[go: up one dir, main page]

CN114940516A - Preparation method of multi-component cathode material precursor - Google Patents

Preparation method of multi-component cathode material precursor Download PDF

Info

Publication number
CN114940516A
CN114940516A CN202111511116.8A CN202111511116A CN114940516A CN 114940516 A CN114940516 A CN 114940516A CN 202111511116 A CN202111511116 A CN 202111511116A CN 114940516 A CN114940516 A CN 114940516A
Authority
CN
China
Prior art keywords
metal
component
material precursor
solid metal
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111511116.8A
Other languages
Chinese (zh)
Inventor
李维
刘宏兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Zuanyuan Hard Material Co ltd
Original Assignee
Shenzhen Zuanyuan Hard Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Zuanyuan Hard Material Co ltd filed Critical Shenzhen Zuanyuan Hard Material Co ltd
Priority to CN202111511116.8A priority Critical patent/CN114940516A/en
Publication of CN114940516A publication Critical patent/CN114940516A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/80Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
    • C01G53/82Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The disclosure provides a preparation method of a multi-element anode material precursor, which is based on solid metal nickel, solid metal cobalt, solid metal manganese or aluminum and other doped solid metals such as Mg, Ca, Sc, Ti, Zn, Cr, Fe, Zr and the like as raw materials, and comprises the steps of heating and melting the solid metals into liquid metal melts with uniform components; the melt and oxygen or air injected into the oxidation chamber at high speed are quickly oxidized to generate multi-element metal oxide powder; and cooling the multi-element metal oxide powder to obtain the sphere-like multi-element anode material precursor with particularly uniform components. The method disclosed by the invention has the characteristics of short process flow, environmental friendliness and lower cost.

Description

多元正极材料前驱体的制备方法Preparation method of multi-component cathode material precursor

技术领域technical field

本公开涉及一种多元正极材料前驱体的制备方法,具体地说是一种高温氧化法制备多元正极材料前驱体的方法,属于二次电池材料领域。The present disclosure relates to a preparation method of a multi-component positive electrode material precursor, in particular to a method for preparing a multi-component positive electrode material precursor by a high-temperature oxidation method, and belongs to the field of secondary battery materials.

背景技术Background technique

锂离子电池由于具备在比能量、寿命、比功率方面的优势,已经广泛应用在3C设备、纯电动汽车、电化学储能电站并占据主导地位。但是,进一步的降低锂离子电池的成本、进一步提高锂离子电池的性能受到了正极材料的制约,这其中以镍钴锰酸锂和镍钴铝酸锂为代表的三元正极材料成为行业技术攻关的重点。Due to its advantages in specific energy, life, and specific power, lithium-ion batteries have been widely used in 3C equipment, pure electric vehicles, and electrochemical energy storage power stations and occupy a dominant position. However, further reducing the cost of lithium-ion batteries and further improving the performance of lithium-ion batteries are constrained by cathode materials. Among them, ternary cathode materials represented by nickel-cobalt lithium manganate and nickel-cobalt lithium aluminate have become the technical breakthroughs in the industry. the key of.

三元正极材料的性能和成本很大程度上取决于前驱体材料,目前共沉淀法制备三元前驱体材料是主要的方法。但是,共沉淀法制备三元前驱体材料存在以下问题。The performance and cost of ternary cathode materials largely depend on the precursor materials. At present, co-precipitation method is the main method to prepare ternary precursor materials. However, the preparation of ternary precursor materials by coprecipitation has the following problems.

一是工艺流程长,制备时间周期长。共沉淀法包括盐的溶解、络合、晶核生成、晶体生长、成化、过滤、洗涤、干燥等工序,制备时间周期长,导致工艺参数控制要求多、控制难度较大,同时产生大量的废水和副产物。First, the process flow is long and the preparation time period is long. The co-precipitation method includes processes such as salt dissolution, complexation, crystal nucleation, crystal growth, formation, filtration, washing, and drying. The preparation time period is long, which leads to many process parameters control requirements and difficulty in control. Wastewater and by-products.

二是对原料的要求高,选择性强。为获得理想的三元前驱体材料,共沉淀反应对反应物的种类、浓度、杂质含量有严格的控制要求,否则可能发生不能均匀共沉淀或共沉淀产物成分不均匀;这一方面增加了原料的成本,另外一方面导致制备掺杂型三元前驱体材料或多元前驱体材料变得非常的困难。Second, the requirements for raw materials are high and the selectivity is strong. In order to obtain an ideal ternary precursor material, the co-precipitation reaction has strict control requirements on the type, concentration and impurity content of the reactants, otherwise it may not be uniformly co-precipitated or the composition of the co-precipitated product may not be uniform; this aspect increases the number of raw materials. On the other hand, it is very difficult to prepare doped ternary precursor materials or multi-component precursor materials.

三是成本较高。共沉淀法的长制备周期、对原料的高要求和强选择性、大量废水的处理,均是导致高成本的主要因素。而且,这些高成本因素,在共沉淀法这一工艺技术路线下很难有好的解决方案。The third is higher cost. The long preparation period of the co-precipitation method, the high requirements and strong selectivity for raw materials, and the treatment of a large amount of wastewater are the main factors leading to high costs. Moreover, these high cost factors make it difficult to have a good solution under the technical route of co-precipitation.

发明内容SUMMARY OF THE INVENTION

本公开要解决的技术问题是,克服现有技术存在的上述缺陷,提供一种低成本、短生产周期、高均一性的多元正极材料前驱体制备方法。The technical problem to be solved by the present disclosure is to overcome the above-mentioned defects in the prior art, and to provide a low-cost, short production cycle and high uniformity multi-element cathode material precursor preparation method.

本公开通过以下方案实现。The present disclosure is achieved through the following schemes.

一种多元正极材料前驱体的制备方法,所述多元正极材料前驱体包括第一类多元正极材料前驱体、第二类多元正极材料前驱体、第三类多元正极材料前驱体。A method for preparing a multi-component positive electrode material precursor, the multi-component positive electrode material precursor includes a first type of multi-component positive electrode material precursor, a second type of multi-component positive electrode material precursor, and a third type of multi-component positive electrode material precursor.

所述的第一类多元正极材料前驱体的制备步骤如下:The preparation steps of the first type of multi-element cathode material precursor are as follows:

(1)将固态金属镍、固态金属钴、固态金属锰,以及固态金属N1按照化学计量比称取,放入熔化炉中,形成固态金属混合物A1,其中固态金属N1为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Al中的一种或多种;(1) Weigh solid metal nickel, solid metal cobalt, solid metal manganese, and solid metal N1 according to the stoichiometric ratio, put them into a melting furnace, and form a solid metal mixture A1, wherein the solid metal N1 is Mg, Ca, Sc, One or more of Ti, Zn, Cr, Fe, Zr, Cu, Ru, Al;

(2)将步骤(1)中的A1加热熔化,形成成分均一的液态金属熔体B1;(2) heating and melting A1 in step (1) to form a liquid metal melt B1 with uniform composition;

(3)将金属熔体B1注入氧化室中,与高速射流进入氧化室中的空气或氧气发生碰撞形成金属液滴C1,金属液滴C1发生快速氧化反应,生成多元金属氧化物粉末D1;(3) The metal melt B1 is injected into the oxidation chamber, and it collides with the air or oxygen that the high-speed jet enters the oxidation chamber to form metal droplets C1, and the metal droplets C1 undergo rapid oxidation reaction to generate multi-component metal oxide powder D1;

(4)多元金属氧化粉末D1经过冷却,即得到多元正极材料前驱体T1。(4) The multi-component metal oxide powder D1 is cooled to obtain the multi-component positive electrode material precursor T1.

所述的第二类多元正极材料前驱体的制备步骤如下:The preparation steps of the second type of multi-component cathode material precursor are as follows:

(1)将固态金属镍、固态金属钴、固态金属铝,以及固态金属N2按照化学计量比称取,放入熔化炉中,形成固态金属混合物A2,其中固态金属N2为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn中的一种或多种;(1) Weigh solid metal nickel, solid metal cobalt, solid metal aluminum, and solid metal N2 according to the stoichiometric ratio, put them into a melting furnace, and form a solid metal mixture A2, wherein the solid metal N2 is Mg, Ca, Sc, One or more of Ti, Zn, Cr, Fe, Zr, Cu, Ru, Mn;

(2)将步骤(1)中的A2加热熔化,形成成分均一的液态金属熔体B2;(2) heating and melting A2 in step (1) to form a liquid metal melt B2 with uniform composition;

(3)将金属熔体B2注入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴C2,金属液滴C2发生快速氧化反应,生成多元金属氧化物粉末D2;(3) The metal melt B2 is injected into the oxidation chamber, and it collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets C2. The metal droplets C2 undergo rapid oxidation reaction to generate multi-component metal oxide powder D2 ;

(4)多元金属氧化粉末D2经过冷却,即得到多元正极材料前驱体T2。(4) The multi-component metal oxide powder D2 is cooled to obtain the multi-component positive electrode material precursor T2.

所述的第三类多元正极材料前驱体的制备步骤如下:The preparation steps of the third type of multi-component cathode material precursor are as follows:

(1)将固态金属镍、固态金属N3按照化学计量比称取,放入熔化炉中,形成固态金属混合物A3,其中固态金属N3为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn、Al中的一种或多种;(1) Weigh solid metal nickel and solid metal N3 according to the stoichiometric ratio, put them into a melting furnace, and form a solid metal mixture A3, wherein the solid metal N3 is Mg, Ca, Sc, Ti, Zn, Cr, Fe, Zr , one or more of Cu, Ru, Mn, Al;

(2)将步骤(1)中的A3加热熔化,形成成分均一的液态金属熔体B3;(2) heating and melting A3 in step (1) to form a liquid metal melt B3 with uniform composition;

(3)将金属熔体B3注入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴C3,金属液滴C3发生快速氧化反应,生成多元金属氧化物粉末D3;(3) The metal melt B3 is injected into the oxidation chamber, and it collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets C3. The metal droplets C3 undergo rapid oxidation reaction to generate multi-component metal oxide powder D3 ;

(4)多元金属氧化粉末D3经过冷却,即得到多元正极材料前驱体T3。(4) The multi-component metal oxide powder D3 is cooled to obtain the multi-component positive electrode material precursor T3.

所述多元金属氧化物粉末D1即多元正极材料前驱体T1的分子式为NixCoaMbNcOd,其中M为Mn,N1为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Al中的一种或多种,0<a<0.5,0<b<0.4,0≤c<0.2,1<d<2,0.4<x<1。The molecular formula of the multi-component metal oxide powder D1, that is, the multi-component positive electrode material precursor T1 is Ni x Co a M b N c O d , wherein M is Mn, and N1 is Mg, Ca, Sc, Ti, Zn, Cr, Fe, One or more of Zr, Cu, Ru, Al, 0<a<0.5, 0<b<0.4, 0≤c<0.2, 1<d<2, 0.4<x<1.

所述多元金属氧化物粉末D2即多元正极材料前驱体T2的分子式为NixCoaMbNcOd,其中M为Al,N2为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn中的一种或多种,0<a<0.5,0<b<0.4,0≤c<0.2,1<d<2,0.4<x<1。The molecular formula of the multi-element metal oxide powder D2, that is, the multi-element positive electrode material precursor T2 is Ni x Co a M b N c O d , wherein M is Al, and N2 is Mg, Ca, Sc, Ti, Zn, Cr, Fe, One or more of Zr, Cu, Ru and Mn, 0<a<0.5, 0<b<0.4, 0≤c<0.2, 1<d<2, 0.4<x<1.

所述多元金属氧化物粉末D3即多元正极材料前驱体T3的分子式为NixNcOd,其中N3为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn、Al中的一种或多种,0<c<0.55,1<d<2,0.4<x<1。The molecular formula of the multi-element metal oxide powder D3, that is, the multi-element positive electrode material precursor T3 is Ni x N c O d , wherein N3 is Mg, Ca, Sc, Ti, Zn, Cr, Fe, Zr, Cu, Ru, Mn, One or more of Al, 0<c<0.55, 1<d<2, 0.4<x<1.

所述固态金属镍、固态金属钴、固态金属锰(或固态金属铝),以及固态金属N1、固态金属N2、固态金属N3可以是金属块、金属球、金属粉末、金属棒中的任意一种或多种。The solid metal nickel, solid metal cobalt, solid metal manganese (or solid metal aluminum), and solid metal N1, solid metal N2, and solid metal N3 can be any one of metal blocks, metal balls, metal powders, and metal rods or more.

所述固态金属混合物A1中的镍、钴、锰、N1可以是金属单质的形式,也可以是镍、钴、锰、N1形成的任意二元或二元以上的多元合金形式;所述固态金属混合物A2中的镍、钴、铝、N2可以是金属单质的形式,也可以是镍、钴、铝、N2形成的任意二元或二元以上的多元合金形式;所述固态金属混合物A3中的镍、N3可以是金属单质的形式,也可以是镍、N3形成的任意二元或二元以上的多元合金形式。Nickel, cobalt, manganese, and N1 in the solid metal mixture A1 can be in the form of metal elements, or can be in the form of any binary or more than binary alloys formed by nickel, cobalt, manganese, and N1; the solid metal Nickel, cobalt, aluminum, and N2 in the mixture A2 can be in the form of metal elements, or in the form of any binary or more than binary alloys formed by nickel, cobalt, aluminum, and N2; Nickel and N3 can be in the form of metal element, and can also be in the form of any binary or more than binary alloy formed by nickel and N3.

所述多元金属氧化物粉末D1、多元金属氧化物粉末D2、多元金属氧化物粉末D3均是类球形,中值粒径满足D50=0.5μm~15μm。The multi-component metal oxide powder D1, the multi-component metal oxide powder D2, and the multi-component metal oxide powder D3 are all spherical, and the median particle size satisfies D 50 =0.5 μm~15 μm.

所述熔化炉可以是中频感应炉。The melting furnace may be an intermediate frequency induction furnace.

将多元正极材料前驱体与锂盐混合烧结,可以得到锂离子多元正极材料;将多元正极材料前驱体与钠盐混合烧结,可以得到钠离子多元正极材料。The multi-component positive electrode material precursor is mixed and sintered with lithium salt to obtain lithium ion multi-component positive electrode material; the multi-component positive electrode material precursor is mixed and sintered with sodium salt to obtain sodium ion multi-component positive electrode material.

本公开的通过高温金属熔体液滴快速氧化制备元正极材料前驱体的方法具有以下的有益效果。The method for preparing a cathode material precursor by rapid oxidation of high temperature metal melt droplets of the present disclosure has the following beneficial effects.

(1)工艺流程短,制备时间周期短。由于本公开的方法只有固态金属熔化、雾化并氧化、冷却三个主要步骤,工艺流程不到共沉淀法的一半,制备时间周期不到共沉淀法的三分之一。(1) The process flow is short and the preparation time period is short. Since the method of the present disclosure has only three main steps of solid metal melting, atomization and oxidation, and cooling, the process flow is less than half of the co-precipitation method, and the preparation time period is less than one-third of the co-precipitation method.

(2)原料易得,产物成分均一性好。本公开的原料全部采用固态金属,丰富易得;本公开各金属元素在氧化反应前,是处于原子级的均匀分部状态即液态金属熔体,氧化反应速度快,生成的多元金属氧化物粉末即多元正极材料前驱体成分均一性好,而均一性良好的多元正极材料前驱体有利于制备高性能的多元正极材料;本公开没有多元素均匀共沉淀工艺难题,因而可以方便的实现多元正极材料前驱体的制备(多元即正极材料前驱体中的金属元素种类可以是三类或四类或五类或五类以上)。(2) The raw materials are easy to obtain, and the product has good composition uniformity. The raw materials of the present disclosure are all solid metals, which are abundant and easy to obtain; each metal element of the present disclosure is in an atomic-level uniform subdivision state before the oxidation reaction, that is, a liquid metal melt, and the oxidation reaction speed is fast, and the generated multi-component metal oxide powder That is, the multi-element cathode material precursor has good composition uniformity, and the multi-element cathode material precursor with good homogeneity is beneficial to the preparation of high-performance multi-element cathode material; the present disclosure does not have the problem of multi-element uniform co-precipitation process, so the multi-element cathode material can be easily realized. Preparation of precursors (multi-component, that is, the types of metal elements in the cathode material precursor can be three or four or five or more than five).

(3)成本较低。本公开采用固态金属作为原料,省去了由金属制备盐的成本;本公开不产生废水、没有副产品;本公开工艺流程短,时间周期短,生产效率高;以上的三方面,均非常有利于降低多元正极材料前驱体的制备成本。(3) The cost is lower. The present disclosure uses solid metal as the raw material, which saves the cost of preparing salt from the metal; the present disclosure does not generate waste water and has no by-products; the present disclosure has a short process flow, a short time period, and high production efficiency; the above three aspects are very beneficial to The preparation cost of the multi-component cathode material precursor is reduced.

附图说明Description of drawings

图1是根据本公开的第一类多元正极材料前驱体制备工艺流程图一。FIG. 1 is a flow chart 1 of the preparation process of the first type of multi-component cathode material precursor according to the present disclosure.

图2是根据本公开的第二类多元正极材料前驱体制备工艺流程图二。FIG. 2 is a second flow chart of the preparation process of the second type of multi-component cathode material precursor according to the present disclosure.

图3是根据本公开的第三类多元正极材料前驱体制备工艺流程图三。FIG. 3 is a third process flow diagram of the preparation of a third type of multi-component cathode material precursor according to the present disclosure.

图4是根据本公开的实施例2制备的掺杂Mg的镍钴锰四元正极材料前驱体粉末的SEM图片。4 is a SEM picture of the Mg-doped nickel-cobalt-manganese quaternary cathode material precursor powder prepared according to Example 2 of the present disclosure.

具体实施方式Detailed ways

以下结合说明书附图和实施例进一步阐述本公开的技术方案,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和修饰,这些改进和修饰也应该属于本公开的保护范围。The technical solutions of the present disclosure will be further described below in conjunction with the accompanying drawings and embodiments of the description. It should be pointed out that for those skilled in the art, several improvements and modifications can be made without departing from the principles of the present disclosure. Improvements and modifications should also fall within the scope of the present disclosure.

首先,如图1所示,本公开提供了一种镍钴锰三元正极材料前驱体以及掺杂其它金属元素(Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Al中的一种或多种)的镍钴锰多元正极材料前驱体,包括:First, as shown in FIG. 1 , the present disclosure provides a nickel-cobalt-manganese ternary cathode material precursor and doping with other metal elements (Mg, Ca, Sc, Ti, Zn, Cr, Fe, Zr, Cu, Ru, One or more of Al) nickel-cobalt-manganese multi-element cathode material precursors, including:

(1)将固态金属镍、固态金属钴、固态金属锰,以及固态金属N1按照化学计量比称取,放入熔化炉中,形成固态金属混合物A1,其中固态金属N1为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Al中的一种或多种;(1) Weigh solid metal nickel, solid metal cobalt, solid metal manganese, and solid metal N1 according to the stoichiometric ratio, put them into a melting furnace, and form a solid metal mixture A1, wherein the solid metal N1 is Mg, Ca, Sc, One or more of Ti, Zn, Cr, Fe, Zr, Cu, Ru, Al;

(2)将步骤(1)中的A1加热熔化,形成成分均一的液态金属熔体B1;(2) heating and melting A1 in step (1) to form a liquid metal melt B1 with uniform composition;

(3)将金属熔体B1注入氧化室中,与高速射流进入氧化室中的空气或氧气发生碰撞形成金属液滴C1,金属液滴C1发生快速氧化反应,生成多元金属氧化物粉末D1;(3) The metal melt B1 is injected into the oxidation chamber, and it collides with the air or oxygen that the high-speed jet enters the oxidation chamber to form metal droplets C1, and the metal droplets C1 undergo rapid oxidation reaction to generate multi-component metal oxide powder D1;

(4)多元金属氧化粉末D1经过冷却,即得到多元正极材料前驱体T1。(4) The multi-component metal oxide powder D1 is cooled to obtain the multi-component positive electrode material precursor T1.

其次,如图2所示,本公开提供了一种镍钴铝三元正极材料前驱体以及掺杂其它金属元素(Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn中的一种或多种)的镍钴铝多元正极材料前驱体,包括:Secondly, as shown in FIG. 2 , the present disclosure provides a nickel-cobalt-aluminum ternary cathode material precursor and doping with other metal elements (Mg, Ca, Sc, Ti, Zn, Cr, Fe, Zr, Cu, Ru, One or more of Mn) nickel-cobalt-aluminum multi-component cathode material precursors, including:

(1)将固态金属镍、固态金属钴、固态金属铝,以及固态金属N2按照化学计量比称取,放入熔化炉中,形成固态金属混合物A2,其中固态金属N2为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn中的一种或多种;(1) Weigh solid metal nickel, solid metal cobalt, solid metal aluminum, and solid metal N2 according to the stoichiometric ratio, put them into a melting furnace, and form a solid metal mixture A2, wherein the solid metal N2 is Mg, Ca, Sc, One or more of Ti, Zn, Cr, Fe, Zr, Cu, Ru, Mn;

(2)将步骤(1)中的A2加热熔化,形成成分均一的液态金属熔体B2;(2) heating and melting A2 in step (1) to form a liquid metal melt B2 with uniform composition;

(3)将金属熔体B2注入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴C2,金属液滴C2发生快速氧化反应,生成多元金属氧化物粉末D2;(3) The metal melt B2 is injected into the oxidation chamber, and it collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets C2. The metal droplets C2 undergo rapid oxidation reaction to generate multi-component metal oxide powder D2 ;

(4)多元金属氧化粉末D2经过冷却,即得到多元正极材料前驱体T2。(4) The multi-component metal oxide powder D2 is cooled to obtain the multi-component positive electrode material precursor T2.

如图3所示,本公开提供了一种无钴的镍基正极材料前驱体以及掺杂其它金属元素(Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn、Al中的一种或多种)的无钴多元正极材料前驱体,包括:As shown in FIG. 3 , the present disclosure provides a cobalt-free nickel-based cathode material precursor and doping with other metal elements (Mg, Ca, Sc, Ti, Zn, Cr, Fe, Zr, Cu, Ru, Mn, One or more of Al) cobalt-free multicomponent cathode material precursor, including:

(1)将固态金属镍、固态金属N3按照化学计量比称取,放入熔化炉中,形成固态金属混合物A3,其中固态金属N3为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn、Al中的一种或多种;(1) Weigh solid metal nickel and solid metal N3 according to the stoichiometric ratio, put them into a melting furnace, and form a solid metal mixture A3, wherein the solid metal N3 is Mg, Ca, Sc, Ti, Zn, Cr, Fe, Zr , one or more of Cu, Ru, Mn, Al;

(2)将步骤(1)中的A3加热熔化,形成成分均一的液态金属熔体B3;(2) heating and melting A3 in step (1) to form a liquid metal melt B3 with uniform composition;

(3)将金属熔体B3注入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴C3,金属液滴C3发生快速氧化反应,生成多元金属氧化物粉末D3;(3) The metal melt B3 is injected into the oxidation chamber, and it collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets C3. The metal droplets C3 undergo rapid oxidation reaction to generate multi-component metal oxide powder D3 ;

(4)多元金属氧化粉末D3经过冷却,即得到多元正极材料前驱体T3。(4) The multi-component metal oxide powder D3 is cooled to obtain the multi-component positive electrode material precursor T3.

本公开中,多元金属氧化物粉末D1即多元正极材料前驱体T1的分子式为NixCoaMbNcOd,其中M为Mn,N1为Mg、Ca、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Al中的一种或多种,0<a<0.5,0<b<0.4,0≤c<0.2,1<d<2,0.4<x<1。In the present disclosure, the molecular formula of the multi-component metal oxide powder D1, that is, the multi-component cathode material precursor T1 is Ni x Co a M b N c O d , wherein M is Mn, and N1 is Mg, Ca, Ti, Zn, Cr, Fe, One or more of Zr, Cu, Ru, Al, 0<a<0.5, 0<b<0.4, 0≤c<0.2, 1<d<2, 0.4<x<1.

本公开中,多元金属氧化物粉末D2即多元正极材料前驱体T2的分子式为NixCoaMbNcOd,其中M为Al,N2为Mg、Ca、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn中的一种或多种,0<a<0.5,0<b<0.4,0≤c<0.2,1<d<2,0.4<x<1。In the present disclosure, the molecular formula of the multi-component metal oxide powder D2, that is, the multi-component positive electrode material precursor T2 is Ni x Co a M b N c O d , wherein M is Al, and N2 is Mg, Ca, Ti, Zn, Cr, Fe, One or more of Zr, Cu, Ru and Mn, 0<a<0.5, 0<b<0.4, 0≤c<0.2, 1<d<2, 0.4<x<1.

本公开中,多元金属氧化物粉末D3即多元正极材料前驱体T3的分子式为NixNcOd,其中N3为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn、Al中的一种或多种,0<c<0.55,1<d<2,0.4<x<1。In the present disclosure, the molecular formula of the multi-component metal oxide powder D3, that is, the multi-component cathode material precursor T3 is Ni x N c O d , wherein N3 is Mg, Ca, Sc, Ti, Zn, Cr, Fe, Zr, Cu, Ru, One or more of Mn and Al, 0<c<0.55, 1<d<2, 0.4<x<1.

本公开中,固态金属镍、固态金属钴、固态金属锰(或固态金属铝),以及固态金属N1、固态金属N2、固态金属N3可以是金属块、金属球、金属粉末、金属棒中的任意一种或多种。In the present disclosure, solid metal nickel, solid metal cobalt, solid metal manganese (or solid metal aluminum), and solid metal N1, solid metal N2, and solid metal N3 may be any of metal blocks, metal balls, metal powders, and metal rods. one or more.

本公开中,固态金属混合物A1中的镍、钴、锰、N1可以是金属单质的形式,也可以是镍、钴、锰、N1形成的任意二元或二元以上的多元合金形式;所述固态金属混合物A2中的镍、钴、铝、N2可以是金属单质的形式,也可以是镍、钴、铝、N2形成的任意二元或二元以上的多元合金形式;所述固态金属混合物A3中的镍、N3可以是金属单质的形式,也可以是镍、N3形成的任意二元或二元以上的多元合金形式。In the present disclosure, nickel, cobalt, manganese, and N1 in the solid metal mixture A1 can be in the form of metal elements, or can be in the form of any binary or more than binary alloys formed by nickel, cobalt, manganese, and N1; the The nickel, cobalt, aluminum, and N2 in the solid metal mixture A2 can be in the form of metal elements, or in the form of any binary or more than binary alloys formed by nickel, cobalt, aluminum, and N2; the solid metal mixture A3 The nickel and N3 in the compound can be in the form of a metal element, or in the form of any binary or more than binary alloy formed by nickel and N3.

本公开中,多元金属氧化物粉末D1、多元金属氧化物粉末D2、多元金属氧化物粉末D3均是类球形,中值粒径满足D50=0.5μm~15μm。In the present disclosure, the multi-component metal oxide powder D1, the multi-component metal oxide powder D2, and the multi-component metal oxide powder D3 are all spherical, and the median particle size satisfies D 50 =0.5 μm~15 μm.

本公开中,熔化炉是中频感应炉。In the present disclosure, the melting furnace is an intermediate frequency induction furnace.

将本公开中制备的多元正极材料前驱体与锂盐混合烧结,可以得到锂离子多元正极材料;将本公开中制备的多元正极材料前驱体与钠盐混合烧结,可以得到钠离子多元正极材料。The multi-component positive electrode material precursor prepared in the present disclosure is mixed and sintered with lithium salt to obtain a lithium ion multi-component positive electrode material; the multi-component positive electrode material precursor prepared in the present disclosure is mixed and sintered with a sodium salt to obtain a sodium ion multi-component positive electrode material.

实施例1Example 1

制备一种镍钴锰三元正极材料前驱体。A nickel-cobalt-manganese ternary cathode material precursor is prepared.

将块状固态金属镍、块状固态金属钴、块状固态金属锰按照化学计量比即Ni:Co:Mn的mol比为0.8:0.1:0.1称取,放入中频感应炉中,形成固态金属混合物。中频感应炉升温至1600℃,将固态金属混合物熔化,形成成分均一的液态金属熔体。将金属熔体注入进入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴,金属液滴发生快速氧化反应,生成多元金属氧化物粉末。多元金属氧化物粉末冷却,得到镍钴锰三元正极材料前驱体。The bulk solid metal nickel, the bulk solid metal cobalt, and the bulk solid metal manganese are weighed according to the stoichiometric ratio, that is, the mol ratio of Ni:Co:Mn is 0.8:0.1:0.1, and put into an intermediate frequency induction furnace to form a solid metal mixture. The intermediate frequency induction furnace is heated to 1600°C, and the solid metal mixture is melted to form a liquid metal melt with uniform composition. The metal melt is injected into the oxidation chamber, and collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets. The metal droplets undergo rapid oxidation reaction to generate multi-component metal oxide powder. The multi-component metal oxide powder is cooled to obtain a nickel-cobalt-manganese ternary positive electrode material precursor.

经检测,本实施例制备的镍钴锰三元正极材料前驱体粉末的中值粒径为10.5μm,形貌为是类球形,化学组成为Ni0.8Co0.1Mn0.1O1.35.。After testing, the median particle size of the precursor powder of the nickel-cobalt-manganese ternary positive electrode material prepared in this example is 10.5 μm, the shape is spherical, and the chemical composition is Ni 0.8 Co 0.1 Mn 0.1 O 1.35 .

实施例2Example 2

制备一种掺杂Ti的镍钴锰四元正极材料前驱体。A Ti-doped nickel-cobalt-manganese quaternary cathode material precursor is prepared.

将块状固态金属镍、块状固态金属钴、块状固态金属锰、块状固态金属钛按照化学计量比即Ni:Co:Mn:Ti的mol比为0.78:0.1:0.1:0.02称取,放入中频感应炉中,形成固态金属混合物。中频感应炉升温至1710℃,将固态金属混合物熔化,形成成分均一的液态金属熔体。将金属熔体注入进入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴,金属液滴发生快速氧化反应,生成多元金属氧化物粉末。多元金属氧化物粉末冷却,得到掺杂钛的镍钴锰四元正极材料前驱体。The bulk solid metallic nickel, bulk solid metallic cobalt, bulk solid metallic manganese, and bulk solid metallic titanium are weighed according to the stoichiometric ratio, that is, the mol ratio of Ni:Co:Mn:Ti is 0.78:0.1:0.1:0.02, Put into a medium frequency induction furnace to form a solid metal mixture. The intermediate frequency induction furnace is heated to 1710°C, and the solid metal mixture is melted to form a liquid metal melt with uniform composition. The metal melt is injected into the oxidation chamber, and collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets. The metal droplets undergo rapid oxidation reaction to generate multi-component metal oxide powder. The multi-component metal oxide powder is cooled to obtain a titanium-doped nickel-cobalt-manganese quaternary positive electrode material precursor.

经检测,本实施例制备的掺杂Ti的镍钴锰四元正极材料前驱体粉末的中值粒径为9.6μm,形貌为是类球形,化学组成为Ni0.78Co0.1Mn0.1Ti0.02O1.56。图3是本实施例制备的掺杂Ti的镍钴锰四元正极材料前驱体粉末的SEM图片。After testing, the median particle size of the Ti-doped nickel-cobalt-manganese quaternary cathode material precursor powder prepared in this example is 9.6 μm, the shape is spherical, and the chemical composition is Ni 0.78 Co 0.1 Mn 0.1 Ti 0.02 O 1.56 . FIG. 3 is a SEM picture of the Ti-doped nickel-cobalt-manganese quaternary cathode material precursor powder prepared in this example.

实施例3Example 3

制备一种掺杂Ti和Fe的镍钴锰五元正极材料前驱体。A nickel-cobalt-manganese five-element cathode material precursor doped with Ti and Fe was prepared.

将块状固态金属镍、块状固态金属钴、块状固态金属锰、块状固态金属钛、片状金属铁按照化学计量比即Ni:Co:Mn:Ti:Fe的mol比为0.80:0.06:0.1:0.02:0.04称取,放入中频感应炉中,形成固态金属混合物。中频感应炉升温至1720℃,将固态金属混合物熔化,形成成分均一的液态金属熔体。将金属熔体注入进入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴,金属液滴发生快速氧化反应,生成多元金属氧化物粉末。多元金属氧化物粉末冷却,得到掺杂Ti和Fe的镍钴锰五元正极材料前驱体。The bulk solid metallic nickel, bulk solid metallic cobalt, bulk solid metallic manganese, bulk solid metallic titanium, and flake metallic iron are in a stoichiometric ratio, that is, the mol ratio of Ni:Co:Mn:Ti:Fe is 0.80:0.06 :0.1:0.02:0.04 Weigh it, put it in an intermediate frequency induction furnace, and form a solid metal mixture. The intermediate frequency induction furnace is heated to 1720°C, and the solid metal mixture is melted to form a liquid metal melt with uniform composition. The metal melt is injected into the oxidation chamber, and collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets. The metal droplets undergo rapid oxidation reaction to generate multi-component metal oxide powder. The multi-component metal oxide powder is cooled to obtain a nickel-cobalt-manganese five-element cathode material precursor doped with Ti and Fe.

经检测,本实施例制备的掺杂Ti和Fe的镍钴锰五元正极材料前驱体粉末的中值粒径为9.8μm,形貌为是类球形,化学组成为Ni0.80Co0.06Mn0.1Ti0.02Fe0.04O1.59.。After testing, the median particle size of the precursor powder of the nickel-cobalt-manganese pentagonal cathode material doped with Ti and Fe prepared in this example is 9.8 μm, the morphology is spherical, and the chemical composition is Ni 0.80 Co 0.06 Mn 0.1 Ti 0.02 Fe 0.04 O 1.59 ..

实施例4Example 4

制备一种镍钴铝三元正极材料前驱体。A nickel-cobalt-aluminum ternary cathode material precursor is prepared.

将块状固态金属镍、块状固态金属钴、块状固态金属铝按照化学计量比即Ni:Co:Al的mol比为0.8:0.15:0.05称取,放入中频感应炉中,形成固态金属混合物。中频感应炉升温至1580℃,将固态金属混合物熔化,形成成分均一的液态金属熔体。将金属熔体注入进入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴,金属液滴发生快速氧化反应,生成多元金属氧化物粉末。多元金属氧化物粉末冷却,得到镍钴铝三元正极材料前驱体。The bulk solid metal nickel, the bulk solid metal cobalt, and the bulk solid metal aluminum are weighed according to the stoichiometric ratio, that is, the mol ratio of Ni:Co:Al is 0.8:0.15:0.05, and placed in an intermediate frequency induction furnace to form a solid metal mixture. The intermediate frequency induction furnace is heated to 1580°C, and the solid metal mixture is melted to form a liquid metal melt with uniform composition. The metal melt is injected into the oxidation chamber, and collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets. The metal droplets undergo rapid oxidation reaction to generate multi-component metal oxide powder. The multi-component metal oxide powder is cooled to obtain a nickel-cobalt-aluminum ternary positive electrode material precursor.

经检测,本实施例制备的镍钴铝三元正极材料前驱体粉末的中值粒径为11.6μm,形貌为是类球形,化学组成为Ni0.8Co0.15Al0.05O1.50.。After testing, the median particle size of the precursor powder of the nickel-cobalt-aluminum ternary positive electrode material prepared in this example is 11.6 μm, the shape is spherical, and the chemical composition is Ni 0.8 Co 0.15 Al 0.05 O 1.50 .

实施例5Example 5

制备一种掺杂Zr的镍钴铝四元正极材料前驱体。A Zr-doped nickel-cobalt-aluminum quaternary cathode material precursor was prepared.

将块状固态金属镍、块状固态金属钴、块状固态金属铝、块状固态金属锆按照化学计量比即Ni:Co:Al:Zr的mol比为0.78:0.15:0.05:0.02称取,放入中频感应炉中,形成固态金属混合物。中频感应炉升温至1900℃,将固态金属混合物熔化,形成成分均一的液态金属熔体。将金属熔体注入进入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴,金属液滴发生快速氧化反应,生成多元金属氧化物粉末。多元金属氧化物粉末冷却,得到掺杂Zr的镍钴铝四元正极材料前驱体。The bulk solid metal nickel, the bulk solid metal cobalt, the bulk solid metal aluminum, and the bulk solid metal zirconium are weighed according to the stoichiometric ratio, that is, the mol ratio of Ni:Co:Al:Zr is 0.78:0.15:0.05:0.02, Put into a medium frequency induction furnace to form a solid metal mixture. The intermediate frequency induction furnace is heated to 1900°C, and the solid metal mixture is melted to form a liquid metal melt with uniform composition. The metal melt is injected into the oxidation chamber, and collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets. The metal droplets undergo rapid oxidation reaction to generate multi-component metal oxide powder. The multi-component metal oxide powder is cooled to obtain a Zr-doped nickel-cobalt-aluminum quaternary cathode material precursor.

经检测,本实施例制备的掺杂Zr的镍钴铝四元正极材料前驱体粉末的中值粒径为11.3μm,形貌为是类球形,化学组成为Ni0.78Co0.15Al0.05Zr0.02O1.51.。After testing, the median particle size of the Zr-doped nickel-cobalt-aluminum quaternary cathode material precursor powder prepared in this example is 11.3 μm, the shape is spherical, and the chemical composition is Ni 0.78 Co 0.15 Al 0.05 Zr 0.02 O 1.51 ..

实施例6Example 6

制备一种掺杂Ti和Zr的镍钴铝五元正极材料前驱体。A nickel-cobalt-aluminum five-element cathode material precursor doped with Ti and Zr was prepared.

将块状固态金属镍、块状固态金属钴、块状固态金属铝、块状固态金属钛、片状金属锆按照化学计量比即Ni:Co:Al:Ti:Zr的mol比为0.76:0.1:0.1:0.02:0.02称取,放入中频感应炉中,形成固态金属混合物。中频感应炉升温至1910℃,将固态金属混合物熔化,形成成分均一的液态金属熔体。将金属熔体注入进入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴,金属液滴发生快速氧化反应,生成多元金属氧化物粉末。多元金属氧化物粉末冷却,得到掺杂Ti和Zr的镍钴铝五元正极材料前驱体。The bulk solid metal nickel, bulk solid metal cobalt, bulk solid metal aluminum, bulk solid metal titanium, and flake metal zirconium are stoichiometrically, that is, the mol ratio of Ni:Co:Al:Ti:Zr is 0.76:0.1 :0.1:0.02:0.02 Weigh it, put it into an intermediate frequency induction furnace, and form a solid metal mixture. The intermediate frequency induction furnace is heated to 1910°C, and the solid metal mixture is melted to form a liquid metal melt with uniform composition. The metal melt is injected into the oxidation chamber, and collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets. The metal droplets undergo rapid oxidation reaction to generate multi-component metal oxide powder. The multi-component metal oxide powder is cooled to obtain a nickel-cobalt-aluminum five-element cathode material precursor doped with Ti and Zr.

经检测,本实施例制备的掺杂Ti和Zr的镍钴铝五元正极材料前驱体粉末的中值粒径为10.2μm,形貌为是类球形,化学组成为Ni0.76Co0.1Al0.1Ti0.02Zr0.02O1.52.。After testing, the median particle size of the precursor powder of the nickel-cobalt-aluminum pentagonal cathode material doped with Ti and Zr prepared in this example is 10.2 μm, the morphology is spherical, and the chemical composition is Ni 0.76 Co 0.1 Al 0.1 Ti 0.02 Zr 0.02 O 1.52 ..

实施例7Example 7

制备一种无钴的镍锰铝三元正极材料前驱体。A cobalt-free nickel-manganese-aluminum ternary cathode material precursor is prepared.

将块状固态金属镍、块状固态金属锰、块状固态金属铝按照化学计量比即Ni:Mn:Al的mol比为0.8:0.15:0.05称取,放入中频感应炉中,形成固态金属混合物。中频感应炉升温至1560℃,将固态金属混合物熔化,形成成分均一的液态金属熔体。将金属熔体注入进入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴,金属液滴发生快速氧化反应,生成多元金属氧化物粉末。多元金属氧化物粉末冷却,得到镍锰铝三元正极材料前驱体。The bulk solid metal nickel, the bulk solid metal manganese, and the bulk solid metal aluminum are weighed according to the stoichiometric ratio, that is, the mol ratio of Ni:Mn:Al is 0.8:0.15:0.05, and placed in an intermediate frequency induction furnace to form a solid metal mixture. The intermediate frequency induction furnace is heated to 1560°C, and the solid metal mixture is melted to form a liquid metal melt with uniform composition. The metal melt is injected into the oxidation chamber, and collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets. The metal droplets undergo rapid oxidation reaction to generate multi-component metal oxide powder. The multi-component metal oxide powder is cooled to obtain a nickel-manganese-aluminum ternary positive electrode material precursor.

经检测,本实施例制备的镍锰铝三元正极材料前驱体粉末的中值粒径为10.7μm,形貌为是类球形,化学组成为Ni0.8Mn0.15Al0.05O1.57.。After testing, the median particle size of the precursor powder of the nickel-manganese-aluminum ternary cathode material prepared in this example is 10.7 μm, the shape is spherical, and the chemical composition is Ni 0.8 Mn 0.15 Al 0.05 O 1.57 .

实施例8Example 8

制备一种无钴的镍锰铝钛四元正极材料前驱体。A cobalt-free nickel-manganese-aluminum-titanium quaternary cathode material precursor is prepared.

将块状固态金属镍、块状固态金属锰、块状固态金属铝、块状固态金属钛按照化学计量比即Ni:Mn:Al:Ti的mol比为0.8:0.15:0.02:0.03称取,放入中频感应炉中,形成固态金属混合物。中频感应炉升温至1780℃,将固态金属混合物熔化,形成成分均一的液态金属熔体。将金属熔体注入进入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴,金属液滴发生快速氧化反应,生成多元金属氧化物粉末。多元金属氧化物粉末冷却,得到镍锰铝钛四元正极材料前驱体。The bulk solid metal nickel, the bulk solid metal manganese, the bulk solid metal aluminum, and the bulk solid metal titanium are weighed according to the stoichiometric ratio, that is, the mol ratio of Ni:Mn:Al:Ti is 0.8:0.15:0.02:0.03, Put into a medium frequency induction furnace to form a solid metal mixture. The intermediate frequency induction furnace is heated to 1780°C, and the solid metal mixture is melted to form a liquid metal melt with uniform composition. The metal melt is injected into the oxidation chamber, and collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets. The metal droplets undergo rapid oxidation reaction to generate multi-component metal oxide powder. The multi-component metal oxide powder is cooled to obtain a nickel-manganese-aluminum-titanium quaternary positive electrode material precursor.

经检测,本实施例制备的镍锰铝钛四元正极材料前驱体粉末的中值粒径为10.3μm,形貌为是类球形,化学组成为Ni0.8Mn0.15Al0.02Ti0.03O1.59After testing, the median particle size of the precursor powder of the nickel-manganese-aluminum-titanium quaternary cathode material prepared in this example is 10.3 μm, the shape is spherical, and the chemical composition is Ni 0.8 Mn 0.15 Al 0.02 Ti 0.03 O 1.59 .

由以上的实施例可以发现,本公开的通过高温金属熔体液滴快速氧化制备元正极材料前驱体的方法具有以下的有益效果。From the above embodiments, it can be found that the method for preparing a cathode material precursor by rapid oxidation of high temperature metal melt droplets of the present disclosure has the following beneficial effects.

(1)工艺流程短,制备时间周期短。由于本公开的方法只有固态金属熔化、雾化并氧化、冷却三个主要步骤,工艺流程不到共沉淀法的一半,制备时间周期不到共沉淀法的三分之一。(1) The process flow is short and the preparation time period is short. Since the method of the present disclosure has only three main steps of solid metal melting, atomization and oxidation, and cooling, the process flow is less than half of the co-precipitation method, and the preparation time period is less than one-third of the co-precipitation method.

(2)原料易得,产物成分均一性好。本公开的原料全部采用固态金属,丰富易得;本公开各金属元素在氧化反应前,是处于原子级的均匀分部状态即液态金属熔体,氧化反应速度快,生成的多元金属氧化物粉末即多元正极材料前驱体成分均一性好,而均一性良好的多元正极材料前驱体有利于制备高性能的多元正极材料;本公开没有多元素均匀共沉淀工艺难题,因而可以方便的实现多元正极材料前驱体的制备(多元即正极材料前驱体中的金属元素种类可以是三类或四类或五类或五类以上)。(2) The raw materials are easy to obtain, and the product has good composition uniformity. The raw materials of the present disclosure are all solid metals, which are abundant and easy to obtain; each metal element of the present disclosure is in an atomic-level uniform subdivision state before the oxidation reaction, that is, a liquid metal melt, and the oxidation reaction speed is fast, and the generated multi-component metal oxide powder That is, the multi-element cathode material precursor has good composition uniformity, and the multi-element cathode material precursor with good homogeneity is beneficial to the preparation of high-performance multi-element cathode material; the present disclosure does not have the problem of multi-element uniform co-precipitation process, so the multi-element cathode material can be easily realized. Preparation of precursors (multi-component, that is, the types of metal elements in the cathode material precursor can be three or four or five or more than five).

(3)成本较低。本公开采用固态金属作为原料,省去了由金属制备盐的成本;本公开不产生废水、没有副产品;本公开工艺流程短,时间周期短,生产效率高;以上的三方面,均非常有利于降低多元正极材料前驱体的制备成本。(3) The cost is lower. The present disclosure uses solid metal as the raw material, which saves the cost of preparing salt from the metal; the present disclosure does not generate waste water and has no by-products; the present disclosure has a short process flow, a short time period, and high production efficiency; the above three aspects are very beneficial to The preparation cost of the multi-component cathode material precursor is reduced.

Claims (8)

1.一种多元正极材料前驱体的制备方法,其特征在于:1. a preparation method of multi-element positive electrode material precursor, is characterized in that: 所述多元正极材料前驱体包括第一类多元正极材料前驱体、第二类多元正极材料前驱体、第三类多元正极材料前驱体;The multi-component positive electrode material precursor includes a first type of multi-component positive electrode material precursor, a second type of multi-component positive electrode material precursor, and a third type of multi-component positive electrode material precursor; 所述的第一类多元正极材料前驱体的制备步骤如下:The preparation steps of the first type of multi-element cathode material precursor are as follows: (1)将固态金属镍、固态金属钴、固态金属锰,以及固态金属N1按照化学计量比称取,放入熔化炉中,形成固态金属混合物A1,其中固态金属N1为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Al中的一种或多种;(1) Weigh solid metal nickel, solid metal cobalt, solid metal manganese, and solid metal N1 according to the stoichiometric ratio, put them into a melting furnace, and form a solid metal mixture A1, wherein the solid metal N1 is Mg, Ca, Sc, One or more of Ti, Zn, Cr, Fe, Zr, Cu, Ru, Al; (2)将步骤(1)中的A1加热熔化,形成成分均一的液态金属熔体B1;(2) heating and melting A1 in step (1) to form a liquid metal melt B1 with uniform composition; (3)将金属熔体B1注入氧化室中,与高速射流进入氧化室中的空气或氧气发生碰撞形成金属液滴C1,金属液滴C1发生快速氧化反应,生成多元金属氧化物粉末D1;(3) The metal melt B1 is injected into the oxidation chamber, and it collides with the air or oxygen that the high-speed jet enters the oxidation chamber to form metal droplets C1, and the metal droplets C1 undergo rapid oxidation reaction to generate multi-component metal oxide powder D1; (4)多元金属氧化粉末D1经过冷却,即得到多元正极材料前驱体T1;(4) The multi-component metal oxide powder D1 is cooled to obtain the multi-component cathode material precursor T1; 所述的第二类多元正极材料前驱体的制备步骤如下:The preparation steps of the second type of multi-component cathode material precursor are as follows: (1)将固态金属镍、固态金属钴、固态金属铝,以及固态金属N2按照化学计量比称取,放入熔化炉中,形成固态金属混合物A2,其中固态金属N2为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn中的一种或多种;(1) Weigh solid metal nickel, solid metal cobalt, solid metal aluminum, and solid metal N2 according to the stoichiometric ratio, put them into a melting furnace, and form a solid metal mixture A2, wherein the solid metal N2 is Mg, Ca, Sc, One or more of Ti, Zn, Cr, Fe, Zr, Cu, Ru, Mn; (2)将步骤(1)中的A2加热熔化,形成成分均一的液态金属熔体B2;(2) heating and melting A2 in step (1) to form a liquid metal melt B2 with uniform composition; (3)将金属熔体B2注入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴C2,金属液滴C2发生快速氧化反应,生成多元金属氧化物粉末D2;(3) The metal melt B2 is injected into the oxidation chamber, and it collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets C2. The metal droplets C2 undergo rapid oxidation reaction to generate multi-component metal oxide powder D2 ; (4)多元金属氧化粉末D2经过冷却,即得到多元正极材料前驱体T2;(4) The multi-component metal oxide powder D2 is cooled to obtain the multi-component cathode material precursor T2; 所述的第三类多元正极材料前驱体的制备步骤如下:The preparation steps of the third type of multi-component cathode material precursor are as follows: (1)将固态金属镍、固态金属N3按照化学计量比称取,放入熔化炉中,形成固态金属混合物A3,其中固态金属N3为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn、Al中的一种或多种;(1) Weigh solid metal nickel and solid metal N3 according to the stoichiometric ratio, put them into a melting furnace, and form a solid metal mixture A3, wherein the solid metal N3 is Mg, Ca, Sc, Ti, Zn, Cr, Fe, Zr , one or more of Cu, Ru, Mn, Al; (2)将步骤(1)中的A3加热熔化,形成成分均一的液态金属熔体B3;(2) heating and melting A3 in step (1) to form a liquid metal melt B3 with uniform composition; (3)将金属熔体B3注入氧化室中,与高速射流进入氧化室中的高压空气或高压氧气发生碰撞形成金属液滴C3,金属液滴C3发生快速氧化反应,生成多元金属氧化物粉末D3;(3) The metal melt B3 is injected into the oxidation chamber, and it collides with the high-pressure air or high-pressure oxygen entering the oxidation chamber with a high-speed jet to form metal droplets C3. The metal droplets C3 undergo rapid oxidation reaction to generate multi-component metal oxide powder D3 ; (4)多元金属氧化粉末D3经过冷却,即得到多元正极材料前驱体T3。(4) The multi-component metal oxide powder D3 is cooled to obtain the multi-component positive electrode material precursor T3. 2.根据权利要求1所述的多元正极材料前驱体的制备方法,其特征在于:所述多元金属氧化物粉末D1即多元正极材料前驱体T1的分子式为NixCoaMbNcOd,其中M为Mn,N1为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Al中的一种或多种,0<a<0.5,0<b<0.4,0≤c<0.2,1<d<2,0.4<x<1。2. The method for preparing a multi-element positive electrode material precursor according to claim 1, characterized in that: the multi-element metal oxide powder D1 is the molecular formula of the multi-element positive electrode material precursor T1 is Ni x Co a M b N c O d , where M is Mn, N1 is one or more of Mg, Ca, Sc, Ti, Zn, Cr, Fe, Zr, Cu, Ru, Al, 0<a<0.5, 0<b<0.4, 0 ≤c<0.2, 1<d<2, 0.4<x<1. 3.根据权利要求1所述的多元正极材料前驱体的制备方法,其特征在于:所述多元金属氧化物粉末D2即多元正极材料前驱体T2的分子式为NixCoaMbNcOd,其中M为Al,N2为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn中的一种或多种,0<a<0.5,0<b<0.4,0≤c<0.2,1<d<2,0.4<x<1。3. The method for preparing a multi-element positive electrode material precursor according to claim 1, wherein the multi-element metal oxide powder D2 is the molecular formula of the multi-element positive electrode material precursor T2 is Ni x Co a M b N c O d , where M is Al, N2 is one or more of Mg, Ca, Sc, Ti, Zn, Cr, Fe, Zr, Cu, Ru, Mn, 0<a<0.5, 0<b<0.4, 0 ≤c<0.2, 1<d<2, 0.4<x<1. 4.根据权利要求1所述的多元正极材料前驱体的制备方法,其特征在于:所述多元金属氧化物粉末D3即多元正极材料前驱体T3的分子式为NixNcOd,其中N3为Mg、Ca、Sc、Ti、Zn、Cr、Fe、Zr、Cu、Ru、Mn、Al中的一种或多种,0<c<0.55,1<d<2,0.4<x<1。4. The method for preparing a multi-component positive electrode material precursor according to claim 1, wherein the molecular formula of the multi-component metal oxide powder D3, that is, the multi-component positive electrode material precursor T3 is Ni x N c O d , wherein N3 is One or more of Mg, Ca, Sc, Ti, Zn, Cr, Fe, Zr, Cu, Ru, Mn, Al, 0<c<0.55, 1<d<2, 0.4<x<1. 5.根据权利要求1所述的多元正极材料前驱体的制备方法,其特征在于:所述固态金属镍、固态金属钴、固态金属锰(或固态金属铝),以及固态金属N1、固态金属N2、固态金属N3可以是金属块、金属球、金属粉末、金属棒中的任意一种或多种。5. The method for preparing a multi-component positive electrode material precursor according to claim 1, wherein the solid metal nickel, solid metal cobalt, solid metal manganese (or solid metal aluminum), and solid metal N1, solid metal N2 , The solid metal N3 can be any one or more of metal blocks, metal balls, metal powders, and metal rods. 6.根据权利要求1所述的多元正极材料前驱体的制备方法,其特征在于:所述固态金属混合物A1中的镍、钴、锰、N1可以是金属单质的形式,也可以是镍、钴、锰、N1形成的任意二元或二元以上的多元合金形式;所述固态金属混合物A2中的镍、钴、铝、N2可以是金属单质的形式,也可以是镍、钴、铝、N2形成的任意二元或二元以上的多元合金形式;所述固态金属混合物A3中的镍、N3可以是金属单质的形式,也可以是镍、N3形成的任意二元或二元以上的多元合金形式。6. The preparation method of multi-component positive electrode material precursor according to claim 1, wherein: nickel, cobalt, manganese, N in the solid metal mixture A1 can be in the form of metal element, or can be nickel, cobalt , manganese, N1 form any binary or more than binary multi-alloy form; the nickel, cobalt, aluminum, N2 in the solid metal mixture A2 can be in the form of metal elements, or can be nickel, cobalt, aluminum, N2 Any binary or more than binary multi-alloy form formed; Nickel and N in the solid metal mixture A3 can be in the form of metal elements, or can be any binary or more than binary formed by nickel and N The multi-alloy form. 7.根据权利要求1所述的多元正极材料前驱体的制备方法,其特征在于:所述熔化炉可以是中频感应炉。7 . The method for preparing a multi-element cathode material precursor according to claim 1 , wherein the melting furnace can be an intermediate frequency induction furnace. 8 . 8.根据权利要求1所述的多元正极材料前驱体的制备方法,其特征在于:所述多元金属氧化物粉末D1、多元金属氧化物粉末D2、多元金属氧化物粉末D3均是类球形,中值粒径满足D50=0.5μm~15μm。8. The method for preparing a multi-component positive electrode material precursor according to claim 1, wherein the multi-component metal oxide powder D1, the multi-component metal oxide powder D2, and the multi-component metal oxide powder D3 are all spherical, and the middle The particle size satisfies D 50 =0.5 μm~15 μm.
CN202111511116.8A 2021-12-11 2021-12-11 Preparation method of multi-component cathode material precursor Pending CN114940516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111511116.8A CN114940516A (en) 2021-12-11 2021-12-11 Preparation method of multi-component cathode material precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111511116.8A CN114940516A (en) 2021-12-11 2021-12-11 Preparation method of multi-component cathode material precursor

Publications (1)

Publication Number Publication Date
CN114940516A true CN114940516A (en) 2022-08-26

Family

ID=82906027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111511116.8A Pending CN114940516A (en) 2021-12-11 2021-12-11 Preparation method of multi-component cathode material precursor

Country Status (1)

Country Link
CN (1) CN114940516A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060071198A1 (en) * 2004-09-24 2006-04-06 Paulsen Jens M Powdered lithium transition metal oxide having doped interface layer and outer layer and method for preparation of the same
CA2510880A1 (en) * 2005-07-06 2007-01-06 Michel Gauthier Process for the preparation of a composite
CN102169990A (en) * 2011-04-07 2011-08-31 先进储能材料国家工程研究中心有限责任公司 Ternary cathode material and production method thereof
CN102315428A (en) * 2010-06-29 2012-01-11 比亚迪股份有限公司 Preparation method for anode material
CN107195872A (en) * 2017-04-17 2017-09-22 谢海军 A kind of ternary cathode material of lithium ion battery NCA preparation method
CN109473657A (en) * 2018-12-03 2019-03-15 林奈(中国)新能源有限公司 A kind of nickel cobalt aluminium manganese quaternary lithium-ion battery positive electrode material being mixed with, Preparation method and use
CN112919552A (en) * 2021-01-28 2021-06-08 中南大学 High tap density multi-element oxide precursor and preparation method and preparation system thereof
WO2021212729A1 (en) * 2020-04-24 2021-10-28 四川万邦胜辉新能源科技有限公司 Nickel-manganese-based positive electrode material precursor and synthesis method for positive electrode material thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060071198A1 (en) * 2004-09-24 2006-04-06 Paulsen Jens M Powdered lithium transition metal oxide having doped interface layer and outer layer and method for preparation of the same
CA2510880A1 (en) * 2005-07-06 2007-01-06 Michel Gauthier Process for the preparation of a composite
CN102315428A (en) * 2010-06-29 2012-01-11 比亚迪股份有限公司 Preparation method for anode material
CN102169990A (en) * 2011-04-07 2011-08-31 先进储能材料国家工程研究中心有限责任公司 Ternary cathode material and production method thereof
CN107195872A (en) * 2017-04-17 2017-09-22 谢海军 A kind of ternary cathode material of lithium ion battery NCA preparation method
CN109473657A (en) * 2018-12-03 2019-03-15 林奈(中国)新能源有限公司 A kind of nickel cobalt aluminium manganese quaternary lithium-ion battery positive electrode material being mixed with, Preparation method and use
WO2021212729A1 (en) * 2020-04-24 2021-10-28 四川万邦胜辉新能源科技有限公司 Nickel-manganese-based positive electrode material precursor and synthesis method for positive electrode material thereof
CN112919552A (en) * 2021-01-28 2021-06-08 中南大学 High tap density multi-element oxide precursor and preparation method and preparation system thereof

Similar Documents

Publication Publication Date Title
CN110931772B (en) A kind of preparation method of high-power lithium ion battery cathode material
CN102627332B (en) Oxide solid solution, preparation method of oxide solid solution, lithium ion battery anode material and preparation method of lithium ion battery anode material
CN102569807B (en) Coated-modified lithium manganese positive electrode material and preparation method thereof
CN114744189B (en) Sodium ion battery positive electrode material, preparation method and application thereof
CN102169990B (en) Ternary cathode material and production method thereof
CN108767216B (en) Lithium ion battery anode material with variable slope and full concentration gradient and synthesis method thereof
CN115072802B (en) Positive electrode material and preparation method and application thereof
CN111018006A (en) Preparation method of core-shell structure high-nickel ternary cathode material
CN108933248A (en) A kind of preparation method of the spherical high entropy oxide material of lithium ion battery negative material spinel-type
CN112694137A (en) Small-particle-size cobalt-free lithium-rich manganese-based solid solution and lithium vanadate composite material and preparation method thereof
CN111769277A (en) A kind of gradient single crystal high nickel cathode material and preparation method thereof
CN115084506A (en) Large-particle-size single crystal ternary cathode material and preparation method and application thereof
WO2022237823A1 (en) Positive electrode material having multi-cavity structure and preparation method therefor, and lithium ion battery
CN107834063A (en) A kind of monocrystalline type one-dimentional structure lithium-rich manganese-based anode material and preparation method thereof
CN113809280B (en) Cathode material and preparation and application thereof
CN111653742A (en) A kind of lithium ion battery cathode material with full gradient concentration distribution and preparation method thereof
CN115498147A (en) A hafnium-modified high-nickel layered oxide electrode material and preparation method thereof
CN118877958A (en) A nickel-iron-manganese-copper quaternary positive electrode material and its precursor, preparation method and application
CN117342630B (en) Sodium ion positive electrode material, preparation method thereof, positive electrode plate and sodium battery
CN118666318A (en) Precursor material of P2 type five-membered positive electrode, and preparation method and application thereof
CN118026282A (en) Sodium ion battery precursor and preparation method thereof, sodium ion battery positive electrode material and preparation method thereof
CN114940516A (en) Preparation method of multi-component cathode material precursor
CN114678497B (en) Doping-modified sodium-ion battery cathode material and preparation method thereof
CN113948707B (en) Cerium pyrophosphate coated modified ternary positive electrode material of lithium ion battery and preparation method thereof
CN117219751A (en) Nickel-iron-manganese-based layered positive electrode material of radial sodium ion battery, preparation method of nickel-iron-manganese-based layered positive electrode material and sodium ion battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220826