CN114942456B - Single-frequency differential GNSS receiver applying different relevant distance pseudo-range observables - Google Patents
Single-frequency differential GNSS receiver applying different relevant distance pseudo-range observables Download PDFInfo
- Publication number
- CN114942456B CN114942456B CN202210580928.6A CN202210580928A CN114942456B CN 114942456 B CN114942456 B CN 114942456B CN 202210580928 A CN202210580928 A CN 202210580928A CN 114942456 B CN114942456 B CN 114942456B
- Authority
- CN
- China
- Prior art keywords
- pseudo
- processing module
- range
- data processing
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 claims abstract description 30
- 238000012937 correction Methods 0.000 claims abstract description 16
- 238000004364 calculation method Methods 0.000 claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/40—Correcting position, velocity or attitude
- G01S19/41—Differential correction, e.g. DGPS [differential GPS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及检测仪器设备领域,具体涉及一种应用不同相关间距伪距观测量的单频差分GNSS接收机。The present invention relates to the field of detection instruments and equipment, and in particular to a single-frequency differential GNSS receiver using pseudo-range observation quantities with different correlation intervals.
背景技术Background Art
GNSS接收机时Global Navigation Satellite System的缩写,中文译名为全球导航卫星系统。GNSS接收机的种类很多,可以分为导航型接收机,测绘型接收机和授时型接收机。GNSS receiver is the abbreviation of Global Navigation Satellite System. There are many types of GNSS receivers, which can be divided into navigation receivers, surveying receivers and timing receivers.
GNSS接收机通常包括以下几个部分,天线,射频前端,基带处理,定位解算和接收机外壳。现有的接收机跟踪应用单一的相关间距跟踪所有可视卫星,得到一组卫星观测量和导航电文。现有的定位解算主要有三种,单点定位(SPP),差分定位(DGNSS),精密单点定位(PPP),根据应用观测量的不同差分定位又可以分为伪距差分定位(RTD)和载波相位差分定位(RTK)。GNSS receivers usually include the following parts: antenna, RF front end, baseband processing, positioning solution and receiver housing. Existing receiver tracking uses a single correlation interval to track all visible satellites to obtain a set of satellite observations and navigation messages. There are three main types of existing positioning solutions: single point positioning (SPP), differential positioning (DGNSS), and precise single point positioning (PPP). Differential positioning can be divided into pseudo-range differential positioning (RTD) and carrier phase differential positioning (RTK) according to the different application observations.
GNSS接收机现有的定位算法精度各有不同,SPP的三轴定位精度为10m,其特点为不需要任何其他辅助信息即可实现实时动态定位功能,缺点为定位精度不够高,现有的单接收机单频定位算法只有SPP。DGNSS的三轴定位精度可以达到亚米级,但是需要本地基站或网络基站的辅助信息,同时需要辅助信息的接收设备(通常为无线电通信装备)。PPP的定位精度最高,能够达到厘米到分米的定位精度,但是同样需要接收外部分辅助信息,精密星历,精密钟差等,目前PPP的动态性能还有待提高。The existing positioning algorithms of GNSS receivers have different accuracy. The three-axis positioning accuracy of SPP is 10m. Its feature is that it can realize real-time dynamic positioning function without any other auxiliary information. The disadvantage is that the positioning accuracy is not high enough. The existing single-receiver single-frequency positioning algorithm is only SPP. The three-axis positioning accuracy of DGNSS can reach the sub-meter level, but it requires auxiliary information from local base stations or network base stations, and also requires auxiliary information receiving equipment (usually radio communication equipment). PPP has the highest positioning accuracy and can achieve positioning accuracy of centimeters to decimeters, but it also needs to receive external auxiliary information, precise ephemeris, precise clock error, etc. At present, the dynamic performance of PPP needs to be improved.
发明内容Summary of the invention
本发明针对现有单频GNSS接收机的不足,提出一种应用不同相关间距伪距观测量的单频差分GNSS接收机。由于DGNSS需要额外的辅助信息和通信设备,这就导致差分定位需要投入额外的成本,制约了DGNSS的应用。为解决SPP定位精度偏低,DGNSS需要额外成本的问题,本发明提出了利用不同相关间距的伪距观测量的单频差分GNSS接收机。The present invention aims at the shortcomings of the existing single-frequency GNSS receiver and proposes a single-frequency differential GNSS receiver using pseudo-range observations with different correlation intervals. Since DGNSS requires additional auxiliary information and communication equipment, this leads to the need for additional costs for differential positioning, which restricts the application of DGNSS. In order to solve the problem of low SPP positioning accuracy and the need for additional costs for DGNSS, the present invention proposes a single-frequency differential GNSS receiver using pseudo-range observations with different correlation intervals.
本发明实施实例提供的一种应用不同相关间距的伪距观测量单频差分GNSS接收机,适用于导航接收机,该接收机包括与天线连接的天线接口、射频模块、基带和数据处理模块、通信模块以及电源和时钟模块,所述天线接口与射频模块连接,所述射频模块与基带和数据处理模块连接,所述基带和数据处理模块与通信模块连接,所述电源和时钟模块与射频模块、基带和数据处理模块、通信模块相连接。所述基带和数据处理模块包括基准间距基带处理模块、流动间距基带处理模块、基准间距数据处理模块和流动间距数据处理模块;所述通信模块将数据处理计算得到的定位结果通过串口进行编码输出。所述电源和时钟模块为其他模块提供电源基准时钟,时钟包括本地晶振和外部时钟接口;A single-frequency differential GNSS receiver for pseudorange observations using different correlation spacings provided in an embodiment of the present invention is suitable for a navigation receiver. The receiver includes an antenna interface connected to an antenna, a radio frequency module, a baseband and data processing module, a communication module, and a power supply and clock module. The antenna interface is connected to the radio frequency module, the radio frequency module is connected to the baseband and data processing module, the baseband and data processing module is connected to the communication module, and the power supply and clock module is connected to the radio frequency module, the baseband and data processing module, and the communication module. The baseband and data processing module includes a reference spacing baseband processing module, a mobile spacing baseband processing module, a reference spacing data processing module, and a mobile spacing data processing module; the communication module encodes and outputs the positioning result obtained by data processing calculation through a serial port. The power supply and clock module provides a power supply reference clock for other modules, and the clock includes a local crystal oscillator and an external clock interface;
所述射频模块用于接收天线的高频信号,并进行下变频和模数转换得到数字中频信号,并将所述中频信号发送给基带和数据处理模块。The radio frequency module is used to receive the high frequency signal of the antenna, perform down-conversion and analog-to-digital conversion to obtain a digital intermediate frequency signal, and send the intermediate frequency signal to the baseband and data processing module.
所述基带和数据处理模块用于处理数字中频信号,所述基准间距基带处理模块应用基准间距进行信号跟踪,得到所有卫星的基准间距伪距观测量和卫星导航电文,并将卫星基准间距伪距观测量发送给基准间距数据处理模块,将卫星导航电文发送给基准间距信号处理模块和流动间距数据处理模块;所述基准间距数据处理模块进行基准间距定位解算和伪距修正量计算,并发送给流动间距数据处理模块;所述流动间距基带处理模块应用流动间距进行信号跟踪,得到所有卫星的流动间距伪距观测量,并发送给流动间距数据处理模块;所述流动间距数据处理模块进行流动间距伪距修正和伪距差分定位,将差分定位结果发送给通信模块。The baseband and data processing modules are used to process digital intermediate frequency signals. The reference spacing baseband processing module applies the reference spacing to perform signal tracking, obtains the reference spacing pseudorange observations and satellite navigation messages of all satellites, and sends the satellite reference spacing pseudorange observations to the reference spacing data processing module, and sends the satellite navigation messages to the reference spacing signal processing module and the mobile spacing data processing module; the reference spacing data processing module performs reference spacing positioning solution and pseudorange correction amount calculation, and sends them to the mobile spacing data processing module; the mobile spacing baseband processing module applies the mobile spacing to perform signal tracking, obtains the mobile spacing pseudorange observations of all satellites, and sends them to the mobile spacing data processing module; the mobile spacing data processing module performs mobile spacing pseudorange correction and pseudorange differential positioning, and sends the differential positioning result to the communication module.
所述通信模块用于接收所述基带和数据处理模块的定位结果并通过串口技术对定位结果进行编码,之后输出。The communication module is used to receive the positioning results of the baseband and data processing modules and encode the positioning results through serial port technology, and then output them.
所述电源和时钟模块用于为射频模块、基带和数据处理模块、通信模块相连接提供电源和时钟基准,时钟模块可以应用本地温补晶振为其他模块提供时钟同时具有外部时钟接口,可以接入外部高稳定性时钟为其他模块提供时钟基准。The power supply and clock module is used to provide power supply and clock reference for the RF module, baseband and data processing module, and communication module. The clock module can use a local temperature compensated crystal oscillator to provide clock for other modules and has an external clock interface. It can connect an external high-stability clock to provide a clock reference for other modules.
为了实现上述发明目的,解决已有技术中存在的问题,本发明采取的技术方案是:一种应用不同相关间距伪距观测量的单频GNSS接收机。接收机的工作过程分为以下几个步骤:In order to achieve the above-mentioned invention purpose and solve the problems existing in the prior art, the technical solution adopted by the present invention is: a single-frequency GNSS receiver using pseudo-range observations with different correlation intervals. The working process of the receiver is divided into the following steps:
步骤1、连接天线和接收机,给接收机通电,接收机开始工作,电源和时钟模块为接收机提供时钟基准和稳定的电源,射频前端接收天线传输来的高频数据;Step 1: Connect the antenna and receiver, power on the receiver, and the receiver starts working. The power supply and clock module provide the receiver with a clock reference and a stable power supply, and the RF front end receives the high-frequency data transmitted by the antenna.
步骤2、射频模块接收天线信号,对天线信号并进行下变频和模数转换得到数字中频信号;Step 2: The RF module receives the antenna signal, performs down-conversion and analog-to-digital conversion on the antenna signal to obtain a digital intermediate frequency signal;
步骤3、基带处理和数据处理,接收数字中频信号,进行基带信号处理和数据处理;Step 3: baseband processing and data processing, receiving the digital intermediate frequency signal, and performing baseband signal processing and data processing;
步骤3.1、基准间距基带处理,应用基准间距跟踪所有卫星,得到所有卫星的基准间距伪距观测量和卫星导航电文;Step 3.1, baseband processing of the reference spacing, using the reference spacing to track all satellites, and obtaining the reference spacing pseudo-range observations and satellite navigation messages of all satellites;
步骤3.2、流动间距基带处理,应用流动间距跟踪所有卫星,得到所有卫星的流动间距伪距观测量;Step 3.2: Mobile spacing baseband processing: using mobile spacing to track all satellites to obtain mobile spacing pseudo-range observations of all satellites;
步骤3.3、基准间距数据处理,应用基准间距伪距观测量和导航电文进行单点定位解算,得到基准间距位置信息,计算卫星伪距修正量;Step 3.3, benchmark spacing data processing, using benchmark spacing pseudorange observations and navigation messages to perform single-point positioning, obtain benchmark spacing position information, and calculate satellite pseudorange corrections;
步骤3.4、流动间距数据处理,应用流动间距伪距观测量,导航电文和伪距修正量进行定位解算,获得流动间距位置;Step 3.4, flow spacing data processing, using flow spacing pseudorange observations, navigation messages and pseudorange corrections to perform positioning and obtain flow spacing positions;
步骤4、输出伪距差分定位结果,通信模块通过RS232串口输出当前的基准间距位置信息,伪距修正信息,流动间距差分位置信息和时间信息。对输出数据以约定好的帧头开始数据报文的编码,以每个数据内容占用4个字节的形式编码发送的数据报文,最后以数据校验位作为尾帧,校验方式使用串口奇偶校验模式,完成数据编码并通过串口进行发送。Step 4: Output pseudo-range differential positioning results. The communication module outputs the current reference spacing position information, pseudo-range correction information, flow spacing differential position information and time information through the RS232 serial port. The output data starts encoding the data message with an agreed frame header, and the data message to be sent is encoded in the form of each data content occupying 4 bytes. Finally, the data check bit is used as the tail frame. The check method uses the serial port parity check mode to complete the data encoding and send it through the serial port.
本发明的有益效果是:The beneficial effects of the present invention are:
第一,本发明的应用不同相关间距的伪距观测量实现了一种能够实现单频伪距差分定位的GNSS接收机,使伪距差分定位需要的接收机数量减少为一个;First, the present invention uses pseudo-range observations with different correlation spacings to realize a GNSS receiver capable of single-frequency pseudo-range differential positioning, thereby reducing the number of receivers required for pseudo-range differential positioning to one;
第二,本发明的应用基准间距和流动间距分别跟踪同一个卫星,能够得到同一颗卫星相互独立的基准间距伪距观测量和流动间距伪距观测量,在增加接收机数目的前提下增加了单频接收机的伪距观测量数量;Second, the present invention uses the reference spacing and the mobile spacing to track the same satellite respectively, and can obtain the reference spacing pseudo-range observations and the mobile spacing pseudo-range observations of the same satellite that are independent of each other, thereby increasing the number of pseudo-range observations of the single-frequency receiver under the premise of increasing the number of receivers;
第三,本发明的应用基准间距定位结果计算伪距修正量,并直接传输给流动间距进行数据处理,不需要额外的通信设备,降低了伪距差分定位的成本;Third, the present invention uses the reference spacing positioning result to calculate the pseudo-range correction value, and directly transmits it to the mobile spacing for data processing, without the need for additional communication equipment, thereby reducing the cost of pseudo-range differential positioning;
第四,本发明的应用不同相关间距的伪距观测量单频差分GNSS接收机,提升了单接收机单频定位的精度、稳定性和可靠性。由于采用了上述技术方案,本发明提供的一种应用不同相关间距伪距观测量的单频差分GNSS接收机。Fourth, the single-frequency differential GNSS receiver using pseudo-range observations with different correlation spacings of the present invention improves the accuracy, stability and reliability of single-receiver single-frequency positioning. Due to the adoption of the above technical solution, the present invention provides a single-frequency differential GNSS receiver using pseudo-range observations with different correlation spacings.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments recorded in the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1本发明的应用不同相关间距的伪距观测量单频差分GNSS接收机结构示意图;FIG1 is a schematic structural diagram of a single-frequency differential GNSS receiver for pseudorange observations using different correlation spacings according to the present invention;
图2本发明的应用不同相关间距的伪距观测量单频差分GNSS接收机硬件结构图;FIG2 is a hardware structure diagram of a single-frequency differential GNSS receiver using pseudo-range observations with different correlation spacings according to the present invention;
图3本发明的应用不同相关间距的伪距观测量单频差分GNSS接收机原理结构图;FIG3 is a schematic diagram of a single-frequency differential GNSS receiver for pseudo-range observations using different correlation spacings according to the present invention;
图4本发明的应用不同相关间距的伪距观测量单频差分GNSS接收机外观示意图。FIG4 is a schematic diagram of the appearance of a single-frequency differential GNSS receiver for pseudorange observations using different correlation spacings according to the present invention.
具体实施方式DETAILED DESCRIPTION
为使本发明的技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述:To make the technical solutions and advantages of the present invention more clear, the technical solutions in the embodiments of the present invention are clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention:
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。In order to make the purpose, technical scheme and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings. Obviously, the described embodiments are only part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
图1为本发明实施实例提供的一种应用不同相关间距的伪距观测量单频差分GNSS接收机结构示意图,适用于导航接收机,该接收机包括与天线连接的天线接口101、射频模块102、基带和数据处理模块103、通信模块104以及电源和时钟模块105,所述天线接口101与射频模块102连接,所述射频模块102与基带和数据处理模块103连接,所述基带和数据处理模块103与通信模块104连接,所述通信模块104应用串口通信技术将数据处理得到的定位结果通过编码进行输出,所述电源和时钟模块105与射频模块102、基带和数据处理模块103、通信模块104相连接。所述基带和数据处理芯片103包括基准间距基带处理模块、流动间距基带处理模块、基准间距数据处理模块和流动间距数据处理模块;所述电源时钟模块105为其他模块提供电源和时钟,时钟模块包括本地晶振和外部时钟接口;Fig. 1 is a schematic diagram of the structure of a single-frequency differential GNSS receiver for pseudo-range observation using different correlation intervals provided by an embodiment of the present invention, which is applicable to a navigation receiver. The receiver includes an antenna interface 101 connected to an antenna, a radio frequency module 102, a baseband and data processing module 103, a communication module 104, and a power supply and clock module 105. The antenna interface 101 is connected to the radio frequency module 102, the radio frequency module 102 is connected to the baseband and data processing module 103, the baseband and data processing module 103 is connected to the communication module 104, the communication module 104 uses serial communication technology to output the positioning result obtained by data processing through encoding, and the power supply and clock module 105 is connected to the radio frequency module 102, the baseband and data processing module 103, and the communication module 104. The baseband and data processing chip 103 includes a reference interval baseband processing module, a mobile interval baseband processing module, a reference interval data processing module, and a mobile interval data processing module; the power supply clock module 105 provides power and clock for other modules, and the clock module includes a local crystal oscillator and an external clock interface;
所述射频模块102用于接收天线的高频信号,并进行下变频和模数转换得到数字中频信号,并将所述中频信号发送给基带和数据处理模块103,所述射频前端能够接收GPS、BDS、Galileo、GLONASS系统的L1频段数据进行单频数据下变频和模数转换;The RF module 102 is used to receive the high frequency signal of the antenna, and perform down-conversion and analog-to-digital conversion to obtain a digital intermediate frequency signal, and send the intermediate frequency signal to the baseband and data processing module 103. The RF front end can receive L1 frequency band data of GPS, BDS, Galileo, and GLONASS systems to perform single-frequency data down-conversion and analog-to-digital conversion;
所述基带和数据处理模块103用于处理数字中频信号,所述基准间距基带处理模块应用基准间距进行信号跟踪,得到所有卫星的基准间距伪距观测量和卫星导航电文,并将卫星基准间距伪距观测量发送给基准间距数据处理模块,将卫星导航电文发送给基准间距信号处理模块和流动间距数据处理模块;所述基准间距数据处理模块进行基准间距定位解算和伪距修正量计算,并发送给流动间距数据处理模块;所述流动间距基带处理模块应用流动间距进行信号跟踪,得到所有卫星的流动间距伪距观测量,并发送给流动间距数据处理模块;所述流动间距数据处理模块进行流动间距伪距修正和伪距差分定位,将差分定位结果发送给通信模块104。The baseband and data processing module 103 is used to process digital intermediate frequency signals. The reference spacing baseband processing module applies the reference spacing to perform signal tracking, obtains the reference spacing pseudorange observations and satellite navigation messages of all satellites, and sends the satellite reference spacing pseudorange observations to the reference spacing data processing module, and sends the satellite navigation messages to the reference spacing signal processing module and the mobile spacing data processing module; the reference spacing data processing module performs reference spacing positioning solution and pseudorange correction calculation, and sends them to the mobile spacing data processing module; the mobile spacing baseband processing module applies the mobile spacing to perform signal tracking, obtains the mobile spacing pseudorange observations of all satellites, and sends them to the mobile spacing data processing module; the mobile spacing data processing module performs mobile spacing pseudorange correction and pseudorange differential positioning, and sends the differential positioning result to the communication module 104.
所述通信模块104用于接收所述基带和数据处理模块103的定位结果并对定位按照预先设定的编码方式进行编码,将编码后的定位结果通过串口技术进行输出。The communication module 104 is used to receive the positioning result of the baseband and data processing module 103 and encode the positioning according to a preset encoding method, and output the encoded positioning result through serial port technology.
所述电源和时钟模块105用于为射频模块102、基带和数据处理模块103、通信模块104相连接提供电源和时钟基准,时钟模块105能够应用本地温补晶振为其他模块提供时钟,同时具有外部时钟接口,可以接入外部高稳定性时钟为其他模块提供时钟基准。。The power supply and clock module 105 is used to provide power supply and clock reference for the RF module 102, the baseband and data processing module 103, and the communication module 104. The clock module 105 can use the local temperature compensated crystal oscillator to provide clocks for other modules, and has an external clock interface, which can be connected to an external high-stability clock to provide clock references for other modules.
图2为本发明实施实例提供的应用不同相关间距的伪距观测量单频差分GNSS接收机硬件结构图。如上诉所述,天线接口为SMA反级性公头,射频模块为内置模数转换功能的Max2769及其外围电路,基带和数据处理模块为赛灵思公司(Xilinx)的ZYNQ-7020芯片,ZYNQ-7020的FPGA逻辑门电路进行基带处理,包括基准间距基带处理模块和流动间距基带处理模块,ZYNQ-7020的ARM核进行基准间距数据处理和流动间距数据处理,通信模块为RS232串口,时钟模块为10MHz温补晶振,外部时钟接口为SMA反极性公头电源为经过LM117芯片稳压的3.3V直流电源。Figure 2 is a hardware structure diagram of a single-frequency differential GNSS receiver for pseudo-range observations with different correlation spacings provided by an embodiment of the present invention. As mentioned above, the antenna interface is an SMA reverse polarity male connector, the RF module is a Max2769 with a built-in analog-to-digital conversion function and its peripheral circuits, the baseband and data processing module is a ZYNQ-7020 chip of Xilinx, the FPGA logic gate circuit of ZYNQ-7020 performs baseband processing, including a reference spacing baseband processing module and a mobile spacing baseband processing module, the ARM core of ZYNQ-7020 performs reference spacing data processing and mobile spacing data processing, the communication module is an RS232 serial port, the clock module is a 10MHz temperature-compensated crystal oscillator, the external clock interface is an SMA reverse polarity male connector, and the power supply is a 3.3V DC power supply stabilized by an LM117 chip.
具体的本发明实例中的射频模块通过Max2769芯片对天线接收的高频卫星信号进行下变频变成模拟中频信号,之后对模拟中频信号进行模数转换,输出16.368MHz的同相(I)支路2bit采样数字中频信号到基带和数据处理模块的ZYNQ7020芯片。The RF module in the specific example of the present invention down-converts the high-frequency satellite signal received by the antenna into an analog intermediate frequency signal through the Max2769 chip, and then performs analog-to-digital conversion on the analog intermediate frequency signal, and outputs a 16.368MHz in-phase (I) branch 2-bit sampling digital intermediate frequency signal to the ZYNQ7020 chip of the baseband and data processing module.
本发明实例中的ZYNQ7020芯片包括可编程逻辑门电路(FPGA)和RISC(精简指令集计算机)微处理器(ARM)核,所述FPGA用于基准间距和流动间距基带处理,所述ARM核用于基准间距和流动间距数据处理。The ZYNQ7020 chip in the example of the present invention includes a field programmable logic gate circuit (FPGA) and a RISC (reduced instruction set computer) microprocessor (ARM) core, wherein the FPGA is used for base spacing and flow spacing baseband processing, and the ARM core is used for base spacing and flow spacing data processing.
本发明实例中的RS232串口用具接收ZYNQ7020芯片的定位结果,对输出数据以约定好的头帧开始数据报文的编码,以每个数据内容占用4个字节的形式编码发送的数据报文,最后以数据校验位作为尾帧,校验方式使用串口奇偶校验模式,完成数据编码并通过串口进行发送。The RS232 serial port tool in the example of the present invention receives the positioning result of the ZYNQ7020 chip, encodes the output data starting with an agreed header frame, encodes the sent data message in the form of each data content occupying 4 bytes, and finally uses the data check bit as the tail frame. The check method uses the serial port parity check mode to complete the data encoding and send it through the serial port.
本发明实例中的10MHz温补晶振为接收机提供基准本地时钟,LM117稳压芯片为其他模块提供直流稳压电源。The 10MHz temperature-compensated crystal oscillator in the example of the present invention provides a reference local clock for the receiver, and the LM117 voltage regulator chip provides a DC regulated power supply for other modules.
下面结合图3对应用不同相关间距的伪距观测量单频差分GNSS接收机工作过程做进一步介绍。图3为本发明的接收机的原理结构图,本发明的接收机按照以下步骤工作:The working process of the single-frequency differential GNSS receiver using pseudo-range observations with different correlation spacings is further described below in conjunction with FIG3. FIG3 is a schematic diagram of the principle structure of the receiver of the present invention. The receiver of the present invention works according to the following steps:
步骤1、连接天线和接收机,给接收机通电,接收机开始工作,射频前端接收天线传输来的高频数据;Step 1: Connect the antenna and receiver, power on the receiver, and the receiver starts working. The RF front end receives the high-frequency data transmitted by the antenna.
步骤2、射频模块接收天线信号,对天线信号并进行下变频和模数转换得到数字中频信号;Step 2: The RF module receives the antenna signal, performs down-conversion and analog-to-digital conversion on the antenna signal to obtain a digital intermediate frequency signal;
步骤3、基带处理和数据处理,接收数字中频信号,进行基带信号处理和数据处理。基带处于用于信号解调,从中频信号中解调出导航电文、码观测量(伪距)和载波观测量,数据处理应用导航电文和码观测量进行伪距差分定位。Step 3: Baseband processing and data processing: receiving digital intermediate frequency signals, performing baseband signal processing and data processing. The baseband is used for signal demodulation, demodulating navigation messages, code observations (pseudoranges) and carrier observations from the intermediate frequency signals, and performing pseudorange differential positioning using navigation messages and code observations for data processing.
步骤3.1、基准间距基带处理,应用基准间距跟踪所有卫星,得到所有卫星的基准间距伪距观测量和卫星导航电文;Step 3.1, baseband processing of the reference spacing, using the reference spacing to track all satellites, and obtaining the reference spacing pseudo-range observations and satellite navigation messages of all satellites;
步骤3.2、流动间距基带处理,应用流动间距跟踪所有卫星,得到所有卫星的流动间距伪距观测量;Step 3.2: Mobile spacing baseband processing: using mobile spacing to track all satellites to obtain mobile spacing pseudo-range observations of all satellites;
步骤3.3、基准间距数据处理,应用基准间距伪距观测量和导航电文进行单点定位解算,得到基准间距位置信息;计算卫星伪距修正量Step 3.3: Process the reference spacing data. Apply the reference spacing pseudorange observations and navigation messages to perform single-point positioning to obtain reference spacing position information; calculate the satellite pseudorange correction
步骤3.4、流动间距数据处理,应用流动间距伪距观测量,导航电文和伪距修正量进行定位解算,获得流动间距位置;Step 3.4, flow spacing data processing, using flow spacing pseudorange observations, navigation messages and pseudorange corrections to perform positioning and obtain flow spacing positions;
步骤4、输出伪距差分定位结果,通信模块通过RS232串口输出当前的基准间距位置信息,伪距修正信息,流动间距差分位置信息和时间信息。Step 4: Output pseudo-range differential positioning results. The communication module outputs the current reference spacing position information, pseudo-range correction information, flow spacing differential position information and time information through the RS232 serial port.
图4为本发明实例提供的一种接收机实物示意图,该接收机包括接收机外壳,电源接口、通信接口、外部时钟接口和天线接口。FIG4 is a schematic diagram of a receiver provided in an example of the present invention, wherein the receiver includes a receiver housing, a power interface, a communication interface, an external clock interface and an antenna interface.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above description is only a preferred specific implementation manner of the present invention, but the protection scope of the present invention is not limited thereto. Any technician familiar with the technical field can make equivalent replacements or changes according to the technical scheme and inventive concept of the present invention within the technical scope disclosed by the present invention, which should be covered by the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210580928.6A CN114942456B (en) | 2022-05-25 | 2022-05-25 | Single-frequency differential GNSS receiver applying different relevant distance pseudo-range observables |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210580928.6A CN114942456B (en) | 2022-05-25 | 2022-05-25 | Single-frequency differential GNSS receiver applying different relevant distance pseudo-range observables |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114942456A CN114942456A (en) | 2022-08-26 |
CN114942456B true CN114942456B (en) | 2024-09-10 |
Family
ID=82908709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210580928.6A Active CN114942456B (en) | 2022-05-25 | 2022-05-25 | Single-frequency differential GNSS receiver applying different relevant distance pseudo-range observables |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114942456B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103543454A (en) * | 2013-09-30 | 2014-01-29 | 广东工业大学 | Satellite orbit determination system inserted in mobile communication network |
CN103792546A (en) * | 2012-10-31 | 2014-05-14 | 中国科学院光电研究院 | Increment ionosphere refraction error correction method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112327335B (en) * | 2020-11-04 | 2022-09-27 | 展讯通信(上海)有限公司 | GNSS receiver and satellite capturing and tracking method |
-
2022
- 2022-05-25 CN CN202210580928.6A patent/CN114942456B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103792546A (en) * | 2012-10-31 | 2014-05-14 | 中国科学院光电研究院 | Increment ionosphere refraction error correction method |
CN103543454A (en) * | 2013-09-30 | 2014-01-29 | 广东工业大学 | Satellite orbit determination system inserted in mobile communication network |
Also Published As
Publication number | Publication date |
---|---|
CN114942456A (en) | 2022-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2064567B1 (en) | Relative positioning | |
CA2823697C (en) | Method and system for determining clock corrections | |
CN114791613A (en) | Ephemeris forecasting method and device | |
EP2156208B1 (en) | Positioning using a reference station | |
EP2283378B1 (en) | Method and apparatus for satellite positioning system time resolution | |
CN111123317A (en) | Satellite positioning device, satellite signal receiver and terminal equipment | |
CN111123318A (en) | A satellite positioning device, satellite signal receiver and terminal equipment | |
CN110308466A (en) | Micro dual-mode receiver and its navigation method based on Zynq-7020 | |
WO2007027422A1 (en) | Satellite positioning system aiding using a secondary satellite receiver | |
CN112285749B (en) | Method and device for processing original observation data of global navigation satellite system and storage medium | |
CN111856534A (en) | Dual-mode GNSS carrier precision single-point positioning method and system for intelligent terminals | |
CN203894414U (en) | Multimode single radio frequency channel GNSS receiver provided with single-chip microcomputer control | |
CN108802780A (en) | Bias property analysis method between a kind of GPS/BDS differential systems | |
CN114942456B (en) | Single-frequency differential GNSS receiver applying different relevant distance pseudo-range observables | |
CN111123319B (en) | A satellite positioning device, satellite signal receiver and terminal equipment | |
CN114942461B (en) | Can realize fixed single frequency GNSS receiver of RTK ambiguity | |
CN208847840U (en) | A Substation Acquisition Terminal Based on Dual Satellite System for Positioning and Clock Synchronization | |
CN115144872A (en) | A dual-frequency GNSS receiver capable of real-time estimation of satellite differential code bias | |
CN117706590A (en) | Fusion and switching method and device for BDS star base B2B-PPP and RTK positioning | |
CN117270003A (en) | RTK positioning method, mobile device, base station and storage medium | |
CN115144873B (en) | A dual-frequency GNSS receiver capable of real-time estimation of satellite decimal cycle deviations | |
CN114660636A (en) | Low-orbit satellite time synchronization method and system | |
Dey et al. | Performance improvement and assessment of NavIC software receiver | |
CN111123320B (en) | Satellite positioning device, satellite signal receiver and terminal equipment | |
CN110501730A (en) | Standard time sub-nanosecond timing method based on improved RTK technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |