CN114942050A - Vibration control method for Coriolis mass flowmeter - Google Patents
Vibration control method for Coriolis mass flowmeter Download PDFInfo
- Publication number
- CN114942050A CN114942050A CN202210586303.0A CN202210586303A CN114942050A CN 114942050 A CN114942050 A CN 114942050A CN 202210586303 A CN202210586303 A CN 202210586303A CN 114942050 A CN114942050 A CN 114942050A
- Authority
- CN
- China
- Prior art keywords
- frequency
- coriolis mass
- mass flowmeter
- measuring tube
- mobile terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8409—Coriolis or gyroscopic mass flowmeters constructional details
- G01F1/8413—Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/845—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
本发明公开了一种用于科里奥利质量流量计的振动控制方法,通过对科里奥利质量流量计的测量管进行建模,确定大概的频率扫描范围,通过这种方式确定的频率扫描范围相较于无数据支撑的频率扫描范围频率点大大减少,而且获取的相关数据越多,确定的频率扫描范围越小,使测量管能够在短时间内确定固有频率,减少测量管起振需要的时间。
The invention discloses a vibration control method for a Coriolis mass flowmeter. By modeling a measuring tube of a Coriolis mass flowmeter, an approximate frequency scanning range is determined, and the frequency determined in this way Compared with the frequency scanning range without data support, the frequency points of the scanning range are greatly reduced, and the more relevant data are obtained, the smaller the frequency scanning range is determined, so that the natural frequency of the measuring tube can be determined in a short time, and the vibration of the measuring tube is reduced. time needed.
Description
技术领域technical field
本发明涉及计量设备技术领域,特别涉及一种用于科里奥利质量流量计的振动控制方法。The invention relates to the technical field of metering equipment, in particular to a vibration control method for a Coriolis mass flowmeter.
背景技术Background technique
科里奥利质量流量计是一种高端计量设备,其通过对科里奥利力的测量确定管道中通过的质量流量,具有很高的精确度和稳定性。A Coriolis mass flowmeter is a high-end metering device that determines the mass flow through a pipeline by measuring the Coriolis force with high accuracy and stability.
在科里奥利质量流量计的工作过程中,首先需要起振器控制测量管振动,当振动频率为测量管及其内部流体的固有频率时,测量管能够达到最大的振幅,此时测量得到的质量流量才是准确的,因此对科里奥利质量流量计的测量管进行振动控制是非常重要的。In the working process of the Coriolis mass flowmeter, the vibrator is first needed to control the vibration of the measuring tube. When the vibration frequency is the natural frequency of the measuring tube and its internal fluid, the measuring tube can reach the maximum amplitude. Therefore, it is very important to control the vibration of the measuring tube of the Coriolis mass flowmeter.
目前常用的测量管振动控制方法是采用扫频的方式,即在预设的振动频率范围内由低到高或由高到低逐次加载振动频率,通过对测量管振动幅度的测量确定固有频率。这种方式虽然能够准确的得到测量管的固有频率,但是获得固有频率需要的时间比较长,无法做到快速起振。At present, the commonly used vibration control method of the measuring tube is to use the sweep frequency method, that is, the vibration frequency is sequentially loaded from low to high or from high to low within the preset vibration frequency range, and the natural frequency is determined by measuring the vibration amplitude of the measuring tube. Although this method can accurately obtain the natural frequency of the measuring tube, it takes a long time to obtain the natural frequency, and it is impossible to start the vibration quickly.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供了一种用于科里奥利质量流量计的振动控制方法,用以解决现有技术中获得测量管固有频率需要的时间比较长的问题。The embodiment of the present invention provides a vibration control method for a Coriolis mass flowmeter, so as to solve the problem that it takes a relatively long time to obtain the natural frequency of a measuring tube in the prior art.
一方面,本发明实施例提供了一种用于科里奥利质量流量计的振动控制方法,包括:In one aspect, an embodiment of the present invention provides a vibration control method for a Coriolis mass flowmeter, including:
获取科里奥利质量流量计的测量管的相关数据;Obtain the relevant data of the measuring tube of the Coriolis mass flowmeter;
根据相关数据建立测量管的模型,根据模型确定测量管的频率扫描范围;Establish the model of the measuring tube according to the relevant data, and determine the frequency scanning range of the measuring tube according to the model;
在频率扫描范围内控制测量管的振动频率,并测量测量管在每个振动频率下的振动幅度;Control the vibration frequency of the measuring tube within the frequency sweep range, and measure the vibration amplitude of the measuring tube at each vibration frequency;
确定测量管处在最大振动幅度时的振动频率,以该振动频率控制测量管振动。Determine the vibration frequency of the measuring tube at the maximum vibration amplitude, and control the vibration of the measuring tube at this vibration frequency.
在一种可能的实现方式中,相关数据的获取以及模型的建立均由移动终端完成,移动终端确定频率扫描范围后,将频率扫描范围发送至科里奥利质量流量计。In a possible implementation manner, the acquisition of relevant data and the establishment of the model are completed by the mobile terminal. After the mobile terminal determines the frequency scanning range, the frequency scanning range is sent to the Coriolis mass flowmeter.
在一种可能的实现方式中,移动终端通过无线通信技术将频率扫描范围发送至科里奥利质量流量计。In a possible implementation manner, the mobile terminal sends the frequency scanning range to the Coriolis mass flowmeter through wireless communication technology.
在一种可能的实现方式中,移动终端包括输入单元和处理单元,输入单元用于响应用户的操作输入相关数据,处理单元用于根据输入单元输入的相关数据建立模型,并确定频率扫描范围。In a possible implementation manner, the mobile terminal includes an input unit and a processing unit, the input unit is used for inputting relevant data in response to a user's operation, and the processing unit is used for establishing a model according to the relevant data inputted by the input unit, and determining a frequency scanning range.
在一种可能的实现方式中,移动终端包括图像采集单元、输入单元和处理单元,图像采集单元用于获取测量管的图像,处理单元用于根据图像确定部分相关数据,输入单元用于响应用户的操作输入剩余的相关数据,处理单元还用于根据相关数据建立模型,并确定频率扫描范围。In a possible implementation manner, the mobile terminal includes an image acquisition unit, an input unit and a processing unit, the image acquisition unit is used to acquire an image of the measuring tube, the processing unit is used to determine some relevant data according to the image, and the input unit is used to respond to the user The operation of inputting the remaining relevant data, the processing unit is also used to establish a model according to the relevant data, and determine the frequency scanning range.
在一种可能的实现方式中,移动终端在确定频率扫描范围后,还根据模型确定预估固有频率;在确定测量管的实际固有频率后,科里奥利质量流量计将实际固有频率发送至移动终端,移动终端将预估固有频率和实际固有频率进行对比,并根据对比结果对频率扫描范围进行修正。In a possible implementation manner, after determining the frequency scanning range, the mobile terminal also determines the estimated natural frequency according to the model; after determining the actual natural frequency of the measuring tube, the Coriolis mass flowmeter sends the actual natural frequency to The mobile terminal compares the estimated natural frequency with the actual natural frequency, and corrects the frequency scanning range according to the comparison result.
在一种可能的实现方式中,相关数据包括测量管的长度、弧度、管径、厚度、材质和通过的介质类型。In a possible implementation manner, the relevant data includes the length, radian, diameter, thickness, material and type of the medium passing through the measuring tube.
本发明中的一种用于科里奥利质量流量计的振动控制方法,具有以下优点:A vibration control method for a Coriolis mass flowmeter in the present invention has the following advantages:
通过对测量管进行建模,确定大概的频率扫描范围,通过这种方式确定的频率扫描范围相较于无数据支撑的频率扫描范围频率点大大减少,而且获取的相关数据越多,确定的频率扫描范围越小,使测量管能够在短时间内确定固有频率,减少测量管起振需要的时间。By modeling the measuring tube, the approximate frequency sweep range is determined. Compared with the frequency sweep range without data support, the frequency sweep range determined in this way has greatly reduced frequency points. The smaller the scanning range, the natural frequency of the measuring tube can be determined in a short time, and the time required for the vibration of the measuring tube to be reduced.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1为本发明实施例提供的一种用于科里奥利质量流量计的振动控制系统的组成示意图;1 is a schematic diagram of the composition of a vibration control system for a Coriolis mass flowmeter provided by an embodiment of the present invention;
图2为本发明实施例提供的一种用于科里奥利质量流量计的振动控制方法的流程图。FIG. 2 is a flowchart of a vibration control method for a Coriolis mass flowmeter according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
图1为本发明实施例提供的一种用于科里奥利质量流量计的振动控制系统的组成示意图,图2为本发明实施例提供的一种用于科里奥利质量流量计的振动控制方法的流程图。本发明实施例提供了一种用于科里奥利质量流量计的振动控制方法,该方法包括:1 is a schematic diagram of the composition of a vibration control system for a Coriolis mass flowmeter provided by an embodiment of the present invention, and FIG. 2 is a vibration control system for a Coriolis mass flowmeter provided by an embodiment of the present invention Flow chart of the control method. An embodiment of the present invention provides a vibration control method for a Coriolis mass flowmeter, the method comprising:
获取科里奥利质量流量计100的测量管101的相关数据;Obtain relevant data of the
根据相关数据建立测量管101的模型,根据模型确定测量管101的频率扫描范围;A model of the
在频率扫描范围内控制测量管101的振动频率,并测量测量管101在每个振动频率下的振动幅度;Control the vibration frequency of the
确定测量管101处在最大振动幅度时的振动频率,以该振动频率控制测量管101振动。The vibration frequency of the
示例性地,上述相关数据包括测量管101的长度、弧度、管径、厚度、材质和通过的介质类型等,由于测量管101的固有频率和以上相关数据都有关系,因此获取的相关数据越精确,建立的模型也就越准确,因而得到的频率扫描范围也会越准确。如果以上任意一个相关数据都无法被获取到,则确定的频率扫描范围就是无数据支撑的频率扫描范围,即预设的频率扫描范围,该频率扫描范围中包含的频率点较多,需要按照从高到低或者从低到高的顺序依次控制测量管101的振动,因此花费的时间比较多。而当较多的甚至全部的相关数据都被获取后,则确定的频率扫描范围就会很小,因此包含的频率点很少,测量管101可在少数几次振动中确定固有频率,起振花费的时间很少。Exemplarily, the above-mentioned relevant data includes the length, radian, diameter, thickness, material, and type of the medium passing through the
在实际应用中,每种科里奥利质量流量计100在售型号的参数都可以获取到,因此可以在实验室中对每种科里奥利质量流量计100的测量管101进行模拟,以建立各种物理数据以及介质类型下的固有频率数据。但是实际使用状态下的固有频率可能会和实验室模拟的固有频率存在差异,因此需要对实验室中获得的固有频率进行扩展,形成上述频率扫描范围。In practical applications, the parameters of each type of Coriolis
在一种可能的实施例中,相关数据的获取以及模型的建立均由移动终端200完成,移动终端200确定频率扫描范围后,将频率扫描范围发送至科里奥利质量流量计100。In a possible embodiment, the acquisition of relevant data and the establishment of the model are completed by the
示例性地,上述移动终端200可以为专门用于对科里奥利质量流量计100进行控制的电子设备,也可以是诸如手机、平板电脑等的通用电子设备。移动终端200中安装有专用的应用程序,该应用程序能够调用移动终端200的处理、通信等功能,以进行模型建立、频率扫描范围确定以及数据通信等。在本发明的实施例中,移动终端200在确定频率扫描范围后,将其通过无线通信的方式发送至科里奥利质量流量计100。采用的无线通信方式可以包括蓝牙和近场通信等。Exemplarily, the above-mentioned
在一种可能的实施例中,移动终端200包括输入单元和处理单元,输入单元用于响应用户的操作输入相关数据,处理单元用于根据输入单元输入的相关数据建立模型,并确定频率扫描范围。In a possible embodiment, the
示例性地,当采用手动输入的方式获取相关数据时,用户可以通过诸如机械键盘、触摸键盘、语音输入等类型的输入单元输入相关数据。Exemplarily, when the relevant data is acquired by manual input, the user may input the relevant data through an input unit such as a mechanical keyboard, a touch keyboard, and voice input.
在一种可能的实施例中,移动终端200包括图像采集单元、输入单元和处理单元,图像采集单元用于获取测量管101的图像,处理单元用于根据图像确定部分相关数据,输入单元用于响应用户的操作输入剩余的相关数据,处理单元还用于根据相关数据建立模型,并确定频率扫描范围。In a possible embodiment, the
示例性地,由于相关数据包含的数据比较多,而且很多数据也无法由用户快速准确的获得,因此可以使用图像采集单元获取测量管101的图像,然后由处理单元对图像进行处理,以确定部分相关数据,例如测量管101的长度和弧度均可以根据图像处理结果获取。而其他的相关数据,例如测量管101的管径、厚度、材质和通过的介质等,则需要用户观察测量管101本身或者查看科里奥利质量流量计100的铭牌获得,并通过输入单元将其输入至移动终端200中。Exemplarily, since the relevant data contains a lot of data, and many data cannot be obtained quickly and accurately by the user, the image acquisition unit can be used to acquire the image of the
在一种可能的实施例中,移动终端200在确定频率扫描范围后,还根据模型确定预估固有频率;在确定测量管101的实际固有频率后,科里奥利质量流量计100将实际固有频率发送至移动终端200,移动终端200将预估固有频率和实际固有频率进行对比,并根据对比结果对频率扫描范围进行修正。In a possible embodiment, after determining the frequency scanning range, the
示例性地,由于移动终端根据模型确定了预估固有频率,并在预估固有频率的基础上进行扩展,获得了上述频率扫描范围,但是受具体环境的影响,测量管101的实际固有频率很有可能和预估固有频率存在一定的偏差。为在以后的建模和频率扫描范围确定工作中提供更加准确的数据,当确定测量管101的实际固有频率后,可以根据该实际固有频率对上述预估固有频率进行修正,并修正模型建立过程中的一些参数,使根据模型确定的预估固有频率和实际固有频率之间的差值缩小,提升后续振动控制作业的准确性。Exemplarily, because the mobile terminal determines the estimated natural frequency according to the model, and expands on the basis of the estimated natural frequency, the above-mentioned frequency scanning range is obtained, but under the influence of the specific environment, the actual natural frequency of the measuring
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。Although preferred embodiments of the present invention have been described, additional changes and modifications to these embodiments may occur to those skilled in the art once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiment and all changes and modifications that fall within the scope of the present invention.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210586303.0A CN114942050A (en) | 2022-05-26 | 2022-05-26 | Vibration control method for Coriolis mass flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210586303.0A CN114942050A (en) | 2022-05-26 | 2022-05-26 | Vibration control method for Coriolis mass flowmeter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114942050A true CN114942050A (en) | 2022-08-26 |
Family
ID=82909418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210586303.0A Pending CN114942050A (en) | 2022-05-26 | 2022-05-26 | Vibration control method for Coriolis mass flowmeter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114942050A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101608940A (en) * | 2009-07-23 | 2009-12-23 | 合肥工业大学 | Coriolis mass flowmeter positive and negative step alternate excitation method and system for starting vibration |
JP2011027539A (en) * | 2009-07-24 | 2011-02-10 | Yokogawa Electric Corp | Coriolis flowmeter |
CN103512625A (en) * | 2012-06-18 | 2014-01-15 | 克洛纳测量技术有限公司 | Method for operating a resonance measuring system and corresponding resonance measuring system |
CN107167195A (en) * | 2017-05-24 | 2017-09-15 | 西北工业大学 | A kind of Coriolis mass flowmeter vibration-starting method based on digital type of drive |
-
2022
- 2022-05-26 CN CN202210586303.0A patent/CN114942050A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101608940A (en) * | 2009-07-23 | 2009-12-23 | 合肥工业大学 | Coriolis mass flowmeter positive and negative step alternate excitation method and system for starting vibration |
JP2011027539A (en) * | 2009-07-24 | 2011-02-10 | Yokogawa Electric Corp | Coriolis flowmeter |
CN103512625A (en) * | 2012-06-18 | 2014-01-15 | 克洛纳测量技术有限公司 | Method for operating a resonance measuring system and corresponding resonance measuring system |
CN107167195A (en) * | 2017-05-24 | 2017-09-15 | 西北工业大学 | A kind of Coriolis mass flowmeter vibration-starting method based on digital type of drive |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103090960B (en) | For obtaining vibration data and to the system and method for vibration data denoising | |
CN103712759B (en) | Spacecraft whole-satellite micro-vibration mechanics environment ground test method | |
CN103808381B (en) | A kind of temperature influence eliminating method of transit-time ultrasonic flow meter | |
US12000722B2 (en) | Coriolis meter | |
CN113155114A (en) | Temperature compensation method and device for gyro zero position of MEMS (micro-electromechanical systems) inertial measurement unit | |
CN101111747A (en) | Method and apparatus for instruction in the use of Coriolis flowmeters | |
CN107631773B (en) | Method for operating a flow measuring device and flow measuring device | |
Downes et al. | Uncertainty estimation of shock tube pressure steps | |
JP2017525947A (en) | Fluid momentum detection method and related apparatus | |
CN114942050A (en) | Vibration control method for Coriolis mass flowmeter | |
CN111566467B (en) | Method for signaling the standard frequency of a densitometer with at least one vibrating measuring tube for a conductive medium | |
JP4961889B2 (en) | Parameter setting device | |
CN117629534B (en) | Gas leakage detection method and device and gas leakage sample collection system | |
CN104483572A (en) | Method, device and system for testing precision of valve positioner | |
Rensing et al. | Coriolis flowmeter verification via embedded modal analysis | |
JP6428073B2 (en) | Analysis device, analysis system, analysis method, and program | |
CN119164426B (en) | Gyroscope decay time constant measurement method, device, storage medium and electronic equipment | |
CN116481634A (en) | Resonant frequency detection method, system, equipment, product and medium | |
Moriaux et al. | Development of a model-driven calibration method for remote microphone probes using Bayesian inference | |
CN107703039A (en) | Rock permeability measurement apparatus | |
CN107238349A (en) | Length measuring method and device | |
CN105334058A (en) | Method for testing dynamic characteristic of servo system of frame-type swinging engine | |
CN114001802A (en) | Calibration method, device, computer equipment and storage medium for oil flow meter | |
CN106548137B (en) | Two degree freedom system Identification of Structural Parameters method based on vibration response signal | |
Deng et al. | Frequency mismatch analysis of hemispherical shell resonators with both radius and thickness imperfections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20250310 Address after: Room 08-10, 6 / F, block a, No. 5, Dongtucheng Road, Chaoyang District, Beijing 100013 Applicant after: National Petroleum and natural gas pipeline network Group Co.,Ltd. Country or region after: China Applicant after: South China branch of National Petroleum and natural gas pipeline network Group Co.,Ltd. Applicant after: XI'AN AEROSPACE PROPULSION INSTITUTE Applicant after: XI'AN AEROSPACE YUANZHENG FLUID CONTROL Co.,Ltd. Address before: 510000 6th floor, tower a, Sinopec building, No. 191 TIYU West Road, Tianhe District, Guangzhou, Guangdong Province Applicant before: South China branch of National Petroleum and natural gas pipeline network Group Co.,Ltd. Country or region before: China Applicant before: XI'AN AEROSPACE PROPULSION INSTITUTE Applicant before: XI'AN AEROSPACE YUANZHENG FLUID CONTROL Co.,Ltd. |
|
TA01 | Transfer of patent application right |