing steps, so as to obtain the optimal tool position planning position for the non-developable ruled surface based on the equal bow height error method.
可选地,步骤S1中,所述根据非可展直纹曲面的上下准线的各自控制点分别得到对应的三次B样条曲线参数方程,从而确定非可展直纹曲面采用上下准线表示的参数表达式,包括:Optionally, in step S1, the corresponding cubic B-spline curve parameter equations are obtained according to the respective control points of the upper and lower directrixes of the non-developable ruled surface, so as to determine the parameter expression of the non-developable ruled surface represented by the upper and lower directrixes, including:
1)通过上下准线的多个控制点确定多条三次B样条曲线,其中每条三次B样条曲线由多个连续控制点确定,任意一条三次B样条曲线表示为:1) Multiple cubic B-spline curves are determined by multiple control points of the upper and lower directrixes, where each cubic B-spline curve is determined by multiple continuous control points. Any cubic B-spline curve is expressed as:
Pj(t)=[xj(t)yj(t)]=UMjQj P j (t) = [x j (t) y j (t)] = UM j Q j
其中,Pj(t)为三次B样条曲线方程,t为曲线参数,j表示样条曲线的段数,U表示参数矩阵,Mj表示系数矩阵,且与曲线控制点定义的权重相关,Qj表示控制点矩阵,xj(t)是样条曲线在x轴的分量,yj(t)是样条曲线在y轴的分量;Wherein, P j (t) is the cubic B-spline curve equation, t is the curve parameter, j represents the number of segments of the spline curve, U represents the parameter matrix, M j represents the coefficient matrix and is related to the weights defined by the curve control points, Q j represents the control point matrix, x j (t) is the component of the spline curve on the x-axis, and y j (t) is the component of the spline curve on the y-axis;
2)求解上下准线各自对应的多段三次B样条曲线,并根据各自的三次B样条曲线分别组成上准线C1(u)和下准线C2(u);2) solving the multiple segments of cubic B-spline curves corresponding to the upper and lower directrixes, and respectively forming the upper directrix C 1 (u) and the lower directrix C 2 (u) according to the respective cubic B-spline curves;
3)建立非可展直纹曲面采用上下准线表示的参数表达式3) Establish the parametric expression of non-developable ruled surfaces using upper and lower directrixes
P(u,v)=(1-v)C1(u)+vC2(u)(0≤v≤1)P(u,v)=(1-v)C 1 (u)+vC 2 (u)(0≤v≤1)
其中,u和v为曲面参数,u控制上下准线的相应位置,v控制直母线上的点的位置。Among them, u and v are surface parameters, u controls the corresponding positions of the upper and lower directrixes, and v controls the position of the points on the straight generatrix.
可选地,步骤S2中,所述分别计算上下准线在当前刀具位置处的曲率,包括:Optionally, in step S2, respectively calculating the curvatures of the upper and lower directrixes at the current tool position includes:
步骤S21,构建上下准线的参数方程为:Step S21, construct the parametric equations of the upper and lower directrixes as follows:
其中,a1x,b1x,c1x,d1x,a1y,b1y,c1y,d1y,a2x,b2x,c2x,d2x,a2y,b2y,c2y,d2y为参数方程的多项式系数,为已知量;Among them, a1x , b1x , c1x , d1x , a1y , b1y, c1y, d1y, a2x, b2x, c2x, d2x, a2y , b2y , c2y , d2y are polynomial coefficients of the parametric equation and are known quantities;
步骤S22,上下准线的曲率公式分别为Step S22, the curvature formulas of the upper and lower directrixes are respectively
步骤S23,分别代入在当前刀具位置处上下准线切触点位置所对应的参数u即得到上在当前刀具位置处的曲率ρ1(u1i),下准线在当前刀具位置处的曲率ρ2(u2i),其中u1i表示在当前刀具位置处的上准线曲面参数,u2i表示在当前刀具位置处的下准线曲面参数。Step S23, respectively substitute the parameters u corresponding to the contact point positions of the upper and lower guidelines at the current tool position to obtain the upper curvature ρ 1 (u 1i ) at the current tool position and the lower curvature ρ 2 (u 2i ) at the current tool position, where u 1i represents the surface parameters of the upper guideline at the current tool position, and u 2i represents the surface parameters of the lower guideline at the current tool position.
可选地,步骤S3中,所述根据上下准线在当前刀具位置处的曲率和弓高允差分别计算对应的初始加工步长,包括:Optionally, in step S3, the corresponding initial processing step lengths are calculated according to the curvature and bow height tolerance of the upper and lower directrixes at the current tool position, including:
其中,ΔL1为上准线在当前刀具位置处的初始加工步长;Among them, ΔL 1 is the initial machining step length of the upper reference line at the current tool position;
ΔL2为下准线在当前刀具位置处的初始加工步长;ΔL 2 is the initial machining step length of the lower guideline at the current tool position;
ρ1为上准线在当前刀具位置处的曲率;ρ 1 is the curvature of the upper directrix at the current tool position;
ρ2为下准线在当前刀具位置处的曲率;ρ 2 is the curvature of the lower guideline at the current tool position;
e为弓高允差。e is the allowable error of bow height.
可选地,步骤S4中,所述计算上下准线在初始加工步长下的实际最大弓高误差,包括:Optionally, in step S4, the calculating of the actual maximum bow height error of the upper and lower alignments under the initial processing step length includes:
步骤S41,上准线初始参数区间为令ua=u1i, Step S41, the upper guideline initial parameter interval is Let ua = u1i ,
步骤S42,令uI=ua+(1-λ)(ub-ua),uII=ua+λ(ub-ua),λ为区间压缩系数,计算点C1(uI)处的弓高误差:Step S42, let u I =u a +(1-λ)(u b -u a ), u II =u a +λ(u b -u a ), λ is the interval compression coefficient, and calculate the bow height error at point C 1 (u I ):
和点C1(uII)处的弓高误差:And the bow height error at point C 1 (u II ):
其中,VI,VII,VL分别为矢量,VI=C1(u1i)C1(uI),VII=C1(u1i)C1(uII), Wherein, V I , V II , and V L are vectors, V I =C 1 (u 1i )C 1 (u I ), V II =C 1 (u 1i )C 1 (u II ),
步骤S43,若εI>εII,则令ub=uII;否则,令ua=uI;Step S43, if ε I > ε II , then set u b = u II ; otherwise, set u a = u I ;
步骤S44,判断|εI-εII|<Δε是否成立,其中Δε为迭代精度,若成立则输出上准线在初始加工步长下的实际最大弓高误差ε1=(εI+εII)/2,以及对应的最大弓高误差点参数u1=(uI+uII)/2;否则,转回步骤S42;Step S44, judging whether |ε I -ε II |<Δε holds, where Δε is the iteration accuracy. If so, outputting the actual maximum bow height error ε 1 =(ε I +ε II )/2 of the upper alignment line under the initial processing step, and the corresponding maximum bow height error point parameter u 1 =(u I +u II )/2; otherwise, returning to step S42;
步骤S45,采用步骤S41至S44的方法获得下准线在初始加工步长下的实际最大弓高误差ε2与对应参数u2;Step S45, using the method of steps S41 to S44 to obtain the actual maximum bow height error ε 2 of the lower alignment line under the initial processing step length and the corresponding parameter u 2 ;
步骤S46,定义函数ε=f(ua,ub)为最大弓高误差函数,则Step S46, define function ε=f(u a ,u b ) as the maximum bow height error function, then
可选地,步骤S5中,所述分别校核上下准线的实际最大弓高误差,迭代调整各自的初始加工步长使得实际最大弓高误差在弓高允差内最大化,包括:Optionally, in step S5, the actual maximum bow height errors of the upper and lower alignments are respectively checked, and the initial processing step lengths of the respective alignments are iteratively adjusted so that the actual maximum bow height error is maximized within the bow height tolerance, including:
步骤S51,上准线初始参数区间为判断上准线在初始加工步长下的实际最大弓高误差ε1是否满足:Step S51, the upper guideline initial parameter interval is Determine whether the actual maximum bow height error ε 1 of the upper alignment under the initial processing step satisfies:
e-Δe≤ε1≤ee-Δe≤ε 1 ≤e
其中,e为弓高允差,Δe为误差精度;Among them, e is the bow height tolerance, Δe is the error accuracy;
其中,在当前刀具位置处的上下准线切触点分别为C1(u1i),C2(u2i),上下准线在各自初始加工步长下对应点分别为ΔL1、ΔL2分别为上下准线的初始加工步长,Among them, the upper and lower guideline contact points at the current tool position are C 1 (u 1i ) and C 2 (u 2i ), and the corresponding points of the upper and lower guidelines at their respective initial processing steps are ΔL 1 and ΔL 2 are the initial processing steps of the upper and lower alignments, respectively.
若是,则输出所述对应点的曲面参数若否,则按以下两种情况进行处理:If so, output the surface parameters of the corresponding points If not, proceed as follows:
(1)若ε1>e,则依次执行(1) If ε 1 >e, then execute
a1)令ua=u1i, a1) Let ua = u 1i ,
b1)求取参数区间[ua,ub]的中点计算f(u1i,um);b1) Find the midpoint of the parameter interval [u a ,u b ] Calculate f(u 1i ,u m );
c1)若f(u1i,um)>e,则令ub=um;否则,令ua=um;c1) If f(u 1i ,u m )>e, let u b =u m ; otherwise, let u a =u m ;
d1)判断f(u1i,um)是否满足e-Δe≤f(u1i,um)≤e,若是,则输出参数u1i+1=um;若否,转步骤b1);d1) Determine whether f(u 1i , um ) satisfies e-Δe≤f(u 1i , um )≤e. If so, output parameter u 1i+1 = um ; if not, go to step b1);
(2)若ε1<e-Δe,则依次执行(2) If ε 1 <e-Δe, then execute
a2)令其中η为上限区间系数;a2) Order Where η is the upper interval coefficient;
b2)求取参数区间[ua,ub]的中点计算f(u1i,um);b2) Find the midpoint of the parameter interval [u a ,u b ] Calculate f(u 1i ,u m );
c2)若f(u1i,um)>e,则令ub=um;否则,令ua=um;c2) If f(u 1i ,u m )>e, let u b =u m ; otherwise, let u a =u m ;
d2)判断f(u1i,um)是否满足e-Δe≤f(u1i,um)≤e,若是,则输出参数u1i+1=um;若否,转步骤b2);d2) Determine whether f(u 1i , um ) satisfies e-Δe≤f(u 1i , um )≤e. If so, output parameter u 1i+1 = um ; if not, go to step b2);
即得到了上准线在弓高允差内最大加工步长下的对应点参数u1i+1;That is, the corresponding point parameter u 1i+1 of the upper alignment line under the maximum processing step length within the bow height tolerance is obtained;
采用与步骤S51相同的方法求解获得下准线在弓高允差内最大加工步长下的对应点参数u2i+1。The same method as step S51 is used to obtain the corresponding point parameter u 2i+1 of the lower alignment line at the maximum processing step length within the bow height tolerance.
可选地,步骤S6中,所述比较上下准线在各自最大加工步长下的刀具位置,更靠近当前刀具位置的位置即为基于等弓高误差的最优加工步长下的刀具位置,包括:Optionally, in step S6, the tool positions of the upper and lower alignments under the respective maximum processing step lengths are compared, and the position closer to the current tool position is the tool position under the optimal processing step length based on the equal bow height error, including:
当前刀具位置为ui对应上准线的切触点参数为u1i,当前刀具位置为ui对应下准线的切触点参数为u2i,上准线在最大加工步长下的刀具位置对应上准线切触点参数为u1i+1,上准线在最大加工步长下的刀具位置对应下准线切触点参数为u′2i+1,其中u′2i+1是以上准线切触点参数u1i+1为准的刀具位置下对应的下准线切触点参数;The current tool position is u i, and the corresponding contact point parameter of the upper reference line is u 1i . The current tool position is u i , and the corresponding contact point parameter of the lower reference line is u 2i . The tool position of the upper reference line at the maximum processing step length is The corresponding upper guideline contact point parameter is u 1i+1 , and the tool position of the upper guideline at the maximum processing step length is The corresponding lower guideline cutting contact point parameter is u′ 2i+1 , where u′ 2i+1 is the lower guideline cutting contact point parameter corresponding to the tool position based on the upper guideline cutting contact point parameter u 1i+1 ;
下准线在最大加工步长下的刀具位置对应上准线切触点参数为u′1i+1,下准线在最大加工步长下的刀具位置对应下准线切触点参数为u2i+1,其中u′1i+1是以下准线切触点参数u2i+1为准的刀具位置下对应的上准线切触点参数;Tool position of lower guideline at maximum machining step length The corresponding upper guideline contact point parameter is u′ 1i+1 , and the tool position of the lower guideline at the maximum machining step length is The corresponding lower guideline cutting contact point parameter is u 2i+1 , where u′ 1i+1 is the upper guideline cutting contact point parameter corresponding to the tool position based on the lower guideline cutting contact point parameter u 2i+1 ;
判断是否满足:Determine whether it meets the following requirements:
u′2i+1<u2i+1 u′ 2i+1 <u 2i+1
若是,则最优加工步长下的刀具位置若否,则 If so, the tool position under the optimal machining step is If not, then
可选地,步骤S1中,通过上准线的16个控制点确定13段三次B样条曲线,通过下准线的16个控制点确定13段三次B样条曲线,其中每条三次B样条曲线由四个连续控制点确定,其中,16个控制点以及Mj矩阵由国际标准《加工中心检验条件》给出。Optionally, in step S1, 13 cubic B-spline curves are determined by 16 control points of the upper directrix, and 13 cubic B-spline curves are determined by 16 control points of the lower directrix, wherein each cubic B-spline curve is determined by four continuous control points, wherein the 16 control points and the M j matrix are given by the international standard "Inspection Conditions for Machining Centers".
U=[1 t t2 t3],U=[1 tt 2 t 3 ],
其中,qj,x、qj+1,x、qj+2,x、qj+3,x表示x轴上四个连续的控制点,qj,y、qj+1,y、qj+2,y、qj+3,y表示y轴上的四个连续控制点。Among them, q j,x , q j+1,x , q j+2,x , and q j+3,x represent four consecutive control points on the x-axis, and q j,y , q j+1,y , q j+2,y , and q j+3,y represent four consecutive control points on the y-axis.
可选地,在步骤S41,上准线初始参数区间为令ua=u1i,之前,还包括:Optionally, in step S41, the upper guideline initial parameter interval is Let ua = u1i , Previously, it also included:
在当前刀具位置处的上下准线切触点分别为C1(u1i),C2(u2i),分别求解如下方程:The upper and lower guideline contact points at the current tool position are C 1 (u 1i ) and C 2 (u 2i ), respectively, and the following equations are solved:
得到上准线在其初始加工步长下的对应点Get the corresponding point of the upper alignment at its initial processing step
和下准线在其初始加工步长下的对应点and the corresponding point of the lower guideline at its initial processing step
本发明还提供一种电子装置,包括处理器和存储器,在所述存储器中存储有非可展直纹曲面最优刀位规划程序,所述非可展直纹曲面最优刀位规划程序在所述处理器执行时,完成如上所述的非可展直纹曲面最优刀位规划方法。The present invention also provides an electronic device, including a processor and a memory, wherein an optimal tool position planning program for non-developable ruled surfaces is stored in the memory, and when the optimal tool position planning program for non-developable ruled surfaces is executed by the processor, the optimal tool position planning method for non-developable ruled surfaces as described above is completed.
本发明与现有技术相比,具有以下优点及突出性技术效果:本发明以非可展直纹曲面的上下准线为约束条件,采用一种范围内准确搜寻最大加工步长并择优的方法来确定下一个刀具位置,弓高误差校核更加准确,得到的刀位规划在各个离散直线段的弓高误差均匀一致且更接近弓高允差,刀位数量更少,整体加工质量与加工效率提高,实现基于等弓高误差的非可展直纹面最优刀位规划,具有良好的应用前景。Compared with the prior art, the present invention has the following advantages and outstanding technical effects: the present invention takes the upper and lower directrixes of the non-developable ruled surface as constraints, adopts a method of accurately searching for the maximum processing step length within a range and selecting the best one to determine the next tool position, and the bow height error verification is more accurate. The bow height error of each discrete straight line segment obtained in the tool position planning is uniform and consistent and closer to the bow height tolerance, the number of tool positions is reduced, the overall processing quality and processing efficiency are improved, and the optimal tool position planning for non-developable ruled surfaces based on equal bow height errors is realized, which has good application prospects.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是表示本发明实施例的基于等弓高误差法的非可展直纹面最优刀位规划流程图。FIG. 1 is a flow chart showing optimal tool position planning for a non-developable ruled surface based on an equal bow height error method according to an embodiment of the present invention.
图2是表示本发明实施例的非可展直纹曲面零件示意图。FIG. 2 is a schematic diagram of a non-developable ruled surface part according to an embodiment of the present invention.
图3是表示本发明实施例的直纹面上下准线示意图。FIG. 3 is a schematic diagram showing the upper and lower alignment lines of a ruled surface according to an embodiment of the present invention.
图4是表示本发明实施例的刀具位置处上下准线切触点的求解示意图。FIG. 4 is a schematic diagram showing the solution of the upper and lower directrix contact points at the tool position according to an embodiment of the present invention.
图5是表示本发明实施例的等弓高误差步长法示意图。FIG. 5 is a schematic diagram of a method of equal bow height error step length according to an embodiment of the present invention.
图6是表示本发明实施例的最优加工步长下的刀具位置选择示意图。FIG. 6 is a schematic diagram showing tool position selection under an optimal processing step length according to an embodiment of the present invention.
图7是表示本发明实施例的最优刀位规划方法与软件自动生成的离散刀触点对比图。FIG. 7 is a diagram showing a comparison between the optimal tool position planning method according to an embodiment of the present invention and discrete tool contact points automatically generated by software.
图8是表示本发明实施例的最优刀位规划方法下的弓高误差分布图。FIG. 8 is a diagram showing the distribution of bow height errors under the optimal tool position planning method according to an embodiment of the present invention.
附图标记:1—非可展直纹曲面;2—上准线;3—下准线;4—刀具。Figure numerals: 1—non-developable ruled surface; 2—upper alignment line; 3—lower alignment line; 4—tool.
具体实施方式Detailed ways
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solution of the present invention will be described clearly and completely below in conjunction with the accompanying drawings. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
图1为基于等弓高误差法的非可展直纹曲面最优刀位规划流程图。所述方法首先确定待加工直纹曲面的参数方程,并求导得到直纹曲面上下准线在刀具位置处的曲率,其次根据曲率与弓高允差计算上下准线各自对应的初始加工步长,并校核弓高误差,进一步迭代调整加工步长使其在弓高允差内最大化,最后比较上下准线在各自加工步长下的刀具位置,得到在弓高允差内最优加工步长下的刀具位置,遍历整个刀具路径轨迹,即完成了基于等弓高误差法的非可展直纹曲面最优刀位规划。本发明以非可展直纹曲面的上下准线为约束条件,采用一种范围内准确搜寻最大加工步长并择优的方法来确定下一个刀具位置,弓高误差校核更加准确,得到的刀位规划在各个离散直线段的弓高误差均匀一致且更接近弓高允差,刀位数量更少,整体加工质量与加工效率提高,实现基于等弓高误差的非可展直纹曲面最优刀位规划,具有良好的应用前景。其具体实施步骤如下:Figure 1 is a flowchart of the optimal tool position planning for non-developable ruled surfaces based on the equal bow height error method. The method first determines the parametric equation of the ruled surface to be processed, and derives the curvature of the upper and lower directrixes on the ruled surface at the tool position. Secondly, the initial processing step lengths corresponding to the upper and lower directrixes are calculated according to the curvature and the bow height tolerance, and the bow height error is checked. The processing step length is further iteratively adjusted to maximize it within the bow height tolerance. Finally, the tool positions of the upper and lower directrixes under their respective processing steps are compared to obtain the tool position under the optimal processing step length within the bow height tolerance. The entire tool path trajectory is traversed to complete the optimal tool position planning for non-developable ruled surfaces based on the equal bow height error method. The present invention uses the upper and lower directrixes of the non-developable ruled surface as constraints, and adopts a method of accurately searching for the maximum processing step length within a range and selecting the best to determine the next tool position. The bow height error verification is more accurate, and the obtained tool position planning has uniform bow height errors in each discrete straight line segment and is closer to the bow height tolerance. The number of tool positions is reduced, and the overall processing quality and processing efficiency are improved. The optimal tool position planning for non-developable ruled surfaces based on equal bow height errors is realized, and it has good application prospects. The specific implementation steps are as follows:
步骤1,根据如图2非可展直纹曲面的上下准线的各自控制点(16个,所述控制点是已知自行设定的)得到对应三次B样条曲线参数方程,并确定非可展直纹曲面采用上下准线表示的参数表达式;Step 1, according to the respective control points (16, the control points are known and set by themselves) of the upper and lower directrixes of the non-developable ruled surface as shown in FIG. 2 , the corresponding cubic B-spline curve parametric equation is obtained, and the parametric expression of the non-developable ruled surface represented by the upper and lower directrixes is determined;
1)通过上下准线的16个控制点确定13段三次B样条曲线,其中每条三次B样条曲线由四个连续控制点确定,如图3所示。任意一条三次B样条曲线可以表示为:1) 13 segments of cubic B-spline curves are determined by 16 control points of the upper and lower directrixes, where each cubic B-spline curve is determined by four consecutive control points, as shown in Figure 3. Any cubic B-spline curve can be expressed as:
Pj(t)=[xj(t)yj(t)]=UMjQj P j (t) = [x j (t) y j (t)] = UM j Q j
其中,t为曲线参数,j表示样条曲线的段数j=1~13,U表示参数矩阵,Mj表示系数矩阵,且与曲线控制点定义的权重相关,Qj表示控制点矩阵,xj(t)是曲线在x轴的分量,yj(t)是曲线在y轴的分量;分别表示如下:Where t is the curve parameter, j represents the number of segments of the spline curve j=1~13, U represents the parameter matrix, Mj represents the coefficient matrix and is related to the weights defined by the curve control points, Qj represents the control point matrix, xj (t) is the component of the curve on the x-axis, and yj (t) is the component of the curve on the y-axis; they are respectively expressed as follows:
U=[1 t t2 t3],U=[1 tt 2 t 3 ],
其中,qj,x、qj+1,x、qj+2,x、qj+3,x表示x轴上四个连续的控制点,qj,y、qj+1,y、qj+2,y、qj+3,y表示y轴上的四个控制点。16个控制点由国际标准ISO 10791-7:2020《加工中心检验条件第七部分:精加工试件检验》给出,Mj矩阵也由该国际标准给出。Among them, q j,x , q j+1,x , q j+2,x , q j+3,x represent four consecutive control points on the x-axis, and q j,y , q j+1,y , q j+2,y , q j+3,y represent four control points on the y-axis. The 16 control points are given by the international standard ISO 10791-7:2020 "Test conditions for machining centers - Part 7: Test of finished test pieces", and the M j matrix is also given by this international standard.
2)求解上下准线各自对应的13段三次B样条曲线如下,并根据各自的三次B样条曲线分别组成上下准线C1(u)和C2(u):2) Solve the 13 cubic B-spline curves corresponding to the upper and lower directrixes as follows, and compose the upper and lower directrixes C 1 (u) and C 2 (u) respectively according to their respective cubic B-spline curves:
其中,z=0是下准线所在水平面,z=20是上准线所在水平面。Among them, z=0 is the horizontal plane where the lower directrix is located, and z=20 is the horizontal plane where the upper directrix is located.
3)确定采用上下准线表示的非可展直纹曲面的参数表达式:3) Determine the parameter expression of the non-developable ruled surface represented by upper and lower directrixes:
P(u,v)=(1-v)C1(u)+vC2(u)(0≤v≤1)P(u,v)=(1-v)C 1 (u)+vC 2 (u)(0≤v≤1)
其中,C1(u)和C2(u)分别为直纹曲面的上下两条准线,即步骤1中确定的两条准线,u和v为曲面参数,u控制上下准线的相应位置,v控制直母线上的点的位置。Among them, C 1 (u) and C 2 (u) are the upper and lower directrixes of the ruled surface, that is, the two directrixes determined in step 1, u and v are surface parameters, u controls the corresponding positions of the upper and lower directrixes, and v controls the position of the points on the straight generatrix.
步骤2,计算上下两条准线在刀具位置处的曲率;Step 2, calculating the curvature of the upper and lower directrixes at the tool position;
1)上下准线的参数方程分别为:1) The parametric equations of the upper and lower directrixes are:
其中,a1x,b1x,c1x,d1x,a1y,b1y,c1y,d1y,a2x,b2x,c2x,d2x,a2y,b2y,c2y,d2y为参数方程的多项式系数,为已知量;Among them, a1x , b1x , c1x , d1x , a1y , b1y, c1y, d1y, a2x, b2x, c2x, d2x, a2y , b2y , c2y , d2y are polynomial coefficients of the parametric equation and are known quantities;
对各个参数方程分别求导可得:By taking the derivative of each parameter equation separately, we can get:
x′1(u)=3a1xu2+2b1xu+c1x,x1″(u)=6a1xu+2b1x x′ 1 (u) = 3a 1x u 2 + 2b 1x u + c 1x , x 1 ″ (u) = 6a 1x u + 2b 1x
y′1(u)=3a1yu2+2b1yu+c1y,y1″(u)=6a1yu+2b1y y′ 1 (u) = 3a 1y u 2 + 2b 1y u + c 1y , y 1 ″ (u) = 6a 1y u + 2b 1y
x′2(u)=3a2xu2+2b2xu+c2x,x2″(u)=6a2xu+2b2x x′ 2 (u) = 3a 2x u 2 + 2b 2x u + c 2x , x 2 ″ (u) = 6a 2x u + 2b 2x
y′2(u)=3a2yu2+2b2yu+c2y,y2″(u)=6a2yu+2b2y y′ 2 (u) = 3a 2y u 2 + 2b 2y u + c 2y , y 2 ″ (u) = 6a 2y u + 2b 2y
则上下准线在不同位置的曲率分别为The curvatures of the upper and lower directrixes at different positions are
2)通过刀位点坐标与刀轴矢量求解当前位置处刀具与上下准线的切触点,如图4所示,刀位点坐标为T0=(x0,y0,z0),刀轴矢量为刀具半径为R,求解如下方程组:2) The contact point between the tool and the upper and lower directrixes at the current position is solved by using the tool position coordinates and the tool axis vector. As shown in Figure 4, the tool position coordinates are T 0 = (x 0 , y 0 , z 0 ) and the tool axis vector is The tool radius is R, solve the following equations:
即得到当前位置处刀具与下准线切触点坐标C2=(x2i,y2i)z=0=(x,y),则对应的刀具与上准线的切触点坐标为C1=(x1i,y1i)z=20,其中x1i,y1i分别表示为:That is, the coordinates of the contact point between the tool and the lower guideline at the current position are C 2 =(x 2i ,y 2i ) z=0 =(x,y), and the corresponding coordinates of the contact point between the tool and the upper guideline are C 1 =(x 1i ,y 1i ) z=20 , where x 1i , y 1i are respectively expressed as:
将切触点坐标C1,C2代入到上下准线的参数方程,得到当前切触点坐标C1,C2在上下准线上对应的参数分别为u1i,u2i,代入相应曲率表达式即得到上下准线在当前刀具位置处的曲率ρ1(u1i),ρ2(u2i)。Substitute the contact point coordinates C 1 and C 2 into the parametric equations of the upper and lower directrixes to obtain the corresponding parameters of the current contact point coordinates C 1 and C 2 on the upper and lower directrixes as u 1i and u 2i , respectively. Substituting them into the corresponding curvature expressions, we can obtain the curvatures ρ 1 (u 1i ) and ρ 2 (u 2i ) of the upper and lower directrixes at the current tool position.
步骤3,根据上下准线在刀具位置处的曲率和弓高允差分别计算对应的初始加工步长;Step 3, calculating the corresponding initial processing step lengths according to the curvature of the upper and lower directrixes at the tool position and the bow height tolerance;
初始加工步长是以准线在当前刀具位置处的曲率(即图5中实线弧线)为准,并假定刀具位置附近曲率不变(即图5中虚线弧线)求解得到(也就是说,以刀具位置附近曲率不变计算所得弦长ΔLi作为当前刀具位置处的曲率处的初始加工步长),如图5所示,根据几何关系可得:The initial processing step length is based on the curvature of the directrix at the current tool position (i.e., the solid arc in Figure 5), and is solved by assuming that the curvature near the tool position remains unchanged (i.e., the dotted arc in Figure 5) (that is, the chord length ΔL i calculated based on the constant curvature near the tool position is used as the initial processing step length at the curvature at the current tool position), as shown in Figure 5. According to the geometric relationship, it can be obtained:
其中,ΔL1,ΔL2分别为上下准线在刀具位置处的初始加工步长,ρ1,ρ2分别为上下准线在刀具位置处的曲率,e为弓高允差,取0.01mm。Among them, ΔL 1 and ΔL 2 are the initial processing steps of the upper and lower directrixes at the tool position, ρ 1 and ρ 2 are the curvatures of the upper and lower directrixes at the tool position, and e is the bow height tolerance, which is 0.01 mm.
步骤4,计算上下准线在初始加工步长下的实际最大弓高误差;Step 4, calculating the actual maximum bow height error of the upper and lower alignments under the initial processing step length;
1)在刀具位置处的上下准线切触点分别为C1(u1i),C2(u2i),分别求解如下方程:1) The upper and lower directrix contact points at the tool position are C 1 (u 1i ) and C 2 (u 2i ), respectively, and the following equations are solved:
即得到上下准线在各自初始加工步长下的对应点That is, the corresponding points of the upper and lower directrixes under their respective initial processing steps are obtained.
2)计算如图5所示上下准线在初始加工步长下的实际最大弓高误差ε,具体步骤如下:2) Calculate the actual maximum bow height error ε of the upper and lower alignments under the initial processing step length as shown in Figure 5. The specific steps are as follows:
(1)上准线初始参数区间为令ua=u1i, (1) The initial parameter range of the upper criterion is Let ua = u1i ,
(2)令uI=ua+(1-λ)(ub-ua),uII=ua+λ(ub-ua),λ为区间压缩系数,取0.6;分别计算点C1(uI),C1(uII)处的弓高误差:(2) Let u I =u a +(1-λ)(u b -u a ), u II =u a +λ(u b -u a ), λ is the interval compression coefficient, which is 0.6; calculate the bow height errors at points C 1 (u I ) and C 1 (u II ) respectively:
其中,εI,εII分别为上准线上的点C1(uI)和C1(uII)处的弓高误差,VI,VII,VL分别为矢量VI=C1(u1i)C1(uI),VII=C1(u1i)C1(uII), Wherein, ε I , ε II are the bow height errors at points C 1 (u I ) and C 1 (u II ) on the upper directrix, respectively; V I , V II , and V L are vectors V I =C 1 (u 1i )C 1 (u I ) and V II =C 1 (u 1i )C 1 (u II ), respectively.
(3)若εI>εII,则令ub=uII;否则,令ua=uI;(3) If ε I >ε II , let u b =u II ; otherwise, let u a =u I ;
(4)判断|εI-εII|<Δε,其中Δε为迭代精度,若成立则输出上准线在初始加工步长下的实际最大弓高误差ε1=(εI+εII)/2与最大弓高误差点参数u1=(uI+uII)/2;否则,转步骤(2);(4) Determine whether |ε I -ε II |<Δε, where Δε is the iteration accuracy. If so, output the actual maximum bow height error ε 1 =(ε I +ε II )/2 of the upper alignment under the initial processing step and the maximum bow height error point parameter u 1 =(u I +u II )/2; otherwise, go to step (2);
(5)采用上述(1)~(4)相同的方法计算下准线在初始加工步长下的实际最大弓高误差ε2与对应参数u2;(5) Using the same method as (1) to (4) above, calculate the actual maximum bow height error ε 2 and the corresponding parameter u 2 of the lower alignment line at the initial processing step length;
(6)定义函数ε=f(ua,ub)为最大弓高误差函数,则(6) Define function ε = f(u a , u b ) as the maximum bow height error function, then
步骤5,校核上下准线的弓高误差,迭代调整各自加工步长使其在弓高允差内最大化;Step 5: Check the bow height errors of the upper and lower alignment lines, and iteratively adjust the respective processing step lengths to maximize them within the bow height tolerance;
上准线初始参数区间为判断上准线在初始加工步长下的实际最大弓高误差ε1是否满足:The initial parameter range of the upper line is Determine whether the actual maximum bow height error ε 1 of the upper alignment under the initial processing step satisfies:
e-Δe≤ε1≤ee-Δe≤ε 1 ≤e
其中,e为弓高允差,取0.01mm,Δe为误差精度,取0.0005mm;Among them, e is the bow height tolerance, which is 0.01mm, and Δe is the error accuracy, which is 0.0005mm;
若是,则输出对应点参数若否,分两种情况:If so, output the corresponding point parameters If not, there are two situations:
(1)若ε1>e(1) If ε 1 >e
a)令ua=u1i, a) Let ua = u1i ,
b)求取参数区间[ua,ub]的中点计算f(u1i,um);b) Find the midpoint of the parameter interval [u a ,u b ] Calculate f(u 1i ,u m );
c)若f(u1i,um)>e,则令ub=um;否则,令ua=um;c) If f(u 1i ,u m )>e, let u b =u m ; otherwise, let u a =u m ;
d)判断f(u1i,um)是否满足e-Δe≤f(u1i,um)≤e,若是,则输出参数u1i+1=um;若否,转步骤b);d) Determine whether f(u 1i , um ) satisfies e-Δe≤f(u 1i , um )≤e. If so, output parameter u 1i+1 = um ; if not, go to step b);
(2)若ε1<e-Δe(2) If ε 1 <e-Δe
a)令其中η为上限区间系数,取3;a) Order Where η is the upper limit interval coefficient, which is 3;
b)求取参数区间[ua,ub]的中点计算f(u1i,um);b) Find the midpoint of the parameter interval [u a ,u b ] Calculate f(u 1i ,u m );
c)若f(u1i,um)>e,则令ub=um;否则,令ua=um;c) If f(u 1i ,u m )>e, let u b =u m ; otherwise, let u a =u m ;
d)判断f(u1i,um)是否满足e-Δe≤f(u1i,um)≤e,若是,则输出参数u1i+1=um;若否,转步骤b);d) Determine whether f(u 1i , um ) satisfies e-Δe≤f(u 1i , um )≤e. If so, output parameter u 1i+1 = um ; if not, go to step b);
即得到了上准线在弓高允差内最大加工步长下的对应点参数u1i+1,采用上述相同的方法求解下准线在弓高允差内最大加工步长下的对应点参数u2i+1;That is, the corresponding point parameter u 1i+1 of the upper alignment line under the maximum processing step length within the bow height tolerance is obtained, and the corresponding point parameter u 2i+1 of the lower alignment line under the maximum processing step length within the bow height tolerance is solved by the same method as above;
步骤6,比较上下准线在各自最大加工步长下的刀具位置,更靠近上一个刀具位置的位置即为基于等弓高误差的最优加工步长下的刀具位置;Step 6, compare the tool positions of the upper and lower alignments under their respective maximum processing steps, and the position closer to the previous tool position is the tool position under the optimal processing step based on the equal bow height error;
如图6所示,上一个刀具位置为ui,对应上下准线的切触点参数分别为u1i,u2i,上准线在最大加工步长下的刀具位置对应上下准线切触点参数分别为u1i+1,u′2i+1,其中u′2i+1是以上准线切触点参数u1i+1为准的刀具位置下对应的下准线切触点参数;下准线在最大加工步长下的刀具位置对应上下准线切触点参数分别为u′1i+1,u2i+1,其中u′1i+1是以下准线切触点参数,u2i+1为准的刀具位置下对应的上准线切触点参数;判断是否满足:As shown in Figure 6, the previous tool position is u i , and the corresponding contact point parameters of the upper and lower alignments are u 1i , u 2i , respectively. The tool position of the upper alignment under the maximum machining step length is The corresponding upper and lower reference line contact point parameters are u 1i+1 and u′ 2i+1 respectively, where u′ 2i+1 is the lower reference line contact point parameter corresponding to the tool position based on the upper reference line contact point parameter u 1i+1 ; the tool position of the lower reference line under the maximum processing step length The corresponding upper and lower reference line contact point parameters are u′ 1i+1 and u 2i+1 respectively, where u′ 1i+1 is the lower reference line contact point parameter and u 2i+1 is the upper reference line contact point parameter corresponding to the tool position; determine whether the following conditions are met:
u′2i+1<u2i+1 u′ 2i+1 <u 2i+1
若是,则最优加工步长下的刀具位置若否,则 If so, the tool position under the optimal machining step is If not, then
步骤7,遍历整个刀具路径轨迹,得到所有最优加工步长下的刀具位置,即完成了基于等弓高误差法的非可展直纹曲面最优刀位规划。Step 7, traverse the entire tool path trajectory to obtain the tool position under all optimal processing steps, that is, the optimal tool position planning for non-developable ruled surfaces based on the equal bow height error method is completed.
本发明的最优刀位规划方法与软件自动生成的离散切触点对比如图7所示,本发明的刀位规划方法刀位点数量为121,软件自动生成的刀位点数量为153,减少了20%;基于最优刀位规划方法的弓高误差分布如图8所示,所有离散直线段内的弓高误差均在设定范围(0.0095,0.01)内,验证了本发明的高效性与有效性。A comparison between the optimal tool position planning method of the present invention and the discrete cutting points automatically generated by the software is shown in FIG7 . The number of tool position points of the tool position planning method of the present invention is 121, and the number of tool position points automatically generated by the software is 153, which is reduced by 20%; the bow height error distribution based on the optimal tool position planning method is shown in FIG8 . The bow height errors in all discrete straight line segments are within the set range (0.0095, 0.01), which verifies the high efficiency and effectiveness of the present invention.
本发明还提供一种电子装置,所述电子装置是一种能够按照事先设定或者存储的指令,自动进行数值计算和/或信息处理的设备。例如,可以是智能手机、平板电脑、笔记本电脑、台式计算机、服务器等。所述电子装置至少包括,但不限于相互通信连接的存储器、处理器。其中:所述存储器至少包括一种类型的计算机可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,所述存储器可以是所述电子装置的内部存储单元,例如该电子装置的硬盘或内存。在另一些实施例中,所述存储器也可以是所述电子装置的外部存储设备,例如该电子装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。当然,所述存储器还可以既包括所述电子装置的内部存储单元也包括其外部存储设备。本实施例中,所述存储器通常用于存储安装于所述电子装置的操作系统和各类应用软件,例如所述非可展直纹曲面最优刀位规划程序代码等。此外,所述存储器还可以用于暂时地存储已经输出或者将要输出的各类数据。The present invention also provides an electronic device, which is a device that can automatically perform numerical calculations and/or information processing according to pre-set or stored instructions. For example, it can be a smart phone, a tablet computer, a laptop computer, a desktop computer, a server, etc. The electronic device at least includes, but is not limited to, a memory and a processor that are connected to each other in communication. Wherein: the memory includes at least one type of computer-readable storage medium, and the readable storage medium includes flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), programmable read-only memory (PROM), magnetic memory, disk, optical disk, etc. In some embodiments, the memory can be an internal storage unit of the electronic device, such as a hard disk or memory of the electronic device. In other embodiments, the memory can also be an external storage device of the electronic device, such as a plug-in hard disk equipped on the electronic device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash card (Flash Card), etc. Of course, the memory may also include both the internal storage unit of the electronic device and its external storage device. In this embodiment, the memory is usually used to store the operating system and various application software installed in the electronic device, such as the non-developable ruled surface optimal tool position planning program code, etc. In addition, the memory may also be used to temporarily store various data that have been output or are to be output.
所述处理器在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器、或其他数据处理芯片。该处理器通常用于控制所述电子装置的总体操作,例如执行与所述电子装置进行数据交互或者通信相关的控制和处理等。本实施例中,所述处理器用于运行所述存储器中存储的程序代码或者处理数据,例如运行所述的非可展直纹曲面最优刀位规划程序等。In some embodiments, the processor may be a central processing unit (CPU), a controller, a microcontroller, a microprocessor, or other data processing chips. The processor is generally used to control the overall operation of the electronic device, such as executing control and processing related to data interaction or communication with the electronic device. In this embodiment, the processor is used to run the program code stored in the memory or process data, such as running the non-developable ruled surface optimal tool position planning program.
包含可读存储介质的存储器中可以包括操作系统、非可展直纹曲面最优刀位规划程序等。处理器执行存储器中非可展直纹曲面最优刀位规划程序时实现如上所述的步骤,在此不再赘述。在本实施例中,存储于存储器中的所述非可展直纹曲面最优刀位规划程序可以被分割为一个或者多个程序模块,所述一个或者多个程序模块被存储于存储器中,并可由一个或多个处理器所执行,以完成本申请,例如,非可展直纹曲面参数表达式获取模块,用于根据非可展直纹曲面的上下准线的各自控制点分别得到对应的三次B样条曲线参数方程,从而确定非可展直纹曲面采用上下准线表示的参数表达式,例如曲率计算模块,用于分别计算上下准线在当前刀具位置处的曲率,具体在此不再赘述。The memory including the readable storage medium may include an operating system, an optimal tool location planning program for non-developable ruled surfaces, etc. When the processor executes the optimal tool location planning program for non-developable ruled surfaces in the memory, the steps described above are implemented, which will not be described in detail here. In this embodiment, the optimal tool location planning program for non-developable ruled surfaces stored in the memory may be divided into one or more program modules, and the one or more program modules are stored in the memory and can be executed by one or more processors to complete the present application, for example, a non-developable ruled surface parameter expression acquisition module, which is used to obtain the corresponding cubic B-spline curve parameter equations according to the respective control points of the upper and lower directrixes of the non-developable ruled surface, so as to determine the parameter expression of the non-developable ruled surface represented by the upper and lower directrixes, such as a curvature calculation module, which is used to calculate the curvature of the upper and lower directrixes at the current tool position, respectively, which will not be described in detail here.
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都属于本发明的权利要求的保护范围。Of course, the present invention may have many other embodiments. Without departing from the spirit and essence of the present invention, those skilled in the art may make various corresponding changes and deformations according to the present invention, but these corresponding changes and deformations shall fall within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210502537.2A CN114995281B (en) | 2022-05-10 | 2022-05-10 | Optimal tool position planning method and device for non-expandable straight line curved surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210502537.2A CN114995281B (en) | 2022-05-10 | 2022-05-10 | Optimal tool position planning method and device for non-expandable straight line curved surface |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114995281A CN114995281A (en) | 2022-09-02 |
CN114995281B true CN114995281B (en) | 2024-07-09 |
Family
ID=83025808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210502537.2A Active CN114995281B (en) | 2022-05-10 | 2022-05-10 | Optimal tool position planning method and device for non-expandable straight line curved surface |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114995281B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102794488A (en) * | 2012-07-10 | 2012-11-28 | 上海交通大学 | Side milling processing method of resembled ruled surface integral wheel curved surfaces |
CN105045211A (en) * | 2015-07-13 | 2015-11-11 | 太原科技大学 | Equal-chord-error variable-step tangent interpolation method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105458372B (en) * | 2015-12-29 | 2018-03-09 | 北京理工大学 | A kind of side milling error tool path scheduling method based on non-extended straight-line surface |
CN106227153B (en) * | 2016-09-30 | 2019-01-04 | 清华大学 | A kind of cutter positioning method suitable for the non-extended straight-line surface of Flank machining |
CN107577882B (en) * | 2017-09-12 | 2021-04-13 | 电子科技大学 | A Surface Topography Modeling and Forming Simulation Method for Side Milled Ruled Surfaces |
CN109648399B (en) * | 2019-02-25 | 2019-08-13 | 南京航空航天大学 | Five-axis linkage machine tools dynamic error and quiescent error method for comprehensive detection |
CN110045682B (en) * | 2019-04-17 | 2020-08-18 | 清华大学 | Five-axis machining cutter deformation error off-line compensation method based on least square method |
CN113835423B (en) * | 2020-06-08 | 2024-03-26 | 苏州艾吉威机器人有限公司 | Path planning method, motion control method and system based on B spline curve |
-
2022
- 2022-05-10 CN CN202210502537.2A patent/CN114995281B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102794488A (en) * | 2012-07-10 | 2012-11-28 | 上海交通大学 | Side milling processing method of resembled ruled surface integral wheel curved surfaces |
CN105045211A (en) * | 2015-07-13 | 2015-11-11 | 太原科技大学 | Equal-chord-error variable-step tangent interpolation method |
Also Published As
Publication number | Publication date |
---|---|
CN114995281A (en) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103777570B (en) | Mismachining tolerance quick detection compensation method based on nurbs surface | |
CN113985817B (en) | Robot small line segment track local fairing method and system capable of performing online interpolation | |
CN107272597B (en) | A fast pre-reading processing method for NURBS curve interpolation based on advance and retreat method | |
CN108062071B (en) | A Real-time Measurement Method of Servo Profile Error of Parametric Curve Track | |
CN114995281B (en) | Optimal tool position planning method and device for non-expandable straight line curved surface | |
Hua et al. | Global toolpath smoothing for CNC machining based on B-spline approximation with tool tip position adjustment | |
Min et al. | An improved B-spline fitting method with arc-length parameterization, G2-continuous blending, and quality refinement | |
CN116339243A (en) | A Curve Fitting System and Equipment for Interpolation of Numerical Control System Based on Involute | |
Kučera et al. | The influence of CAD model continuity on accuracy and productivity of CNC machining | |
CN118131684B (en) | Part processing track correction method and device, storage medium and electronic equipment | |
CN111610751B (en) | Interpolation error multi-subdivision iterative calculation method for cross point set NURBS interpolation curve | |
CN112051803B (en) | Small line segment fairing method based on space plane normal vector | |
CN114091195A (en) | Numerical control bend springback and stretching deformation compensation correction method | |
CN117250909A (en) | A geodesic-based free-form surface CNC machining path planning method | |
CN112507410B (en) | Method and device for generating rail Liang Tuzhi | |
Yan et al. | Point cloud-based model-free path planning method of robotic grinding for large complex forged parts | |
CN112613146B (en) | Straightening self-adaptive optimization method, straightening self-adaptive optimization system, storage medium and computing equipment | |
CN115455807A (en) | Thin-wall part machining allowance optimization method and machining allowance optimization evaluation method | |
TWI667559B (en) | Automatic surface error compensation method and computer program product therefor | |
Park et al. | Near net-shape five-axis face milling of marine propellers | |
CN118305642B (en) | Monitoring and control method and device for machine tool processing positioning | |
Li et al. | Blade 3D profile evaluation method based on improved coarse-to-fine point cloud registration | |
CN114996879B (en) | Interval field geometric uncertainty topology optimization method for flexible clamp mechanism | |
CN119062597A (en) | A method and device for obtaining a correction characteristic curve of a centrifugal compressor | |
Liu et al. | B-spline smooth compression of consecutive micro segment trajectories in free-form surface NC machining |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |