CN114967597B - 一种基于双向泰勒保证数控加工刀具轨迹g2连续的曲线拟合方法 - Google Patents
一种基于双向泰勒保证数控加工刀具轨迹g2连续的曲线拟合方法 Download PDFInfo
- Publication number
- CN114967597B CN114967597B CN202210538510.9A CN202210538510A CN114967597B CN 114967597 B CN114967597 B CN 114967597B CN 202210538510 A CN202210538510 A CN 202210538510A CN 114967597 B CN114967597 B CN 114967597B
- Authority
- CN
- China
- Prior art keywords
- arc length
- curve
- data points
- bidirectional
- continuity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003754 machining Methods 0.000 title claims abstract description 52
- 230000002457 bidirectional effect Effects 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000012545 processing Methods 0.000 claims abstract description 52
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000012888 cubic function Methods 0.000 claims description 3
- 238000012890 quintic function Methods 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims 1
- 238000005457 optimization Methods 0.000 abstract description 4
- 230000001133 acceleration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/41—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
- G05B19/4103—Digital interpolation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35336—Display locus and corresponding actual block
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Abstract
本发明属于数控加工轨迹优化领域,具体涉及一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,首先根据离散数据点分成若干小加工区域建立弧长参数化信息,其次对每个加工区域前后两个数据点分别建立空间Frenet坐标系,在局部坐标系上对弧长进行双向泰勒展开,单位切矢T、法矢N、副法矢B方向分别投影得到基于曲率、挠率及其导数表达的拟合曲线,最后对每个加工区域上拟合曲线进行桥接处理,通过数据点处泰勒展开的弧长各阶导数的相等保证桥接曲线满足光顺性要求,保证建立满足加工误差和G2连续的数控加工刀具轨迹。通过本发明生成的数控加工刀具轨迹满足G2连续性和精度要求,计算量小,适合加工,能够有效地提高加工效率。
Description
技术领域
本发明属于数控加工轨迹优化领域,具体涉及一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法。
背景技术
在数控加工轨迹优化领域中,对于复杂的工件,一般会通过CAD和CAM系统,将复杂的轨迹转变成由众多小线段组成的数控加工轨迹,经过后置处理,复杂轨迹转变为可识别的程序代码,将其代码传输给CNC系统。如果数控系统按照生成的加工轨迹直接运行,会存在如下缺点:(1)由于系统频繁的加减速,容易造成机床振动,降低加工效率;(2)生成的轨迹光顺性较差,无法满足加工精度要求。为了避免频繁的加减速,降低加工过程中的震荡与冲击,使得加工轨迹具有良好的光顺性,采用G2连续,使两段曲线在连接处点点连续且曲率矢量相同。Akima样条在数据点处只有G1连续,即两段曲线在连接处点点连续且切线方向相同,经Frenet-Taylor桥接处理后,可以达到G2连续。
随着社会的不断发展,市场的竞争也越来越激烈,因此各个生产企业都迫切地需要改进生产技术,提高生产效率,尤其在数控加工轨迹优化领域。对于上述的缺陷和不足,本发明专利提出一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,双向泰勒展开得到的刀具轨迹计算量小,适合机床加工,在保证桥接曲线满足光顺性要求的同时,也满足加工误差。通过本发明生成的数控加工刀具轨迹满足G2连续性和精度要求,计算量较小,适合机床加工,实时性好,能够有效地提高加工效率。
发明内容
本发明所要解决的技术问题是提供一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,首先根据离散数据点分成若干小加工区域建立弧长参数化信息,其次对每个加工区域前后两个数据点分别建立空间Frenet坐标系,在局部坐标系上对弧长进行双向泰勒展开,单位切矢T、单位法矢N、单位副法矢B方向分别投影得到基于曲率、挠率及其导数表达的拟合曲线,最后对每个加工区域上拟合曲线进行桥接处理,通过数据点处双向泰勒展开的弧长各阶导数的相等保证桥接曲线满足光顺性要求,基于双向泰勒展开,保证建立满足加工误差和G2连续的数控加工刀具轨迹。
本发明所要解决上述技术问题的技术方案如下:
本发明提供的一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,其特征在于,具体包括如下步骤:
(1)分段建立Akima样条基函数,计算离散数据点处对应的参数u、一阶切矢q、离散导数ds/du、离散积分∫sdu,每两个相邻的数据点之间形成若干个小加工区域,参数化后的离散数据点对应加工区域上的弧长s作为即将拟合曲线的一般参数u;
(2)以步骤1计算的一阶切矢q,计算双弦高误差和切线误差,识别数据点,划分连续加工区域,数据点小于3的加工区域用Hermite三次函数拼接,数据点大于3小于5的加工区域用Hermite五次函数拼接,满足误差要求的加工区域按步骤3处理,利用Akima参数化过程中得到的几何信息,计算离散点处的微分几何数对,单位切矢量(T1,T2)、单位法矢量(N1,N2)、单位副法矢量(B1,B2)、离散数据点曲率(k1,k2)、挠率(τ1,τ2)及其各阶导数;
(3)同一加工区域内,将微分几何数对合并成对应离散数据点的Frenet坐标系,将离散数据点处将要拟合的曲线在Frenet坐标系下展开成弧长的双向泰勒展开式,拟合成单样条曲线;
(4)对每个加工区域的1和2位置形成的拟合样条曲线,以G2连续性条件进行曲线导引,得到桥接处理的整条样条曲线,通过数据点处双向泰勒展开的弧长各阶导数的相等保证桥接曲线满足光顺性要求,保证建立满足加工误差和G2连续的数控加工刀具轨迹。
进一步地,所述的步骤(1)具体为:所述的Akima弧长参数化,是一种离散数据点参数化计算方法,设存在一个有序点列Si=(ux,i,uy,i,uz,i)i=0,1,2,…,n。区别于向心参数化,通过Akima插值确定数据点处的弧长参数s,以弧长参数s作为拟合曲线的一般参数:
基于弧长参数的Akima插值公式,用矩阵形式表示弧长参数化插值形式g(s),则g(s)可表示成(s-si)的三次多项式,其系数构成一个系数矩阵,系数矩阵的元素:
ai=Si,bi=σi,
li为数据点的弦长,是弧长参数化形式g(s)的弧长参数si,将第i个剖分单元[li,li+1]数据点处的切线矢量σi用近邻加工区域的斜率矢量的加权求和表示:
其中:u是S(si)的分量,即直线段的加工区域上式将成为不定式,为避免计算发散,取要求拟合的曲线S(si)的数据点的斜率矢量依靠邻近五个点两个加工区域提供,当时,
从笛卡尔坐标系看,离散数据点处通过Akima弧长参数化可以确定参数的几何信息有:
x′(si)=Bf,i+2Cf,i(si)+3Df,i(si)2
y′(si)=Bg,i+2Cg,i(si)+3Dg,i(si)2
z′(si)=Bw,i+2Cw,i(si)+3Dw,i(si)2
x″(si)=2Cf,i+6Df,i(si)
y″(si)=2Cg,i+6Dg,i(si)
z″(si)=2Cw,i+6Dw,i(si)
x″′(si)=6Df,i
y″′(si)=6Dg,i
z″′(si)=6Dw,i
s′(si)=1
进一步地,所述的步骤(2)具体为:所述的离散点处的微分几何数对,单位切矢量(T1,T2)、单位法矢量(N1,N2)、单位副法矢量(B1,B2)、离散数据点曲率(k1,k2)、挠率(τ1,τ2)及其各阶导数微分在二维空间的公式为:
k=|x′y″-x″y′|
在三维空间的公式为:
进一步地,所述的步骤(3)具体为:所述的Frenet坐标系下展开成弧长的双向泰勒展开式,二维空间曲线参数方程如下:
以此得到的数控加工刀具轨迹Frenet形式的泰勒展开C(s):
T(Δs)=(x′,y′)
三维空间曲线参数方程如下:
x=x(s),y=y(s),z=z(s)
T(Δs)=(x′,y′,z′)
进一步地,所述的步骤(4)具体为:所述的桥接处理包括二维平面曲线和三维空间曲线的桥接,数控刀具轨迹的参数方程需要对每个插值加工区域进行分段低次的Frenet形式泰勒展开的前后桥接,μ和ν表示拟合点到前后离散数据点之间和弧长的距离,桥接公式如下:
本发明涉及一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,保证了桥接曲线满足光顺性要求,避免频繁的加减速,降低加工过程中的震荡与冲击,通过本发明生成的数控加工刀具轨迹满足G2连续性和精度要求,计算量较小,适合机床加工,实时性好,能够有效地提高加工效率。
附图说明
图1为双向泰勒拟合效果示意图;
图2为非连续区域的桥接过程示意图;
具体实施方式
为了使本发明的目的、拟合方法及优点更加清晰,以下结合附图及实施例,对本发明专利进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
首先根据离散数据点分成若干小加工区域建立弧长参数化信息,其次对每个加工区域前后两个数据点分别建立空间Frenet坐标系,在局部坐标系上对弧长进行双向泰勒展开,单位切矢T、单位法矢N、单位副法矢B方向分别投影得到基于曲率、挠率及其导数表达的拟合曲线,最后对每个加工区域上拟合曲线进行桥接处理,通过数据点处双向泰勒展开的弧长各阶导数的相等保证桥接曲线满足光顺性要求,基于双向泰勒展开,保证建立满足加工误差和G2连续的数控加工刀具轨迹,得到双向泰勒拟合效果示意图如图1所示。
为了更好的解释本发明专利,给出如下一个具体的实施例:
本发明提供了一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,具体包括如下步骤:
(1)分段建立Akima样条基函数
计算离散数据点处对应的参数u、一阶切矢q、离散导数ds/du、离散积分∫s du,每两个相邻的数据点之间形成若干个小加工区域,通过Akima插值确定数据点处的弧长参数s,以弧长参数s作为拟合曲线的一般参数:
基于弧长参数的Akima插值公式,用矩阵形式表示弧长参数化插值形式g(s),则g(s)可表示成(s-si)的三次多项式,其系数构成一个系数矩阵,系数矩阵的元素:
ai=Si,bi=σi,
li为数据点的弦长,是弧长参数化形式g(s)的弧长参数si,将第i个剖分单元[li,li+1]数据点处的切线矢量σi用近邻加工区域的斜率矢量的加权求和表示:
其中:
u是S(si)的分量,即直线段的加工区域上式将成为不定式,为避免计算发散,取要求拟合的曲线S(si)的数据点的斜率矢量依靠邻近五个点两个加工区域提供。当时,
从笛卡尔坐标系看,离散数据点处通过Akima弧长参数化确定的参数信息有:
x′(si)=Bf,i+2Cf,i(si)+3Df,i(si)2
y′(si)=Bg,i+2Cg,i(si)+3Dg,i(si)2
z′(si)=Bw,i+2Cw,i(si)+3Dw,i(si)2
x″(si)=2Cf,i+6Df,i(si)
y″(si)=2Cg,i+6Dg,i(si)
z″(si)=2Cw,i+6Dw,i(si)
x″′(si)=6Df,i
y″′(si)=6Dg,i
z″′(si)=6Dw,i
s′(si)=1
(2)计算离散点处的微分几何不变量
以步骤1计算的一阶切矢q,计算双弦高误差和切线误差,识别数据点,划分连续加工区域,数据点小于3的加工区域用Hermite三次函数拼接,数据点大于3小于5的加工区域用Hermite五次函数拼接,满足误差要求的加工区域按步骤3处理,利用Akima参数化过程中得到的几何信息,计算离散点处的微分几何数对,单位切矢量(T1,T2)、单位法矢量(N1,N2)、单位副法矢量(B1,B2)、离散数据点曲率(k1,k2)、挠率(τ1,τ2)及其各阶导数微分在二维空间的公式为:
k=|x′y″-x″y′|
在三维空间的公式为:
(3)拟合曲线的双向泰勒展开式
同一加工区域内,将微分几何数对合并成对应离散数据点的Frenet坐标系,将离散数据点处将要拟合的曲线在Frenet坐标系下展开成弧长的双向泰勒展开式,拟合成单样条曲线,其在二维空间曲线参数方程如下:
以此得到的数控加工刀具轨迹Frenet形式的泰勒展开C(s)
T(Δs)=(x′,y′)
三维空间曲线参数方程如下:
x=x(s),y=y(s),z=z(s)
T(Δs)=(x′,y′,z′)
(4)拟合样条曲线的桥接处理
对每个加工区域的1和2位置形成的拟合样条曲线,以G2连续性条件进行曲线导引,得到桥接处理的整条样条曲线图2,图2中C1以前为前一个加工区域,C2以后为后一个加工区域,中间为非连续加工区域,C(t)为桥接曲线,当存在3点或5点离散数据点,图中表示3次或5次Hermite拼接,通过数据点处双向泰勒展开的弧长各阶导数的相等保证桥接曲线满足光顺性要求,保证建立满足加工误差和G2连续的数控加工刀具轨迹。
桥接公式如下:
μ和ν表示拟合点到前后离散数据点之间和弧长的距离。
综上所述,本发明一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,保证了桥接曲线满足光顺性要求,避免机床频繁的加减速,降低加工过程中的震荡与冲击,通过本发明生成的数控加工轨迹满足G2连续性和精度要求,实时性好,能够有效地提高加工效率。
以上对本发明及其实施例进行了描述,这种描述没有限制性,如果本领域的技术人员受其启示,在本发明的精神和范围的前提下,可进行各种变更与修改,但这些变更与修改均将落入本发明的保护范围。
Claims (4)
1.一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,其特征在于,具体包括如下步骤:
(1)分段建立Akima样条基函数,计算离散数据点处对应的参数u、一阶切矢q、离散导数ds/du、离散积分∫sdu,每两个相邻的数据点之间形成若干个小加工区域,弧长参数化后的离散数据点对应加工区域上的弧长s作为即将拟合曲线的一般参数u;
(2)以步骤1计算的一阶切矢q,计算双弦高误差和切线误差,识别数据点,划分连续加工区域,数据点小于3的加工区域用Hermite三次函数拼接,数据点大于3小于5的加工区域用Hermite五次函数拼接,满足误差要求的加工区域按步骤3处理,利用Akima参数化过程中得到的几何信息,计算离散点处的微分几何数对:单位切矢量(T1,T2)、单位法矢量(N1,N2)、单位副法矢量(B1,B2)、离散数据点曲率(k1,k2)、挠率(τ1,τ2)及其各阶导数;
(3)同一加工区域内,将微分几何数对合并成对应离散数据点的Frenet坐标系,将离散数据点处将要拟合的曲线在Frenet坐标系下展开成弧长的双向泰勒展开式,拟合成单样条曲线;
(4)对每个加工区域的1和2位置形成的拟合样条曲线,以G2连续性条件进行曲线导引,得到桥接处理的整条样条曲线,通过数据点处双向泰勒展开的弧长各阶导数的相等保证桥接曲线满足光顺性要求,保证建立满足加工误差和G2连续的数控加工刀具轨迹;
Akima弧长参数化,是一种离散数据点参数化计算方法,存在一个有序点列Si=(ux,i,uy,i,uz,i)i=0,1,2,…,n;区别于向心参数化,通过Akima插值确定数据点处的弧长参数s,以弧长参数s作为拟合曲线的一般参数:
基于弧长参数的Akima插值公式,用矩阵形式表示弧长参数化插值形式g(s),则g(s)可表示成(s-si)的三次多项式,其系数构成一个系数矩阵,系数矩阵的元素:
ai=Si,bi=σi,
li为数据点的弦长,计算数据点的切线几何信息,通过离散积分计算弧长;数据点弧长是拟合曲线弧长参数化形式g(s)的弧长参数si,将第i个剖分单元[li,li+1]数据点处的切线矢量σi用近邻加工区域的斜率矢量的加权求和表示:
其中:u是S(si)的分量,即直线段的加工区域上式将成为不定式,为避免计算发散,取要求拟合的曲线S(si)的数据点的斜率矢量依靠邻近五个点两个加工区域提供,当时,
2.根据权利要求1所述的一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,其特征在于:所述的离散点处的微分几何数对:单位切矢量(T1,T2)、单位法矢量(N1,N2)、单位副法矢量(B1,B2)、离散数据点曲率(k1,k2)、挠率(τ1,τ2)及其各阶导数微分在二维空间的公式为:
k=|x′y″-x″y′|
3.根据权利要求2所述的一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,其特征在于:所述的Frenet坐标系下展开成弧长的双向泰勒展开式,二维空间曲线参数方程如下:
以此得到的数控加工刀具轨迹Frenet形式的泰勒展开C(s):
T(Δs)=(x′,y′)
4.根据权利要求3所述的一种基于双向泰勒保证数控加工刀具轨迹G2连续的曲线拟合方法,其特征在于:所述的桥接处理包括二维平面曲线和三维空间曲线的桥接,以G2连续性条件进行曲线导引,得到桥接处理的整条样条曲线,数控刀具轨迹的参数方程需要对每个插值加工区域进行分段低次的Frenet形式泰勒展开的前后桥接,桥接公式如下:
μ和ν表示拟合点到前后离散数据点之间和弧长的距离。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210538510.9A CN114967597B (zh) | 2022-05-17 | 2022-05-17 | 一种基于双向泰勒保证数控加工刀具轨迹g2连续的曲线拟合方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210538510.9A CN114967597B (zh) | 2022-05-17 | 2022-05-17 | 一种基于双向泰勒保证数控加工刀具轨迹g2连续的曲线拟合方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114967597A CN114967597A (zh) | 2022-08-30 |
CN114967597B true CN114967597B (zh) | 2024-09-17 |
Family
ID=82983883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210538510.9A Active CN114967597B (zh) | 2022-05-17 | 2022-05-17 | 一种基于双向泰勒保证数控加工刀具轨迹g2连续的曲线拟合方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114967597B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116304564B (zh) * | 2023-02-23 | 2023-10-31 | 南京理工大学 | 一种基于改进eemd算法和自相关降噪的信号降噪方法 |
CN119292190A (zh) * | 2024-10-10 | 2025-01-10 | 苏州天准科技股份有限公司 | 一种工件轨迹规划方法、装置及存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104597847A (zh) * | 2013-10-31 | 2015-05-06 | 中国科学院沈阳计算技术研究所有限公司 | 基于Akima样条曲线拟合的前瞻插补方法 |
CN108132645A (zh) * | 2016-12-01 | 2018-06-08 | 华中科技大学 | 一种保证刀具轨迹整体g2连续的曲线拟合方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0756606B2 (ja) * | 1985-10-11 | 1995-06-14 | 松下電器産業株式会社 | 移動体の経路教示方法 |
JP3610485B2 (ja) * | 1999-09-20 | 2005-01-12 | 株式会社日立製作所 | 数値制御曲面加工装置 |
TWI512418B (zh) * | 2013-07-26 | 2015-12-11 | Nat Univ Tsing Hua | 一種五軸曲面側銑加工系統及其路徑規劃方法 |
JP6400311B2 (ja) * | 2014-03-19 | 2018-10-03 | Dmg森精機株式会社 | 制御装置 |
-
2022
- 2022-05-17 CN CN202210538510.9A patent/CN114967597B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104597847A (zh) * | 2013-10-31 | 2015-05-06 | 中国科学院沈阳计算技术研究所有限公司 | 基于Akima样条曲线拟合的前瞻插补方法 |
CN108132645A (zh) * | 2016-12-01 | 2018-06-08 | 华中科技大学 | 一种保证刀具轨迹整体g2连续的曲线拟合方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114967597A (zh) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114967597B (zh) | 一种基于双向泰勒保证数控加工刀具轨迹g2连续的曲线拟合方法 | |
CN101539769B (zh) | 基于二次b样条曲线对g01代码的拟合及插补方法 | |
CN103631198B (zh) | 基于G2连续Bézier曲线的刀具轨迹压缩方法 | |
CN109976262B (zh) | 一种针对微线段加工的全局曲率连续光顺方法 | |
CN111061213A (zh) | 一种基于Bezier曲线转角平滑过渡算法的加工方法 | |
Zhang et al. | Curve fitting and optimal interpolation on CNC machines based on quadratic B-splines | |
CN108062073B (zh) | 一种用于高质量加工的圆弧平滑压缩插补方法 | |
CN102023613A (zh) | 一种五轴联动数控加工后置处理器及其处理方法 | |
CN108073138B (zh) | 适用于高速高精加工的椭圆弧平滑压缩插补算法 | |
CN110837715B (zh) | 一种基于逆向工程技术的复杂曲面加工误差补偿方法 | |
CN111897290A (zh) | 一种轴加加速度光滑的拐角过渡平滑方法 | |
Wang et al. | Global smoothing for five-axis linear paths based on an adaptive NURBS interpolation algorithm | |
CN106125673A (zh) | 基于空间圆弧近似的轮廓误差实时估计方法 | |
CN114296398B (zh) | 一种用于激光切割的高速高精度插补方法 | |
CN113504764B (zh) | 基于位置矢量加权积分的连续线段数控加工路径平滑方法 | |
CN108415367A (zh) | 一种自动铺丝轨迹全局曲率光顺算法 | |
CN118331171B (zh) | 一种基于Airthoid曲线的刀具路径拐角光顺方法 | |
CN115616983A (zh) | 一种五轴联动同步刀具路径插补方法和系统 | |
CN114815743A (zh) | 一种数控机床的曲线插补方法、系统及存储介质 | |
Yan et al. | Asymmetrical transition-based corner rounding method driven by overlap elimination for CNC machining of short-segmented tool path | |
CN117666475A (zh) | 一种连续短线段拐角加工路径平滑方法 | |
CN114002996B (zh) | 一种混联机器人c3连续五轴路径转接光顺方法 | |
CN116360337A (zh) | 一种基于点云数据的数控加工轮廓平行刀具路径生成方法 | |
CN114488941A (zh) | 微小线段的轨迹光顺方法、介质及机床数控设备 | |
CN116339243A (zh) | 一种基于渐开线的数控系统插补的曲线拟合系统及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |