[go: up one dir, main page]

CN114966525A - Target orientation estimation method based on artificial intelligence smart city sensor array - Google Patents

Target orientation estimation method based on artificial intelligence smart city sensor array Download PDF

Info

Publication number
CN114966525A
CN114966525A CN202210532902.4A CN202210532902A CN114966525A CN 114966525 A CN114966525 A CN 114966525A CN 202210532902 A CN202210532902 A CN 202210532902A CN 114966525 A CN114966525 A CN 114966525A
Authority
CN
China
Prior art keywords
distribution
array
lnp
matrix
sensor array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210532902.4A
Other languages
Chinese (zh)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202210532902.4A priority Critical patent/CN114966525A/en
Publication of CN114966525A publication Critical patent/CN114966525A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Operations Research (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computing Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明属于人工智能定位处理技术领域,具体涉及一种基于人工智能智慧城市传感器阵列的目标方位估计方法。本发明包括:(1)以城市传感器搭建均匀阵列,确认传感器阵列接收的数据阵列L;(2)构建数据阵列中各个变量的先验分布,并对数据阵列信号进行分层先验分布等。本发明提供基于人工智能智慧城市传感器阵列的目标方位估计方法在充分考虑到多种噪声的影响,利用通过伯努利分布控制多重噪声的分布特性,通过贝叶斯模型更加接近实际智慧城市的环境,实现准确的方位估计,具备超高的区别能力和多目标分辨能力,更适合复杂城市环境中的波达方位估计。

Figure 202210532902

The invention belongs to the technical field of artificial intelligence positioning processing, and in particular relates to a target orientation estimation method based on an artificial intelligence smart city sensor array. The invention includes: (1) building a uniform array with urban sensors, and confirming the data array L received by the sensor array; (2) constructing the prior distribution of each variable in the data array, and performing hierarchical prior distribution on the data array signals. The invention provides a target orientation estimation method based on an artificial intelligence smart city sensor array, which fully considers the influence of various noises, uses the distribution characteristics of multiple noises controlled by Bernoulli distribution, and is closer to the actual smart city environment through the Bayesian model. , to achieve accurate azimuth estimation, with ultra-high discrimination ability and multi-target resolution ability, more suitable for wave arrival azimuth estimation in complex urban environments.

Figure 202210532902

Description

基于人工智能智慧城市传感器阵列的目标方位估计方法Target orientation estimation method based on artificial intelligence smart city sensor array

技术领域technical field

本发明属于人工智能定位处理技术领域,具体涉及一种基于人工智能智慧城市传感器阵列的目标方位估计方法。The invention belongs to the technical field of artificial intelligence positioning processing, and in particular relates to a target orientation estimation method based on an artificial intelligence smart city sensor array.

背景技术Background technique

由于智慧城市环境影响复杂多变,在传感器作业时会遇到人流、大雨、大风、车流等干扰,且有时会有脉冲噪声存在,复杂的噪声环境使得传统方法的测向精度降低,无法处理多种噪声同时影响的情况。在城市环境探测中,通过多种传感器构成阵列观测或接收定位信号,完成对目标的方位估计。传统方法,不足以满足高精度需求,已经具有高分辨率的方位估计,还需要信源数目等作为先验信息。Due to the complex and changeable environmental impact of smart cities, the sensor operation will encounter interference such as crowds, heavy rain, strong wind, and traffic flow, and sometimes there will be impulse noise. The complex noise environment reduces the direction finding accuracy of traditional methods and cannot handle many the simultaneous influence of various noises. In urban environment detection, a variety of sensors are used to form an array to observe or receive positioning signals to complete the azimuth estimation of the target. The traditional method is not enough to meet the high-precision requirements. It already has high-resolution orientation estimation, and also requires the number of sources as a priori information.

发明内容SUMMARY OF THE INVENTION

本发明的目的是为了提供一种多种噪声联合影响下的基于人工智能智慧城市传感器阵列的目标方位估计方法。The purpose of the present invention is to provide a target orientation estimation method based on artificial intelligence smart city sensor array under the joint influence of multiple noises.

本发明的目的是这样实现的:The object of the present invention is achieved in this way:

基于人工智能智慧城市传感器阵列的目标方位估计方法,包括如下步骤:The target orientation estimation method based on artificial intelligence smart city sensor array includes the following steps:

(1)以城市传感器搭建均匀阵列,确认传感器阵列接收的数据阵列L;(1) Build a uniform array with urban sensors, and confirm the data array L received by the sensor array;

(1.1)测量阵列接收信号长度Y,以及遍历方位空间的网格数A;(1.1) Measure the length Y of the received signal of the array, and the number of grids A traversing the azimuth space;

(1.2)构建传感器阵列流型矩阵

Figure BDA0003644177970000011
(1.2) Constructing the sensor array flow pattern matrix
Figure BDA0003644177970000011

(1.3)采集传感器探测后的期望信号矩阵K;(1.3) Collect the expected signal matrix K after sensor detection;

(1.4)采集传感器阵列各通道脉冲噪声出现状态矩阵M;(1.4) Collect the pulse noise occurrence state matrix M of each channel of the sensor array;

(1.5)采集传感器阵列各阵元的非均匀噪声矩阵I;(1.5) Collect the non-uniform noise matrix I of each element of the sensor array;

(1.6)采集传感器阵列各阵元处的脉冲噪声矩阵R;(1.6) Collect the impulse noise matrix R at each element of the sensor array;

(1.7)确认传感器阵列接收的数据阵列;(1.7) Confirm the data array received by the sensor array;

Figure BDA0003644177970000012
Figure BDA0003644177970000012

1Y×Z为Y×Z维单元矩阵;Y×Z为数据阵列的维数;1 Y×Z is the Y×Z dimension unit matrix; Y×Z is the dimension of the data array;

(2)构建数据阵列中各个变量的先验分布,并对数据阵列信号进行分层先验分布;(2) Constructing the prior distribution of each variable in the data array, and performing hierarchical prior distribution on the data array signal;

(2.1)构建系统真理第y时刻控制脉冲噪声Uy以及隐变量矩阵τy,采集第z个阵元在第y时刻控制脉冲噪声Uz,y以及隐变量矩阵τz,y(2.1) Construct the system truth control impulse noise U y and the hidden variable matrix τ y at the y-th time, and collect the z-th array element to control the impulse noise U z,y and the hidden variable matrix τ z,y at the y-th time;

(2.2)检测人工智能系统阵列的非均匀噪声方差向量ο以及第z个阵元探测的非均匀噪声方差向量οz、形状参数tz、逆尺度参数uz、流型矩阵

Figure BDA0003644177970000013
(2.2) Detect the non-uniform noise variance vector ο of the artificial intelligence system array and the non-uniform noise variance vector ο z detected by the zth array element ο z , shape parameter t z , inverse scale parameter u z , manifold matrix
Figure BDA0003644177970000013

(2.3)采集阵列中第a个扫描方位时,期望信号的方差矩阵ξa(2.3) When the a-th scanning azimuth in the array is acquired, the variance matrix ξ a of the expected signal;

(2.4)采集第y时刻阵列接收的数据ly,以及第z个阵元在第y时刻接收的数据lz,y以及第y时刻发射的数据ky;ly组成数据矩阵L;(2.4) collect the data ly received by the array at the yth moment, and the data lz, y received by the zth array element at the yth moment and the data ky transmitted at the yth moment; ly constitutes a data matrix L;

(2.5)采集第y时刻的噪声的状态向量zy(2.5) Collect the state vector zy of the noise at the yth moment;

(2.6)采集第z个阵元在第y时刻mz,y的脉冲噪声;(2.6) Collect the impulse noise of the zth array element at the yth moment m z, y ;

(2.7)构建第y时刻传感器阵列接收信号的分层先验分布:(2.7) Construct the hierarchical prior distribution of the signal received by the sensor array at the yth moment:

Figure BDA0003644177970000021
Figure BDA0003644177970000021

CN代表复高斯分布;CN stands for complex Gaussian distribution;

(2.8)构建非均匀噪声方差向量ο的分层伽马分布:(2.8) Construct the hierarchical gamma distribution of the non-uniform noise variance vector ο:

Figure BDA0003644177970000022
Figure BDA0003644177970000022

G代表伽马分布;G stands for gamma distribution;

(2.9)对期望信号的方差矩阵ξa、第y时刻的隐变量矩阵τy和控制脉冲噪声Uy分别构建分层Gamma分布:(2.9) Construct a hierarchical Gamma distribution for the variance matrix ξ a of the expected signal, the latent variable matrix τ y at the y-th moment, and the control impulse noise U y respectively:

Figure BDA0003644177970000023
Figure BDA0003644177970000023

Figure BDA0003644177970000024
Figure BDA0003644177970000024

Figure BDA0003644177970000025
Figure BDA0003644177970000025

Figure BDA0003644177970000026
Figure BDA0003644177970000026

其中,na、σz,y/3、πz,y、pz,y为对应分布的形状参数,oa、qz,y、δz,y为对应分布的逆尺度参数,σ1为约束隐变量矩阵元素τy的方差向量;Among them, na , σ z ,y /3, π z,y , p z,y are the shape parameters of the corresponding distribution, o a , q z,y , δ z,y are the inverse scale parameters of the corresponding distribution, σ 1 is the variance vector of the element τ y of the constrained latent variable matrix;

(2.10)构建对第y时刻的噪声状态向量zy构建伯努利分布为:(2.10) Constructing the Bernoulli distribution for the noise state vector z y at the y-th moment is:

Figure BDA0003644177970000027
Figure BDA0003644177970000027

γy为zy发生的概率向量;γ y is the probability vector of zy occurrence;

(2.11)对γy构建分层Beta分布:(2.11) Construct a hierarchical Beta distribution for γ y :

Figure BDA0003644177970000028
Figure BDA0003644177970000028

cz,y和dz,y分别为第z个阵元在第y时刻服从的Beta分布参数。c z,y and d z,y are the Beta distribution parameters obeyed by the zth array element at the yth time, respectively.

(2.12)求解各变量的后验概率:(2.12) Find the posterior probability of each variable:

Figure BDA0003644177970000031
Figure BDA0003644177970000031

(2.13)将步骤构建的分布矩阵依次代入下式求解各个变量的后验概率:(2.13) Substitute the distribution matrix constructed by the steps into the following formula to solve the posterior probability of each variable:

lnq(K)=<lnp(L|K,M,U,τ,ο)+lnp(L|ξ)>q(ν≠L)+CONSTlnq(K)=<lnp(L|K,M,U,τ,ο)+lnp(L|ξ)> q(ν≠L) +CONST

lnq(ξ)=<lnp(L|ξ)+lnp(ξ)>q(ν≠L)+CONSTlnq(ξ)=<lnp(L|ξ)+lnp(ξ)> q(ν≠L) +CONST

lnq(U)=<lnp(L|K,M,U,τ,ο)+lnp(U)>q(ν≠L)+CONSTlnq(U)=<lnp(L|K,M,U,τ,ο)+lnp(U)> q(ν≠L) +CONST

lnq(K)=<lnp(L|K,M,U,τ,ο)+lnp(τ|α)>q(ν≠L)+CONSTlnq(K)=<lnp(L|K,M,U,τ,ο)+lnp(τ|α)> q(ν≠L) +CONST

lnq(ο)=<lnp(L|K,M,U,τ,ο)+lnp(ο)>q(ν≠L)+CONSTlnq(ο)=<lnp(L|K,M,U,τ,ο)+lnp(ο)> q(ν≠L) +CONST

lnq(α)=<lnp(τ|α)+lnp(α)>q(ν≠L)+CONSTlnq(α)=<lnp(τ|α)+lnp(α)> q(ν≠L) +CONST

lnq(M)=<lnp(L|K,M,U,τ,ο)+lnp(M|γ)>q(ν≠L)+CONSTlnq(M)=<lnp(L|K,M,U,τ,ο)+lnp(M|γ)> q(ν≠L) +CONST

lnq(γ)=<lnp(M|γ)+lnp(γ)>q(ν≠L)+CONSTlnq(γ)=<lnp(M|γ)+lnp(γ)> q(ν≠L) +CONST

ν=(K,ξ,U,τ,α,ο,M,γ)ν=(K,ξ,U,τ,α,ο,M,γ)

其中,q()为变量的后验概率,ln为取对数,<>代表取期望,p(∣)代表其中元素的概率,q(ν≠L)为对集合中不含变量的部分进行计算,CONST为常数项;Among them, q() is the posterior probability of the variable, ln is the logarithm, <> represents the expectation, p(∣) represents the probability of the element, q(ν≠L) is the part of the set that does not contain variables. calculation, CONST is a constant term;

(3)根据步骤(2)变量的概率分布,计算系统变量的均值和方差;(3) According to the probability distribution of the variable in step (2), calculate the mean and variance of the system variable;

(3.1)参数初始化:(3.1) Parameter initialization:

设置初始迭代为1,初始化最大迭代次数、遍历方位空间的网格数A期望信号分布方差的形状参数n0,期望信号分布方差的逆尺度参数ο0,噪声方差分布的形状参数p0、t0、π0,噪声方差分布的逆尺度参数q0,u0,δ0,控制发生概率c0、d0Set the initial iteration to 1, initialize the maximum number of iterations, the number of grids to traverse the azimuth space A, the shape parameter n 0 of the expected signal distribution variance, the inverse scale parameter ο 0 of the expected signal distribution variance, and the shape parameters p 0 , t of the noise variance distribution 0 , π 0 , the inverse scale parameters q 0 , u 0 , δ 0 of the noise variance distribution, control the occurrence probability c 0 , d 0 ;

(3.2)更新期望信号的方差

Figure BDA0003644177970000032
和均值
Figure BDA0003644177970000033
(3.2) Update the variance of the expected signal
Figure BDA0003644177970000032
and mean
Figure BDA0003644177970000033

Figure BDA0003644177970000034
Figure BDA0003644177970000034

Figure BDA0003644177970000035
Figure BDA0003644177970000035

QΔ=diag(zy·οy+(1Y×Z+zy)·τy·Uy)Q Δ =diag(zy ·ο y +(1 Y×Z + z y )·τ y ·U y )

Diag为对角运算;Diag is a diagonal operation;

(3.3)更新各分布参数:(3.3) Update each distribution parameter:

Figure BDA0003644177970000036
Figure BDA0003644177970000036

Figure BDA0003644177970000037
Figure BDA0003644177970000037

Figure BDA0003644177970000038
Figure BDA0003644177970000038

Figure BDA0003644177970000041
Figure BDA0003644177970000041

Figure BDA0003644177970000042
Figure BDA0003644177970000042

Figure BDA0003644177970000043
Figure BDA0003644177970000043

Figure BDA0003644177970000044
Figure BDA0003644177970000044

Figure BDA0003644177970000045
Figure BDA0003644177970000045

Figure BDA0003644177970000046
Figure BDA0003644177970000046

Figure BDA0003644177970000047
Figure BDA0003644177970000047

(3.4)更新各变量的均值(3.4) Update the mean of each variable

Figure BDA0003644177970000048
Figure BDA0003644177970000048

Figure BDA0003644177970000049
Figure BDA0003644177970000049

Figure BDA00036441779700000410
Figure BDA00036441779700000410

Figure BDA00036441779700000411
Figure BDA00036441779700000411

Figure BDA00036441779700000412
Figure BDA00036441779700000412

(4)更新迭代次数加1;判断是否满足迭代终止条件,当满足迭代终止条件时,跳出迭代并输出

Figure BDA00036441779700000413
(4) Update the number of iterations plus 1; judge whether the iteration termination condition is met, when the iteration termination condition is met, jump out of the iteration and output
Figure BDA00036441779700000413

Figure BDA00036441779700000414
Figure BDA00036441779700000414

Toul为终止门限,ξ为期望信号方差,te为迭代次数;若不满足迭代终止条件,继续步骤(3.2)-(3.4);Toul is the termination threshold, ξ is the expected signal variance, and te is the number of iterations; if the iteration termination conditions are not met, continue with steps (3.2)-(3.4);

(5)进行方位估计,输出方位估计结果:(5) Carry out azimuth estimation and output the azimuth estimation result:

Figure BDA00036441779700000415
Figure BDA00036441779700000415

其中,‖·‖1,‖·‖为对矩阵的无穷范数运算。Among them, ‖·‖ 1 , ‖·‖ are the infinite norm operation on the matrix.

本发明的有益效果在于:The beneficial effects of the present invention are:

本发明提供基于人工智能智慧城市传感器阵列的目标方位估计方法在充分考虑到多种噪声的影响,利用通过伯努利分布控制多重噪声的分布特性,通过贝叶斯模型更加接近实际智慧城市的环境,实现准确的方位估计,具备超高的区别能力和多目标分辨能力,更适合复杂城市环境中的波达方位估计。The invention provides a target orientation estimation method based on an artificial intelligence smart city sensor array, which fully considers the influence of various noises, utilizes the distribution characteristics of multiple noises controlled by Bernoulli distribution, and is closer to the actual smart city environment through the Bayesian model. , to achieve accurate azimuth estimation, with super high discrimination ability and multi-target resolution ability, more suitable for wave arrival azimuth estimation in complex urban environments.

附图说明Description of drawings

图1为本发明方位估计流程图;Fig. 1 is the flow chart of orientation estimation of the present invention;

图2为本发明构建的模型图;Fig. 2 is a model diagram constructed by the present invention;

图3为本发明与传统稀疏方法、基于脉冲噪声的稀疏方法根均方误差对比结果;3 is a comparison result of root mean square error between the present invention and the traditional sparse method and the sparse method based on impulse noise;

图4为本发明与传统稀疏方法、基于脉冲噪声的稀疏方法的检测概率结果。FIG. 4 shows the detection probability results of the present invention, the traditional sparse method, and the impulsive noise-based sparse method.

具体实施方式Detailed ways

下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below with reference to the accompanying drawings.

结合图1和图2所示,基于人工智能智慧城市传感器阵列的目标方位估计方法,包括如下步骤:Combined with Figure 1 and Figure 2, the target orientation estimation method based on artificial intelligence smart city sensor array includes the following steps:

(1)以城市传感器搭建均匀阵列,确认传感器阵列接收的数据阵列L;(1) Build a uniform array with urban sensors, and confirm the data array L received by the sensor array;

(1.1)测量阵列接收信号长度Y,以及遍历方位空间的网格数A;(1.1) Measure the length Y of the received signal of the array, and the number of grids A traversing the azimuth space;

(1.2)构建传感器阵列流型矩阵

Figure BDA0003644177970000051
(1.2) Constructing the sensor array flow pattern matrix
Figure BDA0003644177970000051

(1.3)采集传感器探测后的期望信号矩阵K;(1.3) Collect the expected signal matrix K after sensor detection;

(1.4)采集传感器阵列各通道脉冲噪声出现状态矩阵M;(1.4) Collect the pulse noise occurrence state matrix M of each channel of the sensor array;

(1.5)采集传感器阵列各阵元的非均匀噪声矩阵I;(1.5) Collect the non-uniform noise matrix I of each element of the sensor array;

(1.6)采集传感器阵列各阵元处的脉冲噪声矩阵R;(1.6) Collect the impulse noise matrix R at each element of the sensor array;

(1.7)确认传感器阵列接收的数据阵列;(1.7) Confirm the data array received by the sensor array;

Figure BDA0003644177970000052
Figure BDA0003644177970000052

1Y×Z为Y×Z维单元矩阵;Y×Z为数据阵列的维数;1 Y×Z is the Y×Z dimension unit matrix; Y×Z is the dimension of the data array;

(2)构建数据阵列中各个变量的先验分布,并对数据阵列信号进行分层先验分布;(2) Constructing the prior distribution of each variable in the data array, and performing hierarchical prior distribution on the data array signal;

(2.1)构建系统真理第y时刻控制脉冲噪声Uy以及隐变量矩阵τy,采集第z个阵元在第y时刻控制脉冲噪声Uz,y以及隐变量矩阵τz,y(2.1) Construct the system truth control impulse noise U y and the hidden variable matrix τ y at the y-th time, and collect the z-th array element to control the impulse noise U z,y and the hidden variable matrix τ z,y at the y-th time;

(2.2)检测人工智能系统阵列的非均匀噪声方差向量ο以及第z个阵元探测的非均匀噪声方差向量οz、形状参数tz、逆尺度参数uz、流型矩阵

Figure BDA0003644177970000053
(2.2) Detect the non-uniform noise variance vector ο of the artificial intelligence system array and the non-uniform noise variance vector ο z detected by the zth array element ο z , shape parameter t z , inverse scale parameter u z , manifold matrix
Figure BDA0003644177970000053

(2.3)采集阵列中第a个扫描方位时,期望信号的方差矩阵ξa(2.3) When the a-th scanning azimuth in the array is acquired, the variance matrix ξ a of the expected signal;

(2.4)采集第y时刻阵列接收的数据ly,以及第z个阵元在第y时刻接收的数据lz,y以及第y时刻发射的数据ky;ly组成数据矩阵L;(2.4) collect the data ly received by the array at the yth moment, and the data lz, y received by the zth array element at the yth moment and the data ky transmitted at the yth moment; ly constitutes a data matrix L;

(2.5)采集第y时刻的噪声的状态向量zy(2.5) Collect the state vector zy of the noise at the yth moment;

(2.6)采集第z个阵元在第y时刻mz,y的脉冲噪声;(2.6) Collect the impulse noise of the zth array element at the yth moment m z, y ;

(2.7)构建第y时刻传感器阵列接收信号的分层先验分布:(2.7) Construct the hierarchical prior distribution of the signal received by the sensor array at the yth moment:

Figure BDA0003644177970000061
Figure BDA0003644177970000061

CN代表复高斯分布;CN stands for complex Gaussian distribution;

(2.8)构建非均匀噪声方差向量ο的分层伽马分布:(2.8) Construct the hierarchical gamma distribution of the non-uniform noise variance vector ο:

Figure BDA0003644177970000062
Figure BDA0003644177970000062

G代表伽马分布;G stands for gamma distribution;

(2.9)对期望信号的方差矩阵ξa、第y时刻的隐变量矩阵τy和控制脉冲噪声Uy分别构建分层Gamma分布:(2.9) Construct a hierarchical Gamma distribution for the variance matrix ξ a of the expected signal, the latent variable matrix τ y at the y-th moment, and the control impulse noise U y respectively:

Figure BDA0003644177970000063
Figure BDA0003644177970000063

Figure BDA0003644177970000064
Figure BDA0003644177970000064

Figure BDA0003644177970000065
Figure BDA0003644177970000065

Figure BDA0003644177970000066
Figure BDA0003644177970000066

其中,na、σz,y/3、πz,y、pz,y为对应分布的形状参数,oa、qz,y、δz,y为对应分布的逆尺度参数,σ1为约束隐变量矩阵元素τy的方差向量;Among them, na , σ z ,y /3, π z,y , p z,y are the shape parameters of the corresponding distribution, o a , q z,y , δ z,y are the inverse scale parameters of the corresponding distribution, σ 1 is the variance vector of the element τ y of the constrained latent variable matrix;

(2.10)构建对第y时刻的噪声状态向量zy构建伯努利分布为:(2.10) Constructing the Bernoulli distribution for the noise state vector z y at the y-th moment is:

Figure BDA0003644177970000067
Figure BDA0003644177970000067

γy为zy发生的概率向量;γ y is the probability vector of zy occurrence;

(2.11)对γy构建分层Beta分布:(2.11) Construct a hierarchical Beta distribution for γ y :

Figure BDA0003644177970000068
Figure BDA0003644177970000068

cz,y和dz,y分别为第z个阵元在第y时刻服从的Beta分布参数。c z,y and d z,y are the Beta distribution parameters obeyed by the zth array element at the yth time, respectively.

(2.12)求解各变量的后验概率:(2.12) Find the posterior probability of each variable:

Figure BDA0003644177970000071
Figure BDA0003644177970000071

(2.13)将步骤构建的分布矩阵依次代入下式求解各个变量的后验概率:(2.13) Substitute the distribution matrix constructed by the steps into the following formula to solve the posterior probability of each variable:

lnq(K)=<lnp(L|K,M,U,τ,ο)+lnp(L|ξ)>q(ν≠L)+CONSTlnq(K)=<lnp(L|K,M,U,τ,ο)+lnp(L|ξ)> q(ν≠L) +CONST

lnq(ξ)=<lnp(L|ξ)+lnp(ξ)>q(ν≠L)+CONSTlnq(ξ)=<lnp(L|ξ)+lnp(ξ)> q(ν≠L) +CONST

lnq(U)=<lnp(L|K,M,U,τ,ο)+lnp(U)>q(ν≠L)+CONSTlnq(U)=<lnp(L|K,M,U,τ,ο)+lnp(U)> q(ν≠L) +CONST

lnq(K)=<lnp(L|K,M,U,τ,ο)+lnp(τ|α)>q(ν≠L)+CONSTlnq(K)=<lnp(L|K,M,U,τ,ο)+lnp(τ|α)> q(ν≠L) +CONST

lnq(ο)=<lnp(L|K,M,U,τ,ο)+lnp(ο)>q(ν≠L)+CONSTlnq(ο)=<lnp(L|K,M,U,τ,ο)+lnp(ο)> q(ν≠L) +CONST

lnq(α)=<lnp(τ|α)+lnp(α)>q(ν≠L)+CONSTlnq(α)=<lnp(τ|α)+lnp(α)> q(ν≠L) +CONST

lnq(M)=<lnp(L|K,M,U,τ,ο)+lnp(M|γ)>q(ν≠L)+CONSTlnq(M)=<lnp(L|K,M,U,τ,ο)+lnp(M|γ)> q(ν≠L) +CONST

lnq(γ)=<lnp(M|γ)+lnp(γ)>q(ν≠L)+CONSTlnq(γ)=<lnp(M|γ)+lnp(γ)> q(ν≠L) +CONST

ν=(K,ξ,U,τ,α,ο,M,γ)ν=(K,ξ,U,τ,α,ο,M,γ)

其中,q()为变量的后验概率,ln为取对数,<>代表取期望,p(∣)代表其中元素的概率,q(ν≠L)为对集合中不含变量的部分进行计算,CONST为常数项;Among them, q() is the posterior probability of the variable, ln is the logarithm, <> represents the expectation, p(∣) represents the probability of the element, q(ν≠L) is the part of the set that does not contain variables. calculation, CONST is a constant term;

(3)根据步骤(2)变量的概率分布,计算系统变量的均值和方差;(3) According to the probability distribution of the variable in step (2), calculate the mean and variance of the system variable;

(3.1)参数初始化:(3.1) Parameter initialization:

设置初始迭代为1,初始化最大迭代次数、遍历方位空间的网格数A期望信号分布方差的形状参数n0,期望信号分布方差的逆尺度参数ο0,噪声方差分布的形状参数p0、t0、π0,噪声方差分布的逆尺度参数q0,u0,δ0,控制发生概率c0、d0Set the initial iteration to 1, initialize the maximum number of iterations, the number of grids to traverse the azimuth space A, the shape parameter n 0 of the expected signal distribution variance, the inverse scale parameter ο 0 of the expected signal distribution variance, and the shape parameters p 0 , t of the noise variance distribution 0 , π 0 , the inverse scale parameters q 0 , u 0 , δ 0 of the noise variance distribution, control the occurrence probability c 0 , d 0 ;

(3.2)更新期望信号的方差

Figure BDA0003644177970000072
和均值
Figure BDA0003644177970000073
(3.2) Update the variance of the expected signal
Figure BDA0003644177970000072
and mean
Figure BDA0003644177970000073

Figure BDA0003644177970000074
Figure BDA0003644177970000074

Figure BDA0003644177970000075
Figure BDA0003644177970000075

QΔ=diag(zy·οy+(1Y×Z+zy)·τy·Uy)Q Δ =diag(zy ·ο y +(1 Y×Z + z y )·τ y ·U y )

Diag为对角运算;Diag is a diagonal operation;

(3.3)更新各分布参数:(3.3) Update each distribution parameter:

Figure BDA0003644177970000076
Figure BDA0003644177970000076

Figure BDA0003644177970000077
Figure BDA0003644177970000077

Figure BDA0003644177970000078
Figure BDA0003644177970000078

Figure BDA0003644177970000079
Figure BDA0003644177970000079

Figure BDA0003644177970000081
Figure BDA0003644177970000081

Figure BDA0003644177970000082
Figure BDA0003644177970000082

Figure BDA0003644177970000083
Figure BDA0003644177970000083

Figure BDA0003644177970000084
Figure BDA0003644177970000084

Figure BDA0003644177970000085
Figure BDA0003644177970000085

Figure BDA0003644177970000086
Figure BDA0003644177970000086

(3.4)更新各变量的均值(3.4) Update the mean of each variable

Figure BDA0003644177970000087
Figure BDA0003644177970000087

Figure BDA0003644177970000088
Figure BDA0003644177970000088

Figure BDA0003644177970000089
Figure BDA0003644177970000089

Figure BDA00036441779700000810
Figure BDA00036441779700000810

Figure BDA00036441779700000811
Figure BDA00036441779700000811

(4)更新迭代次数加1;判断是否满足迭代终止条件,当满足迭代终止条件时,跳出迭代并输出

Figure BDA00036441779700000812
(4) Update the number of iterations plus 1; judge whether the iteration termination condition is met, when the iteration termination condition is met, jump out of the iteration and output
Figure BDA00036441779700000812

Figure BDA00036441779700000813
Figure BDA00036441779700000813

Toul为终止门限,ξ为期望信号方差,te为迭代次数;若不满足迭代终止条件,继续步骤(3.2)-(3.4);Toul is the termination threshold, ξ is the expected signal variance, and te is the number of iterations; if the iteration termination conditions are not met, continue with steps (3.2)-(3.4);

(5)进行方位估计,输出方位估计结果:(5) Carry out azimuth estimation and output the azimuth estimation result:

Figure BDA00036441779700000814
Figure BDA00036441779700000814

其中,‖·‖1,‖·‖为对矩阵的无穷范数运算。Among them, ‖·‖ 1 , ‖·‖ are the infinite norm operation on the matrix.

本发明的区别特征在于充分考虑到脉冲噪声及其影响大小,构建的定位模型更加符合智慧城市实际嘈杂的环境,能够获得更好的估计结果。The distinguishing feature of the present invention is that the impulse noise and its influence are fully considered, the constructed positioning model is more in line with the actual noisy environment of the smart city, and better estimation results can be obtained.

实施例1,下面进行数据模拟,使用单频脉冲信号矩阵作为入射信号,入射方位分别是-45°和-30°,每个阵元的噪声方差在[0.2,7]之间随机变化,令广义信噪比在[-15,30]区间变化,将传统稀疏方法、基于脉冲噪声的稀疏方法和本发明提出的方法进行对比分析。Example 1, the following data simulation is performed, the single-frequency pulse signal matrix is used as the incident signal, the incident azimuth is -45° and -30°, and the noise variance of each array element varies randomly between [0.2, 7], let The generalized signal-to-noise ratio varies in the interval [-15, 30], and the traditional sparse method, the impulsive noise-based sparse method and the method proposed by the present invention are compared and analyzed.

如图3为各方法在脉冲噪声环境下随GSNR变化时的均方根误差变化曲线。通过对比可以发现传统稀疏方法失效比较严重;基于脉冲噪声的稀疏方法虽然也有下降趋势,但是当多种噪声交替出现时,有跳变趋势出现,这会带来估计结果不稳定;本发明方法RMSE最低,且最稳定,得到三种方法中最好的估计结果,且偏差最小。Figure 3 shows the variation curve of the root mean square error of each method when the GSNR changes in the impulse noise environment. Through comparison, it can be found that the traditional sparse method fails more seriously; although the sparse method based on impulse noise also has a downward trend, when a variety of noises appear alternately, there is a jump trend, which will lead to unstable estimation results; the method of the present invention RMSE The lowest and the most stable, the best estimation result among the three methods is obtained, and the deviation is the smallest.

图4为三种方法在脉冲噪声环境下随GSNR变化时的检测成功概率曲线,定义目标偏差0.5°以内为检测成功。通过比较可知,传统稀疏方法脉冲噪声和非均匀噪声背景下无法及时准确发现目标方位;基于脉冲噪声的稀疏方法检测成功的概率有所增加,但是估计结果不稳定;本发明方法对目标的估计成功水平最高。因此仿真实验也充分验证了本发明的有效性和可行性。Figure 4 shows the detection success probability curves of the three methods when the GSNR changes in the impulse noise environment, and the detection success is defined as the target deviation within 0.5°. By comparison, it can be seen that the traditional sparse method cannot accurately find the target orientation in time under the background of impulse noise and non-uniform noise; the probability of successful detection of the sparse method based on impulse noise increases, but the estimation result is unstable; the method of the present invention successfully estimates the target the highest level. Therefore, the simulation experiment also fully verifies the effectiveness and feasibility of the present invention.

综上,本发明提供一种多种噪声联合影响下的基于人工智能智慧城市传感器阵列的目标方位估计方法,实现了非均匀噪声和脉冲噪声混合情况下的高精度DOA估计,更加符合实际应用场景。在脉冲噪声混合情况下的高精度波达方向估计方法,与目前存在的同类方法相比,精度更高,适应性更强。In summary, the present invention provides a target orientation estimation method based on an artificial intelligence smart city sensor array under the joint influence of multiple noises, which realizes high-precision DOA estimation in the case of a mixture of non-uniform noise and impulse noise, and is more in line with practical application scenarios. . Compared with the existing similar methods, the high-precision DOA estimation method under the mixed condition of impulse noise has higher accuracy and stronger adaptability.

Claims (6)

1.基于人工智能智慧城市传感器阵列的目标方位估计方法,其特征在于,包括如下步骤:1. The target orientation estimation method based on artificial intelligence smart city sensor array, is characterized in that, comprises the steps: (1)以城市传感器搭建均匀阵列,确认传感器阵列接收的数据阵列L;(1) Build a uniform array with urban sensors, and confirm the data array L received by the sensor array; (2)构建数据阵列中各个变量的先验分布,并对数据阵列信号进行分层先验分布;(2) Constructing the prior distribution of each variable in the data array, and performing hierarchical prior distribution on the data array signal; (3)根据步骤(2)变量的概率分布,计算系统变量的均值和方差;(3) According to the probability distribution of the variable in step (2), calculate the mean and variance of the system variable; (4)更新迭代次数加1;判断是否满足迭代终止条件,当满足迭代终止条件时,跳出迭代并输出
Figure FDA0003644177960000011
若不满足迭代终止条件,继续步骤(3);
(4) Update the number of iterations plus 1; judge whether the iteration termination condition is met, when the iteration termination condition is met, jump out of the iteration and output
Figure FDA0003644177960000011
If the iteration termination condition is not met, go to step (3);
(5)进行方位估计,输出方位估计结果。(5) Carry out azimuth estimation, and output the azimuth estimation result.
2.根据权利要求1所述的基于人工智能智慧城市传感器阵列的目标方位估计方法,其特征在于,所述步骤(1)包括:2. The target orientation estimation method based on artificial intelligence smart city sensor array according to claim 1, is characterized in that, described step (1) comprises: (1.1)测量阵列接收信号长度Y,以及遍历方位空间的网格数A;(1.1) Measure the length Y of the received signal of the array, and the number of grids A traversing the azimuth space; (1.2)构建传感器阵列流型矩阵
Figure FDA0003644177960000012
(1.2) Constructing the sensor array flow pattern matrix
Figure FDA0003644177960000012
(1.3)采集传感器探测后的期望信号矩阵K;(1.3) Collect the expected signal matrix K after sensor detection; (1.4)采集传感器阵列各通道脉冲噪声出现状态矩阵M;(1.4) Collect the pulse noise occurrence state matrix M of each channel of the sensor array; (1.5)采集传感器阵列各阵元的非均匀噪声矩阵I;(1.5) Collect the non-uniform noise matrix I of each element of the sensor array; (1.6)采集传感器阵列各阵元处的脉冲噪声矩阵R;(1.6) Collect the impulse noise matrix R at each element of the sensor array; (1.7)确认传感器阵列接收的数据阵列;(1.7) Confirm the data array received by the sensor array;
Figure FDA0003644177960000013
Figure FDA0003644177960000013
1Y×Z为Y×Z维单元矩阵;Y×Z为数据阵列的维数。1 Y×Z is the unit matrix of Y×Z dimension; Y×Z is the dimension of the data array.
3.根据权利要求1所述的基于人工智能智慧城市传感器阵列的目标方位估计方法,其特征在于,所述步骤(2)包括:3. The target orientation estimation method based on artificial intelligence smart city sensor array according to claim 1, is characterized in that, described step (2) comprises: (2.1)构建系统真理第y时刻控制脉冲噪声Uy以及隐变量矩阵τy,采集第z个阵元在第y时刻控制脉冲噪声Uz,y以及隐变量矩阵τz,y(2.1) Construct the system truth control impulse noise U y and the hidden variable matrix τ y at the y-th time, and collect the z-th array element to control the impulse noise U z,y and the hidden variable matrix τ z,y at the y-th time; (2.2)检测人工智能系统阵列的非均匀噪声方差向量ο以及第z个阵元探测的非均匀噪声方差向量οz、形状参数tz、逆尺度参数uz、流型矩阵
Figure FDA0003644177960000014
(2.2) Detect the non-uniform noise variance vector ο of the artificial intelligence system array and the non-uniform noise variance vector ο z detected by the zth array element ο z , shape parameter t z , inverse scale parameter u z , manifold matrix
Figure FDA0003644177960000014
(2.3)采集阵列中第a个扫描方位时,期望信号的方差矩阵ξa(2.3) When the a-th scanning azimuth in the array is acquired, the variance matrix ξ a of the expected signal; (2.4)采集第y时刻阵列接收的数据ly,以及第z个阵元在第y时刻接收的数据lz,y以及第y时刻发射的数据ky;ly组成数据矩阵L;(2.4) collect the data ly received by the array at the yth moment, and the data lz, y received by the zth array element at the yth moment and the data ky transmitted at the yth moment; ly constitutes a data matrix L; (2.5)采集第y时刻的噪声的状态向量zy(2.5) Collect the state vector zy of the noise at the yth moment; (2.6)采集第z个阵元在第y时刻mz,y的脉冲噪声;(2.6) Collect the impulse noise of the zth array element at the yth moment m z, y ; (2.7)构建第y时刻传感器阵列接收信号的分层先验分布:(2.7) Construct the hierarchical prior distribution of the signal received by the sensor array at the yth moment:
Figure FDA0003644177960000021
Figure FDA0003644177960000021
CN代表复高斯分布;CN stands for complex Gaussian distribution; (2.8)构建非均匀噪声方差向量ο的分层伽马分布:(2.8) Construct the hierarchical gamma distribution of the non-uniform noise variance vector ο:
Figure FDA0003644177960000022
Figure FDA0003644177960000022
G代表伽马分布;G stands for gamma distribution; (2.9)对期望信号的方差矩阵ξa、第y时刻的隐变量矩阵τy和控制脉冲噪声Uy分别构建分层Gamma分布:(2.9) Construct a hierarchical Gamma distribution for the variance matrix ξ a of the expected signal, the latent variable matrix τ y at the y-th moment, and the control impulse noise U y respectively:
Figure FDA0003644177960000023
Figure FDA0003644177960000023
Figure FDA0003644177960000024
Figure FDA0003644177960000024
Figure FDA0003644177960000025
Figure FDA0003644177960000025
Figure FDA0003644177960000026
Figure FDA0003644177960000026
其中,na、σz,y/3、πz,y、pz,y为对应分布的形状参数,oa、qz,y、δz,y为对应分布的逆尺度参数,σ1为约束隐变量矩阵元素τy的方差向量;Among them, na , σ z ,y /3, π z,y , p z,y are the shape parameters of the corresponding distribution, o a , q z,y , δ z,y are the inverse scale parameters of the corresponding distribution, σ 1 is the variance vector of the element τ y of the constrained latent variable matrix; (2.10)构建对第y时刻的噪声状态向量zy构建伯努利分布为:(2.10) Constructing the Bernoulli distribution for the noise state vector z y at the y-th moment is:
Figure FDA0003644177960000027
Figure FDA0003644177960000027
γy为zy发生的概率向量;γ y is the probability vector of zy occurrence; (2.11)对γy构建分层Beta分布:(2.11) Construct a hierarchical Beta distribution for γ y :
Figure FDA0003644177960000028
Figure FDA0003644177960000028
cz,y和dz,y分别为第z个阵元在第y时刻服从的Beta分布参数。c z,y and d z,y are the Beta distribution parameters obeyed by the zth array element at the yth time, respectively. (2.12)求解各变量的后验概率:(2.12) Find the posterior probability of each variable:
Figure FDA0003644177960000029
Figure FDA0003644177960000029
(2.13)将步骤构建的分布矩阵依次代入下式求解各个变量的后验概率:(2.13) Substitute the distribution matrix constructed by the steps into the following formula to solve the posterior probability of each variable: Inq(K)=<lnp(L|K,M,U,τ,o)+lnp(L|ξ)>q(v≠L)+CONSTInq(K)=<lnp(L|K, M, U, τ, o)+lnp(L|ξ)> q(v≠L) +CONST lnq(ξ)=<lnp(L|ξ)+lnp(ξ)>q(v≠L)+CONSTlnq(ξ)=<lnp(L|ξ)+lnp(ξ)> q(v≠L) +CONST lnq(U)=<lnp(L|K,M,U,τ,o)+lnp(U)>q(v≠L)+CONSTlnq(U)=<lnp(L|K, M, U, τ, o)+lnp(U)> q(v≠L) +CONST lnq(K)=<lnp(L|K,M,U,τ,o)+lnp(τ|α)>q(v≠L)+CONSTlnq(K)=<lnp(L|K, M, U, τ, o)+lnp(τ|α)> q(v≠L) +CONST lnq(o)=<lnp(L|K,M,U,τ,o)+lnp(o)>q(v≠L)+CONSTlnq(o)=<lnp(L|K, M, U, τ, o)+lnp(o)> q(v≠L) +CONST lnq(α)=<lnp(τ|α)+lnp(α)>q(v≠L)+CONSTlnq(α)=<lnp(τ|α)+lnp(α)> q(v≠L) +CONST lnq(M)=<lnp(L|K,M,U,τ,o)+lnp(M|γ)>q(v≠L)+CONSTlnq(M)=<lnp(L|K, M, U, τ, o)+lnp(M|γ)> q(v≠L) +CONST lnq(γ)=<lnp(M|γ)+lnp(γ)>q(v≠L)+CONSTlnq(γ)=<lnp(M|γ)+lnp(γ)> q(v≠L) +CONST v=(K,ξ,U,τ,α,o,M,γ)v=(K,ξ,U,τ,α,o,M,γ) 其中,q()为变量的后验概率,ln为取对数,<>代表取期望,p(|)代表其中元素的概率,q(v≠L)为对集合中不含变量的部分进行计算,CONST为常数项;Among them, q() is the posterior probability of the variable, ln is the logarithm, <> represents the expectation, p(|) represents the probability of the element, and q(v≠L) is the part of the set that does not contain variables. calculation, CONST is a constant term;
4.根据权利要求1所述的基于人工智能智慧城市传感器阵列的目标方位估计方法,其特征在于,所述步骤(3)包括:4. The target orientation estimation method based on artificial intelligence smart city sensor array according to claim 1, is characterized in that, described step (3) comprises: (3.1)参数初始化:(3.1) Parameter initialization: 设置初始迭代为1,初始化最大迭代次数、遍历方位空间的网格数A期望信号分布方差的形状参数n0,期望信号分布方差的逆尺度参数o0,噪声方差分布的形状参数p0、t0、π0,噪声方差分布的逆尺度参数q0,u0,δ0,控制发生概率c0、d0Set the initial iteration to 1, initialize the maximum number of iterations, the number of grids to traverse the azimuth space A, the shape parameter n 0 of the expected signal distribution variance, the inverse scale parameter o 0 of the expected signal distribution variance, and the shape parameters p 0 , t of the noise variance distribution 0 , π 0 , the inverse scale parameters q 0 , u 0 , δ 0 of the noise variance distribution, control the occurrence probability c 0 , d 0 ; (3.2)更新期望信号的方差
Figure FDA0003644177960000032
和均值
Figure FDA0003644177960000033
(3.2) Update the variance of the expected signal
Figure FDA0003644177960000032
and mean
Figure FDA0003644177960000033
Figure FDA0003644177960000034
Figure FDA0003644177960000034
Figure FDA0003644177960000035
Figure FDA0003644177960000035
QΔ=diag(zy·oy+(1Y×Z+zy)·τy·Uy)Q Δ =diag( zy·o y + (1 Y×Z + zy )·τ y ·U y ) Diag为对角运算;Diag is a diagonal operation; (3.3)更新各分布参数:(3.3) Update each distribution parameter:
Figure FDA0003644177960000036
Figure FDA0003644177960000036
Figure FDA0003644177960000037
Figure FDA0003644177960000037
Figure FDA0003644177960000038
Figure FDA0003644177960000038
Figure FDA0003644177960000039
Figure FDA0003644177960000039
Figure FDA00036441779600000310
Figure FDA00036441779600000310
Figure FDA00036441779600000311
Figure FDA00036441779600000311
Figure FDA0003644177960000041
Figure FDA0003644177960000041
Figure FDA0003644177960000042
Figure FDA0003644177960000042
Figure FDA0003644177960000043
Figure FDA0003644177960000043
Figure FDA0003644177960000044
Figure FDA0003644177960000044
(3.4)更新各变量的均值(3.4) Update the mean of each variable
Figure FDA0003644177960000045
Figure FDA0003644177960000045
Figure FDA0003644177960000046
Figure FDA0003644177960000046
Figure FDA0003644177960000047
Figure FDA0003644177960000047
Figure FDA0003644177960000048
Figure FDA0003644177960000048
Figure FDA0003644177960000049
Figure FDA0003644177960000049
5.根据权利要求1所述的基于人工智能智慧城市传感器阵列的目标方位估计方法,其特征在于,所述步骤(4)包括:5. The target orientation estimation method based on artificial intelligence smart city sensor array according to claim 1, is characterized in that, described step (4) comprises: 判断是否满足迭代终止条件,当满足迭代终止条件时,跳出迭代并输出
Figure FDA00036441779600000410
Determine whether the iteration termination condition is met, and when the iteration termination condition is met, jump out of the iteration and output
Figure FDA00036441779600000410
Figure FDA00036441779600000411
Figure FDA00036441779600000411
Toul为终止门限,ξ为期望信号方差,te为迭代次数;若不满足迭代终止条件,继续步骤(3.2)-(3.4)。Toul is the termination threshold, ξ is the expected signal variance, and te is the number of iterations; if the iteration termination conditions are not met, continue with steps (3.2)-(3.4).
6.根据权利要求1所述的基于人工智能智慧城市传感器阵列的目标方位估计方法,其特征在于,所述步骤(5)方位估计结果为:6. The target orientation estimation method based on artificial intelligence smart city sensor array according to claim 1, is characterized in that, described step (5) orientation estimation result is:
Figure FDA00036441779600000412
Figure FDA00036441779600000412
其中,||·||1,||·||为对矩阵的无穷范数运算。Among them, ||·|| 1 , ||·|| are the infinite norm operation on the matrix.
CN202210532902.4A 2022-05-15 2022-05-15 Target orientation estimation method based on artificial intelligence smart city sensor array Pending CN114966525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210532902.4A CN114966525A (en) 2022-05-15 2022-05-15 Target orientation estimation method based on artificial intelligence smart city sensor array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210532902.4A CN114966525A (en) 2022-05-15 2022-05-15 Target orientation estimation method based on artificial intelligence smart city sensor array

Publications (1)

Publication Number Publication Date
CN114966525A true CN114966525A (en) 2022-08-30

Family

ID=82983034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210532902.4A Pending CN114966525A (en) 2022-05-15 2022-05-15 Target orientation estimation method based on artificial intelligence smart city sensor array

Country Status (1)

Country Link
CN (1) CN114966525A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130332064A1 (en) * 2012-06-12 2013-12-12 Trx Systems, Inc. System and method for localizing a trackee at a location and mapping the location using inertial sensor information
CN104101876A (en) * 2014-07-22 2014-10-15 西安电子科技大学 Random finite set based multi-target tracking method in outer radiation source radar
CN112766304A (en) * 2020-12-24 2021-05-07 哈尔滨工程大学 Maneuvering array orientation estimation method based on sparse Bayesian learning
CN114063005A (en) * 2021-10-14 2022-02-18 西安电子科技大学 Maximum Posterior Direction of Arrival Estimation Method Based on Fusion Center Feedback Information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130332064A1 (en) * 2012-06-12 2013-12-12 Trx Systems, Inc. System and method for localizing a trackee at a location and mapping the location using inertial sensor information
CN104101876A (en) * 2014-07-22 2014-10-15 西安电子科技大学 Random finite set based multi-target tracking method in outer radiation source radar
CN112766304A (en) * 2020-12-24 2021-05-07 哈尔滨工程大学 Maneuvering array orientation estimation method based on sparse Bayesian learning
CN114063005A (en) * 2021-10-14 2022-02-18 西安电子科技大学 Maximum Posterior Direction of Arrival Estimation Method Based on Fusion Center Feedback Information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
金美娜;赵拥军;盖江伟;: "一种基于混合RJMCMC方法的宽带信号DOA估计方法", 电子与信息学报, no. 02, 15 February 2010 (2010-02-15) *

Similar Documents

Publication Publication Date Title
CN109490819B (en) Sparse Bayesian learning-based method for estimating direction of arrival of wave in a lattice
CN112526451B (en) Compressed beamforming and system based on microphone array imaging
CN111257845B (en) Approximate message transfer-based non-grid target angle estimation method
CN105607039B (en) Robust least squares localization method based on reaching time-difference under nlos environment
CN112710982A (en) Method, system, medium, equipment and application for estimating wave arrival angle of antenna array
CN114531729B (en) Positioning method, system, storage medium and device based on channel state information
CN109471061B (en) A Received Signal Strength Difference Location Method Robustly Handling Model Parameter Errors
CN114449452A (en) An Indoor Localization Algorithm for Heterogeneous Devices
CN109581281B (en) Moving target positioning method based on arrival time difference and arrival frequency difference
CN110673089B (en) A time-of-arrival positioning method for unknown line-of-sight and non-line-of-sight distributions
CN109633538A (en) The maximum likelihood time difference estimation method of nonuniform sampling system
CN109752710A (en) A Fast Target Angle Estimation Method Based on Sparse Bayesian Learning
CN106093849A (en) A kind of Underwater Navigation method based on range finding with neural network algorithm
CN114066792B (en) Through-wall radar imaging method based on multi-resolution fusion convolutional neural network
CN106918810A (en) A kind of microwave relevance imaging method when there is array element amplitude phase error
CN109212519B (en) Narrow-band radar target tracking method based on BF-DLSTM
CN113642591A (en) A method and system for estimating types of multi-beam seafloor sedimentary layers based on transfer learning
CN110568406B (en) A localization method based on acoustic energy under the condition of unknown energy attenuation factor
CN114966525A (en) Target orientation estimation method based on artificial intelligence smart city sensor array
CN115015832B (en) A joint estimation method of amplitude and phase error and target azimuth of large-scale array under non-uniform noise
CN103778288B (en) Ant colony optimization-based near field sound source localization method under non-uniform array noise condition
CN115015831B (en) Large-scale array target azimuth estimation method under combined influence of impulse noise and non-uniform noise
CN117471397A (en) Circular array two-dimensional DOA estimation method based on graph signal processing
CN115754896A (en) Direction of Arrival Estimation Method Based on Variational Inference Robust Sparse Bayesian Learning
CN108564171A (en) A kind of neural network sound source angle method of estimation based on quick global K mean cluster

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20250415