CN114994777A - Active suppression method for electromagnetic motion noise in ground-space frequency domain - Google Patents
Active suppression method for electromagnetic motion noise in ground-space frequency domain Download PDFInfo
- Publication number
- CN114994777A CN114994777A CN202210454769.5A CN202210454769A CN114994777A CN 114994777 A CN114994777 A CN 114994777A CN 202210454769 A CN202210454769 A CN 202210454769A CN 114994777 A CN114994777 A CN 114994777A
- Authority
- CN
- China
- Prior art keywords
- receiving coil
- coil sensor
- frequency
- noise suppression
- dynamic noise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/38—Processing data, e.g. for analysis, for interpretation, for correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
- G01V3/10—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Electromagnetism (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明涉及地球物理无损勘探技术领域,尤其涉及一种地空频率域电磁运动噪声主动抑制方法。根据勘探深度范围,利用趋肤深度公式计算出发射电流主频的频带范围;调整接收线圈传感器的动态噪声抑制模块的弹性系数,降低接收线圈传感器的固有频率f使其与发射基频fo1不混叠;通过动态噪声抑制主动调节模块读取接收线圈传感器的俯仰方向和横滚方向的角速度和加速度,并根据角速度和加速度调整阻尼系数,通过改变阻尼特性使接收线圈传感器的加速度达到最小。所要解决频率域地空电磁勘探方法中电磁传感器的动态噪声问题。
The invention relates to the technical field of geophysical non-destructive exploration, in particular to a method for actively suppressing electromagnetic motion noise in the ground-space frequency domain. According to the exploration depth range, use the skin depth formula to calculate the frequency band range of the main frequency of the transmitting current; adjust the elastic coefficient of the dynamic noise suppression module of the receiving coil sensor, and reduce the natural frequency f of the receiving coil sensor to make it different from the transmitting fundamental frequency f o1 . Aliasing; read the angular velocity and acceleration of the receiving coil sensor in the pitch and roll directions through the dynamic noise suppression active adjustment module, and adjust the damping coefficient according to the angular velocity and acceleration, and minimize the acceleration of the receiving coil sensor by changing the damping characteristics. The problem of dynamic noise of electromagnetic sensors in the method of ground-air electromagnetic exploration in frequency domain is to be solved.
Description
技术领域technical field
本发明涉及地球物理无损勘探技术领域,尤其涉及一种地空频率域电磁运动噪声主动抑制方法。The invention relates to the technical field of geophysical non-destructive exploration, in particular to a method for actively suppressing electromagnetic motion noise in the ground-space frequency domain.
背景技术Background technique
随着经济快速持续发展,资源和能源的问题日益突出,随着对资源能源勘查需求的增加,随之地下探测需求量逐年增加,而传统的地球物理勘探方法探测效率较低,难以满足对资源大面积的快速勘探的需求,因此,急需能够在地质条件复杂的地区实现高效率、高质量探测装置及施工,地空频率域电磁法与无人机飞行平台相结合,结合地面电磁法大功率发射和航空电磁法快速非接触式采集的双重优点,能够进入地形复杂区域开展大深度资源勘探,近年来成为地球物理电磁法研究的热点,该方法有利于在高寒地区、戈壁沙漠、丘陵地区、山区、植被茂密、水域等区域开展大深度地下结构精细探测,相对于地面和航空电磁法,更加经济、安全和便捷,因此具有广阔的市场前景和应用价值。With the rapid and sustainable development of the economy, the problems of resources and energy have become increasingly prominent. With the increase in the demand for resources and energy exploration, the demand for underground exploration has increased year by year. However, the detection efficiency of traditional geophysical exploration methods is low, and it is difficult to meet the demand for resources and energy resources. The demand for rapid exploration in large areas, therefore, it is urgent to realize high-efficiency, high-quality detection devices and construction in areas with complex geological conditions, the combination of ground-air frequency domain electromagnetic method and UAV flight platform, combined with high-power ground electromagnetic method The dual advantages of emission and airborne electromagnetic method for rapid and non-contact acquisition can enter the complex terrain area to carry out large-depth resource exploration. In recent years, it has become a hot spot in the study of geophysical electromagnetic method. Compared with ground and aerial electromagnetic methods, it is more economical, safe and convenient to carry out fine detection of large-depth underground structures in mountainous areas, dense vegetation, water areas and other areas, so it has broad market prospects and application value.
中国专利201510039201公开了一种频率域地空电磁勘探方法,该方法采用地面发射,空中接收电磁波信号的工作模式,提取信号的频谱并通过全区视电阻率法反演解释地下电性结构,是一种新型的电磁勘探方法。工作于地面的发射系统,通过多台级联向地下发射多频伪随机波,激发一次可获得多个频率的信号,大大提高了探测效率。接收系统搭载在飞行器上,在测区上空测量磁场,能够适应地表结构复杂的环境同时减弱了近场影响引起的静态效应,拓展了电磁勘探的探测范围。系统可在测量多个磁场分量的情况下对被测磁场分量进行校正和补偿,提高了磁场测量的分辨能力。此方法适用于地表条件恶劣区域的深部探测,具有探测范围广、探测深度大、探测效率高等特点。Chinese Patent No. 201510039201 discloses a ground-to-air electromagnetic exploration method in the frequency domain. The method adopts the working mode of ground emission and air reception of electromagnetic wave signals, extracts the frequency spectrum of the signal, and inverts and interprets the underground electrical structure through the apparent resistivity method of the whole area. A new type of electromagnetic exploration method. The transmitting system working on the ground transmits multi-frequency pseudo-random waves to the underground through multiple cascades, and can obtain signals of multiple frequencies once excited, which greatly improves the detection efficiency. The receiving system is mounted on the aircraft and measures the magnetic field over the survey area, which can adapt to the environment with complex surface structure and at the same time weaken the static effect caused by the influence of the near field, and expand the detection range of electromagnetic exploration. The system can correct and compensate the measured magnetic field components under the condition of measuring multiple magnetic field components, which improves the resolution of magnetic field measurement. This method is suitable for deep detection in areas with harsh surface conditions, and has the characteristics of wide detection range, large detection depth and high detection efficiency.
中国专利201710491480公开了一种地空电磁探测线圈三维姿态同步测量方法及装置,涉及地空电磁法实验装置技术领域。借助于本系统及装置,可以完成地空电磁探测中对接收线圈的实时且与电磁发射系统同步的姿态测量工作,。装置的使用可以消除因线圈姿态发生突变后所带来的误差,使后期数据处理工作更加有效反应实际地质结构。对于一般的姿态观测可以进行有效的定性分析,而且成本较低,易于使用。Chinese patent 201710491480 discloses a method and device for synchronously measuring the three-dimensional attitude of a ground-to-air electromagnetic detection coil, which relates to the technical field of ground-to-air electromagnetic method experimental devices. With the aid of the system and the device, the real-time attitude measurement of the receiving coil in the ground-to-air electromagnetic detection and synchronized with the electromagnetic transmission system can be completed. The use of the device can eliminate the error caused by the sudden change of the coil posture, so that the later data processing work can more effectively reflect the actual geological structure. Effective qualitative analysis can be performed for general attitude observation, and the cost is low and easy to use.
虽然频率域地空电磁勘探方法可大大提高了探测效率,但并未解决传感器动态噪声问题,探测精度有待提高。地空电磁探测线圈三维姿态同步测量方法及装置中提供了一种校正姿态方法以消除误差,无法测量小于0.1°的变化姿态,而且动态噪声依然混杂在有效信号中无法分离,在数据处理时,无法彻底地抑制运动噪声。Although the ground-air electromagnetic exploration method in the frequency domain can greatly improve the detection efficiency, it does not solve the problem of sensor dynamic noise, and the detection accuracy needs to be improved. The three-dimensional attitude synchronization measurement method and device of the ground-to-air electromagnetic detection coil provides a correction attitude method to eliminate errors, which cannot measure the changing attitude of less than 0.1°, and the dynamic noise is still mixed in the effective signal and cannot be separated. Motion noise cannot be completely suppressed.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种地空频率域电磁运动噪声主动抑制方法,所要解决频率域地空电磁勘探方法中电磁传感器的动态噪声问题。The purpose of the present invention is to provide a method for actively suppressing electromagnetic motion noise in the ground-space frequency domain, and to solve the dynamic noise problem of the electromagnetic sensor in the ground-space electromagnetic exploration method in the frequency domain.
本发明是这样实现的,The present invention is realized in this way,
一种地空频率域电磁运动噪声主动抑制方法,该方法通过调整接收系统抑制噪声,其中,接收系统包括:接收线圈传感器、接收机、动态噪声抑制模块以及动态噪声抑制主动调节模块,所述接收线圈传感器为圆环形,在圆环形上等间距连接动态噪声抑制模块,通过三个动态噪声抑制模块的另一端汇聚连接在接收机上,三个所述动态噪声抑制模块与所述接收线圈传感器形成轴对称的圆锥结构;所述接收机悬吊在无人旋翼机上,所述动态噪声抑制模块通过调整自身的弹性系数以及通过动态噪声抑制主动调节模块调整阻尼系数调整接收线圈传感器的固有频率和固有频率处的幅值;A method for actively suppressing electromagnetic motion noise in the ground-space frequency domain. The method suppresses noise by adjusting a receiving system, wherein the receiving system includes: a receiving coil sensor, a receiver, a dynamic noise suppression module, and a dynamic noise suppression active adjustment module. The coil sensor is in the shape of a ring, the dynamic noise suppression modules are connected at equal intervals on the ring, and the other ends of the three dynamic noise suppression modules are converged and connected to the receiver. The three dynamic noise suppression modules and the receiving coil sensor An axisymmetric conical structure is formed; the receiver is suspended on the unmanned rotorcraft, and the dynamic noise suppression module adjusts the natural frequency and Amplitude at natural frequency;
该抑制方法包括:The suppression method includes:
根据勘探深度范围,利用趋肤深度公式计算出发射电流主频的频带范围;According to the exploration depth range, use the skin depth formula to calculate the frequency band range of the main frequency of the emission current;
调整接收线圈传感器的动态噪声抑制模块的弹性系数,降低接收线圈传感器的固有频率f使其与发射基频fo1不混叠;Adjust the elastic coefficient of the dynamic noise suppression module of the receiving coil sensor, and reduce the natural frequency f of the receiving coil sensor so that it does not alias with the transmitting fundamental frequency f o1 ;
通过动态噪声抑制主动调节模块读取接收线圈传感器的俯仰方向和横滚方向的角速度和加速度,并根据角速度和加速度调整阻尼系数,通过改变阻尼特性使接收线圈传感器的加速度达到最小。The dynamic noise suppression active adjustment module reads the angular velocity and acceleration of the receiving coil sensor in the pitch and roll directions, and adjusts the damping coefficient according to the angular velocity and acceleration, and minimizes the acceleration of the receiving coil sensor by changing the damping characteristics.
进一步地,所述的动态噪声抑制主动调节模块包括:IMU、控制器以及电磁阀,IMU检测接收线圈传感器的振动情况,分析振动的功率谱峰值,并与期望振动值做差,将差值经控制器运算并通过模糊控制方法控制电磁阀,通过电磁阀改变节流孔的开度,从而改变阻尼系数。Further, the dynamic noise suppression active adjustment module includes: an IMU, a controller and a solenoid valve, the IMU detects the vibration of the receiving coil sensor, analyzes the peak value of the power spectrum of the vibration, and makes a difference with the expected vibration value, and the difference value is passed through. The controller calculates and controls the solenoid valve through the fuzzy control method, and changes the opening of the orifice through the solenoid valve, thereby changing the damping coefficient.
进一步地,所述IMU检测接收线圈传感器的振动情况,分析振动的功率谱峰值,并与期望值做差具体包括:Further, the IMU detects the vibration of the receiving coil sensor, analyzes the peak value of the power spectrum of the vibration, and makes a difference with the expected value, which specifically includes:
将IMU水平贴在接收线圈传感器上,读取接收线圈传感器俯仰方向和横滚方向的角速度ωx,ωy和加速度αx,αy,得其在水平面的振动,Stick the IMU horizontally on the receiving coil sensor, read the angular velocities ω x , ω y and acceleration α x , α y of the receiving coil sensor in pitch and roll directions, and obtain its vibration in the horizontal plane,
ω(t)和α(t)经过FFT得到频谱Xω(ω)和Xα(ω),再根据频谱,得到功率谱:ω(t) and α(t) are obtained through FFT to obtain the spectrum Xω(ω) and Xα(ω), and then according to the spectrum, the power spectrum is obtained:
在功率谱中选出最大值Gω(ω0)和Gα(ω0),并且根据其功率谱得The maximum values Gω(ω 0 ) and Gα(ω 0 ) are selected in the power spectrum, and according to their power spectrum,
其中ωs=2πfs,Wω和Wα为功率谱密度均值,其均值可视为白噪声,作为动态噪声抑制主动调节模块的期望振动值,那么where ω s = 2πf s , W ω and W α are the mean power spectral density, and the mean value can be regarded as white noise, as the expected vibration value of the dynamic noise suppression active adjustment module, then
eω和eα作为控制器的输入量。e ω and e α are used as the input of the controller.
进一步地,将控制器的输入量eω和eα通过模糊控制输出为一模糊集合,采用重心法,取模糊隶属函数曲线与横坐标围成的面积的重心为模糊推理最终输出值,最终通过解模糊得到精确输出量c。Further, the input quantities e ω and e α of the controller are output as a fuzzy set through fuzzy control, and the center of gravity method is used to take the center of gravity of the area enclosed by the fuzzy membership function curve and the abscissa as the final output value of fuzzy inference. Defuzzification gets the exact output c.
本发明与现有技术相比,有益效果在于:Compared with the prior art, the present invention has the following beneficial effects:
本发明方法通过把动态噪声降低至一个理想频率,然后与接收到的有效频率分离,本发明通过动态噪声抑制模块中的阻尼系统可以消耗振动产生的能量,从而可减少感应线圈传感器在空中振动切割地磁感线所产生的动态噪声,并且不会引入电磁干扰,不削弱有效信号的条件下增加了采集信号的信噪比,接收系统的探测深度有所增加,而且改进成本低,易于使用。The method of the present invention reduces the dynamic noise to an ideal frequency, and then separates it from the received effective frequency. The present invention can consume the energy generated by the vibration through the damping system in the dynamic noise suppression module, thereby reducing the vibration cutting of the induction coil sensor in the air. The dynamic noise generated by the geomagnetic field line does not introduce electromagnetic interference, and the signal-to-noise ratio of the collected signal is increased without weakening the effective signal, the detection depth of the receiving system is increased, and the improvement cost is low and easy to use.
附图说明Description of drawings
图1本发明方法采用的地空频率域电磁勘探系统示意图Fig. 1 is the schematic diagram of the electromagnetic exploration system in the ground-space frequency domain adopted by the method of the present invention
图2为图1中的接收系统结构图;Fig. 2 is the structure diagram of the receiving system in Fig. 1;
图3为图2中的动态噪声抑制模块;Fig. 3 is the dynamic noise suppression module in Fig. 2;
图4为图2中的接收线圈传感器;Fig. 4 is the receiving coil sensor in Fig. 2;
图5为图3中的动态噪声抑制模块等效模型;Fig. 5 is the equivalent model of the dynamic noise suppression module in Fig. 3;
图6为图3中的动态噪声抑制主动调节模块原理图;FIG. 6 is a schematic diagram of the dynamic noise suppression active adjustment module in FIG. 3;
图7为图3中的动态噪声抑制主动调节模块控制流程图;Fig. 7 is the control flow chart of the dynamic noise suppression active adjustment module in Fig. 3;
图8为本发明实施例提供的阻尼系统的结构示意图;8 is a schematic structural diagram of a damping system provided by an embodiment of the present invention;
其中,1无人旋翼机,2尼龙绳,3接收系统,4发射线缆,5发射系统,31内置电源,32接收机,33屏蔽绞合电缆,341第一尼龙绳,342第二尼龙绳,343第三尼龙绳,35动态噪声抑制模块,351第一弹簧阻尼系统,352第二弹簧阻尼系统,353第三弹簧阻尼系统,3511第一吊环,3521第二吊环,3531第三吊环,3512第一弹簧系统,3522第二弹簧系统,3532第三弹簧系统,3513第一阻尼系统,3523第二阻尼系统,3533第三阻尼系统,3514第五吊环,3524第六吊环,3534第七吊环,36接收线圈传感器,361第八吊环,362第九吊环,363第十吊环,364接收线圈前置放大器,365线圈骨架,366感应线圈,37动态噪声抑制主动调节模块;7电磁阀;8节流孔。Among them, 1 unmanned rotorcraft, 2 nylon rope, 3 receiving system, 4 transmitting cable, 5 transmitting system, 31 built-in power supply, 32 receiver, 33 shielded twisted cable, 341 first nylon rope, 342 second nylon rope , 343 Third Nylon Rope, 35 Dynamic Noise Suppression Module, 351 First Spring Damping System, 352 Second Spring Damping System, 353 Third Spring Damping System, 3511 First Ring, 3521 Second Ring, 3531 Third Ring, 3512 1st spring system, 3522 2nd spring system, 3532 3rd spring system, 3513 1st damping system, 3523 2nd damping system, 3533 3rd damping system, 3514 5th ring, 3524 6th ring, 3534 7th ring, 36 receiving coil sensor, 361 eighth ring, 362 ninth ring, 363 tenth ring, 364 receiving coil preamplifier, 365 coil bobbin, 366 induction coil, 37 dynamic noise suppression active adjustment module; 7 solenoid valve; 8 throttle hole.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
参见图1所示,本发明方法基于地空频率域探测系统,地空频率域探测系统包括无人旋翼机1通过悬挂尼龙绳2方式挂载接收系统3,发射系统5通过发射线缆4向地下发射伪随机序列波形,发射功率人为可控。Referring to FIG. 1 , the method of the present invention is based on a ground-to-air frequency domain detection system. The ground-to-air frequency domain detection system includes an
参见图2和图3所示,接收系统包括接收线圈传感器36、接收机32以及动态噪声抑制模块35,接收线圈传感器为圆环形,在圆环形上等间距连接动态噪声抑制模块,通过三个动态噪声抑制模块的另一端汇聚连接在接收机上,所述接收机悬吊在无人旋翼机上,其中所述动态噪声抑制模块通过调整自身的弹性系数与阻尼系数调整接收线圈传感器的固有频率。Referring to Figures 2 and 3, the receiving system includes a receiving
动态噪声抑制模块35包括第一弹簧阻尼系统351、第二弹簧阻尼系统352和第三弹簧阻尼系统353,设有第一吊环3511、第二吊环3521、第三吊环3531与第一吊绳341、第二吊绳342、第三吊绳343连接,第五吊环3514、第六吊环3524、第七吊环3534、与接收线圈传感器36的第八吊环361、第九吊环362、第十吊环363连接。形成中心轴对称的圆锥结构。接收线圈传感器通过尼龙绳2悬吊接收机32上侧,接收机32通过屏蔽绞合电缆33与接收线圈传感器364连接,接收机32下侧通过第一尼龙绳341、第二尼龙绳342、第三尼龙绳343与第一弹簧阻尼系统351、第二弹簧阻尼系统352、第三弹簧阻尼系统353连接,动态噪声抑制模块35可降低接收线圈传感器36的固有频率,并吸收接收线圈传感器36的振动能量。The dynamic
动态噪声抑制模块包括为同轴心并联的弹簧系统和阻尼系统,阻尼系统包括第一圆柱,在第一圆柱上同轴设置直径小于第一圆柱的第二圆柱,所述阻尼系统的两端分别连接吊环,一端吊环连接在接收线圈传感器上,一端吊环通过尼龙绳连接在接收机上,弹簧系统套设在第一圆柱与第二圆柱上。第一弹簧阻尼系统351,第二弹簧阻尼系统352,第三弹簧阻尼系统353组成三个动态噪声抑制模块。The dynamic noise suppression module includes a spring system and a damping system that are coaxially connected in parallel, the damping system includes a first cylinder, a second cylinder with a diameter smaller than the first cylinder is coaxially arranged on the first cylinder, and two ends of the damping system are respectively Connecting rings, one end of the rings is connected to the receiving coil sensor, one end of the rings is connected to the receiver through nylon ropes, and the spring system is sleeved on the first cylinder and the second cylinder. The first
本发明通过调整动态噪声抑制模块的弹性阻尼系数改变接收线圈传感器的固有频率,使得接收线圈传感器的固有频率与发射频率和有效的接收信号频率不重叠。The invention changes the natural frequency of the receiving coil sensor by adjusting the elastic damping coefficient of the dynamic noise suppression module, so that the natural frequency of the receiving coil sensor does not overlap with the transmitting frequency and the effective receiving signal frequency.
参见图4所示,接收线圈传感器包括环形的线圈骨架365、感应线圈366以及线圈前置放大器364,感应线圈为漆包线分层缠绕在线圈骨架外侧,并构成差分结构,感应线圈输出端连接接收线圈前置放大器,所述的接收线圈前置放大器通过屏蔽绞合电缆与接收机连接,接收机内置电源31可对接收机和接收线圈前置放大器供电。线圈骨架为非导电材料。Referring to FIG. 4, the receiving coil sensor includes a ring-shaped
接收线圈传感器通过吊环与第一弹簧阻尼系统351,第二弹簧阻尼系统352,第三弹簧阻尼系统353连接,具体为:The receiving coil sensor is connected to the first
第一弹簧阻尼系351的第五吊环3514与接收线圈传感器36的第八吊环361连接,第二弹簧阻尼系统352的第六吊环3524与接收线圈传感器36的第九吊环362连接、第三弹簧阻尼系统353的第七吊环3534与接收线圈传感器36的第十吊环363连接,第一弹簧阻尼系统351的第一吊环3511与第一尼龙绳341连接,第二弹簧阻尼系统352的第二吊环3521与第二尼龙绳342连接,第三弹簧阻尼系统353的第三吊环3531与第三尼龙绳343连接,第一尼龙绳341、第二尼龙绳342、第三尼龙绳343再与接收机32连接,接收机32与接收线圈传感器36通过屏蔽绞合电缆33连接,最后通过无人旋翼机1引出的尼龙绳2悬吊接收机系统3;The
在飞行航测前,通过调整动态噪声抑制模块的弹性阻尼系数改变接收线圈传感器的固有频率,使得接收线圈传感器的固有频率与发射频率和有效的接收信号频率不重叠,具体为:Before the flight aerial survey, the natural frequency of the receiving coil sensor is changed by adjusting the elastic damping coefficient of the dynamic noise suppression module, so that the natural frequency of the receiving coil sensor does not overlap with the transmitting frequency and the effective receiving signal frequency, specifically:
调节第一弹簧阻尼系统351的第一弹簧系统3512的弹性系数和3513阻尼系数,调节第二弹簧阻尼系统352的第二弹簧系统3522的弹性系数和第一阻尼系统3523阻尼系数,调节第三弹簧阻尼系统353的第三弹簧系统3532的弹性系数和第三阻尼系统3533阻尼系数,无人旋翼机1悬吊接收系统3在空中悬停,接收系统3采集接收线圈传感器36的动态噪声,分析并确定动态噪声的频谱特性和谐振点,确保接收线圈传感器36的固有机械振动频率与发射频率和有效的接收信号频率不重叠。Adjust the elastic coefficient and 3513 damping coefficient of the
在探测时,在距离接收系统3以外2~5千米处布置发射系统线缆4,将两电极深埋地下后串联发射系统5,发射系统5可发射3频、5频、7频、9频伪随机序列波形,发射系统5供电电源由发电机产生380V三项交流电后经过AC-DC转换为电压可控的直流电,根据探测需求,选择合适的发射频率和发射电压;During detection, the transmitting
无人旋翼机1按照探测区域设定航线飞行时,接收线圈传感器36轴向方向垂直于地面并实时接收探测地区产生的二次磁场信号,接收线圈传感器36在空中飞行时会产生振动,其感应线圈366会切割地磁感线产生随振动频率相同的动态噪声,通过动态噪声抑制模块35可降低俯仰和横滚方向的振动幅值和振动频率,削弱振动产生的能量,实现运动噪声的频率迁移,与有效的频率磁场信号分离,提高接收线圈传感器36的检测能力;When the
接收线圈传感器36通过屏蔽绞合电缆33实时传输数据到接收机32中,接收机32完成模拟信号对数字信号的转换,并将信号存储至接收机32中;完成成飞行航测任务后,提取接收机32采集的数据,初步分析数据频谱特性和信噪比,确认是否改变发射系统5输出功率;如果采集到的信号信噪比低,可增加发射功率,并探测过程,完成飞行航测任务;将所有数据保存,由数据处理人员分析数据,获得频率域电磁有效信号;将频率域电磁数据绘制出视电阻率图。The receiving
其中,在飞行航测前,将动态噪声抑制模块的吊环与接收线圈传感器的吊环连接,接收机32与接收线圈传感器36通过屏蔽绞合电缆33连接,最后通过无人旋翼机1引出的尼龙绳2悬吊接收机系统3。Among them, before the flight aerial survey, the suspension ring of the dynamic noise suppression module is connected with the suspension ring of the receiving coil sensor, the
参见图5,在飞行航测前,调节动态噪声抑制模块的弹簧系统的弹性系数,以垂直方向为例,设Z分量接收线圈传感器的加速度为a,质量为m,振动频率为f,为简化系统数学模型,将动态噪声抑制模块35视为整体,其数学模型为弹簧质量阻尼系统,系统受迫振动的运动微分方程可以归纳为Referring to Figure 5, before the aerial survey, adjust the elastic coefficient of the spring system of the dynamic noise suppression module. Taking the vertical direction as an example, set the acceleration of the Z-component receiving coil sensor as a, the mass as m, and the vibration frequency as f. In order to simplify the system Mathematical model, considering the dynamic
系统的响应方程为The response equation of the system is
c动态噪声抑制模块35的阻尼系数,k动态噪声抑制模块35的弹性系数,接收线圈传感器36的固有机械频率为c The damping coefficient of the dynamic
由于线圈传感器的质量是确定的,所以可通过降低弹性阻尼系数k使接收线圈传感器36的固有频率降低。Since the mass of the coil sensor is determined, the natural frequency of the receiving
系统的阻尼比为The damping ratio of the system is
动态噪声抑制主动调节模块可自主实现阻尼系数c的最优调节。The dynamic noise suppression active adjustment module can independently realize the optimal adjustment of the damping coefficient c.
无人旋翼机1悬吊接收系统3在空中悬停,接收系统3采集接收线圈传感器36的动态噪声,分析并确定动态噪声的频谱特性和谐振点,确保接收线圈传感器36的固有机械振动频率与发射频率和有效的接收信号频率不重叠。The
根据勘探深度范围,利用趋肤深度公式(5)定发射电流主频的频带范围:According to the exploration depth range, use the skin depth formula (5) to determine the frequency band range of the main frequency of the emission current:
δ为勘探深度,ρ为均匀半空间电阻率,fo为发射角频率,发射基频fo1。δ is the exploration depth, ρ is the uniform half-space resistivity, f o is the launch angular frequency, and the launch fundamental frequency f o1 .
降低接收线圈传感器36固有频率f使其频率与发射基频fo1不混叠,由此可增加探测深度,距离接收系统3以外2~5千米处布置发射系统线缆4,将两电极深埋地下后串联发射系统5,发射系统5可发射3频、5频、7频、9频伪随机序列波形,发射系统5供电电源由发电机产生380V三项交流电后经过AC-DC转换为电压可控的直流电,根据探测需求,选择合适的发射频率和发射电压。无人旋翼机1按照探测区域设定航线飞行时,接收线圈传感器36轴向方向垂直于地面并实时接收探测地区产生的二次磁场信号,接收线圈传感器36在空中飞行时会产生振动,其感应线圈366会切割地磁感线产生随振动频率相同的动态噪声,通过动态噪声抑制模块35可降低俯仰和横滚方向的振动幅值和振动频率,削弱振动产生的能量,实现运动噪声的频率迁移,与有效的频率磁场信号分离,提高接收线圈传感器36的检测能力。Reduce the natural frequency f of the receiving
接收线圈传感器36通过屏蔽绞合电缆33实时传输数据到接收机32中,接收机32完成模拟信号对数字信号的转换,并将信号存储至接收机32中。The receiving
完成飞行航测任务后,提取接收机32采集的数据,初步分析数据频谱特性和信噪比,确认是否改变发射系统5输出功率。After the flight aerial survey task is completed, the data collected by the
将所有数据保存,由数据处理人员分析数据,获得频率域电磁有效信号,将频率域电磁数据绘制出视电阻率图。Save all the data, analyze the data by the data processing personnel, obtain the effective electromagnetic signal in the frequency domain, and draw the apparent resistivity map of the electromagnetic data in the frequency domain.
参见图6,在上述的系统中加入动态噪声抑制主动调节模块37,增加在三个弹簧阻尼系统中,用于调节弹簧阻尼系统的阻尼大小,动态噪声抑制主动调节模块包括:IMU(惯性测量单元)、控制器和电磁阀,其中,IMU检测线圈骨架振动情况,分析振动的功率谱峰值,并与期望值做差,将差值经控制器运算并通过模糊控制方法控制电磁阀装置,改变节流孔的开度,最终实现主动控制阻尼的大小。参见图8所示,为采用的阻尼系统的结构示意图。Referring to FIG. 6 , a dynamic noise suppression
接收线圈传感器的固有振动频率f普遍在50Hz以内,可通过弹簧系统调整固有频率时其在10Hz以内,所以采样频率可fs>2f。The natural vibration frequency f of the receiving coil sensor is generally within 50Hz. When the natural frequency can be adjusted by the spring system, it is within 10Hz, so the sampling frequency can be f s >2f.
将IMU水平贴在线圈骨架上,读取线圈骨架俯仰方向和横滚方向的角速度ωx,ωy和加速度αx,αy,得其在水平面的振动,Stick the IMU horizontally on the coil bobbin, read the angular velocity ω x , ω y and acceleration α x , α y in the pitch and roll directions of the coil bobbin, and get its vibration in the horizontal plane,
ω(t)和α(t)经过FFT得到频谱Xω(ω)和Xα(ω),再根据频谱,得到角速度功率谱和加速度功率谱:ω(t) and α(t) are obtained through FFT to obtain the spectrum Xω(ω) and Xα(ω), and then according to the spectrum, the angular velocity power spectrum and the acceleration power spectrum are obtained:
在功率谱中分别选出角速度功率谱的最大值Gω(ω0)和加速度功率谱的最大值Gα(ω0),并且根据其功率谱得In the power spectrum, the maximum value Gω(ω 0 ) of the angular velocity power spectrum and the maximum value Gα(ω 0 ) of the acceleration power spectrum are respectively selected, and according to their power spectrum, the
其中ωs=2πfs,Wω和Wα为功率谱密度均值,其均值可视为白噪声,作为动态噪声抑制主动调节模块的期望振动值,那么where ω s = 2πf s , W ω and W α are the mean power spectral density, and the mean value can be regarded as white noise, as the expected vibration value of the dynamic noise suppression active adjustment module, then
eω和eα作为控制器的输入量。Wω和Wα作为参考量,Gω(ω0)和Gα(ω0)目的要趋近Wω和Wα的值,Gα(ω)-Wα是为了计算差值,通过控制器将他俩的差值几乎趋近为0,是将差值将其比例化,这样eω和eα输出值为(0-100)%,例如:当振动很大时,Gα(ω)和Gω(ω)值会很大,那么的值会趋近于100%(代表振动很大),当几乎没有振动时,中Wα≈Gα(ω),值几乎趋近于0(代表振动很小)。e ω and e α are used as the input of the controller. W ω and W α are used as reference quantities. The purpose of Gω(ω 0 ) and Gα(ω 0 ) is to approach the values of W ω and W α . Gα(ω)-W α is used to calculate the difference. The difference between the two approaches almost 0. is to scale the difference so that the output values of e ω and e α are (0-100)%, for example: when the vibration is large, the Gα(ω) and Gω(ω) values will be large, then The value of will approach 100% (representing a lot of vibration), when there is almost no vibration, where W α ≈ Gα(ω), the value is almost close to 0 (representing very little vibration).
将输入量eω和eα分别划分为3个子集,eω的对应表达关系为:角速度小(Sω)、角速度适中(Mω)、角速度大(Lω),eα的对应表达关系为:加速度小(Sα)、加速度适中(Mα)、加速度大(Lα)。输出量c划分为5个子集,对应的表达关系为:阻尼很小(VSC),阻尼小(SC),阻尼适中(MC),阻尼大(LC),阻尼很大(VLC)。The input quantities e ω and e α are divided into three subsets, respectively, and the corresponding expression relationship of e ω is: small angular velocity (S ω ), moderate angular velocity (M ω ), and large angular velocity (L ω ), the corresponding expression relationship of e α are: small acceleration (S α ), moderate acceleration (M α ), and large acceleration (L α ). The output value c is divided into 5 subsets, and the corresponding expressions are: small damping (VS C ), small damping (S C ), moderate damping (M C ), large damping (L C ), and large damping (VL C ) ).
eω={Sω Mω Lω}e ω = {S ω M ω L ω }
eα={Sα Mα Lα}e α = {S α M α L α }
C={VSC SC MC LC VLC}C={VS C S C M C L C VL C }
设定输入、输出变量隶属函数为三角形隶属函数。Set the input and output variable membership functions as triangular membership functions.
当线圈骨架产生振动时,IMU会检测到振动,动态噪声抑制主动调节模块会通过改变阻尼特性使线圈骨架的加速度达到最小,这里的最小指的是趋近零,以保证接收线圈传感器的平稳性,因此,接收动态噪声抑制主动调节模块控制规则为:When the coil bobbin vibrates, the IMU will detect the vibration, and the dynamic noise suppression active adjustment module will minimize the acceleration of the coil bobbin by changing the damping characteristics. The minimum here refers to approaching zero to ensure the stability of the receiving coil sensor. , therefore, the control rule of the active adjustment module for receiving dynamic noise suppression is:
规则一:当角速度和加速度大时,控制器的阻尼力输出是阻尼大;Rule 1: When the angular velocity and acceleration are large, the damping force output of the controller is large;
规则二:当角速度和加速度适中时,控制器的阻尼力输出是阻尼适中;Rule 2: When the angular velocity and acceleration are moderate, the damping force output of the controller is moderately damped;
规则三:当角速度和加速度小时,控制器的阻尼力输出是阻尼小;Rule 3: When the angular velocity and acceleration are small, the damping force output of the controller is small;
此控制策略采用二维模糊控制器算法,输入语言变量eω是系统的误差,输入语言变量eα是系统误差变化率,输出模糊语言变量C是模糊控制器的输出变量,这些语言值通过解模糊得到精确量c,模糊控制规则采用模糊规则表1来描述。This control strategy adopts a two-dimensional fuzzy controller algorithm. The input linguistic variable e ω is the error of the system, the input linguistic variable e α is the rate of change of the system error, and the output fuzzy linguistic variable C is the output variable of the fuzzy controller. The fuzzy obtains the precise quantity c, and the fuzzy control rule is described by the fuzzy rule table 1.
表1模糊控制规则表Table 1 Fuzzy control rule table
因此模糊控制器共9条规则,即Therefore, the fuzzy controller has a total of 9 rules, namely
根据模糊推理合成规则可得:According to the fuzzy inference synthesis rules, we can get:
由于模糊控制输出为一模糊集合,它表示了控制量论域对模糊集合的不同隶属值组合。当被控对象只能接受一个控制时,需要从所得到的模糊子集中判决出一个精确控制量。采用重心法,它是取模糊隶属函数曲线与横坐标围成的面积的重心为模糊推理最终输出值,最终通过解模糊得到精确输出量c。Since the output of fuzzy control is a fuzzy set, it represents the combination of different membership values of the control quantum universe to the fuzzy set. When the controlled object can only accept one control, a precise control quantity needs to be determined from the obtained fuzzy subset. Using the center of gravity method, it takes the center of gravity of the area enclosed by the fuzzy membership function curve and the abscissa as the final output value of fuzzy inference, and finally obtains the precise output value c through defuzzification.
上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within the range.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210454769.5A CN114994777B (en) | 2022-04-27 | 2022-04-27 | Active suppression method for electromagnetic motion noise in ground-space frequency domain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210454769.5A CN114994777B (en) | 2022-04-27 | 2022-04-27 | Active suppression method for electromagnetic motion noise in ground-space frequency domain |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114994777A true CN114994777A (en) | 2022-09-02 |
CN114994777B CN114994777B (en) | 2023-03-28 |
Family
ID=83025978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210454769.5A Active CN114994777B (en) | 2022-04-27 | 2022-04-27 | Active suppression method for electromagnetic motion noise in ground-space frequency domain |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114994777B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119247483A (en) * | 2024-12-09 | 2025-01-03 | 吉林大学 | A semi-aeronautical electromagnetic detection frequency domain receiving system and design method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2455707A1 (en) * | 2010-11-22 | 2012-05-23 | General Electric Company | Sensor assembly and methods of measuring a proximity of a machine component to a sensor |
US20120146649A1 (en) * | 2010-12-13 | 2012-06-14 | Leendert Combee | Electromagnetic Measurements Using a Sensor Cable Having Improved Characteristics |
CN104597506A (en) * | 2015-01-26 | 2015-05-06 | 吉林大学 | Frequency domain ground-to-air electromagnetic prospecting method |
CN104749640A (en) * | 2015-03-26 | 2015-07-01 | 吉林大学 | Multi-source multi-frequency ground-air electromagnetic detection emission method |
CN105204076A (en) * | 2015-10-19 | 2015-12-30 | 吉林大学 | Transient electromagnetic detection motion noise suppressing device and method for helicopter |
RU2645909C1 (en) * | 2016-12-26 | 2018-02-28 | федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) | Method of nuclear magnetic voltage and a device for its implementation |
US20190383960A1 (en) * | 2018-06-15 | 2019-12-19 | Institute Of Geology And Geophysics Chinese Academy Of Sciences | Magnetotelluric measurement system |
US20200241163A1 (en) * | 2019-01-25 | 2020-07-30 | Geotech Ltd. | Natural em source airborne geophysical surveying system |
WO2020198538A1 (en) * | 2019-03-27 | 2020-10-01 | Amgen Inc. | Methods of fingerprinting therapeutic proteins via a two-dimensional (2d) nuclear magnetic resonance technique at natural abundance for formulated biopharmaceutical products |
US20220035062A1 (en) * | 2020-07-30 | 2022-02-03 | Chengdu University Of Technology | Semi-airborne Time Domain Electromagnetic Exploration System for Unmanned Aerial Vehicle |
CN114039189A (en) * | 2021-11-16 | 2022-02-11 | 西安电子科技大学 | Low-frequency magnetic antenna with compensation function and self-adaptive compensation method |
-
2022
- 2022-04-27 CN CN202210454769.5A patent/CN114994777B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2455707A1 (en) * | 2010-11-22 | 2012-05-23 | General Electric Company | Sensor assembly and methods of measuring a proximity of a machine component to a sensor |
US20120146649A1 (en) * | 2010-12-13 | 2012-06-14 | Leendert Combee | Electromagnetic Measurements Using a Sensor Cable Having Improved Characteristics |
CN104597506A (en) * | 2015-01-26 | 2015-05-06 | 吉林大学 | Frequency domain ground-to-air electromagnetic prospecting method |
CN104749640A (en) * | 2015-03-26 | 2015-07-01 | 吉林大学 | Multi-source multi-frequency ground-air electromagnetic detection emission method |
CN105204076A (en) * | 2015-10-19 | 2015-12-30 | 吉林大学 | Transient electromagnetic detection motion noise suppressing device and method for helicopter |
RU2645909C1 (en) * | 2016-12-26 | 2018-02-28 | федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) | Method of nuclear magnetic voltage and a device for its implementation |
US20190383960A1 (en) * | 2018-06-15 | 2019-12-19 | Institute Of Geology And Geophysics Chinese Academy Of Sciences | Magnetotelluric measurement system |
US20200241163A1 (en) * | 2019-01-25 | 2020-07-30 | Geotech Ltd. | Natural em source airborne geophysical surveying system |
WO2020198538A1 (en) * | 2019-03-27 | 2020-10-01 | Amgen Inc. | Methods of fingerprinting therapeutic proteins via a two-dimensional (2d) nuclear magnetic resonance technique at natural abundance for formulated biopharmaceutical products |
US20220035062A1 (en) * | 2020-07-30 | 2022-02-03 | Chengdu University Of Technology | Semi-airborne Time Domain Electromagnetic Exploration System for Unmanned Aerial Vehicle |
CN114039189A (en) * | 2021-11-16 | 2022-02-11 | 西安电子科技大学 | Low-frequency magnetic antenna with compensation function and self-adaptive compensation method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119247483A (en) * | 2024-12-09 | 2025-01-03 | 吉林大学 | A semi-aeronautical electromagnetic detection frequency domain receiving system and design method |
Also Published As
Publication number | Publication date |
---|---|
CN114994777B (en) | 2023-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020100334A4 (en) | Ground-air short offset electromagnetic detection system and method for separating multi-source transmission signals | |
CN104749640B (en) | Multi-source multi-frequency ground-air electromagnetic detection emission method | |
CA2722480A1 (en) | Airborne geophysical survey using airship | |
CA2702346C (en) | Airborne electromagnetic transmitter coil system | |
CN104865608B (en) | Time-domain AEM motion artifacts detection means and suppressing method | |
CN213934240U (en) | Airborne aviation electromagnetic method measuring device for portable unmanned aerial vehicle | |
US11531134B2 (en) | Multi-sensor system for airborne geophysical prospecting and method | |
CN105204076B (en) | Helicopter transient electromagnetic detecting motion artifacts restraining device and noise suppressing method | |
CN102016644A (en) | Double-suspension receiver coil system and apparatus | |
US20160161625A1 (en) | Geophysical survey system using hybrid aircraft | |
CN114994777B (en) | Active suppression method for electromagnetic motion noise in ground-space frequency domain | |
CN104020497A (en) | Z component receiving device for airborne Z-axis tipper electromagnetic survey system | |
CN116484177B (en) | Motion-induced noise prediction elimination method for electromagnetic detection of flight platform | |
CN113189654A (en) | High-precision aeromagnetic measurement system based on multi-rotor unmanned helicopter | |
CN107290794A (en) | A kind of numerical value emulation method of time domain aviation electromagnetic detection system receiving coil motion artifacts | |
CN114994770A (en) | Receiving system for frequency domain ground-air electromagnetic detection | |
CN212083693U (en) | Marine aeromagnetic detection system based on vertical take-off and landing fixed wing unmanned aerial vehicle | |
CN105891895A (en) | System and method of determining sky-wave propagation characteristics | |
CN110261921B (en) | A hanging device for unmanned helicopter airborne electromagnetic method transmitting and receiving equipment | |
CN116027441B (en) | Aviation mobile MT weak signal three-component receiving device and control method | |
CN216351276U (en) | Semi-aviation electromagnetic receiving system carrying structure based on unmanned aerial vehicle | |
CN113917549A (en) | Airborne electromagnetic data acquisition system and acquisition method based on optical fiber sensing technology | |
CN116699708B (en) | Low-altitude frequency domain electromagnetic detection device and electromagnetic detection method | |
Ma et al. | Correction of receiver noise in half-airborne transient electromagnetic method with electric source | |
RU172078U1 (en) | COMPLEX FOR UNMANNED AERONOMAGNETIC EXPLORATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |