CN114959998A - Flexible self-powered sensor and preparation method thereof - Google Patents
Flexible self-powered sensor and preparation method thereof Download PDFInfo
- Publication number
- CN114959998A CN114959998A CN202210546932.0A CN202210546932A CN114959998A CN 114959998 A CN114959998 A CN 114959998A CN 202210546932 A CN202210546932 A CN 202210546932A CN 114959998 A CN114959998 A CN 114959998A
- Authority
- CN
- China
- Prior art keywords
- core
- syringe
- spun yarn
- polyamide
- shell layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title abstract description 13
- 239000010410 layer Substances 0.000 claims abstract description 82
- 229920002302 Nylon 6,6 Polymers 0.000 claims abstract description 59
- 239000002033 PVDF binder Substances 0.000 claims abstract description 48
- 239000012792 core layer Substances 0.000 claims abstract description 48
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 48
- XPIIYLUXKKHAPJ-UHFFFAOYSA-N 1,1,2-trifluoroethene;hydrofluoride Chemical group F.FC=C(F)F XPIIYLUXKKHAPJ-UHFFFAOYSA-N 0.000 claims abstract description 47
- 230000035945 sensitivity Effects 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 7
- 238000009941 weaving Methods 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims description 73
- 239000002184 metal Substances 0.000 claims description 73
- 229920000642 polymer Polymers 0.000 claims description 45
- 239000002121 nanofiber Substances 0.000 claims description 30
- 239000000835 fiber Substances 0.000 claims description 25
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 19
- 238000001802 infusion Methods 0.000 claims description 19
- 229910052709 silver Inorganic materials 0.000 claims description 19
- 239000004332 silver Substances 0.000 claims description 19
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 10
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical group FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000010041 electrostatic spinning Methods 0.000 claims 3
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000035699 permeability Effects 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 31
- 238000009987 spinning Methods 0.000 description 24
- 238000001523 electrospinning Methods 0.000 description 14
- 239000004744 fabric Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000011258 core-shell material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000009940 knitting Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- XLOFNXVVMRAGLZ-UHFFFAOYSA-N 1,1-difluoroethene;1,1,2-trifluoroethene Chemical group FC(F)=C.FC=C(F)F XLOFNXVVMRAGLZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- XIQPNCZCDTUCTM-UHFFFAOYSA-N fluorane Chemical compound F.F.F.F XIQPNCZCDTUCTM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/50—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
- D03D15/533—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads antistatic; electrically conductive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
- D01D5/003—Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0061—Electro-spinning characterised by the electro-spinning apparatus
- D01D5/0076—Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
- D01D5/0084—Coating by electro-spinning, i.e. the electro-spun fibres are not removed from the collecting device but remain integral with it, e.g. coating of prostheses
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/242—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
- D03D15/25—Metal
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/242—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
- D03D15/25—Metal
- D03D15/258—Noble metal
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/30—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
- D03D15/33—Ultrafine fibres, e.g. microfibres or nanofibres
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/40—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
- D03D15/47—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2101/00—Inorganic fibres
- D10B2101/20—Metallic fibres
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/04—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons
- D10B2321/042—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons polymers of fluorinated hydrocarbons, e.g. polytetrafluoroethene [PTFE]
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Textile Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nanotechnology (AREA)
- Pulmonology (AREA)
- Dispersion Chemistry (AREA)
- Woven Fabrics (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
本发明提供了一种柔性自供电传感器,为由第一包芯纱线和第二包芯纱线分别作为经纱和纬纱编织形成,所述第一包芯纱线包括导电芯层以及包覆所述导电芯层的第一壳层,所述导电芯层为导电纱线,所述第一壳层的材质为聚酰胺66,所述第一壳层具有可压缩的纳米级别的第一微结构,所述第二包芯纱线包括所述导电芯层以及包覆所述导电芯层的第二壳层,所述第二壳层的材质为聚偏二氟乙烯三氟乙烯,所述第二壳层具有可压缩的纳米级别的第二微结构。本发明提供的柔性自供电传感器具有较佳的柔软性、舒适性、透气性以及形状适应性,且灵敏度较高。本发明还提供了一种所述柔性自供电传感器的制备方法。
The present invention provides a flexible self-powered sensor, which is formed by weaving a first core-spun yarn and a second core-spun yarn as warp yarns and weft yarns, respectively, wherein the first core-spun yarn includes a conductive core layer and a wrapping The first shell layer of the conductive core layer, the conductive core layer is a conductive yarn, the material of the first shell layer is polyamide 66, and the first shell layer has a compressible nanoscale first microstructure , the second core-spun yarn includes the conductive core layer and the second shell layer covering the conductive core layer, the material of the second shell layer is polyvinylidene fluoride trifluoroethylene, the first The bishell layer has a compressible nanoscale second microstructure. The flexible self-powered sensor provided by the present invention has better flexibility, comfort, air permeability and shape adaptability, and has higher sensitivity. The invention also provides a preparation method of the flexible self-powered sensor.
Description
技术领域technical field
本发明涉及传感器技术领域,特别是涉及一种柔性自供电传感器及其制备方法。The invention relates to the technical field of sensors, in particular to a flexible self-powered sensor and a preparation method thereof.
背景技术Background technique
柔性传感技术作为一项新兴学科迅速发展。其中,智能可穿戴设备发展迅速,对于柔性传感设备的可穿戴性、舒适性以及灵敏性等各方面的性能要求进一步提高。目前,许多柔性自供电传感器的研制大多采用“三明治”状的多层结构,制备过程复杂,柔软性、舒适性和透气性较差,形状适应性不足,多层结构的模量不能有效适应人体活动的复杂形变。Flexible sensing technology is developing rapidly as an emerging discipline. Among them, smart wearable devices are developing rapidly, and the performance requirements of flexible sensing devices in terms of wearability, comfort, and sensitivity are further improved. At present, the development of many flexible self-powered sensors mostly adopts the "sandwich"-like multi-layer structure, the preparation process is complicated, the softness, comfort and air permeability are poor, the shape adaptability is insufficient, and the modulus of the multi-layer structure cannot effectively adapt to the human body. Complex morphing of activities.
发明内容SUMMARY OF THE INVENTION
基于此,有必要提供一种柔软性、舒适性、透气性以及形状适应性较佳、且灵敏度更高的柔性自供电传感器。Based on this, it is necessary to provide a flexible self-powered sensor with better flexibility, comfort, air permeability and shape adaptability, and higher sensitivity.
另,还有必要提供一种上述柔性自供电传感器的制备方法。In addition, it is also necessary to provide a preparation method of the above-mentioned flexible self-powered sensor.
本发明一方面提供了一种柔性自供电传感器,为由第一包芯纱线和第二包芯纱线分别作为经纱和纬纱编织形成,所述第一包芯纱线包括导电芯层以及包覆所述导电芯层的第一壳层,所述导电芯层和所述第一壳层同轴设置,所述导电芯层为导电纱线,所述第一壳层的材质为聚酰胺66,所述第一壳层摩擦后带正电,所述第一壳层具有可压缩的纳米级别的第一微结构,所述第二包芯纱线包括所述导电芯层以及包覆所述导电芯层的第二壳层,所述导电芯层和所述第二壳层同轴设置,所述第二壳层的材质为聚偏二氟乙烯三氟乙烯,所述第二壳层摩擦后带负电,所述第二壳层具有可压缩的纳米级别的第二微结构。One aspect of the present invention provides a flexible self-powered sensor, which is formed by weaving a first core-spun yarn and a second core-spun yarn as warp yarns and weft yarns, respectively, wherein the first core-spun yarn includes a conductive core layer and a wrapping The first shell layer covering the conductive core layer, the conductive core layer and the first shell layer are coaxially arranged, the conductive core layer is a conductive yarn, and the material of the first shell layer is polyamide 66 , the first shell layer is positively charged after friction, the first shell layer has a compressible nano-scale first microstructure, the second core-spun yarn includes the conductive core layer and wraps the The second shell layer of the conductive core layer, the conductive core layer and the second shell layer are coaxially arranged, the material of the second shell layer is polyvinylidene fluoride trifluoroethylene, the second shell layer friction After being negatively charged, the second shell layer has a compressible nanoscale second microstructure.
在一可能的实施例中,所述第一壳层为由多个纳米级别的聚酰胺66纤丝相互交错构成,所述第二壳层为由多个纳米级别的聚偏二氟乙烯三氟乙烯纤丝相互交错构成。In a possible embodiment, the first shell layer is composed of a plurality of nano-scale polyamide 66 filaments interlaced with each other, and the second shell layer is composed of a plurality of nano-scale polyvinylidene fluoride trifluoride. Vinyl filaments are intertwined.
在一可能的实施例中,所述聚酰胺66纤丝的直径为500-900nm,和/或所述聚偏二氟乙烯三氟乙烯纤丝的直径为500-900nm。In a possible embodiment, the diameter of the polyamide 66 filament is 500-900 nm, and/or the diameter of the polyvinylidene fluoride trifluoroethylene filament is 500-900 nm.
在一可能的实施例中,所述导电纱线为导电银纤维、导电铜纤维以及导电金纤维中的至少一种。In a possible embodiment, the conductive yarn is at least one of conductive silver fibers, conductive copper fibers, and conductive gold fibers.
在一可能的实施例中,所述第一包芯纱线的直径为400-500μm,和/或所述第二包芯纱线的直径为400-500μm。In a possible embodiment, the diameter of the first core-spun yarn is 400-500 μm, and/or the diameter of the second core-spun yarn is 400-500 μm.
在一可能的实施例中,所述柔性自供电传感器的灵敏度大于或等于5.59V/kPa。In a possible embodiment, the sensitivity of the flexible self-powered sensor is greater than or equal to 5.59V/kPa.
本发明另一方面提供了一种上述柔性自供电传感器的制备方法,包括以下步骤:Another aspect of the present invention provides a preparation method of the above-mentioned flexible self-powered sensor, comprising the following steps:
将聚酰胺66溶解于第一溶剂中,得到聚酰胺66聚合物溶液;dissolving polyamide 66 in the first solvent to obtain a polyamide 66 polymer solution;
采用静电纺包芯纱装置将所述聚酰胺66聚合物溶液形成聚酰胺66纳米纤维,并将所述聚酰胺66纳米纤维包裹在所述导电芯层的表面,以在所述导电芯层的表面形成所述第一壳层,从而得到所述第一包芯纱线;The polyamide 66 polymer solution is formed into polyamide 66 nanofibers by using an electrospinning core-spun yarn device, and the polyamide 66 nanofibers are wrapped on the surface of the conductive core layer, so as to form the polyamide 66 nanofibers on the surface of the conductive core layer. forming the first shell layer on the surface, thereby obtaining the first core-spun yarn;
将聚偏二氟乙烯三氟乙烯溶解于第二溶剂中,得到聚偏二氟乙烯三氟乙烯聚合物溶液;dissolving polyvinylidene fluoride trifluoroethylene in the second solvent to obtain a polyvinylidene fluoride trifluoroethylene polymer solution;
采用所述静电纺包芯纱装置将所述聚偏二氟乙烯三氟乙烯聚合物溶液形成聚偏二氟乙烯三氟乙烯纳米纤维,并将所述聚偏二氟乙烯三氟乙烯纳米纤维包裹在另一所述导电芯层的表面,以在所述导电芯层的表面形成所述第二壳层,从而得到所述第二包芯纱线;以及Using the electrospinning core-spun yarn device to form the polyvinylidene fluoride trifluoroethylene polymer solution into polyvinylidene fluoride trifluoroethylene nanofibers, and wrapping the polyvinylidene fluoride trifluoroethylene nanofibers on the surface of the other conductive core layer to form the second shell layer on the surface of the conductive core layer, so as to obtain the second core-spun yarn; and
将所述第一包芯纱线和所述第二包芯纱线分别作为经纱和纬纱进行编织,以得到所述柔性自供电传感器。The first core-spun yarn and the second core-spun yarn are woven as warp yarns and weft yarns, respectively, to obtain the flexible self-powered sensor.
在一可能的实施例中,所述第一溶剂为六氟异丙醇,和/或所述第二聚合物溶液为N,N-二甲基甲酰胺与丙酮的混合液。In a possible embodiment, the first solvent is hexafluoroisopropanol, and/or the second polymer solution is a mixed solution of N,N-dimethylformamide and acetone.
在一可能的实施例中,采用所述静电纺包芯纱装置将所述聚酰胺66聚合物溶液形成所述聚酰胺66纳米纤维具体包括以下步骤:In a possible embodiment, using the electrospinning core-spun yarn device to form the polyamide 66 polymer solution into the polyamide 66 nanofibers specifically includes the following steps:
将所述聚酰胺66聚合物溶液装载在第一注射器和第二注射器中,并由第一直流高压电源和第二直流高压电源分别对所述第一注射器的第一金属针头和所述第二注射器的第二金属针头施加第一电压和第二电压,并同时通过第一输液泵和第二输液泵分别推动所述第一注射器和所述第二注射器,以使所述第一注射器和所述第二注射器中的所述聚酰胺66聚合物溶液以聚酰胺66纳米纤维的形式被纺出;The polyamide 66 polymer solution is loaded in the first syringe and the second syringe, and the first metal needle of the first syringe and the first metal needle of the first syringe and the first metal needle of the first syringe are respectively charged by the first DC high voltage power supply and the second DC high voltage power supply. The second metal needles of the two syringes apply the first voltage and the second voltage, and simultaneously push the first syringe and the second syringe through the first infusion pump and the second infusion pump, respectively, so that the first syringe and the second The polyamide 66 polymer solution in the second syringe is spun out in the form of polyamide 66 nanofibers;
和/或采用所述静电纺包芯纱装置将所述聚偏二氟乙烯三氟乙烯聚合物溶液形成所述聚偏二氟乙烯三氟乙烯纳米纤维具体包括以下步骤:And/or using the electrospinning core-spun yarn device to form the polyvinylidene fluoride trifluoroethylene polymer solution into the polyvinylidene fluoride trifluoroethylene nanofibers specifically includes the following steps:
将所述聚偏二氟乙烯三氟乙烯聚合物溶液装载在第一注射器和第二注射器中,并由第一直流高压电源和第二直流高压电源分别对所述第一注射器的第一金属针头和所述第二注射器的第二金属针头施加第一电压和第二电压,并同时通过第一输液泵和第二输液泵分别推动所述第一注射器和所述第二注射器,以使所述第一注射器和所述第二注射器中的所述聚偏二氟乙烯三氟乙烯聚合物溶液以聚偏二氟乙烯三氟乙烯纳米纤维的形式被纺出。The polyvinylidene fluoride trifluoroethylene polymer solution is loaded in the first syringe and the second syringe, and the first metal of the first syringe is respectively charged by the first direct current high voltage power supply and the second direct current high voltage power supply. The needle and the second metal needle of the second syringe apply the first voltage and the second voltage, and simultaneously push the first syringe and the second syringe through the first infusion pump and the second infusion pump, respectively, so that all the The polyvinylidene fluoride trifluoroethylene polymer solutions in the first syringe and the second syringe are spun out in the form of polyvinylidene fluoride trifluoroethylene nanofibers.
在一可能的实施例中,所述第一电压为10-13kV,所述第二电压为10-13kV,所述聚酰胺66聚合物溶液和/或所述聚偏二氟乙烯三氟乙烯聚合物溶液在所述第一金属针头中的流速为2-3ml/h,所述聚酰胺66聚合物溶液和/或所述聚偏二氟乙烯三氟乙烯聚合物溶液在所述第二金属针头中的流速为2-3ml/h。In a possible embodiment, the first voltage is 10-13kV, the second voltage is 10-13kV, the polyamide 66 polymer solution and/or the polyvinylidene fluoride trifluoroethylene polymerize The flow rate of the polymer solution in the first metal needle is 2-3ml/h, the polyamide 66 polymer solution and/or the polyvinylidene fluoride trifluoroethylene polymer solution in the second metal needle The flow rate in 2-3 ml/h.
本发明基于摩擦电效应原理,将导电纱线作为导电芯层,并将摩擦电性相反的聚酰胺66和聚偏二氟乙烯三氟乙烯分别作为第一壳层和第二壳层,分别制备了第一包芯纱线和第二包芯纱线,并将所述第一包芯纱线和所述第二包芯纱线分别作为经纱和纬纱编织形成柔性自供电传感织物,即柔性自供电传感器,相比传统技术制备的柔性自供电传感器“三明治”状的多层结构,本发明提供的柔性自供电传感器具有更好的柔软性(即可弯曲、折叠和扭转)、舒适性、透气性以及形状适应性。另外,本发明由于所述第一壳层具有可压缩的纳米级别的第一微结构,所述第二壳层具有可压缩的纳米级别的第二微结构,因此能够提高所述柔性自供电传感器的灵敏度。Based on the principle of triboelectric effect, the invention uses conductive yarn as the conductive core layer, and uses polyamide 66 and polyvinylidene fluoride trifluoroethylene with opposite triboelectric properties as the first shell layer and the second shell layer, respectively. The first core-spun yarn and the second core-spun yarn are woven, and the first core-spun yarn and the second core-spun yarn are woven as warp and weft respectively to form a flexible self-powered sensing fabric, that is, flexible Compared with the "sandwich"-like multi-layer structure of the flexible self-powered sensor prepared by the traditional technology, the flexible self-powered sensor provided by the present invention has better flexibility (ie bending, folding and twisting), comfort, Breathability and shape adaptability. In addition, since the first shell layer has a compressible nano-scale first microstructure, and the second shell layer has a compressible nano-scale second microstructure, the present invention can improve the flexible self-powered sensor sensitivity.
附图说明Description of drawings
图1为本发明提供的静电纺包芯纱装置在工作时的示意图。FIG. 1 is a schematic diagram of the electrospinning core-spun yarn device provided by the present invention during operation.
图2为本发明实施例1制备的第一包芯纱线截面的扫描电镜图。2 is a scanning electron microscope image of the cross section of the first core-spun yarn prepared in Example 1 of the present invention.
图3为本发明实施例1制备的第一包芯纱线的扫描电镜图以及第一包芯纱线中的第一壳体的局部放大图。3 is a scanning electron microscope image of the first core-spun yarn prepared in Example 1 of the present invention and a partial enlarged view of the first shell in the first core-spun yarn.
图4为本发明实施例1制备的第二包芯纱线截面的扫描电镜图。4 is a scanning electron microscope image of the cross section of the second core-spun yarn prepared in Example 1 of the present invention.
图5为本发明实施例1制备的第二包芯纱线的扫描电镜图以及第二包芯纱线中的第二壳体的局部放大图。5 is a scanning electron microscope image of the second core-spun yarn prepared in Example 1 of the present invention and a partial enlarged view of the second shell in the second core-spun yarn.
图6为本发明实施例1制备的柔性自供电传感器的灵敏度曲线图。6 is a graph showing the sensitivity of the flexible self-powered sensor prepared in Example 1 of the present invention.
图标:100-制备装置;10-第一注射器;101-第一金属针头;11-第二注射器;111-第二金属针头;20-第一直流高压电源;21-第二直流高压电源;30-第一输液泵;31-第二输液泵;40-纺丝供给器;50-金属圆靶;51-金属杆;52-第一电动机;60-金属收集尖端;70-第二电动机;71-纺丝收集器。Icon: 100-preparation device; 10-first syringe; 101-first metal needle; 11-second syringe; 111-second metal needle; 20-first DC high-voltage power supply; 21-second DC high-voltage power supply; 30-first infusion pump; 31-second infusion pump; 40-spinning feeder; 50-metal round target; 51-metal rod; 52-first motor; 60-metal collecting tip; 70-second motor; 71 - Spinning collector.
具体实施方式Detailed ways
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。In order to facilitate understanding of the present invention, the present invention will be described more fully hereinafter with reference to the related drawings. Preferred embodiments of the invention are shown in the accompanying drawings. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided so that a thorough and complete understanding of the present disclosure is provided.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
本发明提供一种柔性自供电传感器,所述柔性自供电传感器为由第一包芯纱线和第二包芯纱线分别作为经纱和纬纱编织形成。即所述柔性自供电传感器为柔性自供电传感织物。The present invention provides a flexible self-powered sensor, wherein the flexible self-powered sensor is formed by weaving a first core-spun yarn and a second core-spun yarn as warp yarns and weft yarns, respectively. That is, the flexible self-powered sensor is a flexible self-powered sensing fabric.
在一实施例中,所述第一包芯纱线包括导电芯层以及包覆所述导电芯层的第一壳层。在一实施例中,所述第一包芯纱线的直径可为400-500μm。In one embodiment, the first core-spun yarn includes a conductive core layer and a first shell layer covering the conductive core layer. In one embodiment, the diameter of the first core-spun yarn may be 400-500 μm.
其中,所述导电芯层为导电纱线。在一实施例中,所述导电纱线可为导电银纤维、导电铜纤维以及导电金纤维中的至少一种。优选地,所述导电纱线为导电银纤维。在一实施例中,所述导电芯层的直径可为200μm左右。在一实施例中,所述导电银纤维的电导率可为5.8x104 S/cm。Wherein, the conductive core layer is a conductive yarn. In one embodiment, the conductive yarns may be at least one of conductive silver fibers, conductive copper fibers, and conductive gold fibers. Preferably, the conductive yarns are conductive silver fibers. In one embodiment, the diameter of the conductive core layer may be about 200 μm. In one embodiment, the electrical conductivity of the conductive silver fibers may be 5.8×10 4 S/cm.
在一实施例中,所述第一壳层的材质为聚酰胺66(PA66)。其中,材质为聚酰胺66的所述第一壳层摩擦后带正电。在一实施例中,所述第一壳层的厚度可为150μm左右。其中,所述第一壳层具有可压缩的纳米级别的第一微结构。即所述第一壳层为由多个纳米级别的聚酰胺66纤丝相互交错构成。在一实施例中,所述聚酰胺66纤丝的直径可为500-900nm。In one embodiment, the material of the first shell layer is polyamide 66 (PA66). Wherein, the first shell layer made of polyamide 66 is positively charged after friction. In one embodiment, the thickness of the first shell layer may be about 150 μm. Wherein, the first shell layer has a compressible nano-scale first microstructure. That is, the first shell layer is composed of a plurality of nano-scale polyamide 66 filaments interlaced with each other. In one embodiment, the diameter of the polyamide 66 filament may be 500-900 nm.
在一实施例中,所述第二包芯纱线包括所述导电芯层以及包覆所述导电芯层的第二壳层。在一实施例中,所述第二包芯纱线的直径可为400-500μm。In one embodiment, the second core-spun yarn includes the conductive core layer and a second shell layer covering the conductive core layer. In one embodiment, the diameter of the second core-spun yarn may be 400-500 μm.
在一实施例中,所述第二壳层的材质为聚偏二氟乙烯三氟乙烯(PVDF-TrFE)。其中,材质为聚偏二氟乙烯三氟乙烯的所述第二壳层摩擦后带负电。在一实施例中,所述第二壳层的厚度可为150μm左右。其中,所述第二壳层具有可压缩的纳米级别的第二微结构。即所述第二壳层为由多个纳米级别的聚偏二氟乙烯三氟乙烯纤丝相互交错构成。在一实施例中,所述聚偏二氟乙烯三氟乙烯纤丝的直径可为500-900nm。In one embodiment, the material of the second shell layer is polyvinylidene fluoride trifluoroethylene (PVDF-TrFE). Wherein, the second shell layer made of polyvinylidene fluoride trifluoroethylene is negatively charged after friction. In one embodiment, the thickness of the second shell layer may be about 150 μm. Wherein, the second shell layer has a compressible nano-scale second microstructure. That is, the second shell layer is composed of a plurality of nano-scale polyvinylidene fluoride trifluoroethylene fibrils interlaced with each other. In one embodiment, the diameter of the polyvinylidene fluoride trifluoroethylene fibrils may be 500-900 nm.
由于所述第一壳层具有可压缩的纳米级别的所述第一微结构,所述第二壳层具有可压缩的纳米级别的所述第二微结构,从而能够提高所述柔性自供电传感器的灵敏度。在一实施例中,所述柔性自供电传感器的灵敏度大于或等于5.59V/kPa。Since the first shell layer has the first microstructure at a compressible nanoscale, and the second shell layer has the second microstructure at a compressible nanoscale, the flexible self-powered sensor can be improved sensitivity. In one embodiment, the sensitivity of the flexible self-powered sensor is greater than or equal to 5.59V/kPa.
在使用时,将由所述第一包芯纱线和所述第二包芯纱线分别作为经纱和纬纱编织形成的织物作为直接接触机体(如人体)的感应层。当所述第一壳层和所述第二壳层在感应到机体生理活动(如脉搏、心跳和呼吸等)而发生微小形变时,形变部位的所述第一壳层和所述第二壳层相对于机体的接触面积发生变化,由摩擦带电原理可知,摩擦带正电的所述第一壳层与摩擦带负电的所述第二壳层分别带上等量且极性相反的电荷,形成的电势差通过所述导电纱线导出,由此实现力学信号到电信号的转化,从而完成对机体生理信号的监测。根据所需监测部位不同,导出的输出信号频率和幅值也不同。In use, the fabric formed by knitting the first core-spun yarn and the second core-spun yarn as warp yarns and weft yarns, respectively, is used as a sensing layer that directly contacts the body (eg, human body). When the first shell and the second shell are slightly deformed in response to the physiological activities of the body (such as pulse, heartbeat and respiration, etc.), the first shell and the second shell in the deformed part are The contact area of the layer with respect to the body changes. According to the principle of triboelectric charging, the first shell layer which is positively charged by friction and the second shell layer which is negatively charged by friction are respectively charged with the same amount and opposite polarity. The formed potential difference is derived through the conductive yarn, thereby realizing the conversion of mechanical signals into electrical signals, thereby completing the monitoring of physiological signals of the body. The frequency and amplitude of the derived output signal are also different according to the different monitoring parts.
本发明基于摩擦电效应原理,将导电纱线作为导电芯层,并将摩擦电性相反的聚酰胺66和聚偏二氟乙烯三氟乙烯分别作为第一壳层和第二壳层,分别制备了第一包芯纱线和第二包芯纱线,并将所述第一包芯纱线和所述第二包芯纱线分别作为经纱和纬纱编织形成柔性自供电传感织物,即柔性自供电传感器,相比传统技术制备的柔性自供电传感器“三明治”状的多层结构,本发明提供的柔性自供电传感器具有更好的柔软性(即可弯曲、折叠和扭转)、舒适性、透气性以及形状适应性。Based on the principle of triboelectric effect, the invention uses conductive yarn as the conductive core layer, and uses polyamide 66 and polyvinylidene fluoride trifluoroethylene with opposite triboelectric properties as the first shell layer and the second shell layer, respectively. The first core-spun yarn and the second core-spun yarn are woven, and the first core-spun yarn and the second core-spun yarn are woven as warp and weft respectively to form a flexible self-powered sensing fabric, that is, flexible Compared with the "sandwich"-like multi-layer structure of the flexible self-powered sensor prepared by the traditional technology, the flexible self-powered sensor provided by the present invention has better flexibility (ie bending, folding and twisting), comfort, Breathability and shape adaptability.
本发明还提供一种上述柔性自供电传感器的制备方法,包括以下步骤:The present invention also provides a preparation method of the above-mentioned flexible self-powered sensor, comprising the following steps:
步骤S11,将聚酰胺66溶解于第一溶剂中,得到聚酰胺66聚合物溶液。In step S11, polyamide 66 is dissolved in the first solvent to obtain a polyamide 66 polymer solution.
在一实施例中,所述第一溶剂可为六氟异丙醇(HFIP)。In one embodiment, the first solvent may be hexafluoroisopropanol (HFIP).
步骤S12,请参阅图1,采用静电纺包芯纱装置100将所述聚酰胺66聚合物溶液形成聚酰胺66纳米纤维,并将所述聚酰胺66纳米纤维包裹在所述导电芯层的表面,以在所述导电芯层的表面形成所述第一壳层,从而得到所述第一包芯纱线。Step S12, referring to FIG. 1, the polyamide 66 polymer solution is formed into polyamide 66 nanofibers by using the electrospinning core-spun
即采用静电纺丝的方法制备所述第一包芯纱线。具体地,所述第一包芯纱线的具体制备方法包括如下步骤:That is, the first core-spun yarn is prepared by the method of electrospinning. Specifically, the specific preparation method of the first core-spun yarn includes the following steps:
第一步,将聚酰胺66聚合物溶液装载在第一注射器10和第二注射器11中,并由第一直流高压电源20和第二直流高压电源21分别对所述第一注射器10的第一金属针头101和所述第二注射器11的第二金属针头111施加第一电压和第二电压,并同时通过第一输液泵30和第二输液泵31分别推动所述第一注射器10和所述第二注射器11,以使所述第一注射器10和所述第二注射器11中的所述聚酰胺66聚合物溶液以聚酰胺66纳米纤维的形式被纺出。In the first step, the polyamide 66 polymer solution is loaded into the
第二步,转动纺丝供给器40,以使缠绕在所述纺丝供给器40上的导电芯层(如导电银纤维)穿过中空的金属圆靶50和中空的金属收集尖端60,并使所述金属圆靶50与空心的金属杆51固定,再通过第一电动机52驱动所述金属杆51以带动所述金属圆靶50旋转,以实现对附着在所述金属圆靶50和所述金属收集尖端60之间锥形的所述聚酰胺66纳米纤维对所述导电芯层的包裹、集束及加捻,通过第二电动机70转动纺丝收集器71,以将纺丝后得到的第一包芯纱线缠绕在所述纺丝收集器71上。In the second step, the spinning
在一实施例中,所述第一电压可为10-13kV。在一实施例中,所述第二电压也可为10-13kV。在一实施例中,所述第一电压可为正电压,也可为负电压。其中,当所述第一电压为正电压时,所述第二电压为负电压;当所述第一电压为负电压时,所述第二电压为正电压。即所述第一电压和所述第二电压的电性相反。In one embodiment, the first voltage may be 10-13 kV. In one embodiment, the second voltage may also be 10-13kV. In one embodiment, the first voltage may be a positive voltage or a negative voltage. Wherein, when the first voltage is a positive voltage, the second voltage is a negative voltage; when the first voltage is a negative voltage, the second voltage is a positive voltage. That is, the electrical properties of the first voltage and the second voltage are opposite.
在一实施例中,所述聚酰胺66聚合物溶液在所述第一金属针头101中的流速可为2-3ml/h。在一实施例中,所述聚酰胺66聚合物溶液在所述第二金属针头111中的流速也可为2-3ml/h。In one embodiment, the flow rate of the polyamide 66 polymer solution in the
在一实施例中,所述金属圆靶50的转速可为80-100rpm。在一实施例中,所述金属圆靶50的直径可为4cm。在一实施例中,所述金属圆靶50与所述金属收集尖端60的距离可为8cm。In one embodiment, the rotational speed of the
在一实施例中,所述纺丝收集器71的转速可为10rpm。In one embodiment, the rotational speed of the spinning
在一实施例中,所述第一金属针头101和所述第二金属针头111之间的距离可为8-10cm。In one embodiment, the distance between the
需要说明,所述第一壳层的厚度可根据静电纺丝过程中的参数(如所述纺丝收集器71的转速、所述第一金属针头101与所述第二金属针头111之间的距离等)进行调节。It should be noted that the thickness of the first shell layer can be determined according to the parameters in the electrospinning process (such as the rotational speed of the spinning
步骤S13,将聚偏二氟乙烯三氟乙烯溶解于第二溶剂中,得到聚偏二氟乙烯三氟乙烯聚合物溶液。In step S13, polyvinylidene fluoride trifluoroethylene is dissolved in the second solvent to obtain a polyvinylidene fluoride trifluoroethylene polymer solution.
在一实施例中,所述第二溶剂可为N,N-二甲基甲酰胺与丙酮的混合液。在一实施例中,在所述第二溶剂中,N,N-二甲基甲酰胺与丙酮的质量比可为7:3。In one embodiment, the second solvent may be a mixture of N,N-dimethylformamide and acetone. In one embodiment, in the second solvent, the mass ratio of N,N-dimethylformamide to acetone may be 7:3.
步骤S14,请再次参阅图1,采用所述静电纺包芯纱装置100将所述聚偏二氟乙烯三氟乙烯聚合物溶液形成聚偏二氟乙烯三氟乙烯纳米纤维,并将所述聚偏二氟乙烯三氟乙烯纳米纤维包裹在另一所述导电芯层的表面,以在所述导电芯层的表面形成所述第二壳层,从而得到所述第二包芯纱线。Step S14, please refer to FIG. 1 again, the electrospinning core-spun
即采用静电纺丝的方法制备所述第二包芯纱线,即与制备所述第一包芯纱线的方法大致相同。具体地,所述第二包芯纱线的具体制备方法包括如下步骤:That is, the method for preparing the second core-spun yarn by electrospinning is substantially the same as the method for preparing the first core-spun yarn. Specifically, the specific preparation method of the second core-spun yarn includes the following steps:
第一步,将聚偏二氟乙烯三氟乙烯聚合物溶液装载在第一注射器10和第二注射器11中,并由第一直流高压电源20和第二直流高压电源21分别对所述第一注射器10的第一金属针头101和所述第二注射器11的第二金属针头111施加第一电压和第二电压,并同时通过第一输液泵30和第二输液泵31分别推动所述第一注射器10和所述第二注射器11,以使所述第一注射器10和所述第二注射器11中的所述聚偏二氟乙烯三氟乙烯聚合物溶液以聚偏二氟乙烯三氟乙烯纳米纤维的形式被纺出。In the first step, the polyvinylidene fluoride trifluoroethylene polymer solution is loaded into the
第二步,转动纺丝供给器40,以使缠绕在所述纺丝供给器40上的导电芯层(如导电银纤维)穿过中空的金属圆靶50和中空的金属收集尖端60,并使所述金属圆靶50与空心的金属杆51固定,再通过第一电动机52驱动所述金属杆51以带动所述金属圆靶50旋转,以实现对附着在所述金属圆靶50和所述金属收集尖端60之间锥形的所述聚偏二氟乙烯三氟乙烯纳米纤维对所述导电芯层的包裹、集束及加捻,通过第二电动机70转动纺丝收集器71,以将纺丝后得到的第二包芯纱线缠绕在所述纺丝收集器71上。In the second step, the spinning
其中,在制备所述第二包芯纱线时所述静电纺包芯纱装置100的设置参数可参考在制备所述第一包芯纱线时所述静电纺包芯纱装置100的设置参数,再此不再详述。Wherein, the setting parameters of the electrospinning core-spun
步骤S15,将所述第一包芯纱线和所述第二包芯纱线分别作为经纱和纬纱进行编织,以得到所述柔性自供电传感器。Step S15, knitting the first core-spun yarn and the second core-spun yarn as warp yarns and weft yarns, respectively, to obtain the flexible self-powered sensor.
本发明通过静电纺丝的方式实现了对所述第一包芯纱线中第一壳层可压缩的纳米级别的第一微结构的直接构筑,以及对所述第二包芯纱线中第二壳层可压缩的纳米级别的第二微结构的直接构筑。即所述第一壳层为由多个纳米级别的聚酰胺66纤丝相互交错构成,所述第二壳体为由多个纳米级别的聚偏二氟乙烯三氟乙烯纤丝相互交错构成,由于所述第一微结构和所述第二微结构,使得所述柔性自供电传感器具有较高的灵敏度。The present invention realizes the direct construction of the compressible nano-scale first microstructure of the first shell layer in the first core-spun yarn by means of electrospinning, and realizes the direct construction of the first microstructure in the second core-spun yarn of the second core-spun yarn. Direct construction of two-shell compressible nanoscale second microstructures. That is, the first shell layer is composed of a plurality of nano-level polyamide 66 filaments interlaced with each other, and the second shell is composed of a plurality of nano-level polyvinylidene fluoride trifluoroethylene filaments interlaced with each other, Due to the first microstructure and the second microstructure, the flexible self-powered sensor has high sensitivity.
另外,所述静电纺包芯纱装置100能够实现制备轻薄柔软、高同轴度、无电荷泄露的具有芯壳结构的所述第一包芯纱线和所述第二包芯纱线,且制备方法简单,可实现所述柔性自供电传感器连续、可控以及规模化的制备。In addition, the electrospinning core-spun
以下通过具体地实施例对本发明作进一步说明。The present invention will be further described below through specific examples.
实施例1Example 1
第一步,将PA66(分子量为20000)溶解于六氟异丙醇(HFIP)中,于室温下密封搅拌6小时,配制质量分数为12%的PA66聚合物溶液。In the first step, PA66 (molecular weight 20000) was dissolved in hexafluoroisopropanol (HFIP), sealed and stirred at room temperature for 6 hours to prepare a PA66 polymer solution with a mass fraction of 12%.
第二步,将PA66聚合物溶液装载在第一注射器和第二注射器中,并由第一直流高压电源和第二直流高压电源分别对所述第一注射器的第一金属针头和所述第二注射器的第二金属针头施加第一电压和第二电压,并同时通过第一输液泵和第二输液泵分别推动所述第一注射器和所述第二注射器,以使所述第一注射器和所述第二注射器中的所述PA66聚合物溶液以PA66纳米纤维的形式被纺出。In the second step, the PA66 polymer solution is loaded into the first syringe and the second syringe, and the first metal needle of the first syringe and the first metal needle of the first syringe and the second The second metal needles of the two syringes apply the first voltage and the second voltage, and simultaneously push the first syringe and the second syringe through the first infusion pump and the second infusion pump, respectively, so that the first syringe and the second The PA66 polymer solution in the second syringe was spun out in the form of PA66 nanofibers.
第三步,转动纺丝供给器,以使缠绕在所述纺丝供给器上的导电银纤维穿过中空的金属圆靶和中空的金属收集尖端,并使所述金属圆靶与空心的金属杆固定,再通过第一电动机驱动所述金属杆以带动所述金属圆靶旋转,以实现对附着在所述金属圆靶和所述金属收集尖端之间锥形的所述PA66纳米纤维对所述导电银纤维的包裹、集束及加捻,通过第二电动机转动纺丝收集器,以将纺丝后得到的第一包芯纱线缠绕在所述纺丝收集器上。The third step is to rotate the spinning feeder, so that the conductive silver fibers wound on the spinning feeder pass through the hollow metal target and the hollow metal collecting tip, and make the metal target and the hollow metal The rod is fixed, and then the metal rod is driven by the first motor to drive the metal round target to rotate, so as to realize the pairing of the tapered PA66 nanofibers attached between the metal round target and the metal collecting tip. For wrapping, bundling and twisting of the conductive silver fibers, the spinning collector is rotated by the second motor to wind the first core-spun yarn obtained after spinning on the spinning collector.
第四步,将PVDF-TrFE(分子量为200000)溶解于质量比为7:3的N,N二甲基甲酰胺(DMF)与丙酮的混合液中,于室温下密封搅拌6小时,配制质量分数为10%的PVDF-TrFE聚合物溶液。The fourth step is to dissolve PVDF-TrFE (molecular weight of 200000) in a mixture of N,N dimethylformamide (DMF) and acetone with a mass ratio of 7:3, and seal and stir at room temperature for 6 hours to prepare the mass.
第五步,将PVDF-TrFE聚合物溶液装载在第一注射器和第二注射器中,并由第一直流高压电源和第二直流高压电源分别对所述第一注射器的第一金属针头和所述第二注射器的第二金属针头施加第一电压和第二电压,并同时通过第一输液泵和第二输液泵分别推动所述第一注射器和所述第二注射器,以使所述第一注射器和所述第二注射器中的所述PVDF-TrFE聚合物溶液以PVDF-TrFE纳米纤维的形式被纺出。In the fifth step, the PVDF-TrFE polymer solution is loaded into the first syringe and the second syringe, and the first metal needle of the first syringe and the first metal needle of the first syringe are respectively charged by the first DC high voltage power supply and the second DC high voltage power supply. The second metal needle of the second syringe applies the first voltage and the second voltage, and simultaneously pushes the first syringe and the second syringe through the first infusion pump and the second infusion pump, respectively, so that the first The PVDF-TrFE polymer solution in the syringe and the second syringe was spun out in the form of PVDF-TrFE nanofibers.
第六步,转动纺丝供给器,以使缠绕在所述纺丝供给器上的导电银纤维穿过中空的金属圆靶和中空的金属收集尖端,并使所述金属圆靶与空心的金属杆固定,再通过第一电动机驱动所述金属杆以带动所述金属圆靶旋转,以实现对附着在所述金属圆靶和所述金属收集尖端之间锥形的所述PVDF-TrFE纳米纤维对所述导电银纤维的包裹、集束及加捻,通过第二电动机转动纺丝收集器,以将纺丝后得到的第二包芯纱线缠绕在所述纺丝收集器上。The sixth step, rotating the spinning feeder, so that the conductive silver fibers wound on the spinning feeder pass through the hollow metal circular target and the hollow metal collecting tip, and make the metal circular target and the hollow metal The rod is fixed, and then the metal rod is driven by the first motor to drive the metal round target to rotate, so as to realize the tapered PVDF-TrFE nanofibers attached between the metal round target and the metal collecting tip For wrapping, bundling and twisting of the conductive silver fibers, the spinning collector is rotated by a second motor to wind the second core-spun yarn obtained after spinning on the spinning collector.
第七步,将所述第一包芯纱线和所述第二包芯纱线分别作为经纱和纬纱编织成柔性自供电传感织物,即得到柔性自供电传感器。In the seventh step, the first core-spun yarn and the second core-spun yarn are woven into a flexible self-powered sensor fabric as warp yarns and weft yarns, respectively, to obtain a flexible self-powered sensor.
分别对实施例1制备的第一包芯纱线和第二包芯纱线进行表面形貌测试和尺寸测量,以及对实施例1制备的柔性自供电传感器(即柔性自供电传感织物)进行灵敏度测试。The surface topography test and size measurement were performed on the first core-spun yarn and the second core-spun yarn prepared in Example 1, respectively, and the flexible self-powered sensor (ie, the flexible self-powered sensing fabric) prepared in Example 1. Sensitivity test.
其中,灵敏度测试的方法为采用万能试验机对实施例1制备的柔性自供电传感器施加一定压力,用示波器测试其响应的开路电压值,并绘制灵敏度曲线图。Among them, the method of sensitivity test is to use a universal testing machine to apply a certain pressure to the flexible self-powered sensor prepared in Example 1, use an oscilloscope to test the open-circuit voltage value of its response, and draw a sensitivity curve.
请参阅图2,可知,实施例1制备的第一包芯纱线包括导电芯层(即导电银纤维)和材质为聚酰胺66的第一壳层,所述导电银纤维和所述第一壳层组成芯壳结构,且所述导电银纤维和所述第一壳层具有较高的同轴度。由图2还可知,所述第一壳层均匀地包裹在所述导电银纤维的外表面。其中,所述导电芯层的直径为200μm左右,所述第一壳层的厚度为150μm左右,所述第一包芯纱线的直径为400-500μm。Referring to FIG. 2, it can be seen that the first core-spun yarn prepared in Example 1 includes a conductive core layer (ie, conductive silver fibers) and a first shell layer made of polyamide 66. The conductive silver fibers and the first shell layer are The shell layer forms a core-shell structure, and the conductive silver fibers and the first shell layer have high coaxiality. It can also be seen from FIG. 2 that the first shell layer is uniformly wrapped on the outer surface of the conductive silver fibers. The diameter of the conductive core layer is about 200 μm, the thickness of the first shell layer is about 150 μm, and the diameter of the first core-spun yarn is 400-500 μm.
请参阅图3,可知,所述第一壳层为由多个纳米级别的聚酰胺66纤丝相互交错构成,即所述第一壳层具有可压缩的纳米级别的第一微结构。其中,所述聚酰胺66纤丝的直径约为500-900nm。Referring to FIG. 3 , it can be seen that the first shell layer is composed of a plurality of nano-scale polyamide 66 filaments interlaced with each other, that is, the first shell layer has a compressible nano-scale first microstructure. Wherein, the diameter of the polyamide 66 filament is about 500-900 nm.
请参阅图4,可知,实施例1制备的第二包芯纱线包括导电芯层(即导电银纤维)和材质为聚偏二氟乙烯三氟乙烯的第二壳层,所述导电银纤维和所述第二壳层组成芯壳结构,且所述导电银纤维和所述第二壳层具有较高的同轴度。由图4还可知,所述第二壳层均匀地包裹在所述导电银纤维的外表面。其中,所述导电芯层的直径为200μm左右,所述第二壳层的厚度为150μm左右,所述第二包芯纱线的直径为400-500μm。Referring to FIG. 4, it can be seen that the second core-spun yarn prepared in Example 1 includes a conductive core layer (ie, conductive silver fibers) and a second shell layer made of polyvinylidene fluoride trifluoroethylene, and the conductive silver fibers A core-shell structure is formed with the second shell layer, and the conductive silver fibers and the second shell layer have high coaxiality. It can also be seen from FIG. 4 that the second shell layer is evenly wrapped on the outer surface of the conductive silver fibers. The diameter of the conductive core layer is about 200 μm, the thickness of the second shell layer is about 150 μm, and the diameter of the second core-spun yarn is 400-500 μm.
请参阅图5,可知,所述第二壳层为由多个纳米级别的聚偏二氟乙烯三氟乙烯纤丝相互交错构成,即所述第二壳层具有可压缩的纳米级别的第二微结构。其中,所述聚偏二氟乙烯三氟乙烯纤丝的直径约为500-900nm。Referring to FIG. 5, it can be seen that the second shell layer is composed of a plurality of nano-level polyvinylidene fluoride trifluoroethylene filaments interlaced with each other, that is, the second shell layer has a compressible nano-level second shell layer. microstructure. Wherein, the diameter of the polyvinylidene fluoride trifluoroethylene filament is about 500-900 nm.
请参阅图6,可知,实施例1制备的柔性自供电传感器的灵敏度高达5.59V/kPa。这表明实施例1制备的柔性自供电传感器具有较高的灵敏度。Referring to FIG. 6 , it can be seen that the sensitivity of the flexible self-powered sensor prepared in Example 1 is as high as 5.59V/kPa. This shows that the flexible self-powered sensor prepared in Example 1 has higher sensitivity.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention should be subject to the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210546932.0A CN114959998A (en) | 2022-05-19 | 2022-05-19 | Flexible self-powered sensor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210546932.0A CN114959998A (en) | 2022-05-19 | 2022-05-19 | Flexible self-powered sensor and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114959998A true CN114959998A (en) | 2022-08-30 |
Family
ID=82984603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210546932.0A Pending CN114959998A (en) | 2022-05-19 | 2022-05-19 | Flexible self-powered sensor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114959998A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117005060A (en) * | 2023-08-28 | 2023-11-07 | 北京服装学院 | Biodegradable friction nano power generation fabric and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108796755A (en) * | 2017-05-02 | 2018-11-13 | 北京纳米能源与系统研究所 | Power generation cloth based on electrostatic friction effect and power generation clothing |
CN109274287A (en) * | 2018-09-10 | 2019-01-25 | 中原工学院 | Piezoelectric triboelectric hybrid nano-generator based on nano fiber core-spun yarn and preparation method thereof |
CN109722754A (en) * | 2019-03-11 | 2019-05-07 | 嘉兴学院 | A kind of preparation method of Cu/PVDF-TrFE/CNTY composite piezoelectric yarn |
CN109750403A (en) * | 2017-11-01 | 2019-05-14 | 北京纳米能源与系统研究所 | Power-generating fabrics, wearable devices, and sensors based on triboelectric nanogenerators |
CN109811426A (en) * | 2019-01-30 | 2019-05-28 | 四川大学 | A kind of flexible conductive fiber with core-sheath structure and preparation method thereof |
-
2022
- 2022-05-19 CN CN202210546932.0A patent/CN114959998A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108796755A (en) * | 2017-05-02 | 2018-11-13 | 北京纳米能源与系统研究所 | Power generation cloth based on electrostatic friction effect and power generation clothing |
CN109750403A (en) * | 2017-11-01 | 2019-05-14 | 北京纳米能源与系统研究所 | Power-generating fabrics, wearable devices, and sensors based on triboelectric nanogenerators |
CN109274287A (en) * | 2018-09-10 | 2019-01-25 | 中原工学院 | Piezoelectric triboelectric hybrid nano-generator based on nano fiber core-spun yarn and preparation method thereof |
CN109811426A (en) * | 2019-01-30 | 2019-05-28 | 四川大学 | A kind of flexible conductive fiber with core-sheath structure and preparation method thereof |
CN109722754A (en) * | 2019-03-11 | 2019-05-07 | 嘉兴学院 | A kind of preparation method of Cu/PVDF-TrFE/CNTY composite piezoelectric yarn |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117005060A (en) * | 2023-08-28 | 2023-11-07 | 北京服装学院 | Biodegradable friction nano power generation fabric and preparation method thereof |
CN117005060B (en) * | 2023-08-28 | 2025-03-28 | 北京服装学院 | A biodegradable friction nano-electricity generating fabric and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103088478B (en) | A kind of orientation electro-spun nanofiber yarn continuous preparation device | |
CN109431460B (en) | Flexible high-flexibility nanofiber core-spun yarn stress sensor with fold structure and preparation method thereof | |
KR101982282B1 (en) | Stretchable and conductive composite fiber yarn, manufacturing method thereof, and stretchable and conductive composite spun yarn including the same | |
CN103194858B (en) | Elastic composite of a kind of high dielectric constant and low dielectric loss and preparation method thereof | |
CN109274287B (en) | Piezoelectric triboelectric hybrid nano-generator based on nanofiber core-spun yarn and preparation method thereof | |
CN112877843B (en) | Stretchable Fermat spiral energy yarn and preparation and application thereof | |
CN113174670B (en) | A kind of pressure sensing fiber, yarn, fabric, device and preparation method thereof | |
CN104711759B (en) | Preparation method of poly-L-lactic acid electrospun film with stable fiber orientation structure | |
WO2021237908A1 (en) | Flexible hybrid generator, preparation method therefor and use thereof, and flexible self-charging device | |
Gao et al. | Fabrication of core-sheath nanoyarn via touchspinning and its application in wearable piezoelectric nanogenerator | |
CN109341736B (en) | A kind of flexible wearable strain sensor and preparation method thereof | |
CN111678424A (en) | A kind of fibrous flexible strain sensor and preparation method thereof | |
Peng et al. | Enhancing piezoelectricity of poly (vinylidene fluoride) nano‐wrapped yarns with an innovative yarn electrospinning technique | |
CN105671685A (en) | Electrospinning skin-core single fiber with axially equivalent piezoelectric property as well as preparation method and application thereof | |
CN114959998A (en) | Flexible self-powered sensor and preparation method thereof | |
CN114739280A (en) | Multi-element nano carbon fiber yarn strain sensor and preparation method thereof | |
CN103305931A (en) | Method and device for preparing polyacrylonitrile pre-oxidation nanofiber yarns through electrostatic spinning | |
WO2016004457A1 (en) | Process for producing carbon nanofibre precursor yarn and carbon nanofibre yarn therefrom | |
CN110607582A (en) | A method for preparing continuous PAN piezoelectric yarn by electrospinning | |
CN111719212B (en) | A kind of preparation method of flexible woven graphene conductive yarn | |
CN114108152A (en) | Preparation method of multilayer structure composite yarn with strain sensing and stable tensile resistance | |
CN113654577A (en) | A kind of multi-level core-shell structure ZnO/PVDF nanofiber flexible piezoelectric sensor and preparation method thereof | |
CN107326454B (en) | A method for preparing auxetic nanofiber yarn by electrospinning | |
Jayadevan et al. | An overview of advances and challenges in developing nanofiber yarns for wearable technology | |
CN203112981U (en) | Continuous preparation device of electrostatic orientation spinning nano fiber yarns |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220830 |