CN114948204A - Navigation method, device and storage medium based on fluorescence molecular imaging - Google Patents
Navigation method, device and storage medium based on fluorescence molecular imaging Download PDFInfo
- Publication number
- CN114948204A CN114948204A CN202110212035.1A CN202110212035A CN114948204A CN 114948204 A CN114948204 A CN 114948204A CN 202110212035 A CN202110212035 A CN 202110212035A CN 114948204 A CN114948204 A CN 114948204A
- Authority
- CN
- China
- Prior art keywords
- imaging
- infrared
- module
- visible light
- imaging module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 216
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000005284 excitation Effects 0.000 claims abstract description 81
- 238000002073 fluorescence micrograph Methods 0.000 claims description 30
- 238000004590 computer program Methods 0.000 claims description 24
- 238000000799 fluorescence microscopy Methods 0.000 claims description 9
- 239000003550 marker Substances 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 3
- 238000012632 fluorescent imaging Methods 0.000 abstract 1
- 206010028980 Neoplasm Diseases 0.000 description 20
- 238000007493 shaping process Methods 0.000 description 13
- 210000000056 organ Anatomy 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 230000003902 lesion Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- MOFVSTNWEDAEEK-UHFFFAOYSA-M indocyanine green Chemical compound [Na+].[O-]S(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS([O-])(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C MOFVSTNWEDAEEK-UHFFFAOYSA-M 0.000 description 4
- 229960004657 indocyanine green Drugs 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2055—Optical tracking systems
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Robotics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Description
技术领域technical field
本发明涉及医学成像领域,具体涉及一种基于荧光分子成像的导航方法、设备、存储介质。The invention relates to the field of medical imaging, in particular to a navigation method, device and storage medium based on fluorescence molecular imaging.
背景技术Background technique
现有的荧光分子影像手术导航设备已可通过对人体注射吲哚菁绿等荧光分子标记物并使其聚集在病灶器官肿瘤处,利用荧光显影技术(例如,吲哚菁绿在785nm-808nm波长的激光辐射下,可最大程度地激发出近红外波段的荧光)实现肿瘤定位与形态获取、以及病灶器官的图像获取,并通过将肿瘤图像(基于近红外光采集的近红外图像(或称红外图像))与病灶器官图像(基于可见光采集的可见光图像,一般为彩色图像)进行融合后由显示器显示,来帮助外科医生进行肿瘤的切除。Existing fluorescent molecular imaging surgical navigation equipment has been able to inject fluorescent molecular markers such as indocyanine green into the human body and make them accumulate at the tumor of the focal organ. Under the laser radiation, the fluorescence in the near-infrared band can be excited to the greatest extent to achieve tumor localization and morphological acquisition, as well as image acquisition of lesion organs. image)) and the image of the focal organ (visible light image collected based on visible light, generally a color image), and then displayed on the monitor to help the surgeon perform tumor resection.
然而,现有手术导航系统中,近红外图像采集系统的电动近红外镜头主要采用被动方式实现自动对焦,无法实现近距离自动对焦,尤其不能实现1000mm以内距离的自动对焦,而手术场景中近红外镜头与病灶器官的距离基本均在1000mm以内,因此,现有手术导航系统无法进行近红外图像采集系统的实时对焦,即不能实时采集清晰的红外图像。例如,公开号为CN209847151和CN109662695的专利文件公开了一种荧光分子成像系统及装置,该类系统及装置均不能实现红外图像采集系统的实时对焦,不利于手术的进行,在一定程度上限制了其推广应用。However, in the existing surgical navigation system, the motorized near-infrared lens of the near-infrared image acquisition system mainly uses a passive method to achieve automatic focusing, and cannot achieve automatic focusing at short distances, especially at a distance of less than 1000mm. The distance between the lens and the focal organ is basically within 1000mm. Therefore, the existing surgical navigation system cannot perform real-time focusing of the near-infrared image acquisition system, that is, it cannot acquire clear infrared images in real time. For example, the patent documents with publication numbers CN209847151 and CN109662695 disclose a fluorescent molecular imaging system and device, which cannot realize real-time focusing of the infrared image acquisition system, which is not conducive to the operation, and limits to a certain extent. its promotion and application.
发明内容SUMMARY OF THE INVENTION
本发明提供一种基于荧光分子成像的导航设备,以至少克服上述现有技术所存在的在采集近红外图像时不能实时对焦以及由此导致的近红外图像不清晰等缺陷。The present invention provides a navigation device based on fluorescent molecular imaging to at least overcome the above-mentioned defects of the prior art, such as the inability to focus in real time when collecting near-infrared images and the resulting unclear near-infrared images.
本发明的一方面,提供一种基于荧光分子成像的导航设备,包括成像单元、工控机和与工控机相连的显示单元,成像单元包括:激发光源模块,具有激发光源,用于向含有近红外荧光标记物的受测区投射激发光源发出的激发光,使受测区产生近红外荧光;第一成像模块,与工控机相连,第一成像模块基于近红外荧光成像并将所获得的近红外荧光图像传输至工控机;第二成像模块,与工控机相连,第二成像模块基于受测区反射的可见光成像并将所获得的可见光图像传输至工控机;工控机将近红外荧光图像和可见光图像融合后传输至显示单元进行显示;测距模块,与第一成像模块相连,用于实时测量第一成像模块与受测区的第一距离信息并将第一距离信息传输至第一成像模块,使第一成像模块在基于近红外荧光成像时根据第一距离信息实时对焦。In one aspect of the present invention, a navigation device based on fluorescent molecular imaging is provided, which includes an imaging unit, an industrial computer, and a display unit connected to the industrial computer. The measured area of the fluorescent marker projects the excitation light emitted by the excitation light source, so that the measured area generates near-infrared fluorescence; the first imaging module is connected to the industrial computer, and the first imaging module is based on near-infrared fluorescence imaging and images the obtained near-infrared fluorescence. The fluorescent image is transmitted to the industrial computer; the second imaging module is connected to the industrial computer, and the second imaging module is based on the visible light reflected from the measured area and transmits the obtained visible light image to the industrial computer; the industrial computer is near-infrared fluorescence image and visible light image After fusion, it is transmitted to the display unit for display; the ranging module is connected to the first imaging module, and is used to measure the first distance information between the first imaging module and the measured area in real time and transmit the first distance information to the first imaging module, The first imaging module is made to focus in real time according to the first distance information when imaging based on near-infrared fluorescence.
根据本发明的一实施方式,测距模块还与第二成像模块相连,用于实时测量第二成像模块与受测区的第二距离信息并将第二距离信息传输至第二成像模块,使第二成像模块在基于可见光成像时根据第二距离信息实时对焦。According to an embodiment of the present invention, the distance measuring module is further connected to the second imaging module for measuring the second distance information between the second imaging module and the measured area in real time and transmitting the second distance information to the second imaging module, so that the The second imaging module focuses in real time according to the second distance information when imaging based on visible light.
根据本发明的一实施方式,受测区反射的可见光来源于环境光,成像单元还包括补偿光源模块,补偿光源模块用于向受测区补偿可见光。According to an embodiment of the present invention, the visible light reflected by the measured area comes from ambient light, and the imaging unit further includes a compensation light source module for compensating visible light to the measured area.
根据本发明的一实施方式,第一成像模块包括按受测区产生的近红外荧光向第一成像模块传播的方向依次设置的近红外滤光元件、近红外镜头和近红外荧光感光元件,近红外荧光感光元件与工控机相连,近红外镜头与测距模块相连,其中,近红外滤光元件,用于滤除受测区反射的光中的非近红外荧光,获得近红外荧光;近红外镜头,用于根据测距模块反馈的第一距离信息对近红外荧光进行实时对焦;近红外荧光感光元件,用于基于近红外镜头对焦后的近红外荧光进行成像,获得近红外荧光图像,并将近红外荧光图像传输至工控机。According to an embodiment of the present invention, the first imaging module includes a near-infrared filter element, a near-infrared lens, and a near-infrared fluorescence photosensitive element, which are arranged in sequence according to the direction in which the near-infrared fluorescence generated by the measured area propagates to the first imaging module. The infrared fluorescence photosensitive element is connected with the industrial computer, and the near-infrared lens is connected with the ranging module, wherein the near-infrared filter element is used to filter out the non-near-infrared fluorescence in the light reflected from the measured area, and obtain the near-infrared fluorescence; The lens is used for real-time focusing of near-infrared fluorescence according to the first distance information fed back by the ranging module; the near-infrared fluorescence photosensitive element is used for imaging based on the near-infrared fluorescence after focusing by the near-infrared lens to obtain a near-infrared fluorescence image, and The near-infrared fluorescence image is transmitted to the industrial computer.
根据本发明的一实施方式,近红外滤光元件允许波长为800-1700nm的近红外光通过。According to an embodiment of the present invention, the near-infrared filter element allows near-infrared light with a wavelength of 800-1700 nm to pass therethrough.
根据本发明的一实施方式,激发光源模块的功率为10mw-3000mw,以及激发光源的中心波长为785nm±5nm。According to an embodiment of the present invention, the power of the excitation light source module is 10mw-3000mw, and the central wavelength of the excitation light source is 785nm±5nm.
根据本发明的一实施方式,激发光源模块还具有匀光模块,匀光模块用于对激发光源发出的激发光进行匀光处理,以使投射于受测区的激发光强度分布均匀。According to an embodiment of the present invention, the excitation light source module further includes a homogenization module, which is used for homogenizing the excitation light emitted by the excitation light source, so that the intensity distribution of the excitation light projected on the measured area is uniform.
根据本发明的一实施方式,第二成像模块包括按受测区反射的可见光向第二成像模块传播的方向依次设置的可见光滤光元件、可见光镜头和可见光感光元件,可见光感光元件与工控机相连,可见光镜头与测距模块相连,其中,可见光滤光元件,用于滤除受测区反射的光中的非可见光,获得可见光;可见光镜头,用于根据测距模块反馈的第二距离信息对可见光进行实时对焦;可见光感光元件,用于基于可见光镜头对焦后的可见光进行成像,获得可见光图像,并将可见光图像传输至工控机。According to an embodiment of the present invention, the second imaging module includes a visible light filter element, a visible light lens and a visible light photosensitive element, which are arranged in sequence according to the direction in which the visible light reflected from the measured area propagates to the second imaging module, and the visible light photosensitive element is connected to the industrial computer. , the visible light lens is connected to the ranging module, wherein the visible light filter element is used to filter out the non-visible light in the light reflected by the measured area to obtain visible light; the visible light lens is used to pair according to the second distance information fed back by the ranging module The visible light is focused in real time; the visible light photosensitive element is used for imaging based on the visible light after focusing by the visible light lens, obtaining the visible light image, and transmitting the visible light image to the industrial computer.
根据本发明的一实施方式,成像单元还包括指示光源模块,指示光源模块具有指示光源以及光束整形单元,指示光源用于向受测区投射指示光源发出的指示光,光束整形单元用于对指示光进行整形,以指示激发光源发出的激发光在受测区的投射位置。According to an embodiment of the present invention, the imaging unit further includes an indication light source module, the indication light source module has an indication light source and a beam shaping unit, the indication light source is used for projecting the indication light emitted by the indication light source to the measured area, and the beam shaping unit is used for the indication light source. The light is shaped to indicate where the excitation light from the excitation light source is projected on the area under test.
根据本发明的一实施方式,指示光源模块的光束整形单元为衍射元件,用于将指示光源发出的指示光整形为与激发光源发出的激发光轮廓一致。According to an embodiment of the present invention, the beam shaping unit of the indicator light source module is a diffractive element for shaping the indicator light emitted by the indicator light source to be consistent with the outline of the excitation light emitted by the excitation light source.
根据本发明的一实施方式,还包括移动平台,成像单元、工控机、显示单元安装在移动平台上;其中,移动平台上设有机械臂,成像单元通过机械臂活动安装于移动平台上。According to an embodiment of the present invention, it further includes a mobile platform, and the imaging unit, the industrial computer, and the display unit are mounted on the mobile platform; wherein, the mobile platform is provided with a robotic arm, and the imaging unit is movably mounted on the mobile platform through the robotic arm.
本发明的另一方面,提供一种基于荧光分子成像的导航方法,包括:向含有近红外荧光标记物的受测区投射激发光,使受测区产生近红外荧光,采用第一成像模块基于近红外荧光成像,获得近红外荧光图像;采用第二成像模块基于受测区反射的可见光成像,获得可见光图像;将近红外荧光图像和可见光图像融合后进行显示;其中,实时测量第一成像模块与受测区的第一距离信息,使第一成像模块在基于近红外荧光成像时根据第一距离信息实时对焦。Another aspect of the present invention provides a navigation method based on fluorescent molecular imaging, comprising: projecting excitation light to a detected area containing a near-infrared fluorescent marker, so that the detected area generates near-infrared fluorescence, using a first imaging module based on Near-infrared fluorescence imaging is used to obtain a near-infrared fluorescence image; a second imaging module is used to obtain a visible light image based on the visible light reflected from the measured area; the near-infrared fluorescence image and the visible light image are fused and displayed; wherein, the real-time measurement of the first imaging module and the visible light image are performed. The first distance information of the measured area enables the first imaging module to focus in real time according to the first distance information when imaging based on near-infrared fluorescence.
根据本发明的一实施方式,实时测量第二成像模块与受测区的第二距离信息,使第二成像模块在基于可见光成像时根据第二距离信息实时对焦。According to an embodiment of the present invention, the second distance information between the second imaging module and the measured area is measured in real time, so that the second imaging module can focus in real time according to the second distance information when imaging based on visible light.
根据本发明的一实施方式,受测区反射的可见光来源于环境光,导航方法还包括:向受测区补偿可见光。According to an embodiment of the present invention, the visible light reflected by the measured area comes from ambient light, and the navigation method further includes: compensating for the visible light to the measured area.
根据本发明的一实施方式,采用第一成像模块基于近红外荧光采集近红外荧光图像,包括:滤除受测区反射的光中的非近红外荧光,获得近红外荧光;根据第一距离信息对近红外荧光进行实时对焦;基于对焦后的近红外荧光成像,获得近红外荧光图像。According to an embodiment of the present invention, using the first imaging module to collect near-infrared fluorescence images based on near-infrared fluorescence includes: filtering out non-near-infrared fluorescence in the light reflected from the measured area to obtain near-infrared fluorescence; and according to the first distance information The near-infrared fluorescence is focused in real time; the near-infrared fluorescence image is obtained based on the near-infrared fluorescence imaging after focusing.
根据本发明的一实施方式,近红外荧光的波长为800-1700nm。According to an embodiment of the present invention, the wavelength of the near-infrared fluorescence is 800-1700 nm.
根据本发明的一实施方式,激发光的波长为785nm±5nm。According to an embodiment of the present invention, the wavelength of the excitation light is 785 nm±5 nm.
根据本发明的一实施方式,对投射于受测区的激发光进行匀光处理,以使投射于受测区的激发光强度分布均匀。According to an embodiment of the present invention, homogenization processing is performed on the excitation light projected on the measured area, so that the intensity distribution of the excitation light projected on the measured area is uniform.
根据本发明的一实施方式,采用第二成像模块基于受测区反射的可见光采集可见光图像,包括:滤除受测区反射的光中的非可见光,获得可见光;根据第二距离信息对可见光进行实时对焦;基于对焦后的可见光成像,获得可见光图像。According to an embodiment of the present invention, using the second imaging module to collect visible light images based on the visible light reflected by the measured area includes: filtering out non-visible light in the light reflected by the measured area to obtain visible light; Real-time focusing; based on the visible light imaging after focusing, a visible light image is obtained.
根据本发明的一实施方式,向受测区投射指示光,对指示光进行整形,以指示激发光在受测区的位置。According to an embodiment of the present invention, the indicator light is projected to the detected area, and the indicator light is shaped to indicate the position of the excitation light in the detected area.
根据本发明的一实施方式,对指示光进行整形为:将指示光整形为与激发光轮廓一致。According to an embodiment of the present invention, shaping the indicator light is: shaping the indicator light to be consistent with the excitation light profile.
本发明的再一方面,提供一种基于荧光分子成像的电子设备,包括:处理器、存储器以及计算机程序;其中,计算机程序存储在存储器中,并被配置为由处理器执行以实现上述基于荧光分子成像的导航方法。In yet another aspect of the present invention, an electronic device based on fluorescence molecular imaging is provided, comprising: a processor, a memory and a computer program; wherein the computer program is stored in the memory and configured to be executed by the processor to realize the above-mentioned fluorescence-based imaging Navigational Methods for Molecular Imaging.
本发明的再一方面,提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行以实现上述基于荧光分子成像的导航方法。Yet another aspect of the present invention provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the above-mentioned fluorescent molecular imaging-based navigation method.
本发明的再一方面,提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行以实现上述基于荧光分子成像的导航方法。In yet another aspect of the present invention, a computer program product is provided, comprising a computer program, the computer program being executed by a processor to implement the above-mentioned fluorescent molecular imaging-based navigation method.
本发明提供的基于荧光分子成像的导航设备,可作为荧光分子影像手术导航设备,用于肿瘤组织的实时显影、定位,且通过测距模块实时测量第一成像模块的工作距离信息(即第一距离信息),使第一成像模块在采集近红外图像时根据第一距离信息通过主动方式实时对焦,可以实时获得清晰的近红外荧光图像(即肿瘤在病灶组织中的分布图像),有效克服现有荧光分子影像导航设备所存在的近红外图像不清晰等缺陷,从而可以显著提高手术效率,具有重要的实用意义。The navigation device based on fluorescent molecular imaging provided by the present invention can be used as a fluorescent molecular imaging surgical navigation device for real-time visualization and positioning of tumor tissue, and the working distance information of the first imaging module (that is, the first imaging module is measured in real time through the ranging module) distance information), so that the first imaging module can actively focus in real time according to the first distance information when collecting near-infrared images, and can obtain clear near-infrared fluorescence images (that is, images of tumor distribution in the lesion tissue) in real time, effectively overcoming current There are defects such as unclear near-infrared images existing in fluorescent molecular imaging navigation equipment, which can significantly improve the efficiency of surgery and have important practical significance.
附图说明Description of drawings
图1为本发明一实施方式的基于荧光分子成像的导航设备的结构示意图;FIG. 1 is a schematic structural diagram of a navigation device based on fluorescence molecular imaging according to an embodiment of the present invention;
图2为本发明一实施方式的基于荧光分子成像的导航设备的成像单元结构示意图。FIG. 2 is a schematic structural diagram of an imaging unit of a navigation device based on fluorescent molecular imaging according to an embodiment of the present invention.
附图标记说明:Description of reference numbers:
1:受测区;101:成像单元;102:显示单元;103:移动平台;104:工控机;105:机械臂;201:近红外荧光感光元件;202:可见光感光元件;203:近红外镜头;204:近红外滤光元件;205:指示光源模块;206:可见光镜头;207:可见光滤光元件;208:测距模块;209:补偿光源模块;210:激发光源模块。1: Measured area; 101: Imaging unit; 102: Display unit; 103: Mobile platform; 104: Industrial computer; 105: Robot arm; 204: Near-infrared filter element; 205: Indication light source module; 206: Visible light lens; 207: Visible light filter element; 208: Ranging module; 209: Compensation light source module; 210: Excitation light source module.
具体实施方式Detailed ways
为使本领域技术人员更好地理解本发明的方案,下面结合附图对本发明作进一步地详细说明。In order to make those skilled in the art better understand the solution of the present invention, the present invention will be further described in detail below with reference to the accompanying drawings.
在本发明的描述中,除非另有明确的规定和限定,术语“设置”、“安装”、“连接”、“相连”应做广义理解,例如,可以是固定连接、也可以是可拆卸连接,也可以是一体连接;可以是机械连接,也可以是电连接,也可以是通信连接(网络连接);可以是直接连接,也可以是通过中间媒介间接连接,也可以是两个元件内部连通。对于本领域的普通技术人员而言,可以具体情况理解上述属于在本发明中的具体含义。此外,术语“第一”、“第二”仅用于描述目的,例如区分各部件,以更清楚说明/解释技术方案,而不能理解为指示或暗示所指示的技术特征的数量或具有实质性意义的顺序等含义。In the description of the present invention, unless otherwise expressly specified and limited, the terms "arranged", "installed", "connected" and "connected" should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , it can also be an integral connection; it can be a mechanical connection, an electrical connection, or a communication connection (network connection); it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components . For those of ordinary skill in the art, the above-mentioned specific meanings in the present invention can be understood in specific situations. In addition, the terms "first" and "second" are only used for descriptive purposes, for example, to distinguish each component, so as to describe/explain the technical solution more clearly, and should not be construed as indicating or implying the number or substantive nature of the indicated technical features order of meaning, etc.
本发明提供一种基于荧光分子成像的导航设备,如图1和图2所示,该设备包括成像单元101、工控机104和与工控机104相连的显示单元102,成像单元101包括:激发光源模块210,具有激发光源,用于向含有近红外荧光标记物的受测区1投射激发光,使受测区1产生近红外荧光;第一成像模块,与工控机104相连,第一成像模块基于近红外荧光成像并将所获得的近红外荧光图像传输至工控机104;第二成像模块,与工控机104相连,第二成像模块基于受测区1反射的可见光成像并将所获得的可见光图像传输至工控机104;工控机104将近红外荧光图像和可见光图像融合后传输至显示单元102进行显示;测距模块208,与第一成像模块相连,用于实时测量第一成像模块与受测区1的距离信息并将距离信息传输至第一成像模块,使第一成像模块在基于近红外荧光成像时根据第一距离信息实时对焦。The present invention provides a navigation device based on fluorescent molecular imaging, as shown in FIG. 1 and FIG. 2 , the device includes an imaging unit 101, an
本发明的基于荧光分子成像的导航设备可用于医生手术和科研等方面,具有重要的实用意义。具体来说,激发光源模块210的激发光源发出激发光(光斑)并投射/辐射至受测区1(一般为肿瘤所在的病灶器官),从而得到近红外荧光标记物(或称荧光探针,例如吲哚菁绿等)的荧光显影,生成近红外荧光信号,该近红外荧光信号成像在第一成像模块上,得到近红外荧光图像(即显示肿瘤的图像);同时受测区1反射的可见光信号成像在第二成像模块上,得到可见光图像(即肿瘤所在病灶器官的彩色图像),近红外荧光图像和可见光图像经工控机104融合后传输至显示单元102进行显示,从而显示出肿瘤在病灶器官/组织中的分布图像。本发明的设备可实时检测、显示肿瘤位置与形态,利于医生快速定位肿瘤位置,提高手术效率。The navigation device based on fluorescence molecular imaging of the present invention can be used in doctor's surgery, scientific research and the like, and has important practical significance. Specifically, the excitation light source of the excitation
上述工控机104可以是本领域常规控制器或可实现人机交互的控制终端,其具体可以包括系统控制模块和与系统控制模块相连的图像处理模块,系统控制模块可用于荧光分子影像手术导航设备系统的整体控制,例如激发光源模块210的开关、成像单元101的开关、设备电源分配、各模块之间的通信等,医生可通过工控机104实现对该荧光分子影像手术导航设备的各种操作,如控制设备开启或关闭等。具体地,上述激发光源模块210、第一成像模块、第二成像模块、测距模块208、显示单元102均分别与系统控制模块相连(即通信连接),工控机104控制激发光源模块210的激发光源发出激发光(光斑),并将该激发光投射至受测区1;第一成像模块将近红外荧光图像通过系统控制模块传输至图像处理模块、第二成像模块将可见光图像通过系统控制模块传输至图像处理模块,经图像处理模块进行叠加融合处理后,得到肿瘤在病灶组织中的分布图像(即叠加融合后图像),然后通过系统控制模块将该分布图像传输至显示单元102进行显示。The above-mentioned
显示单元102用于对上述图像信息进行显示,其亦可以是本领域常规显示器,例如LED屏或液晶显示屏等,其结合成像单元101、工控机104等对受测区1进行显影、定位的功能,可以实现对肿瘤组织等灌注有近红外荧光标记物组织的实时显影、定位。The
上述测距模块208还可以同时与第二成像模块相连,用于实时测量第二成像模块与受测区1的第二距离信息并将第二距离信息传输至第二成像模块,第二成像模块在基于可见光成像时根据第二距离信息实时对焦,即实现第一成像模块和第二成像模块的实时对焦,获得清晰的近红外荧光图像和可见光图像,更利于清楚显示肿瘤在病灶器官的分布情况。The above
上述受测区1反射的可见光可以来源于环境光,亦即,环境光照射至受测区1,使受测区1反射可见光,进而使第二成像模块基于该可见光进行成像,获得可见光图像;上述成像单元101还可以包括补偿光源模块209,补偿光源模块209用于向受测区1补偿可见光,尤其可以在环境光强度不足时进行补光(即通过补偿光源模块209向受测区1发射可见光),增强受测区1所反射的可见光,利于获得更为清晰的可见光图像。本发明的荧光分子影像手术导航设备可在正常手术室的灯光环境下工作,上述环境光具体可以是手术室的灯光。The visible light reflected by the above-mentioned area under test 1 can be derived from ambient light, that is, the ambient light is irradiated to the area under test 1, so that the area under test 1 reflects visible light, and then the second imaging module performs imaging based on the visible light to obtain a visible light image; The above-mentioned imaging unit 101 may also include a compensation
可选地,补偿光源模块209可以与工控机104相连,具体可以是与工控机104的系统控制模块相连,通过工控机104的系统控制模块控制补偿光源209发出可见光,以向受测区1补偿可见光。Optionally, the compensation
可选地,补偿光源模块209可以安装在测距模块208上,如图1和图2所示,测距模块208的一侧与激发光源模块210连接,测距模块208的另一侧与补偿光源模块209连接。Optionally, the compensation
如图1和图2所示,在本发明的一实施方式中,第一成像模块具体可以包括按受测区1产生的近红外荧光向第一成像模块传播的方向依次设置的近红外滤光元件204、近红外镜头203和近红外荧光感光元件(或称近红外相机)201,近红外荧光感光元件201与工控机104相连(具体可以是与工控机104的系统控制模块相连),近红外镜头203与测距模块208相连,其中,近红外滤光元件204用于滤除受测区1反射的光中的非近红外荧光,获得近红外荧光;近红外镜头203用于根据测距模块208反馈的第一距离信息对近红外荧光进行实时对焦;近红外荧光感光元件201用于基于近红外镜头203对焦后的近红外荧光进行成像,获得近红外荧光图像,并将近红外荧光图像传输至工控机104。具体来说,受测区1反射的光经过近红外滤光元件204,近红外滤光元件204仅使近红外荧光通过,即使所需的携带病灶器官的肿瘤信息的荧光信号通过,通过近红外滤光元件204的近红外荧光通过近红外镜头203对焦后成像于近红外荧光感光元件201,从而获得近红外荧光图像。As shown in FIG. 1 and FIG. 2 , in an embodiment of the present invention, the first imaging module may specifically include near-infrared filters arranged in sequence according to the direction in which the near-infrared fluorescence generated by the measured area 1 propagates to the first imaging module The element 204, the near-
可选地,测距模块208可以通过工控机104与近红外镜头203相连(具体可以是通过工控机104的系统控制模块与近红外镜头203相连),测距模块208获取第一距离信息后,将第一距离信息发送至工控机104,工控机104与近红外镜头203相连,将第一距离信息发送至近红外镜头203,近红外镜头203内部电机会根据第一距离信息将近红外镜头203调焦至图像清晰位置(镜头电机转动角度和距离有标定的函数关系,通过该关系实现近红外镜头203调焦,此系本领域公知技术,不再赘述),进而使近红外荧光感光元件201采集最清晰的近红外荧光图像。Optionally, the ranging
可选地,近红外滤光元件204允许波长为800-1700nm的近红外光通过,即近红外滤光元件204滤除受测区1反射的光中的不在800-1700nm范围的激发光及环境光,而仅使波长为800-1700nm的近红外荧光通过,更利于获得高信噪比的近红外荧光图像,以及提高导航设备的使用便利性。可选地,近红外滤光元件204可以为带通滤波片、长波通滤波片或分光元件等。Optionally, the near-infrared filter element 204 allows near-infrared light with a wavelength of 800-1700nm to pass through, that is, the near-infrared filter element 204 filters out the excitation light and the environment that are not in the range of 800-1700nm in the light reflected by the measured area 1. Only the near-infrared fluorescence with a wavelength of 800-1700 nm is allowed to pass through, which is more conducive to obtaining a near-infrared fluorescence image with a high signal-to-noise ratio, and improves the convenience of use of the navigation device. Optionally, the near-infrared filter element 204 may be a band-pass filter, a long-wavelength filter, or a light-splitting element or the like.
在一些实施例中,上述激发光源模块210的功率为10mw-3000mw,以及激发光源的中心波长为785nm±5nm,在该条件下,受测区1受到激发光源的照射,能够激发出波长范围不在手术室无影灯波长范围内的近红外荧光,进一步配合近红外滤光元件204的滤光处理,能够获得例如波长为800-1700nm的近红外荧光,因此,在使用本发明的导航设备时无需关闭手术室的无影灯或做其他遮光处理,相对于现有的荧光分子影像手术导航设备具有更为明显的使用便利性(现有导航设备/系统的探测波长范围与无影灯波长范围有重合,在使用时需要关闭手术室无影灯),并且该探测范围内的光对病灶组织的穿透深度深,空间分辨率高,因此,不仅可对肿瘤组织进行显影,还可实现对淋巴、血管以及相关组织的灌注情况进行显影和监测。In some embodiments, the power of the excitation
上述激发光源模块210可以是本领域常规激光器,在优选一实施方式中,其还具有匀光模块,匀光模块用于对激发光源发出的激发光进行匀光处理,以使投射于受测区1的激发光(即照射到受测区1表面的激发光光斑)强度分布均匀,更利于所获得的近红外荧光图像的清晰度。具体地,该激发光源模块可以是常规功率可调节半导体激光器与匀光系统构成的激发光源模块。The above-mentioned excitation
如图1和图2所示,第二成像模块包括按受测区1反射的可见光向第二成像模块传播的方向依次设置的可见光滤光元件207、可见光镜头206和可见光感光元件(或称可见光相机)202,可见光感光元件202与工控机104相连(具体可以是与工控机104的系统控制模块相连),可见光镜头206与测距模块208相连,其中,可见光滤光元件207用于滤除受测区1反射的光中的非可见光,获得可见光;可见光镜头206用于根据测距模块208反馈的第二距离信息对可见光进行实时对焦;可见光感光元件202用于基于可见光镜头206对焦后的可见光进行成像,获得可见光图像,并将可见光图像传输至工控机104。具体来说,受测区1反射的光经过可见光滤光元件207,可见光滤光元件207仅使可见光通过,通过可见光滤光元件207的可见光通过可见光镜头206对焦后成像于可见光感光元件202,从而获得可见光图像。As shown in FIG. 1 and FIG. 2, the second imaging module includes a visible
可选地,测距模块208可以通过工控机104与可见光镜头206相连(具体可以是通过工控机104的系统控制模块与可见光镜头206相连),测距模块208获取第二距离信息后,将第二距离信息发送至工控机104,工控机104与可见光镜头206相连,将第二距离信息发送至可见光镜头206,可见光镜头206内部电机会根据第二距离信息将可见光镜头206调焦至图像清晰位置,进而使可见光感光元件202采集最清晰的可见光图像。Optionally, the ranging
需要说明的是,上述测距模块208可以通过工控机104与第一成像模块、第二成像模块相连,也可以通过其他中间媒介与第一成像模块、第二成像模块相连,或者也可直接与第一成像模块、第二成像模块相连,只要能实现第一成像模块、第二成像模块实时对焦即可,本发明对此不做特别限制。It should be noted that the above-mentioned ranging
上述成像单元101还可以包括指示光源模块205,该指示光源模块205具有指示光源以及光束整形单元,指示光源用于向受测区1投射指示光源发出的指示光,光束整形单元用于对指示光进行整形,以指示激发光源发出的激发光在受测区1的投射位置。上述指示光源所发出的光可以为绿光,其中心波长一般可以为492-577nm,例如520nm,利于指示激发光在受测区1的投射位置。通过指示光源模块205,指示激发光源发出的激发光在受测区1的投射位置,提高激发光辐射区域(即肿瘤区域)的直观性,更便于医生手术操作。可选的,该光束整形单元为衍射元件,用于将指示光源发出的指示光整形为与激发光源发出的激发光轮廓一致,以更为清楚地指示激发光源所发出的激发光在受测区1的投射位置。The above-mentioned imaging unit 101 may further include an indicating
可选地,指示光源模块205与工控机104相连,具体是与工控机104的系统控制模块相连,通过系统控制模块控制指示光源模块205的衍射元件对指示光源模块205的指示光源发出的光束进行整形,使指示光源发出的指示光的形状/轮廓与激发光源模块210的激发光源发出的照射在受测区1表面的激发光一致(例如整形为圆形、方框等形状),将激发光源发出的激发光在受测区1的投射位置圈出(即,将投射在受测区1的激发光光斑圈出),更利于医生直观看到激发光的辐射区域,便于手术操作。该衍射元件可以是本领域常规具有光束整形作用的衍射元件,其在指示光源模块205上的设置方式亦可以是本领域常规设置,本发明对此不做特别限制,不再赘述。Optionally, the indicating
本发明中,上述导航设备还可以包括移动平台103,成像单元101、工控机104、显示单元102安装在移动平台103上,移动平台103可以承载整个手术导航设备/系统进行移动,即可以根据需求调整设备方位,便于医生手术操作,提高本发明设备的使用便利性。移动平台103的底部可以安装有多个万向轮,例如该移动平台103可以为长方体或正方体型,可以在其底部的四个边角上各安装一个万向轮,通过其底部的万向轮,利于移动平台103的移动。In the present invention, the above-mentioned navigation device may also include a
在本发明的一实施方式中,如图1所示,上述移动平台103上设有机械臂105,成像单元101通过机械臂105活动安装于移动平台103上,利于根据需求调节成像单元101的工作距离(成像单元101与受测区1之间的距离)和工作角度,从而便于医生手术操作。In an embodiment of the present invention, as shown in FIG. 1 , the above-mentioned
可选地,机械臂105可以由依次连接的第一直部、第二直部、第三直部组成,第一直部的一端安装在移动平台103上,第一直部的另一端与第二直部的一端连接,第二直部的另一端与第三直部的一端连接,成像单元101安装在第三直部的另一端,第一直部与第三直部平行,第三直部的轴向垂直于受测区1所在平面,第二直部与第一直部活动连接,用于调整第三直部的高度,进而调整成像单元101与受测区1之间的工作距离。Optionally, the robotic arm 105 may be composed of a first straight portion, a second straight portion, and a third straight portion that are connected in sequence. One end of the first straight portion is mounted on the
可选地,第一直部可以固定安装在移动平台103上,成像单元101活动安装在第三直部上,或者,第一直部活动安装在移动平台103上,成像单元101固定安装在第三直部上,或者,第一直部活动安装在移动平台103上,成像单元101亦活动安装在第三直部上。其中,所述第一直部可以活动安装在移动平台103上,是指第一直部可以相对于移动平台103转动和/或移动;所述成像单元101可以活动安装在第三直部上,是指成像单元101可以相对于第三直部转动,其转动方向与第三直部的轴向垂直。Optionally, the first straight portion may be fixedly installed on the moving
可选地,第一直部、第二直部、第三直部还可以具有伸缩结构,即可以根据需要调整第一直部、第二直部、第三直部的长度,进而更利于调整成像单元101等结构的工作距离(即成像单元101与受测区1的距离)和工作角度等条件,便于医生手术操作。Optionally, the first straight portion, the second straight portion, and the third straight portion can also have a telescopic structure, that is, the lengths of the first straight portion, the second straight portion, and the third straight portion can be adjusted as required, which is more convenient for adjustment. Conditions such as the working distance of the imaging unit 101 and other structures (ie the distance between the imaging unit 101 and the measured area 1 ) and the working angle are convenient for the surgeon to operate.
具体地,上述机械臂105可以是六自由度机械臂,利于实现工作距离和工作角度的调节,通过机械臂105选择成像范围,从而便于医生手术操作。Specifically, the above-mentioned robotic arm 105 may be a six-degree-of-freedom robotic arm, which facilitates the adjustment of the working distance and the working angle, and the imaging range is selected by the robotic arm 105, thereby facilitating the operation of the doctor.
一般情况下,成像单元101的工作距离调节范围可以为100mm-1000mm,本发明的导航设备在该短距离范围内也可实现第一成像模块的实时对焦,获得清晰的近红外荧光图像,清楚显示肿瘤情况,便于医生操作。当然本发明不以此为限,也可以根据手术要求合理调整工作距离范围。In general, the working distance adjustment range of the imaging unit 101 can be 100mm-1000mm. The navigation device of the present invention can also realize real-time focusing of the first imaging module within this short distance range, obtain clear near-infrared fluorescence images, and clearly display Tumor situation, easy for doctors to operate. Of course, the present invention is not limited to this, and the working distance range can also be reasonably adjusted according to the surgical requirements.
具体地,如图1和图2所示,第一成像模块、第二成像模块、激发光源模块210、测距模块208均包含于成像单元101,该些模块至受测区1的距离基本相同(即基本等于成像单元101至受测区1的距离),即上述第一距离信息和第二距离信息相同,一般可将测距模块208安装在激发光源模块210上,并使其与第一成像模块、第二成像模块相连,通过所测定的距离信息使第一成像模块、第二成像模块实现实时对焦。当然,测距模块208所测定的距离信息亦为成像单元101至受测区1的距离信息,也可以根据需要使测距模块208与成像单元101中的其他模块相连,实现对其他模块基于距离信息的参数调控。Specifically, as shown in FIG. 1 and FIG. 2 , the first imaging module, the second imaging module, the excitation
例如,在一些实施例中,激发光源模块210可以位于第一成像模块的第一侧(具体可以是位于第一成像模块的近红外荧光感光元件201的第一侧),第二成像模块位于第一成像模块的与第一侧相对的第二侧(具体可以是位于第一成像模块的近红外荧光感光元件201的第二侧,),上述指示光源模块205可以安装在第二成像模块上,具体可以安装在可见光感光元件202上,如图2所示,指示光源模205安装在可见光感光元件202远离第一成像模块的一侧,测距模块208安装在激发光源模块210远离第一成像模块的一侧。当然本发明不以此为限,只要满足激发光源模块210、第一成像模块、第二成像模块距离受测区1的距离基本相同即可(即使上述第一距离信息和第二距离信息相等)。其中,第一成像模块的光轴垂直于受测区1的表面(或称物面),以利于第一成像模块基于受测区1产生的近红外荧光成像。For example, in some embodiments, the excitation
可选地,工控机104可以安装在移动平台103内部形成的空腔内,并实现与显示单元102、第一成像模块、第二成像模块等模块的通信连接,显示单元102可以位于移动平台103的上表面,以更利于医生操作,提高导航设备的使用便利性。Optionally, the
上述近红外荧光标记物被注射至患者体内后会聚集在患者的病灶器官,用于对患者体内的肿瘤进行显影,其可以是本领域常规荧光标记物,例如吲哚菁绿(ICG)等。After being injected into a patient, the above-mentioned near-infrared fluorescent marker will accumulate in the patient's focal organ for imaging the tumor in the patient. It can be a conventional fluorescent marker in the art, such as indocyanine green (ICG) and the like.
作为本发明思想的延伸,本发明的另一方面,提供一种基于荧光分子成像的导航方法,包括:向含有近红外荧光标记物的受测区投射激发光,使受测区产生近红外荧光,采用第一成像模块基于近红外荧光成像,获得近红外荧光图像;采用第二成像模块基于受测区反射的可见光成像,获得可见光图像;将近红外荧光图像和可见光图像融合后进行显示;其中,实时测量第一成像模块与受测区的第一距离信息,使第一成像模块在基于近红外荧光成像时根据第一距离信息实时对焦。As an extension of the idea of the present invention, another aspect of the present invention provides a navigation method based on fluorescent molecular imaging, comprising: projecting excitation light to a detected area containing a near-infrared fluorescent marker, so that the detected area generates near-infrared fluorescence , using the first imaging module to obtain a near-infrared fluorescence image based on near-infrared fluorescence imaging; using the second imaging module to obtain a visible light image based on the visible light reflected by the measured area; the near-infrared fluorescence image and the visible light image are fused and displayed; wherein, The first distance information between the first imaging module and the measured area is measured in real time, so that the first imaging module can focus in real time according to the first distance information when imaging based on near-infrared fluorescence.
在一些实施例中,实时测量第二成像模块与受测区的第二距离信息,使第二成像模块在基于可见光成像时根据第二距离信息实时对焦。In some embodiments, the second distance information between the second imaging module and the measured area is measured in real time, so that the second imaging module can focus in real time according to the second distance information when imaging based on visible light.
在一些实施例中,受测区反射的可见光来源于环境光,导航方法还包括:向受测区补偿可见光。In some embodiments, the visible light reflected by the measured area is derived from ambient light, and the navigation method further includes: compensating for the visible light to the measured area.
在一些实施例中,采用第一成像模块基于近红外荧光采集近红外荧光图像,包括:滤除受测区反射的光中的非近红外荧光,获得近红外荧光;根据第一距离信息对近红外荧光进行实时对焦;基于对焦后的近红外荧光成像,获得近红外荧光图像。In some embodiments, using the first imaging module to collect near-infrared fluorescence images based on near-infrared fluorescence includes: filtering out non-near-infrared fluorescence in the light reflected from the measured area to obtain near-infrared fluorescence; Infrared fluorescence performs real-time focusing; based on the near-infrared fluorescence imaging after focusing, a near-infrared fluorescence image is obtained.
在一些实施例中,近红外荧光的波长为800-1700nm。In some embodiments, the near infrared fluorescence has a wavelength of 800-1700 nm.
在一些实施例中,采用第二成像模块基于受测区反射的可见光采集可见光图像,包括:滤除受测区反射的光中的非可见光,获得可见光;根据第二距离信息对可见光进行实时对焦;基于对焦后的可见光成像,获得可见光图像。In some embodiments, using the second imaging module to collect visible light images based on the visible light reflected by the measured area includes: filtering out non-visible light in the light reflected from the measured area to obtain visible light; and focusing the visible light in real time according to the second distance information ; Obtain a visible light image based on the focused visible light image.
在一些实施例中,激发光的波长为785nm±5nm。In some embodiments, the wavelength of the excitation light is 785 nm ± 5 nm.
在一些实施例中,对投射于受测区的激发光进行匀光处理,以使投射于受测区的激发光强度分布均匀。In some embodiments, homogenization processing is performed on the excitation light projected on the measured area, so that the intensity distribution of the excitation light projected on the measured area is uniform.
在一些实施例中,向受测区投射指示光,对指示光进行整形,以指示激发光在受测区的位置。In some embodiments, the indicator light is projected onto the area under test, and the indicator light is shaped to indicate the location of the excitation light in the area under test.
在一些实施例中,对指示光进行整形为:将指示光整形为与激发光轮廓一致。In some embodiments, shaping the indicator light is shaping the indicator light to conform to the excitation light profile.
本发明的基于荧光分子成像的导航方法由上述基于荧光分子成像的导航设备实施,其实现原理相类似,不再过多赘述。The fluorescent molecular imaging-based navigation method of the present invention is implemented by the above-mentioned fluorescent molecular imaging-based navigation device, and the implementation principles thereof are similar, and will not be repeated here.
本发明的再一方面,提供一种基于荧光分子成像的电子设备,包括:处理器、存储器以及计算机程序;其中,计算机程序存储在存储器中,并被配置为由处理器执行以实现上述基于荧光分子成像的导航方法,不再赘述。In yet another aspect of the present invention, an electronic device based on fluorescence molecular imaging is provided, comprising: a processor, a memory and a computer program; wherein the computer program is stored in the memory and configured to be executed by the processor to realize the above-mentioned fluorescence-based imaging The navigation method of molecular imaging will not be repeated here.
本发明的再一方面,提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行以实现上述基于荧光分子成像的导航方法。该计算机可读存储介质例如是包括指令(计算机程序)的存储器,该指令可由上述基于荧光分子成像的电子设备的处理器执行以完成基于荧光分子成像的导航方法。举例来说,该计算机可读存储介质为非临时性计算机可读存储介质,可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。Yet another aspect of the present invention provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the above-mentioned fluorescent molecular imaging-based navigation method. The computer-readable storage medium is, for example, a memory including instructions (computer programs) that can be executed by the processor of the above-mentioned fluorescent molecular imaging-based electronic device to complete the fluorescent molecular imaging-based navigation method. For example, the computer-readable storage medium is a non-transitory computer-readable storage medium, which may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
本发明的再一方面,提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行以实现上述基于荧光分子成像的导航方法。根据本申请的实施例,上述电子设备的至少一个处理器可以从可读存储介质读取计算机程序,至少一个处理器执行计算机程序使得电子设备执行上述荧光分子成像的导航方法。In yet another aspect of the present invention, a computer program product is provided, comprising a computer program, the computer program being executed by a processor to implement the above-mentioned fluorescent molecular imaging-based navigation method. According to the embodiments of the present application, at least one processor of the above electronic device can read a computer program from a readable storage medium, and the at least one processor executes the computer program to cause the electronic device to execute the above navigation method for fluorescent molecular imaging.
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110212035.1A CN114948204A (en) | 2021-02-25 | 2021-02-25 | Navigation method, device and storage medium based on fluorescence molecular imaging |
PCT/CN2021/123832 WO2022179117A1 (en) | 2021-02-25 | 2021-10-14 | Navigation method and apparatus based on fluorescence molecular imaging, and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110212035.1A CN114948204A (en) | 2021-02-25 | 2021-02-25 | Navigation method, device and storage medium based on fluorescence molecular imaging |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114948204A true CN114948204A (en) | 2022-08-30 |
Family
ID=82973199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110212035.1A Pending CN114948204A (en) | 2021-02-25 | 2021-02-25 | Navigation method, device and storage medium based on fluorescence molecular imaging |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114948204A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070239034A1 (en) * | 2006-02-01 | 2007-10-11 | Jochem Knoche | Optical scanning device |
CN201237669Y (en) * | 2008-09-19 | 2009-05-13 | 清溢精密光电(深圳)有限公司 | Light spot indication system |
CN106856560A (en) * | 2015-12-09 | 2017-06-16 | 谭荣光 | Image capturing device for operation and image capturing method thereof |
WO2019023625A1 (en) * | 2017-07-27 | 2019-01-31 | Invuity, Inc. | Projection scanning system |
US20190282307A1 (en) * | 2012-04-16 | 2019-09-19 | Children's National Medical Center | Dual-mode imaging system for tracking and control during medical procedures |
JP2020094923A (en) * | 2018-12-13 | 2020-06-18 | 株式会社島津製作所 | Fluorescence imaging equipment |
CN112074248A (en) * | 2018-04-27 | 2020-12-11 | 爱尔康公司 | Three-dimensional visual camera and integrated robot technology platform |
CN214908029U (en) * | 2021-02-25 | 2021-11-30 | 南京微纳科技研究院有限公司 | Navigation device based on fluorescent molecular imaging |
-
2021
- 2021-02-25 CN CN202110212035.1A patent/CN114948204A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070239034A1 (en) * | 2006-02-01 | 2007-10-11 | Jochem Knoche | Optical scanning device |
CN201237669Y (en) * | 2008-09-19 | 2009-05-13 | 清溢精密光电(深圳)有限公司 | Light spot indication system |
US20190282307A1 (en) * | 2012-04-16 | 2019-09-19 | Children's National Medical Center | Dual-mode imaging system for tracking and control during medical procedures |
CN106856560A (en) * | 2015-12-09 | 2017-06-16 | 谭荣光 | Image capturing device for operation and image capturing method thereof |
WO2019023625A1 (en) * | 2017-07-27 | 2019-01-31 | Invuity, Inc. | Projection scanning system |
CN112074248A (en) * | 2018-04-27 | 2020-12-11 | 爱尔康公司 | Three-dimensional visual camera and integrated robot technology platform |
JP2020094923A (en) * | 2018-12-13 | 2020-06-18 | 株式会社島津製作所 | Fluorescence imaging equipment |
CN214908029U (en) * | 2021-02-25 | 2021-11-30 | 南京微纳科技研究院有限公司 | Navigation device based on fluorescent molecular imaging |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2689346T3 (en) | Optical image measuring device | |
JP4217403B2 (en) | System for characterization and mapping of tissue lesions | |
CN108420532B (en) | A handheld fluorescent image navigation and positioning device | |
JP5916110B2 (en) | Image display device, image display method, and program | |
US20080294056A1 (en) | Bispectral peroperative optical probe | |
JP7186762B2 (en) | projection scanning system | |
JP2012508034A (en) | High resolution digital video colposcope with built-in polarized LED illumination and computerized clinical data management system | |
JP2013184018A (en) | Optical image measurement system | |
US20180360299A1 (en) | Imaging apparatus, imaging method, and medical observation equipment | |
CN107280763A (en) | A kind of optic visualization operation guiding system | |
US11758263B2 (en) | Systems, devices, and methods for imaging and measurement using a stereoscopic camera system | |
CN214908029U (en) | Navigation device based on fluorescent molecular imaging | |
WO2022179117A1 (en) | Navigation method and apparatus based on fluorescence molecular imaging, and storage medium | |
CN215606241U (en) | Operation navigation device and system | |
CN114052903A (en) | Near-infrared imaging surgical navigation system and method | |
CN114948204A (en) | Navigation method, device and storage medium based on fluorescence molecular imaging | |
WO2017169335A1 (en) | Imaging apparatus, imaging method, and medical observation equipment | |
CN108836506A (en) | A kind of black light for operation shows that equipment and optics instruct system | |
CN115530995A (en) | Medical imaging apparatus | |
CN204600711U (en) | The micro-guider of a kind of portable multimode medical treatment | |
NL2025324B1 (en) | A Surgical Tool, System and Method for Tissue Characterisation | |
CN117653020A (en) | Three-dimensional imaging device, surgical navigation system and three-dimensional imaging method | |
CN210170185U (en) | Real-time operation fluorescence imaging guide instrument | |
CN209154017U (en) | An invisible light display device and optical guidance system for surgery | |
Kang et al. | System for fluorescence diagnosis and photodynamic therapy of cervical disease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |