CN114955814A - Overlong overhead escalator truss deformation monitoring system and detection method - Google Patents
Overlong overhead escalator truss deformation monitoring system and detection method Download PDFInfo
- Publication number
- CN114955814A CN114955814A CN202210473125.0A CN202210473125A CN114955814A CN 114955814 A CN114955814 A CN 114955814A CN 202210473125 A CN202210473125 A CN 202210473125A CN 114955814 A CN114955814 A CN 114955814A
- Authority
- CN
- China
- Prior art keywords
- image
- escalator
- super
- acquisition module
- embedded microprocessor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B27/00—Indicating operating conditions of escalators or moving walkways
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B29/00—Safety devices of escalators or moving walkways
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B50/00—Energy efficient technologies in elevators, escalators and moving walkways, e.g. energy saving or recuperation technologies
Landscapes
- Escalators And Moving Walkways (AREA)
Abstract
一种超长架空的自动扶梯桁架形变监测系统及检测方法,涉及自动扶梯梯隐患检测技术领域,该方法采用非接触式测量方式,能够很好地克服接触式测量方式的精度缺陷,有效实现超长自动扶梯的下线弯曲的检验检测工作,并能够显著降低检测人员的安全风险,提高检验工作的效率。所述超长架空的自动扶梯桁架形变监测系统中,采集模块与工业相机连接,采集模块采用图像视频嵌入式微处理器,且图像视频嵌入式微处理器连接有HT82K629A电路板,HT82K629A电路板连接有按键;PC终端机与采集模块连接,并具有显示模块;电源模块与采集模块连接,并具有控制器,且控制器连接有蓄电池和220V直流电。
A super-long overhead escalator truss deformation monitoring system and detection method relate to the technical field of hidden danger detection of escalators and ladders. The inspection and detection of the bending of the bottom line of the long escalator can significantly reduce the safety risk of the inspection personnel and improve the efficiency of the inspection work. In the super-long overhead escalator truss deformation monitoring system, the acquisition module is connected with the industrial camera, the acquisition module adopts an image and video embedded microprocessor, and the image and video embedded microprocessor is connected with the HT82K629A circuit board, and the HT82K629A circuit board is connected with a button The PC terminal is connected with the acquisition module and has a display module; the power module is connected with the acquisition module and has a controller, and the controller is connected with a battery and 220V direct current.
Description
技术领域technical field
本发明涉及自动扶梯梯隐患检测技术领域,尤其涉及一种超长架空的自动扶梯桁架形变监测系统及检测方法。The invention relates to the technical field of hidden danger detection of escalator ladders, in particular to a super-long overhead escalator truss deformation monitoring system and a detection method.
背景技术Background technique
超长架空自动扶梯是一类在驱动装置的支持下可循环输送乘客上、下楼层的交通工具,普遍应用于办公楼宇、购物大型综合商场、高铁站等人流量集中的公共场所。Super long overhead escalator is a kind of means of transportation that can transport passengers up and down the floor with the support of the drive device. It is widely used in office buildings, shopping malls, high-speed rail stations and other public places with concentrated traffic.
在超长架空自动扶梯安装的过程中,由于太长或自身的重力会出现中间向下弯曲的情况,也会因为超长的自动扶梯是分段由强力螺栓紧固连接在一起的,随着超长架空自动扶梯在日常使用过程中会出现振动磨损的情况,导致螺栓松动,出现其向下弯曲变形为超长架空自动扶梯在日常使用中埋下安全隐患。In the process of installing the super-long overhead escalator, the middle will bend downward due to being too long or its own gravity, and also because the super-long escalator is fastened and connected by strong bolts in sections. The ultra-long overhead escalator will vibrate and wear during daily use, resulting in the loosening of the bolts, and the downward bending deformation of the ultra-long overhead escalator, burying potential safety hazards in daily use.
在常规的检验中是使用人工检验,是比较麻烦繁琐的工作,导致最终的检验结果也是不够精确。因此,基于上述考虑以及综合近年来的研究动态,如何提供一种基于机器视觉的超长架空自动扶梯桁架形变检测系统及方法,已成为本领域技术人员亟需解决的技术问题。In the routine inspection, manual inspection is used, which is a more troublesome and tedious work, resulting in the inaccuracy of the final inspection result. Therefore, based on the above considerations and the research trends in recent years, how to provide a machine vision-based system and method for detecting the deformation of a super-long overhead escalator truss has become a technical problem that those skilled in the art need to solve urgently.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种超长架空的自动扶梯桁架形变监测系统及检测方法,该方法采用非接触式测量方式,能够很好地克服接触式测量方式的精度缺陷,有效实现超长自动扶梯的下线弯曲的检验检测工作,并能够显著降低检测人员的安全风险,提高检验工作的效率。The purpose of the present invention is to provide a super-long overhead escalator truss deformation monitoring system and detection method. The method adopts a non-contact measurement method, which can well overcome the accuracy defect of the contact measurement method and effectively realize the super-long escalator. It can significantly reduce the safety risk of inspection personnel and improve the efficiency of inspection work.
本发明提供的超长架空的自动扶梯桁架形变监测系统及检测方法,采用机器视觉的方式对超长架空的自动扶梯的桁架下弯曲的程度的图像进行实时在线采集识别,然后将Hough变换曲线变换方法和标准直线Hough变换的方法进行改进融合得到分类Hough变换算法,具有分类和等距取点特点,使用其对超长架空自动扶梯的桁架变形弯曲程度进行判断弯曲变形的程度,提出一种机器视觉对超长架空的自动扶梯桁架弯曲识别检测的有效方法。In the super-long overhead escalator truss deformation monitoring system and detection method provided by the present invention, the images of the bending degree under the truss of the super-long overhead escalator are collected and recognized online in real time by means of machine vision, and then the Hough transform curve is transformed into The method and the standard straight line Hough transform method are improved and fused to obtain the classification Hough transform algorithm, which has the characteristics of classification and equidistant point selection. It is used to judge the bending deformation degree of the truss deformation of the super-long overhead escalator. A machine is proposed. An effective method for visual recognition and detection of bending of super-long overhead escalator trusses.
为达到上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种超长架空的自动扶梯桁架形变监测系统,包括:工业相机,所述工业相机用于从多个不同的角度对标识的目标进行弯曲直线监测识别图像信息进行采集;An ultra-long overhead escalator truss deformation monitoring system, comprising: an industrial camera, wherein the industrial camera is used to perform bending and straight line monitoring of a marked target from multiple different angles, and to collect image information;
采集模块,所述采集模块与所述工业相机连接,所述采集模块采用图像视频嵌入式微处理器,且所述图像视频嵌入式微处理器连接有HT82K629A电路板,所述HT82K629A电路板连接有按键,所述采集模块用于使用Hough变换曲线变换和标准直线Hough变换的方法进行融合改进的分类Hough变换算法模型对采集的图像信息进行处理识别标注,判断超长架空自动扶梯的桁架变形程度及是否存在隐患;an acquisition module, the acquisition module is connected with the industrial camera, the acquisition module adopts an image and video embedded microprocessor, and the image and video embedded microprocessor is connected with a HT82K629A circuit board, and the HT82K629A circuit board is connected with a button, The acquisition module is used to use the Hough transform curve transform and the standard straight line Hough transform method to fuse the improved classification Hough transform algorithm model to process the collected image information, identify and mark it, and judge the degree of deformation of the truss of the super-long overhead escalator and whether it exists or not. hidden danger;
PC终端机,所述PC终端机与所述采集模块连接,并具有显示模块,所述PC终端机用于把识别判断的结果进行显示;PC terminal, the PC terminal is connected with the acquisition module and has a display module, and the PC terminal is used to display the result of the identification and judgment;
电源模块,所述电源模块与所述采集模块连接,并具有控制器,且所述控制器连接有蓄电池和220V直流电,所述电源模块用于对整个系统进行供电。A power supply module, which is connected to the acquisition module and has a controller, and the controller is connected with a battery and 220V direct current, and the power supply module is used to supply power to the entire system.
其中,所述图像视频嵌入式微处理器设有缓冲区和存储器;所述图像视频嵌入式微处理器通过USB接口与所述HT82K629A电路板连接通信,所述图像视频嵌入式微处理器通过另一USB接口与所述工业相机连接通信,所述图像视频嵌入式微处理器通过VGA接口与所述PC终端机的所述显示模块连接通信,所述图像视频嵌入式微处理器通过再一USB接口与所述电源模块的所述控制器连接通信。The image and video embedded microprocessor is provided with a buffer and memory; the image and video embedded microprocessor communicates with the HT82K629A circuit board through a USB interface, and the image and video embedded microprocessor communicates with the HT82K629A circuit board through another USB interface Connect and communicate with the industrial camera, the image and video embedded microprocessor is connected and communicated with the display module of the PC terminal through a VGA interface, and the image and video embedded microprocessor communicates with the power supply through another USB interface. The controller of the module is connected to communicate.
一种超长架空的自动扶梯桁架形变检测方法,包括以下步骤:A super-long overhead escalator truss deformation detection method, comprising the following steps:
步骤S1、选择需要检测的超长架空自动扶梯;Step S1, select the super-long overhead escalator to be detected;
步骤S2、在扶梯底部或侧边等间距贴上基准识别标识,把桁架形变系统连接并对扶梯图像视觉信息开始采集,同时开始图像信息预处理工作;Step S2, affix datum identification marks at equal intervals at the bottom or side of the escalator, connect the truss deformation system and start collecting the visual information of the escalator image, and simultaneously start the preprocessing of the image information;
步骤S3、把曲线变换算法和标准直线算法进行融合改进,得到一种具有对直线曲线识别功能的分类Hough变换算法,且此算法引入分类机制和等距取点机制,以减少全域搜索和穷举法或是随机采样,并降低运算量、提高算法效率;Step S3: Integrate and improve the curve transformation algorithm and the standard straight line algorithm to obtain a classification Hough transform algorithm with the function of recognizing straight lines and curves, and this algorithm introduces a classification mechanism and an equidistant point selection mechanism to reduce global search and exhaustion. method or random sampling, and reduce the amount of calculation and improve the efficiency of the algorithm;
步骤S4、判断图像与直线是否完全拟合,如果完全拟合证明自动扶梯的桁架无变形,否则,弯曲变形存在安全隐患;Step S4, judging whether the image and the straight line are completely fitted, if the full fitting proves that the truss of the escalator is not deformed, otherwise, there is a potential safety hazard in the bending deformation;
步骤S5、把融合改进的分类Hough变换算法模型识别的结果和存在隐患情况在显示模块的PC机客户端上进行显示。Step S5, displaying the result of the fusion and improved classification Hough transform algorithm model identification and the existence of hidden dangers on the PC client of the display module.
实际应用时,所述分类Hough变换算法,具体包括以下步骤:In practical application, the classification Hough transform algorithm specifically includes the following steps:
步骤S31、利用Canny算子获取被测图像的边缘:设边缘点域共有K个特征点(xi,yi),i=1,2,3...K,它们构成边界点域D;Step S31, using the Canny operator to obtain the edge of the image to be tested: it is assumed that the edge point field has K feature points (x i , y i ), i=1, 2, 3...K, which constitute the boundary point field D;
步骤S32、用Sobel算子提取边界点的水平、垂直梯度信息;Step S32, extract the horizontal and vertical gradient information of boundary point with Sobel operator;
步骤S33、初始化参数空间H;Step S33, initializing the parameter space H;
步骤S34、构造分类器,并以4分类器进行说明:4分类器把候选直线分成4类,水平、垂直、正45°、负45°,然后根据步骤S32中的两个方向的梯度信息把边界点分到4个子类Di中去;假设经过分类器后4个子类中分别有Ki个边缘特征点(xi,yi),i=1,2,3...Ki;Step S34, construct a classifier, and describe it with 4 classifiers: the 4 classifier divides the candidate straight lines into 4 categories, horizontal, vertical, positive 45°, and negative 45°, and then according to the gradient information of the two directions in step S32. The boundary points are divided into 4 subclasses D i ; it is assumed that there are K i edge feature points (x i , y i ) in the 4 subclasses after the classifier, i=1, 2, 3...K i ;
步骤S35、在4个子类中进行参数空间映射:从子类Di中每隔距离t选取m个边缘特征点作为种子点;t=Ki/m,为选择距离;具体t值的选取不仅和K值有关,还和被测图像的噪声水平有关;对于每个种子点,又从Di中以距离t随机选取边缘特征点与之两两配对;对于每一对特征点,计算其虚拟直线参数,并在参数空间上投影;Step S35, carry out parameter space mapping in 4 subclasses: select m edge feature points at every distance t from subclass D i as seed points; t=K i /m, is the selection distance; the selection of the specific t value is not only It is related to the value of K and the noise level of the tested image; for each seed point, the edge feature points are randomly selected from D i and paired with it at a distance t; for each pair of feature points, the virtual Line parameters, and projected on the parameter space;
由特征点对(xi,yi)(xj,yj)求取其直线参数的公式简单给出如下:The formula for calculating the straight line parameters from the feature point pair (x i , y i )(x j , y j ) is simply given as follows:
ρt=xi cosθt+yi sinθt ρ t = xi cosθ t +y i sinθ t
又:again:
ρt=xj cosθt+yj sinθt ρ t =x j cosθ t +y j sinθ t
可以得出:It can be concluded that:
把θt带入公式ρt=xi cosθt+yi sinθt,可得到ρt;Put θ t into the formula ρ t = xi cosθ t +y i sinθ t , we can get ρ t ;
离散化H(θt,ρt),并在参数空间H中把对应的单元的值累加1;当每个子类空间都完成上述操作后转入下一步;Discretize H(θ t ,ρ t ), and add 1 to the value of the corresponding unit in the parameter space H; when each subclass space has completed the above operations, go to the next step;
步骤S36、统计参数空间,寻找峰值:在参数空间H中寻找峰值;当发现有某个H(θc,ρc)的值大于全局阈值T,则认为原被识别图像中存在一条以(θc,ρc)为参数的直线;记录下所有的峰值点。Step S36: Statistical parameter space, looking for the peak value: look for the peak value in the parameter space H; when it is found that the value of a certain H(θ c , ρ c ) is greater than the global threshold T, then it is considered that there is an image with (θ c , ρ c ) in the original recognized image. c , ρ c ) is a straight line of parameters; all peak points are recorded.
步骤S37、直线拟合与还原:把得到的所有峰值点用ρt=xi cosθt+yi sinθt式计算可得到原曲线。Step S37, straight line fitting and restoration: the original curve can be obtained by calculating all the obtained peak points with the formula ρ t = xi cosθ t +y i sinθ t .
相对于现有技术,本发明所述的超长架空的自动扶梯桁架形变监测系统及检测方法具有以下优势:Compared with the prior art, the super-long overhead escalator truss deformation monitoring system and detection method of the present invention have the following advantages:
本发明提供的超长架空的自动扶梯桁架形变监测系统及检测方法中,首先选择需要检测的超长自动扶梯的识别对象,在监测目标上做直线识别标识,使用基于机器视觉的超长架空自动扶梯的监测识别系统,也即工业相机从多个不同的角度对标识的目标进行弯曲直线监测识别图像信息进行采集;然后通过采集模块并使用Hough变换曲线变换和标准直线Hough变换的方法进行融合改进的分类Hough变换算法模型对采集的图像信息进行处理识别标注,判断超长架空自动扶梯的桁架变形程度及是否存在隐患;最后把识别判断的结果在超长架空的自动扶梯桁架形变检测系统的显示模块PC终端机上进行显示。由此分析可知,本发明提高的一种超长架空的自动扶梯桁架形变监测系统及检测方法,对超长架空的自动扶梯桁架的变形弯曲检测不在依靠人工肉眼去逐一检验的情况,从而有效提高了检验工作效率,缩短了每台超长扶梯的检测时间,有效降低了人工成本。In the super-long overhead escalator truss deformation monitoring system and detection method provided by the present invention, firstly, the identification object of the super-long escalator to be detected is selected, a straight line identification mark is made on the monitoring target, and the super-long overhead automatic machine vision based machine vision is used. The monitoring and identification system of the escalator, that is, the industrial camera monitors and identifies the image information of the marked target from multiple different angles; The classification Hough transform algorithm model processes the collected image information, identifies and labels, and judges the deformation degree of the truss of the super-long overhead escalator and whether there are hidden dangers; finally, the identification and judgment results are displayed in the super-long overhead escalator truss deformation detection system. Display on the module PC terminal. From this analysis, it can be seen that the deformation monitoring system and detection method of the super-long overhead escalator truss improved by the present invention does not rely on manual visual inspection for the deformation and bending detection of the super-long overhead escalator truss, thereby effectively improving the The inspection efficiency is improved, the inspection time of each super-long escalator is shortened, and the labor cost is effectively reduced.
附图说明Description of drawings
图1为本发明实施例提供的超长架空的自动扶梯桁架形变监测系统及检测方法的使用过程参考示意图;FIG. 1 is a schematic diagram of the use process of an ultra-long overhead escalator truss deformation monitoring system and a detection method provided by an embodiment of the present invention;
图2为本发明实施例提供的超长架空的自动扶梯桁架形变监测系统的结构示意图;2 is a schematic structural diagram of a super-long overhead escalator truss deformation monitoring system provided by an embodiment of the present invention;
图3为本发明实施例提供的超长架空的自动扶梯桁架形变检测方法的流程示意图。3 is a schematic flowchart of a method for detecting deformation of a super-long overhead escalator truss provided by an embodiment of the present invention.
附图标记:Reference number:
1-工业相机;2-采集模块;21-图像视频嵌入式微处理器;211-缓冲区;212-存储器;22-HT82K629A电路板;23-按键;3-PC终端机;31-显示模块;4-电源模块;41-控制器;42-蓄电池;5-自动扶梯;6-桁架;7-基准识别标识。1-industrial camera; 2-acquisition module; 21-image video embedded microprocessor; 211-buffer; 212-memory; 22-HT82K629A circuit board; 23-button; 3-PC terminal; 31-display module; 4 - Power module; 41 - controller; 42 - battery; 5 - escalator; 6 - truss; 7 - reference identification mark.
具体实施方式Detailed ways
为了便于理解,下面结合说明书附图,对本发明实施例提供的超长架空的自动扶梯桁架形变监测系统及检测方法进行详细描述。For ease of understanding, the following describes the deformation monitoring system and detection method for the super-long overhead escalator truss provided by the embodiments of the present invention in detail with reference to the accompanying drawings.
本发明实施例提供一种超长架空的自动扶梯桁架形变监测系统,如图1和图2所示,包括:工业相机1,该工业相机1用于从多个不同的角度对标识的目标进行弯曲直线监测识别图像信息进行采集;An embodiment of the present invention provides an ultra-long overhead escalator truss deformation monitoring system, as shown in FIG. 1 and FIG. 2 , including: an
采集模块2,采集模块2与工业相机1连接,采集模块2采用图像视频嵌入式微处理器21,且图像视频嵌入式微处理器21连接有HT82K629A电路板22,HT82K629A电路板22连接有按键23,该采集模块2用于使用Hough变换曲线变换和标准直线Hough变换的方法进行融合改进的分类Hough变换算法模型对采集的图像信息进行处理识别标注,判断超长架空自动扶梯的桁架变形程度及是否存在隐患;The
PC终端机3,PC终端机3与采集模块2连接,并具有显示模块31,该PC终端机3用于把识别判断的结果进行显示;
电源模块4,电源模块4与采集模块2连接,并具有控制器41,且控制器41连接有蓄电池42和220V直流电,该电源模块4用于对整个系统进行供电。The
其中,如图2所示,上述图像视频嵌入式微处理器21可以设有缓冲区211和存储器212;并且,图像视频嵌入式微处理器21可以通过USB接口与HT82K629A电路板22连接通信,图像视频嵌入式微处理器21可以通过另一USB接口与工业相机1连接通信,图像视频嵌入式微处理器21可以通过VGA接口与PC终端机3的显示模块31连接通信,图像视频嵌入式微处理器21可以通过再一USB接口与电源模块4的控制器41连接通信。Among them, as shown in FIG. 2, the above-mentioned image and video embedded
如图1和图2所示,本发明实施例提供的超长架空的自动扶梯桁架形变监测系统中,在自动扶梯5上做直线基准识别标志7,然后使用自动扶梯桁架形变检测系统从不同的角度位置对其进行图像监测采集识别标识进行信息采集,使用工业相机1对信息处理进形识别,采用电源模块4对整个监测系统进行供电,最后在具有显示模块31的PC终端机3进行显示;换言之,在待检测目标自动扶梯5的桁架6上进行等距离的贴上直线基准识别标识7,在一整套监测识别系统中通过工业相机1对图像信息进行采集,经过图像视频嵌入式微处理器21的处理,输入图像识别模型中进行识别判断自动扶梯是否发生弯曲变形的情况,在显示模块31上进行结果显示。As shown in FIG. 1 and FIG. 2 , in the super-long overhead escalator truss deformation monitoring system provided by the embodiment of the present invention, a linear
本发明实施例再提供一种超长架空的自动扶梯桁架形变检测方法,包括以下步骤:The embodiment of the present invention further provides a method for detecting the deformation of an escalator truss with an ultra-long overhead, comprising the following steps:
步骤S1、选择需要检测的超长架空自动扶梯;Step S1, select the super-long overhead escalator to be detected;
步骤S2、在扶梯底部或侧边等间距贴上基准识别标识,把桁架形变系统连接并对扶梯图像视觉信息开始采集,同时开始图像信息预处理工作;Step S2, affix datum identification marks at equal intervals at the bottom or side of the escalator, connect the truss deformation system and start collecting the visual information of the escalator image, and simultaneously start the preprocessing of the image information;
步骤S3、把曲线变换算法和标准直线算法进行融合改进,得到一种具有对直线曲线识别功能的分类Hough变换算法,且此算法引入分类机制和等距取点机制,以减少全域搜索和穷举法或是随机采样,并降低运算量、提高算法效率;Step S3: Integrate and improve the curve transformation algorithm and the standard straight line algorithm to obtain a classification Hough transform algorithm with the function of recognizing straight lines and curves, and this algorithm introduces a classification mechanism and an equidistant point selection mechanism to reduce global search and exhaustion. method or random sampling, and reduce the amount of calculation and improve the efficiency of the algorithm;
步骤S4、判断图像与直线是否完全拟合,如果完全拟合证明自动扶梯的桁架无变形,否则,弯曲变形存在安全隐患;Step S4, judging whether the image and the straight line are completely fitted, if the full fitting proves that the truss of the escalator is not deformed, otherwise, there is a potential safety hazard in the bending deformation;
步骤S5、把融合改进的分类Hough变换算法模型识别的结果和存在隐患情况在显示模块的PC机客户端上进行显示。Step S5, displaying the result of the fusion and improved classification Hough transform algorithm model identification and the existence of hidden dangers on the PC client of the display module.
实际应用时,上述步骤S3的分类Hough变换算法,具体可以包括以下步骤:In practical application, the classification Hough transform algorithm of the above step S3 may specifically include the following steps:
步骤S31、利用Canny算子获取被测图像的边缘:设边缘点域共有K个特征点(xi,yi),i=1,2,3...K,它们构成边界点域D;Step S31, using the Canny operator to obtain the edge of the image to be tested: it is assumed that the edge point field has K feature points (x i , y i ), i=1, 2, 3...K, which constitute the boundary point field D;
步骤S32、用Sobel算子提取边界点的水平、垂直梯度信息;Step S32, extract the horizontal and vertical gradient information of boundary point with Sobel operator;
步骤S33、初始化参数空间H;Step S33, initializing the parameter space H;
步骤S34、构造分类器,并以4分类器进行说明:4分类器把候选直线分成4类,水平、垂直、正45°、负45°,然后根据步骤S32中的两个方向的梯度信息把边界点分到4个子类Di中去;假设经过分类器后4个子类中分别有Ki个边缘特征点(xi,yi),i=1,2,3...Ki;Step S34, construct a classifier, and describe it with 4 classifiers: the 4 classifier divides the candidate straight lines into 4 categories, horizontal, vertical, positive 45°, and negative 45°, and then according to the gradient information of the two directions in step S32. The boundary points are divided into 4 subclasses D i ; it is assumed that there are K i edge feature points (x i , y i ) in the 4 subclasses after the classifier, i=1, 2, 3...K i ;
步骤S35、在4个子类中进行参数空间映射:从子类Di中每隔距离t选取m个边缘特征点作为种子点;t=Ki/m,为选择距离;具体t值的选取不仅和K值有关,还和被测图像的噪声水平有关;对于每个种子点,又从Di中以距离t随机选取边缘特征点与之两两配对;对于每一对特征点,计算其虚拟直线参数,并在参数空间上投影;Step S35, carry out parameter space mapping in 4 subclasses: select m edge feature points at every distance t from subclass D i as seed points; t=K i /m, is the selection distance; the selection of the specific t value is not only It is related to the value of K and the noise level of the tested image; for each seed point, the edge feature points are randomly selected from D i and paired with it at a distance t; for each pair of feature points, the virtual Line parameters, and projected on the parameter space;
由特征点对(xi,yi)(xj,yj)求取其直线参数的公式简单给出如下:The formula for calculating the straight line parameters from the feature point pair (x i , y i )(x j , y j ) is simply given as follows:
ρt=xi cosθt+yi sinθt ρ t = xi cosθ t +y i sinθ t
又:again:
ρt=xj cosθt+yj sinθt ρ t =x j cosθ t +y j sinθ t
可以得出:It can be concluded that:
把θt带入公式ρt=xi cosθt+yi sinθt,可得到ρt;Put θ t into the formula ρ t = xi cosθ t +y i sinθ t , we can get ρ t ;
离散化H(θt,ρt),并在参数空间H中把对应的单元的值累加1;当每个子类空间都完成上述操作后转入下一步;Discretize H(θ t ,ρ t ), and add 1 to the value of the corresponding unit in the parameter space H; when each subclass space has completed the above operations, go to the next step;
步骤S36、统计参数空间,寻找峰值:在参数空间H中寻找峰值;当发现有某个H(θc,ρc)的值大于全局阈值T,则认为原被识别图像中存在一条以(θc,ρc)为参数的直线;记录下所有的峰值点。Step S36: Statistical parameter space, looking for the peak value: look for the peak value in the parameter space H; when it is found that the value of a certain H(θ c , ρ c ) is greater than the global threshold T, then it is considered that there is an image with (θ c , ρ c ) in the original recognized image. c , ρ c ) is a straight line of parameters; all peak points are recorded.
步骤S37、直线拟合与还原:把得到的所有峰值点用ρt=xi cosθt+yi sinθt式计算可得到原曲线。Step S37, straight line fitting and restoration: the original curve can be obtained by calculating all the obtained peak points with the formula ρ t = xi cosθ t +y i sinθ t .
如图3所示,本发明实施例提供的超长架空的自动扶梯桁架形变检测方法中,首先选择待检扶梯,根据现场需要在自动扶梯上贴识别标志和监测系统安装调试工作;然后从多个角度位置对自动扶梯贴标识位置进行机器视觉识别,并进行图像整理处理工作,然后对识别模型算法的融合改进建立新的监测识别模型,使用其对待检目标进行检测,判断是否存在弯曲变形的安全隐患;融合改进后的新监测识别算法流程,(1)输入采集的视频图像,(2)对其进行图像预处理,(3)得到检测边缘点D,(4)提取梯度,(5)初始化参数空间,(6)算法参数设置,(7)分类器选择与构造,(8)选取种子点Gi,(9)选择特征点Pj与配对,(10)计算直线参数,(11)参数空间映射及累加,(12)判断i是否小于m,(13)是,返回第(8)重新选取种子点Gi,直到i大于m时继续执行,(14)判断j是否小于m,(15)是,返回第(8)重新选择特征点Pj与配对,直到j大于m时继续执行,直到完成直线拟合与还原结果;最后判断图像与标识直线是否完全拟合,完全拟合判定超长自动扶梯桁架是安全的,否者判定其存在安全隐患。As shown in FIG. 3 , in the method for detecting the deformation of the super-long overhead escalator truss provided by the embodiment of the present invention, the escalator to be inspected is selected first, and identification marks are attached to the escalator and the installation and debugging of the monitoring system are performed according to the needs of the site; Perform machine vision recognition on the escalator sticker label position at each angle position, and carry out image processing work, and then establish a new monitoring and recognition model by integrating and improving the recognition model algorithm, and use it to detect the target to be inspected to determine whether there is bending deformation. hidden safety hazards; fuse the improved new monitoring and identification algorithm process, (1) input the collected video image, (2) perform image preprocessing on it, (3) obtain the detection edge point D, (4) extract the gradient, (5) Initialize parameter space, (6) algorithm parameter setting, (7) classifier selection and construction, (8) select seed point Gi, (9) select feature point Pj and pairing, (10) calculate line parameters, (11) parameter space Mapping and accumulation, (12) judge whether i is less than m, (13) yes, return to (8) to re-select the seed point Gi, continue to execute until i is greater than m, (14) judge whether j is less than m, (15) yes , return to (8) to re-select the feature point Pj and pairing, continue to execute until j is greater than m, until the line fitting and restoration results are completed; finally, judge whether the image and the marked line are completely fitted, and the complete fitting is used to determine the super-long escalator The truss is safe, otherwise it is judged to be a safety hazard.
相对于现有技术,本发明实施例所述的超长架空的自动扶梯桁架形变监测系统及检测方法具有以下优势:Compared with the prior art, the super-long overhead escalator truss deformation monitoring system and detection method described in the embodiments of the present invention have the following advantages:
本发明实施例提供的超长架空的自动扶梯桁架形变监测系统及检测方法中,首先选择需要检测的超长自动扶梯的识别对象,在监测目标上做直线识别标识,使用基于机器视觉的超长架空自动扶梯的监测识别系统,也即工业相机从多个不同的角度对标识的目标进行弯曲直线监测识别图像信息进行采集;然后通过采集模块并使用Hough变换曲线变换和标准直线Hough变换的方法进行融合改进的分类Hough变换算法模型对采集的图像信息进行处理识别标注,判断超长架空自动扶梯的桁架变形程度及是否存在隐患;最后把识别判断的结果在超长架空的自动扶梯桁架形变检测系统的显示模块PC终端机上进行显示。由此分析可知,本发明提高的一种超长架空的自动扶梯桁架形变监测系统及检测方法,对超长架空的自动扶梯桁架的变形弯曲检测不在依靠人工肉眼去逐一检验的情况,从而有效提高了检验工作效率,缩短了每台超长扶梯的检测时间,有效降低了人工成本。In the super-long overhead escalator truss deformation monitoring system and detection method provided by the embodiment of the present invention, firstly, the identification object of the super-long escalator to be detected is selected, a straight line identification mark is made on the monitoring target, and the super-long escalator based on machine vision is used. The monitoring and identification system of overhead escalator, that is, the industrial camera monitors and recognizes the image information of the marked target from multiple different angles; Integrate the improved classification Hough transform algorithm model to process, identify and label the collected image information, and judge the deformation degree of the truss of the super-long overhead escalator and whether there are hidden dangers; finally, the identification and judgment results are used in the super-long overhead escalator truss deformation detection system. display on the PC terminal of the display module. From this analysis, it can be seen that the deformation monitoring system and detection method of the super-long overhead escalator truss improved by the present invention does not rely on manual visual inspection for the deformation and bending detection of the super-long overhead escalator truss, thereby effectively improving the The inspection efficiency is improved, the inspection time of each super-long escalator is shortened, and the labor cost is effectively reduced.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed by the present invention. should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210473125.0A CN114955814A (en) | 2022-04-29 | 2022-04-29 | Overlong overhead escalator truss deformation monitoring system and detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210473125.0A CN114955814A (en) | 2022-04-29 | 2022-04-29 | Overlong overhead escalator truss deformation monitoring system and detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114955814A true CN114955814A (en) | 2022-08-30 |
Family
ID=82978767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210473125.0A Pending CN114955814A (en) | 2022-04-29 | 2022-04-29 | Overlong overhead escalator truss deformation monitoring system and detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114955814A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1498849A (en) * | 2002-11-06 | 2004-05-26 | 因温特奥股份公司 | Camera for monitoring escalator and mobile footway |
JP2011026071A (en) * | 2009-07-27 | 2011-02-10 | Hitachi Ltd | Escalator monitoring device, system, and method |
CN102134636A (en) * | 2010-01-26 | 2011-07-27 | 宝钢新日铁汽车板有限公司 | Method for monitoring deviation of steel belt in annealing furnace |
JP2017061364A (en) * | 2015-09-25 | 2017-03-30 | 株式会社日立製作所 | Passenger conveyor |
CN109753902A (en) * | 2018-12-21 | 2019-05-14 | 广西电网有限责任公司来宾供电局 | State recognition method of square pressure plate of power distribution cabinet based on image processing of hough transform |
CN110002329A (en) * | 2018-12-29 | 2019-07-12 | 广州地铁设计研究院股份有限公司 | A kind of escalator on-line monitoring early warning system and method based on cloud platform |
CN215924128U (en) * | 2021-09-09 | 2022-03-01 | 广东省特种设备检测研究院珠海检测院 | Machine vision escalator defect identification monitoring system |
-
2022
- 2022-04-29 CN CN202210473125.0A patent/CN114955814A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1498849A (en) * | 2002-11-06 | 2004-05-26 | 因温特奥股份公司 | Camera for monitoring escalator and mobile footway |
US20050088520A1 (en) * | 2002-11-06 | 2005-04-28 | Josef Wiesinger | Video camera monitoring of escalators and moving walks |
JP2011026071A (en) * | 2009-07-27 | 2011-02-10 | Hitachi Ltd | Escalator monitoring device, system, and method |
CN102134636A (en) * | 2010-01-26 | 2011-07-27 | 宝钢新日铁汽车板有限公司 | Method for monitoring deviation of steel belt in annealing furnace |
JP2017061364A (en) * | 2015-09-25 | 2017-03-30 | 株式会社日立製作所 | Passenger conveyor |
CN109753902A (en) * | 2018-12-21 | 2019-05-14 | 广西电网有限责任公司来宾供电局 | State recognition method of square pressure plate of power distribution cabinet based on image processing of hough transform |
CN110002329A (en) * | 2018-12-29 | 2019-07-12 | 广州地铁设计研究院股份有限公司 | A kind of escalator on-line monitoring early warning system and method based on cloud platform |
CN215924128U (en) * | 2021-09-09 | 2022-03-01 | 广东省特种设备检测研究院珠海检测院 | Machine vision escalator defect identification monitoring system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1315715C (en) | Camera for monitoring escalator and mobile footway | |
CN110119680B (en) | Automatic error checking system of regulator cubicle wiring based on image recognition | |
KR101576106B1 (en) | Apparatus and method for taekwondo poomsae recognition and dan promotion based on human skeleton using depth camera thereof | |
CN106546263B (en) | A laser level detection method based on machine vision | |
CN103150557B (en) | A kind of operation of the display terminal based on machine vision responses match pick-up unit | |
CN110850723A (en) | Fault diagnosis and positioning method based on transformer substation inspection robot system | |
CN111266315A (en) | On-line sorting system and method for ore materials based on visual analysis | |
WO2014139273A1 (en) | Weld seam defect detection method | |
CN104535356A (en) | Method and system for monitoring rope arrangement faults of drum steel wire rope on basis of machine vision | |
CN105158257A (en) | Sliding plate measurement method and device | |
CN108520514A (en) | Consistency detection method of printed circuit board electronic components based on computer vision | |
CN107895362A (en) | A kind of machine vision method of miniature binding post quality testing | |
WO2023279531A1 (en) | Method for counting drilling pipe withdrawals in a drilling video on basis of human body pose recognition | |
CN112157642B (en) | A unmanned robot that patrols and examines for electricity distribution room | |
CN111506011A (en) | A construction safety monitoring method and device | |
CN113128393A (en) | Method and system for detecting whether person is under large-scale mechanical boom | |
US20080225131A1 (en) | Image Analysis System and Image Analysis Method | |
CN112634269B (en) | Railway vehicle body detection method | |
CN107436304A (en) | A kind of surface of concrete structure detection means | |
CN115308222A (en) | System and method for identifying bad chip appearance based on machine vision | |
CN115078382A (en) | Bridge crack monitoring system based on video image | |
CN205486309U (en) | Through whether correct device of test capacitor installation of shooing | |
CN105173948A (en) | Elevator controller condition monitoring system and method | |
CN112966638A (en) | Transformer station operator identification and positioning method based on multiple characteristics | |
CN119813540A (en) | Intelligent management method for cable lines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |