CN114978165A - Time-interleaved pipelined successive approximation analog-to-digital converter - Google Patents
Time-interleaved pipelined successive approximation analog-to-digital converter Download PDFInfo
- Publication number
- CN114978165A CN114978165A CN202210670904.XA CN202210670904A CN114978165A CN 114978165 A CN114978165 A CN 114978165A CN 202210670904 A CN202210670904 A CN 202210670904A CN 114978165 A CN114978165 A CN 114978165A
- Authority
- CN
- China
- Prior art keywords
- stage
- digital converter
- analog
- successive approximation
- residual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/002—Provisions or arrangements for saving power, e.g. by allowing a sleep mode, using lower supply voltage for downstream stages, using multiple clock domains or by selectively turning on stages when needed
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0602—Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
- H03M1/0604—Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
Description
技术领域technical field
本发明涉及的是一种无线通信领域的技术,具体是一种时间交织流水线逐次逼近模数转换器。The invention relates to a technology in the field of wireless communication, in particular to a time-interleaving pipeline successive approximation analog-to-digital converter.
背景技术Background technique
时间交织模数转换器通过N路单核模数转换器交替工作,可以达到单核模数转换器难以达到的采样速率,因此常被应用在高速场合。流水线逐次逼近模数转换器结合了流水线ADC的高速特性与逐次逼近ADC的低功耗优点,十分适合于高速低功耗中高精度的模数转换器设计。但时间交织模数转换器的通道间失配问题,包括:通道间失调失配、增益失配、以及采样时刻偏差的不同导致的失配,都会对时间交织模数转换器的性能产生很大的影响。同时,流水线逐次逼近混合型模数转换器的级间增益失配、模块电路的失调等也会恶化整体ADC的性能,除此之外,级间残差放大器也是其设计难点。The time-interleaving analog-to-digital converter works alternately through N channels of single-core analog-to-digital converters, which can achieve a sampling rate that is difficult to achieve with a single-core analog-to-digital converter, so it is often used in high-speed occasions. The pipeline successive approximation analog-to-digital converter combines the high-speed characteristics of the pipeline ADC with the low power consumption of the successive approximation ADC, and is very suitable for the design of high-precision analog-to-digital converters in high-speed and low-power consumption. However, the channel-to-channel mismatch of the time-interleaved analog-to-digital converter, including: channel-to-channel offset mismatch, gain mismatch, and mismatch caused by different sampling time deviations, will greatly affect the performance of the time-interleaved analog-to-digital converter. Impact. At the same time, the inter-stage gain mismatch of the pipeline successive approximation hybrid analog-to-digital converter and the offset of the module circuit will also deteriorate the overall ADC performance. In addition, the inter-stage residual amplifier is also its design difficulty.
发明内容SUMMARY OF THE INVENTION
本发明针对现有高速时间交织模数转换器的输入缓冲器整体的功耗和面积消耗较大的缺陷,提出一种时间交织流水线逐次逼近模数转换器,具备GHz以上的采样频率和宽信号带宽,可以对射频系统中的信号进行高速转换的同时,利用片上模拟与数字校准技术解决时间交织模数转换器的通道间失配问题,此外,本发明采用流水线逐次逼近混合型架构(PSAR)的子模数转换器,实现低功耗设计。Aiming at the defects of large overall power consumption and area consumption of the input buffer of the existing high-speed time-interleaving analog-to-digital converter, the present invention proposes a time-interleaving pipeline successive approximation analog-to-digital converter, which has a sampling frequency above GHz and a wide signal The bandwidth can be used for high-speed conversion of the signals in the radio frequency system, and at the same time, the on-chip analog and digital calibration technology can be used to solve the channel-to-channel mismatch problem of the time-interleaved analog-to-digital converter. In addition, the invention adopts the pipeline successive approximation hybrid architecture (PSAR) A sub-analog-to-digital converter for low-power designs.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
本发明涉及一种时间交织流水线逐次逼近模数转换器,包括:流水线逐次逼近模数转换器单元、片上集成的输入缓冲器单元、时钟产生模块单元和数字重构滤波器单元,其中:输入缓冲器单元接收时间交织流水线逐次逼近模数转换器的输入信号,为输入提供50欧姆的阻抗匹配;流水线逐次逼近模数转换器单元根据输入缓冲器的模拟输出信息,进行模数转换处理,得到模拟输入信号对应的数字码值;时钟产生模块单元根据时钟输入信号,进行分频和相位处理,为流水线逐次逼近模数转换器单元提供采样时钟,控制时间交织流水线逐次逼近模数转换器整体工作时序;数字重构滤波器单元根据流水线逐次逼近模数转换器单元输出的数据进行交织重构,得到时间交织流水线逐次逼近模数转换器的数字输出码值。The invention relates to a time-interleaving pipeline successive approximation analog-to-digital converter, comprising: a pipeline successive approximation analog-to-digital converter unit, an input buffer unit integrated on a chip, a clock generation module unit and a digital reconstruction filter unit, wherein: an input buffer The processor unit receives the input signal of the time-interleaved pipeline successive approximation analog-to-digital converter, and provides 50 ohm impedance matching for the input; the pipeline successive approximation analog-to-digital converter unit performs analog-to-digital conversion processing according to the analog output information of the input buffer to obtain an analog The digital code value corresponding to the input signal; the clock generation module unit performs frequency division and phase processing according to the clock input signal, provides a sampling clock for the pipeline successive approximation analog-to-digital converter unit, and controls the time interleaving pipeline successively approximating the overall working sequence of the analog-to-digital converter The digital reconstruction filter unit performs interleaving and reconstruction according to the data output by the pipeline successive approximation analog-to-digital converter unit, and obtains the digital output code value of the time-interleaving pipeline successive approximation analog-to-digital converter.
所述的流水线逐次逼近模数转换器单元为四通道结构,每个通道均包括:三级子逐次逼近寄存器型模拟数字转换器(SAR ADC)、两个级间残差放大器、一个自举开关、一个单核数字校准模块以及一个数字纠错逻辑DEC,其中:自举开关工作在Fs/4的频率下对输入进行采样,第一级SAR ADC对输入进行量化并得到残差,残差放大器将残差电压放大至后一级SAR ADC;三级SAR ADC分辨率分别为5bit、5bit和6bit,两级级间残差放大器增益为8x;单核数字校准模块完成三级SAR ADC的比较器失调校准、残差放大器失调校准以及级间残差放大器的增益校准;DEC对三级子SAR ADC的输出进行逻辑运算,得到输出数据。The pipeline successive approximation analog-to-digital converter unit has a four-channel structure, and each channel includes: a three-stage sub-successive approximation register-type analog-to-digital converter (SAR ADC), two interstage residual amplifiers, and a bootstrap switch , a single-core digital calibration module and a digital error correction logic DEC, in which: the bootstrap switch works at the frequency of Fs/4 to sample the input, the first-stage SAR ADC quantizes the input and obtains the residual, and the residual amplifier Amplify the residual voltage to the next-stage SAR ADC; the resolutions of the three-stage SAR ADC are 5bit, 5bit and 6bit respectively, and the gain of the residual amplifier between the two stages is 8x; the single-core digital calibration module completes the comparator of the three-stage SAR ADC Offset calibration, residual amplifier offset calibration, and gain calibration of interstage residual amplifiers; DEC performs logical operations on the output of the three-stage sub-SAR ADC to obtain output data.
所述的级间残差放大器包括:一个主体电路、一个共模检测电路以及一个增益补偿电路,其中:动态放大器工作在三个相位,复位、放大和保持,实现残差电压放大。共模检测电路控制输出共模并控制残差放大器放大过程,增益补偿电路根据不同的工作环境和PVT调整残差放大器的放大倍数。The interstage residual amplifier includes: a main circuit, a common mode detection circuit and a gain compensation circuit, wherein: the dynamic amplifier works in three phases, resets, amplifies and maintains to realize residual voltage amplification. The common mode detection circuit controls the output common mode and controls the amplification process of the residual amplifier, and the gain compensation circuit adjusts the amplification factor of the residual amplifier according to different working environments and PVT.
所述的输入缓冲器包括:一个源级跟随器(Source Follower)架构的缓冲器和一个片上负压产生器,其中:缓冲器为模数转换器的输入提供驱动能力并为前一级提供50欧姆的阻抗匹配,片上负压产生器为输入缓冲器提供负压供电,提高输入缓冲器的线性度。The input buffer includes: a source follower (Source Follower) architecture buffer and an on-chip negative pressure generator, wherein: the buffer provides the driving capability for the input of the analog-to-digital converter and provides 50 Ω for the previous stage. Ohmic impedance matching, the on-chip negative voltage generator provides negative voltage power supply for the input buffer to improve the linearity of the input buffer.
技术效果technical effect
本发明通过四通道时间交织流水线逐次逼近模数转换器整体架构设计方法及其通道间失配校准方案、流水线逐次逼近模数转换器单元及其校准方案、基于动态放大器的级间残差放大器的增益补偿技术,可以实现12bit的分辨率和接近GHz的信号带宽,同时具备低功耗的特点。时间交织带来的通道间失配和子逐次逼近寄存器型模拟数字转换器ADC本身的非理想因素被数字校准系统校正。The invention adopts a four-channel time interleaving pipeline successive approximation analog-to-digital converter overall architecture design method and an inter-channel mismatch calibration scheme, a pipeline successive approximation analog-to-digital converter unit and its calibration scheme, and a dynamic amplifier-based interstage residual amplifier. Gain compensation technology can achieve 12bit resolution and signal bandwidth close to GHz, and has the characteristics of low power consumption. The channel-to-channel mismatch caused by time interleaving and the non-idealities of the sub-sequential-approximation register-based analog-to-digital converter ADC itself are corrected by a digital calibration system.
附图说明Description of drawings
图1为四通道时间交织流水线逐次逼近模数转换器的结构示意图;1 is a schematic structural diagram of a four-channel time-interleaving pipeline successive approximation analog-to-digital converter;
图2为四通道时间交织流水线逐次逼近模数转换器通道间定时误差校准模块的示意图;2 is a schematic diagram of a four-channel time interleaving pipeline successive approximation analog-to-digital converter inter-channel timing error calibration module;
图3为四通道时间交织流水线逐次逼近模数转换器的工作时序图;Fig. 3 is the working sequence diagram of the successive approximation analog-to-digital converter of the four-channel time interleaving pipeline;
图4为流水线逐次逼近模数转换器单元的结构示意图;4 is a schematic structural diagram of a pipeline successive approximation analog-to-digital converter unit;
图5为三级子逐次逼近寄存器型模拟数字转换器的工作时序图;Fig. 5 is the working sequence diagram of the three-stage successive approximation register type analog-to-digital converter;
图6为基于动态放大器的残差放大器电路图;6 is a circuit diagram of a residual amplifier based on a dynamic amplifier;
图7为片上集成输入缓冲器电路图。Figure 7 is a circuit diagram of an on-chip integrated input buffer.
具体实施方式Detailed ways
如图1所示,为本实施例涉及一种四通道时间交织流水线逐次逼近模数转换器,包括:时钟产生模块、可控延时链、依次相连的输入缓冲器、流水线逐次逼近模数转换器单元、数字重构滤波器和校准模块,其中:时钟产生模块与可控延时链用于构成通道间定时误差校准模块,输入缓冲器接收信号电压Vin与四路子模数转换器的自举开关相连,时钟产生模块与流水线逐次逼近模数转换器单元相连,接收时间交织逐次逼近模数转换器的主频时钟CLKS,主频时钟的频率为时间交织模数转换器的采样频率,时钟产生模块输出四个降频时钟,即CLK0、CLK1、CLK2和CLK3,它们的频率为时间交织逐次逼近模数转换器采样频率的1/4,且他们的相位两两相差90°。分别控制流水线逐次逼近模数转换器单元中的四个通道中的三级子逐次逼近寄存器型模拟数字转换器和自举开关,从而实现四通道时间交织,四个通道中的三级子逐次逼近寄存器型模拟数字转换器ADC0~3以时间交织流水线逐次逼近模数转换器采样频率1/4的速度交替工作并输出12bit的数据D0<11:0>、D1<11:0>、D2<11:0>、D3<11:0>,经数字重构滤波器重构后输出未校准数据Dch<11:0>至校准模块,校准模块输出校准后的输出Dout<11:0>。As shown in FIG. 1 , the present embodiment relates to a four-channel time-interleaving pipeline successive approximation analog-to-digital converter, including: a clock generation module, a controllable delay chain, input buffers connected in sequence, and a pipeline successive approximation analog-to-digital conversion A clock generator unit, a digital reconstruction filter and a calibration module, wherein: the clock generation module and the controllable delay chain are used to form an inter-channel timing error calibration module, and the input buffer receives the signal voltage V in and the automatic output of the four-way sub-analog-to-digital converter. A switch is connected, the clock generation module is connected to the pipeline successive approximation analog-to-digital converter unit, and the main frequency clock CLK S of the time-interleaving successive approximation analog-to-digital converter is received, and the frequency of the main frequency clock is the sampling frequency of the time-interleaving analog-to-digital converter, The clock generation module outputs four down-converted clocks, namely CLK 0 , CLK 1 , CLK 2 and CLK 3 , their frequencies are 1/4 of the sampling frequency of the time-interleaving successive approximation analog-to-digital converter, and their phases differ by 90 °. Control the three-stage sub-sequential approximation register-type analog-to-digital converter and the bootstrap switch in the four channels in the pipeline successive approximation analog-to-digital converter unit respectively, thereby realizing four-channel time interleaving, and the three-stage sub-sequential approximation in the four channels The register-type analog-to-digital converter ADC0~3 works alternately at a speed of 1/4 of the sampling frequency of the analog-to-digital converter with a time-interleaving pipeline and outputs 12-bit data D 0 <11:0>, D 1 <11:0>, D 2 <11:0>, D 3 <11:0>, after reconstruction by the digital reconstruction filter, the uncalibrated data D ch <11:0> is output to the calibration module, and the calibration module outputs the calibrated output Dout<11: 0>.
如图2所示,所述的通道间定时误差校准模块包括:时钟产生模块、分频器以及并联的四路可控延时链,其中:时钟产生模块接收时间交织逐次逼近模数转换器的主频时钟CLKS,经过片上时钟缓冲器后被分频器4分频,产生CLK0、CLK1、CLK2、CLK3等四相时钟。四相时钟分别控制四个通道中的三级子逐次逼近寄存器型模拟数字转换器ADC0~3进行采样。As shown in FIG. 2 , the inter-channel timing error calibration module includes: a clock generation module, a frequency divider and a parallel four-way controllable delay chain, wherein: the clock generation module receives the time-interleaved successive approximation analog-to-digital converter. The main frequency clock CLK S is divided by 4 by the frequency divider after passing through the on-chip clock buffer to generate four-phase clocks such as CLK 0 , CLK 1 , CLK 2 , and CLK 3 . The four-phase clocks respectively control the three-stage sub-sequential approximation register analog-to-digital converter ADC0-3 in the four channels to sample.
由于寄生、布线以及制造工艺的偏差,四相时钟之间的相位会有所偏差,并不能做到准确的1/4相位间隔,从而导致定时误差的产生。Due to the deviation of parasitics, wiring and manufacturing process, the phase between the four-phase clocks will be deviated, and the accurate 1/4 phase interval cannot be achieved, resulting in the generation of timing errors.
本实施例中通过可控延时链调整四相时间之间的相位间隔,每个可控延时链被8bit数字输入码值调控,分别为Dtune0<7:0>、Dtune1<7:0>、Dtune2<7:0>和Dtune3<7:0>,从而实现定时误差的校准,消除由于定时误差造成的谐波,提高时间交织流水线逐次逼近模数转换器的线性度和无杂散动态范围。In this embodiment, the phase interval between the four-phase times is adjusted through a controllable delay chain, and each controllable delay chain is regulated by an 8-bit digital input code value, which are Dtune0<7:0> and Dtune1<7:0> respectively. , Dtune2<7:0> and Dtune3<7:0>, so as to realize the calibration of timing errors, eliminate the harmonics caused by timing errors, and improve the linearity and spurious-free dynamic range of successive approximation analog-to-digital converters in time-interleaving pipelines .
如图3所示,为四通道时间交织流水线逐次逼近模数转换器的时序图。CLKS、CLK0、CLK1、CLK2、CLK3为图1中所示的时钟产生模块输入信号与四个通道中的三级子逐次逼近寄存器型模拟数字转换器ADC的控制信号,D0<11:0>、D1<11:0>、D2<11:0>、D3<11:0>为四个通道中的三级子逐次逼近寄存器型模拟数字转换器ADC输出数据。[n-1]、[n]、[n+1]…代表第n-1、n、n+1…个采样时刻输入信号的数字输出码值。参见时序图,CLKS、CLK0、CLK1、CLK2、CLK3之间相隔1/4个相位,当CLK0信号为高时,通道0的自举开关闭合,ADC0开始采样,经过一次采样时间后,采样结束,自举开关断开,第一三级子逐次逼近寄存器型模拟数字转换器ADC0开始进行转换,经过一次转换时间后完成转换,得到输出结果D0<11:0>的第n个周期数据。而后第二至第四三级子逐次逼近寄存器型模拟数字转换器ADC1~3依次开始采样和转换,得到D1<11:0>、D2<11:0>、D3<11:0>的第n个周期数据,然后进入第n+1个周期,周而复始。As shown in Figure 3, it is the timing diagram of the successive approximation analog-to-digital converter of the four-channel time interleaving pipeline. CLK S , CLK 0 , CLK 1 , CLK 2 , CLK 3 are the input signal of the clock generation module shown in FIG. 1 and the control signal of the three-stage sub-successive approximation register type analog-to-digital converter ADC in the four channels, D 0 <11:0>, D 1 <11:0>, D 2 <11:0>, D 3 <11:0> are the three-stage successive approximation register analog-to-digital converter ADC output data in four channels. [n-1], [n], [n+1]...represent the digital output code value of the input signal at the n-1, n, n+1...th sampling time. Referring to the timing diagram, CLK S , CLK 0 , CLK 1 , CLK 2 , and CLK 3 are separated by 1/4 phase. When the CLK 0 signal is high, the bootstrap switch of
如图4所示,所述的三级子逐次逼近寄存器型模拟数字转换器包括:三个级间残差放大器SAR1、SAR2和SAR3、两级残差放大器RA1和RA2,其中:第一级间残差放大器SAR1与第一级残差放大器RA1相连,第一级残差放大器RA1与第二级间残差放大器SAR2相连,第二级间残差放大器SAR2与第二级残差放大器RA2相连,第二级残差放大器RA2与第三级间残差放大器SAR3相连,第一级间残差放大器接收自举采样开关信号SW_p与SW_m(SamplingSwitch)。As shown in FIG. 4 , the three-stage sub-sequential approximation register-type analog-to-digital converter includes: three interstage residual amplifiers SAR1, SAR2 and SAR3, and two-stage residual amplifiers RA1 and RA2, wherein: the first interstage The residual amplifier SAR1 is connected to the first-stage residual amplifier RA1, the first-stage residual amplifier RA1 is connected to the second inter-stage residual amplifier SAR2, and the second inter-stage residual amplifier SAR2 is connected to the second-stage residual amplifier RA2, The second-stage residual amplifier RA2 is connected to the third inter-stage residual amplifier SAR3, and the first inter-stage residual amplifier receives the bootstrap sampling switch signals SW_p and SW_m (SamplingSwitch).
所述的三级子逐次逼近寄存器型模拟数字转换器分别为第一级5bit、第二级5bit和第三级6bit SAR ADC。The three-stage sub-sequential-approximation register-type analog-to-digital converters are respectively a first-stage 5-bit, a second-stage 5-bit and a third-stage 6-bit SAR ADC.
图4中,φs为采样时钟。CDAC_p与CDAC_m(Capacitor Digital-to-AnalogConverter)为第一级采样电容。φc1为第一级比较器比较时钟,φc2为第二级比较器比较时钟,φc3为第三级比较器比较时钟。D<15:0>为16bit未经过校准和数字误差逻辑的流水线模数转换器原始输出数据,其中,D<15:11>为第一级SAR ADC输出数据,D<10:6>为第二级SARADC输出数据,D<5:0>为第三级SAR ADC的输出数据。Dout<11:0>为各级子SAR ADC原始输出数据经过失调、增益校准和数字纠错逻辑DEC(Digital Error Correction)后的实际输出数据。In Fig. 4, φ s is the sampling clock. CDAC_p and CDAC_m (Capacitor Digital-to-AnalogConverter) are the first-stage sampling capacitors. φ c1 is the comparison clock of the first-level comparator, φ c2 is the comparison clock of the second-level comparator, and φ c3 is the comparison clock of the third-level comparator. D<15:0> is the raw output data of the 16-bit pipeline analog-to-digital converter without calibration and digital error logic, where D<15:11> is the output data of the first-stage SAR ADC, and D<10:6> is the first-stage SAR ADC output data. The output data of the second-stage SAR ADC, D<5:0> is the output data of the third-stage SAR ADC. Dout<11:0> is the actual output data after the original output data of each sub-SAR ADC has undergone offset, gain calibration and digital error correction logic DEC (Digital Error Correction).
与现有的流水线逐次逼近模数转换器不同,本装置没有使用闭环放大器作为级间残差放大器,而是使用动态放大器作为级间残差放大器的架构,从而降低功耗,节省面积。本实施例通过模拟增益补偿技术,降低了动态放大器在不同PVT情况下的增益变化。Different from the existing pipeline successive approximation analog-to-digital converter, the device does not use a closed-loop amplifier as the inter-stage residual amplifier, but uses a dynamic amplifier as the structure of the inter-stage residual amplifier, thereby reducing power consumption and saving area. This embodiment reduces the gain variation of the dynamic amplifier under different PVT conditions through the analog gain compensation technology.
本实施例中所使用的CDAC在Main DAC的基础上增加PN CAP以及Cali DAC,其中:Main DAC与传统CDAC相同,采用的是上极板采样以提高采样速度,同时采用分裂式单调的置位方法,保证CDAC上极板的共模电压在比较和置位中保持不变;PN Cap用于伪随机PN(Pseudorandom)信号注入以及级间残差放大器的增益校准。Cali DAC用于完成比较器和残差放大器的失调校准。The CDAC used in this embodiment adds PN CAP and Cali DAC on the basis of the Main DAC, wherein: the Main DAC is the same as the traditional CDAC, adopts the upper plate sampling to improve the sampling speed, and adopts the split monotonic setting The method ensures that the common mode voltage of the upper plate of the CDAC remains unchanged during comparison and setting; PN Cap is used for pseudo-random PN (Pseudorandom) signal injection and gain calibration of interstage residual amplifiers. The Cali DAC is used to complete the offset calibration of the comparator and residual amplifier.
当SAR ADC处于采样和结束阶段时,PN Cap处于Reset状态,CDAC_p上的PN Cap下极板接正参考电压VREFP,CDAC_m上的PN Cap下极板接负参考电压VREFM。当SAR ADC结束转换阶段进入残差放大阶段时,PN Cap根据输入的伪差分随机信号pn,下极板电压发生翻转。若“pn=1”,则CDAC_p上的PN Cap下极板电压保持正参考电压不变,CDAC_m上的PN Cap下极板电压由负参考电压翻转至正参考电压;若“pn=0”,则CDAC_p下的PN Cap下极板电压保持负参考电压不变,CDAC_m上的PN Cap上极板电压由正参考电压翻转至负参考电压。注入的pn信号在校准模块中与ADC的输出信号相乘,累加并平均,即可得到级间残差放大器增益。Cali DAC用于校准比较器和残差放大器的失调。当SAR ADC在采样阶段时,Cali DAC处于复位阶段,CDAC_p中的Cali DAC下极板接正参考电压,CDAC_m中的Cali DAC下极板接负参考电压。当SAR ADC处于比较阶段时,Cali DAC处于比较器失调校准模式,Cali DAC下极板根据比较器的失调校准码分别接至正参考电压和负参考电压,完成比较器的失调校准。当SARADC处于残差放大阶段,Cali DAC下极板根据残差放大器的失调校准码分别接至正参考电压和负参考电压,完成残差放大器的失调校准。When the SAR ADC is in the sampling and ending stage, the PN Cap is in the Reset state, the lower plate of the PN Cap on CDAC_p is connected to the positive reference voltage VREFP, and the lower plate of the PN Cap on CDAC_m is connected to the negative reference voltage VREFM. When the SAR ADC ends the conversion stage and enters the residual amplification stage, the PN Cap will invert the lower plate voltage according to the input pseudo-differential random signal pn. If "pn=1", the PN Cap lower plate voltage on CDAC_p keeps the positive reference voltage unchanged, and the PN Cap lower plate voltage on CDAC_m is reversed from the negative reference voltage to the positive reference voltage; if "pn=0", the Then the PN Cap lower plate voltage under CDAC_p keeps the negative reference voltage unchanged, and the PN Cap upper plate voltage on CDAC_m is reversed from the positive reference voltage to the negative reference voltage. The injected pn signal is multiplied by the ADC output signal in the calibration module, accumulated and averaged to obtain the interstage residual amplifier gain. The Cali DAC is used to calibrate the offset of comparators and residual amplifiers. When the SAR ADC is in the sampling phase, the Cali DAC is in the reset phase, the lower plate of the Cali DAC in CDAC_p is connected to the positive reference voltage, and the lower plate of the Cali DAC in CDAC_m is connected to the negative reference voltage. When the SAR ADC is in the comparison stage, the Cali DAC is in the comparator offset calibration mode, and the lower plate of the Cali DAC is respectively connected to the positive reference voltage and the negative reference voltage according to the comparator offset calibration code to complete the comparator offset calibration. When the SARADC is in the residual amplifier stage, the lower plate of the Cali DAC is connected to the positive reference voltage and the negative reference voltage respectively according to the offset calibration code of the residual amplifier to complete the offset calibration of the residual amplifier.
如图5所示,φs控制自举开关的打开和关断,为采样时钟,其采样频率为1/fsub。fsub为三级流水线逐次ADC的采样频率,其值为1/4Fs,Fs为时间交织ADC的整体采样频率。φc1、φc2、φc3分别为第一级SAR ADC、第二级SAR ADC和第三级SAR ADC的比较器的比较时钟。级间残差放大器使用的是基于动态放大器的架构,因此需要一个复位信号。φRA1、φRST1分别为第一级残差放大器的放大相位和复位相位。φRA2、φRST2分别为第二级残差放大器的放大相位和复位相位。D<15:0>为三级流水线输出的原始数据,其中:D<15:11>为第一级输出数据,D<10:6>为第二级输出数据,D<5:0>为第三级输出数据,D<15:0>的时序图上,灰色阴影部分为不稳定状态,白色为稳定状态。参见时序图,当第n个转换周期到来时,首先φs被拉高,进入三级流水线逐次逼近ADC的采样阶段,在采样阶段后,φs被拉低。第一级比较器开始工作,进入第一级SAR ADC的转换阶段,SAR逻辑为1b/1cycle的架构,在经过5次比较后,完成比较,D<15:11>由不稳定状态转为稳定状态,得到D<15:11>的第[n]个周期转换值,与此同时,φRA1被拉高,第一级残差放大器开始工作并进入放大阶段,将第一级SAR ADC的残差电压放大至第二级SAR ADC。第二级比较器开始工作,进入第二级SAR ADC的转换阶段,在经过5次比较后,完成比较阶段,D<10:6>由不稳定状态转为稳定状态,得到D<10:6>的第[n]个周期转换值。与此同时,φRA2被拉高,第一级残差放大器开始工作并进入放大阶段,将第二级SAR ADC的残差电压放大至第三级SAR ADC。第三级比较器开始工作,进入第三级SARADC的转换阶段,在经过6次比较后,完成比较,D<5:0>由不稳定状态转为稳定状态,得到D<5:0>的第[n]个周期转换值。在经过时序对准和数字校准以及DEC后,得到Dout<11:0>的第n个周期输出。值得注意的时,整个转换过程是流水线工作的,当第一级完成第n个周期的数据转换并将残差电压放大至第二级且第二级开始进行第n个周期的数据转换器时,第一级又开始接收第n+1个周期的采样信号并开始转换。As shown in Figure 5, φ s controls the opening and closing of the bootstrap switch, which is the sampling clock, and its sampling frequency is 1/fsub. fsub is the sampling frequency of the three-stage pipeline successive ADC, and its value is 1/4Fs, and Fs is the overall sampling frequency of the time interleaving ADC. φ c1 , φ c2 , and φ c3 are the comparison clocks of the comparators of the first-stage SAR ADC, the second-stage SAR ADC, and the third-stage SAR ADC, respectively. The interstage residual amplifier uses a dynamic amplifier based architecture and therefore requires a reset signal. φ RA1 and φ RST1 are the amplification phase and reset phase of the first-stage residual amplifier, respectively. φ RA2 and φ RST2 are the amplification phase and reset phase of the second-stage residual amplifier, respectively. D<15:0> is the original data output by the three-stage pipeline, among which: D<15:11> is the output data of the first stage, D<10:6> is the output data of the second stage, and D<5:0> is the output data of the second stage The third-level output data, on the timing diagram of D<15:0>, the gray shaded part is the unstable state, and the white is the stable state. Referring to the timing diagram, when the nth conversion cycle comes, φ s is pulled high first, and enters the sampling stage of the three-stage pipeline successively approximating the ADC. After the sampling stage, φ s is pulled low. The first-stage comparator starts to work and enters the conversion stage of the first-stage SAR ADC. The SAR logic is a 1b/1cycle architecture. After 5 comparisons, the comparison is completed, and D<15:11> changes from unstable to stable. state, the [n]th cycle conversion value of D<15:11> is obtained. At the same time, φ RA1 is pulled high, the first-stage residual amplifier starts to work and enters the amplification stage, and the residual of the first-stage SAR ADC is The difference voltage is amplified to the second stage SAR ADC. The second-stage comparator starts to work and enters the conversion stage of the second-stage SAR ADC. After 5 comparisons, the comparison stage is completed, and D<10:6> changes from an unstable state to a stable state, obtaining D<10:6 > of the [n]th cycle transition value. At the same time, φ RA2 is pulled high, the first-stage residual amplifier starts to work and enters the amplification stage, amplifying the residual voltage of the second-stage SAR ADC to the third-stage SAR ADC. The third-stage comparator starts to work and enters the conversion stage of the third-stage SARADC. After 6 comparisons, the comparison is completed, and D<5:0> changes from an unstable state to a stable state, and the value of D<5:0> is obtained. The [n]th cycle transition value. After timing alignment and digital calibration and DEC, the nth cycle output of Dout<11:0> is obtained. It is worth noting that the entire conversion process is pipelined, when the first stage completes the data conversion of the nth cycle and amplifies the residual voltage to the second stage and the second stage starts the data conversion of the nth cycle. , the first stage starts to receive the sampling signal of the n+1th cycle and starts to convert.
如图6所示,所述的级间残差放大器,包括:主体电路、共模检测电路和模拟增益补偿电路,其中:共模检测电路分别输出CMD信号至主体电路和模拟增益补偿电路,图中VIP、VIM为输入差分信号,CLK_RA为残差放大器放大信号,CLK_RST为残差放大器复位信号,VOP、VOM为残差放大器差分输出信号,CMD为共模检测输出信号。As shown in FIG. 6 , the interstage residual amplifier includes: a main body circuit, a common mode detection circuit and an analog gain compensation circuit, wherein: the common mode detection circuit outputs CMD signals to the main body circuit and the analog gain compensation circuit respectively. Among them, VIP and VIM are input differential signals, CLK_RA is residual amplifier amplification signal, CLK_RST is residual amplifier reset signal, VOP and VOM are residual amplifier differential output signals, and CMD is common mode detection output signal.
如图6a所示,所述的主体电路包括:尾电流控制管M0、M1、输入差分对管M2、M3、控制放大电路与输出电容的连接管M4、M5、复位对管M6、M7以及后一级负载电容CL。As shown in FIG. 6a , the main circuit includes: tail current control transistors M 0 , M 1 , input differential pair transistors M 2 , M 3 , connection transistors M 4 , M 5 for controlling the amplifier circuit and the output capacitor, and a reset pair Tubes M 6 , M 7 and the latter stage load capacitor CL .
如图6b所示,所述的共模检测电路中:C0、C1用于检测VOP、VOM的输出共模电压,M8~M18检测输出共模电压并产生CMD信号控制残差放大器工作,当输出共模电压达到VCM时,CMD被拉低至地电平,从而关断残差放大器,结束放大过程。参考电压产生器控制共模检测电路的起始电压,参考电压产生器的输出电压会根据PVT(Process,Voltage,Temperature)发生变化,当PVT导致残差放大器的增益降低时,参考电压产生器的输出电压抬高,从而增大残差放大器的放大时间,提高残差放大器的增益。反之,当PVT导致残差放大器的增益增大时,参考电压产生器的输出电压降低,从而减小残差放大器的放大时间,降低残差放大器的增益,从而使得残差放大器的增益保持稳定。值得注意的,参考电压产生器的构成电路并不是唯一的,只要能够产出与残差放大器本体增益随PVT变化趋势相反的输出电压,即可作为参考电压产生器的实施电路。As shown in Fig. 6b, in the common mode detection circuit: C 0 and C 1 are used to detect the output common mode voltage of VOP and VOM, M 8 -M 18 detect the output common mode voltage and generate a CMD signal to control the residual amplifier When the output common-mode voltage reaches VCM, CMD is pulled down to the ground level, thereby turning off the residual amplifier and ending the amplification process. The reference voltage generator controls the starting voltage of the common mode detection circuit, and the output voltage of the reference voltage generator will change according to PVT (Process, Voltage, Temperature). The output voltage is raised, thereby increasing the amplification time of the residual amplifier and increasing the gain of the residual amplifier. Conversely, when PVT causes the gain of the residual amplifier to increase, the output voltage of the reference voltage generator decreases, thereby reducing the amplification time of the residual amplifier and reducing the gain of the residual amplifier, thereby keeping the gain of the residual amplifier stable. It is worth noting that the constituent circuit of the reference voltage generator is not unique, as long as it can generate an output voltage that is opposite to the variation trend of the residual amplifier body gain with PVT, it can be used as the implementation circuit of the reference voltage generator.
如图7所示,所述的输入缓冲器根据时间交织流水线逐次逼近模数转换器的输入信号,经过缓冲后输出至四个流水线逐次逼近模数转换器,该输入缓冲器采用基于源级跟随器架构,具体包括:源级跟随器M0~M3、耦合隔直电路R0~R3、C0~C3和自举开关S0~S4,其中:源级跟随器和耦合隔直电路构成主体电路,自举开关连接流水线逐次逼近模数转换器单元。As shown in FIG. 7 , the input buffer according to the time interleaving pipeline successively approximates the input signal of the analog-to-digital converter, and after buffering, it is output to the four pipeline successive approximation analog-to-digital converters. The architecture includes: source-level followers M 0 -M 3 , coupled DC blocking circuits R 0 -R 3 , C 0 -C 3 and bootstrap switches S 0 -S 4 , wherein: source-level followers and coupling isolation circuits The straight circuit constitutes the main circuit, and the bootstrap switch is connected to the pipeline successively approximating the analog-to-digital converter unit.
所述的源级跟随器M0~M3尺寸较大,为输出提供足够的驱动能力。The source-level followers M0 to M3 are relatively large in size, and provide sufficient driving capability for the output.
图中:VIN为输入缓冲器输入电压,VOUT为输入缓冲器输出电压,Vb1、Vb2、Vb3、Vb4为输入缓冲器的四个直流偏置电压。VDD(1.8V)为输入缓冲器的正电源电压。VSS(-0.5V)为输入缓冲器的负电源电压,Vb1、Vb2、Vb3、Vb4为电阻分压产生,EN<3:0>为四个偏置电路的使能信号,当EN<3:0>为高电平时,四个偏置电路正常输出偏置电压。当EN<3:0>为低电平时,四个偏置电路被关闭,Vb1、Vb2、Vb3、Vb4被置位到VDD(1.8V)上,输入缓冲器被关断。Vb1、Vb2、Vb3、Vb4可以被8bit控制字调控。Rtune0<7:0>、Rtune1<7:0>、Rtune2<7:0>、Rtune3<7:0>分别可以调控四个偏置电路中电阻的比例,从而调控Vb1、Vb2、Vb3、Vb4的电压。负电源电压VSS(-0.5V)通过片上集成的Negative Charge Pump进行供电,与传统片外供电相比,具有更高的集成度、更小的电源纹波和更好的性能。In the figure: VIN is the input buffer input voltage, VOUT is the input buffer output voltage, and V b1 , V b2 , V b3 , and V b4 are the four DC bias voltages of the input buffer. VDD (1.8V) is the positive supply voltage of the input buffer. VSS(-0.5V) is the negative power supply voltage of the input buffer, V b1 , V b2 , V b3 , and V b4 are generated by resistive voltage division. EN<3:0> is the enable signal of the four bias circuits. When When EN<3:0> is high, the four bias circuits output the bias voltage normally. When EN<3:0> is low, the four bias circuits are turned off, V b1 , V b2 , V b3 , and V b4 are set to VDD (1.8V), and the input buffers are turned off. V b1 , V b2 , V b3 , V b4 can be regulated by 8bit control word. Rtune0<7:0>, Rtune1<7:0>, Rtune2<7:0>, Rtune3<7:0> can respectively adjust the ratio of the resistances in the four bias circuits, thereby adjusting V b1 , V b2 , V b3 , V b4 voltage. The negative power supply voltage VSS (-0.5V) is powered by the on-chip Negative Charge Pump, which has higher integration, smaller power ripple and better performance than traditional off-chip power supply.
经过具体实际实验,在28nm的工艺下,所实现的四通道的流水线逐次逼近模数转换器单元可以达到2GHz的采样频率和800MHz的信号带宽,所能达到的信噪失真比为61.3dB,无杂散动态范围为73dB。After specific practical experiments, under the 28nm process, the realized four-channel pipeline successive approximation analog-to-digital converter unit can reach a sampling frequency of 2GHz and a signal bandwidth of 800MHz, and the achieved signal-to-noise distortion ratio is 61.3dB. The spurious dynamic range is 73dB.
与现有技术相比,本装置实现了2GHz采样,800MHz信号带宽的高速高性能模数转换器,信噪失真比达到61.3dB,无杂散动态范围为73dB。Compared with the prior art, the device realizes a high-speed and high-performance analog-to-digital converter with 2GHz sampling and 800MHz signal bandwidth, the signal-to-noise-distortion ratio reaches 61.3dB, and the spurious-free dynamic range is 73dB.
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。The above-mentioned specific implementation can be partially adjusted by those skilled in the art in different ways without departing from the principle and purpose of the present invention. The protection scope of the present invention is subject to the claims and is not limited by the above-mentioned specific implementation. Each implementation within the scope is bound by the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210670904.XA CN114978165A (en) | 2022-06-08 | 2022-06-08 | Time-interleaved pipelined successive approximation analog-to-digital converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210670904.XA CN114978165A (en) | 2022-06-08 | 2022-06-08 | Time-interleaved pipelined successive approximation analog-to-digital converter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114978165A true CN114978165A (en) | 2022-08-30 |
Family
ID=82960720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210670904.XA Pending CN114978165A (en) | 2022-06-08 | 2022-06-08 | Time-interleaved pipelined successive approximation analog-to-digital converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114978165A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115642915A (en) * | 2022-12-23 | 2023-01-24 | 南京航空航天大学 | A pipeline successive approximation ADC bit weight calibration system and method |
WO2024139108A1 (en) * | 2022-12-31 | 2024-07-04 | 深圳市中兴微电子技术有限公司 | Analog-to-digital conversion device and method |
CN118353459A (en) * | 2024-04-25 | 2024-07-16 | 成都士模微电子有限责任公司 | Multi-channel successive approximation analog-to-digital converter systems, integrated circuits, chips and devices |
CN119154873A (en) * | 2024-11-19 | 2024-12-17 | 浙江大学 | Level-crossing pipelined analog-to-digital converter with triggered sampling and residual quantization |
CN119210455A (en) * | 2024-09-09 | 2024-12-27 | 迅芯微电子(苏州)股份有限公司 | A Successive Approximation-Pipeline Hybrid Analog-to-Digital Converter and Timing Control Method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101287097B1 (en) * | 2012-01-17 | 2013-07-16 | 서강대학교산학협력단 | Four-channel pipelined sar adc to minimize mismatches between channels |
EP3043479A1 (en) * | 2015-01-09 | 2016-07-13 | Analog Devices Global | Multichannel analog-to-digital converter |
CN106788437A (en) * | 2015-11-20 | 2017-05-31 | 上海贝岭股份有限公司 | The method of the sampling rate of flow-line modulus converter and raising analog-digital converter |
CN107809248A (en) * | 2016-09-08 | 2018-03-16 | 上海贝岭股份有限公司 | Multi-mode analog to digital conversion circuit |
CN108880495A (en) * | 2018-07-11 | 2018-11-23 | 电子科技大学 | A kind of dynamic residual amplifier circuit of high-gain high linearity |
CN112564650A (en) * | 2020-12-21 | 2021-03-26 | 深圳市纽瑞芯科技有限公司 | Residual error amplifier circuit for assembly line successive approximation type ADC |
CN113691259A (en) * | 2021-08-27 | 2021-11-23 | 中山大学 | An ADC with four-channel time interleaving structure and its working principle |
-
2022
- 2022-06-08 CN CN202210670904.XA patent/CN114978165A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101287097B1 (en) * | 2012-01-17 | 2013-07-16 | 서강대학교산학협력단 | Four-channel pipelined sar adc to minimize mismatches between channels |
EP3043479A1 (en) * | 2015-01-09 | 2016-07-13 | Analog Devices Global | Multichannel analog-to-digital converter |
CN106788437A (en) * | 2015-11-20 | 2017-05-31 | 上海贝岭股份有限公司 | The method of the sampling rate of flow-line modulus converter and raising analog-digital converter |
CN107809248A (en) * | 2016-09-08 | 2018-03-16 | 上海贝岭股份有限公司 | Multi-mode analog to digital conversion circuit |
CN108880495A (en) * | 2018-07-11 | 2018-11-23 | 电子科技大学 | A kind of dynamic residual amplifier circuit of high-gain high linearity |
CN112564650A (en) * | 2020-12-21 | 2021-03-26 | 深圳市纽瑞芯科技有限公司 | Residual error amplifier circuit for assembly line successive approximation type ADC |
CN113691259A (en) * | 2021-08-27 | 2021-11-23 | 中山大学 | An ADC with four-channel time interleaving structure and its working principle |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115642915A (en) * | 2022-12-23 | 2023-01-24 | 南京航空航天大学 | A pipeline successive approximation ADC bit weight calibration system and method |
CN115642915B (en) * | 2022-12-23 | 2023-04-07 | 南京航空航天大学 | A pipeline successive approximation ADC bit weight calibration system and method |
WO2024139108A1 (en) * | 2022-12-31 | 2024-07-04 | 深圳市中兴微电子技术有限公司 | Analog-to-digital conversion device and method |
CN118353459A (en) * | 2024-04-25 | 2024-07-16 | 成都士模微电子有限责任公司 | Multi-channel successive approximation analog-to-digital converter systems, integrated circuits, chips and devices |
CN119210455A (en) * | 2024-09-09 | 2024-12-27 | 迅芯微电子(苏州)股份有限公司 | A Successive Approximation-Pipeline Hybrid Analog-to-Digital Converter and Timing Control Method |
CN119154873A (en) * | 2024-11-19 | 2024-12-17 | 浙江大学 | Level-crossing pipelined analog-to-digital converter with triggered sampling and residual quantization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114978165A (en) | Time-interleaved pipelined successive approximation analog-to-digital converter | |
CN104967451B (en) | Gradual approaching A/D converter | |
CN109120268B (en) | A dynamic comparator offset voltage calibration method | |
Singer et al. | A 14-bit 10-MHz calibration-free CMOS pipelined A/D converter | |
US8957803B2 (en) | Capacitive voltage divider | |
CN104320141B (en) | A kind of bit stream line type gradually-appoximant analog-digital converter of low-power consumption 12 | |
Jeon et al. | A 4.7 mW 0.32 mm2 10b 30MS/s pipelined ADC without a front-end S/H in 90nm CMOS | |
CN111446964B (en) | Novel fourteen-bit pipeline-successive approximation type analog-to-digital converter | |
US20250132768A1 (en) | Flash-sar adc conversion method and circuit | |
Wang et al. | A 0.82 mW 14b 130MS/S pipelined-SAR ADC with a distributed averaging correlated level shifting (DACLS) ringamp and bypass-window backend | |
Seo et al. | A 40nm CMOS 12b 200MS/s single-amplifier dual-residue pipelined-SAR ADC | |
CN111327324A (en) | A Capacitor Array Structure Suitable for Successive Approximation Analog-to-Digital Converter | |
CN104753533B (en) | One kind is classified shared binary channels flow-line modulus converter | |
CN110224701B (en) | Pipelined ADC | |
Tu et al. | A 1.2 V 30mW 8b 800MS/s time-interleaved ADC in 65nm CMOS | |
Li et al. | High-resolution and high-speed integrated cmos ad converters for low-power applications | |
CN104796146B (en) | A kind of memory effect eliminates low-power consumption analog-digital converter | |
CN115149948B (en) | A Pipelined SAR ADC with High Linearity | |
Zhou et al. | A 3.3 V 14-bit 125MS/s pipeline ADC with hybrid 1.8 V/3.3 V MOSFET technique in 0.18 µm CMOS | |
Kulhalli et al. | A 30mW 12b 21MSample/s pipelined CMOS ADC | |
Guo et al. | A 10MS/s 16bit SAR ADC Achieving 100dB SFDR and 90dB SNDR in 0.18 um CMOS | |
Cao et al. | 24.2 A 14b 1GS/s Single-Channel Pipelined ADC with A Parallel-Operation SAR Sub-Quantizer and A Dynamic-Deadzone Ring Amplifier | |
Yang et al. | A low power pipelined ADC with improved MDAC | |
Sumanen et al. | A single-amplifier 6-bit CMOS pipeline A/D converter for WCDMA receivers | |
Zhang et al. | A 10-GS/s Sample and Hold System for High-Speed Time-Interleaved ADC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |