CN114933982B - Bacillus Velez and its application in preventing and controlling sweet potato stem and root rot - Google Patents
Bacillus Velez and its application in preventing and controlling sweet potato stem and root rot Download PDFInfo
- Publication number
- CN114933982B CN114933982B CN202210307165.8A CN202210307165A CN114933982B CN 114933982 B CN114933982 B CN 114933982B CN 202210307165 A CN202210307165 A CN 202210307165A CN 114933982 B CN114933982 B CN 114933982B
- Authority
- CN
- China
- Prior art keywords
- bacillus
- sweet potato
- root rot
- velez
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/20—Bacteria; Substances produced thereby or obtained therefrom
- A01N63/22—Bacillus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Virology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Dentistry (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开一种贝莱斯芽孢杆菌及其在防治甘薯茎根腐病中的应用,该贝莱斯芽孢杆菌分类命名为Bacillus velezensis,株号为JH22,保藏号为:CCTCC NO:M 2022299。本发明筛选到的贝莱斯芽孢杆菌Bacillus velezensis JH22对达旦提狄克氏菌具有高效拮抗作用,能用于达旦提狄克氏菌引起的甘薯茎根腐病的防治,温室盆栽试验防效达54.1%。在植物发病前期,具有理想的防治效果,这一特性说明该菌株作为生物预防农药具有很大的应用潜力。The invention discloses a Bacillus velezensis and an application thereof in preventing and treating sweet potato stem and root rot. The Bacillus velezensis is classified and named as Bacillus velezensis, the strain number is JH22, and the deposit number is CCTCC NO: M 2022299. The Bacillus velezensis JH22 screened by the invention has a highly effective antagonistic effect on Dicteria davidianensis, can be used for preventing and treating sweet potato stem and root rot caused by Dicteria davidianensis, and the prevention effect in a greenhouse pot test reaches 54.1%. In the early stage of plant disease, it has an ideal prevention and treatment effect, and this characteristic indicates that the strain has great application potential as a biological preventive pesticide.
Description
技术领域Technical Field
本发明涉及微生物种质资源的开发与利用、植物病害生物防治技术领域,特别是涉及一种用于防治甘薯茎根腐病的贝莱斯芽孢杆菌应用及甘薯栽培方法。The invention relates to the field of development and utilization of microbial germplasm resources and biological control technology of plant diseases, and in particular to an application of Bacillus Velezii for preventing and controlling sweet potato stem and root rot and a sweet potato cultivation method.
背景技术Background technique
甘薯是具有重要战略意义的以块茎为食的主食作物,在世界范围内广泛种植。目前,亚洲是世界第二大甘薯种植大陆,中国是世界第一大甘薯生产国,中国甘薯产量约占世界总产量的56.6%。甘薯含有丰富的碳水化合物、优质蛋白质、膳食纤维、胡萝卜素,以及钾、锌、钙、铁等微量元素,可为人体提供重要的营养物质,为生命活动提供能量。Sweet potatoes are a strategically important staple crop that is grown worldwide. Asia is the second largest sweet potato-growing continent in the world, and China is the world's largest sweet potato producer, accounting for 56.6% of the world's total sweet potato production. Sweet potatoes are rich in carbohydrates, high-quality protein, dietary fiber, carotene, and trace elements such as potassium, zinc, calcium, and iron, which can provide important nutrients for the human body and provide energy for life activities.
甘薯茎根腐病(stem and root rot)是由Dickeya属的达旦提狄克氏菌(Dickeyadadantii) 引起的一种细菌性病害,原先称为菊欧文氏菌Erwinia chrysanthemi。病害严重影响甘薯的产量和品质。田块病害普遍发病率在10%~20%之间,而病害严重田块发病率达50%以上,严重情况下导致绝收。该病害对我国浙江省、广东省、江苏省、山东省等甘薯产地的甘薯生产和食品安全构成巨大威胁。该病原菌寄主范围广,截止2016年,为害旋花科、菊科和兰科观赏植物及茄科、豆科、禾本科、和十字花科等蔬菜植物,共计为害60余种植物,包括甘薯、菊花、烟草、胡椒、西红柿、马铃薯、卷心菜、茄子、大豆、牵牛花、菟丝子等。Sweet potato stem and root rot is a bacterial disease caused by Dickeadadantii of the genus Dickeya, formerly known as Erwinia chrysanthemi. The disease seriously affects the yield and quality of sweet potatoes. The disease generally occurs in fields with a 10% to 20% incidence rate, while the incidence rate in severely affected fields is more than 50%, leading to a total crop failure in severe cases. The disease poses a huge threat to sweet potato production and food safety in sweet potato producing areas such as Zhejiang, Guangdong, Jiangsu, and Shandong provinces in my country. The pathogen has a wide host range. As of 2016, it has harmed ornamental plants in the Convolvulaceae, Asteraceae, and Orchidaceae, as well as vegetable plants in the Solanaceae, Leguminosae, Gramineae, and Cruciferae families, totaling more than 60 species of plants, including sweet potatoes, chrysanthemums, tobacco, peppers, tomatoes, potatoes, cabbages, eggplants, soybeans, morning glory, and dodder.
病原菌主要通过寄主的伤口侵入,产生果胶酶来降解植物细胞壁中的果胶,从而导致维管束中空、腐烂,引起茎秆黑褐色、植株枯萎和具有与腐臭气味。虽然病原菌不能长期在土壤中存活,但可在植物残骸、杂草或其它植物的根周围存活。另外,初侵染源可包含病薯、病蔓、间灌农事操作中污染的器材等。The pathogen mainly invades through the wounds of the host, producing pectinase to degrade the pectin in the plant cell wall, which causes the vascular bundle to become hollow and rot, causing the stems to turn dark brown, the plants to wilt, and have a rancid odor. Although the pathogen cannot survive in the soil for a long time, it can survive around plant debris, weeds, or the roots of other plants. In addition, the primary infection source may include diseased potatoes, diseased vines, and equipment contaminated during inter-irrigation farming operations.
由于甘薯茎根腐病的病原菌寄主范围广、种群存在多样性,造成目前对茎根腐病防治尚无有效的防控方法。由于甘薯栽培面积相对于农作物还是有限的,病害和抗病育种方面还明显研究不足,生产上尚无可用的抗病品种。病害防治主要依赖杀菌剂,如0.3%四霉素、72%农用链霉素和6%春雷霉素等常用细菌杀菌剂。杀菌剂的广泛使用,不仅杀死了土壤中的有益微生物,也引起病原菌的抗药性的产生,而大量杀菌剂的使用也对生态和人类健康存在潜在的危害。近年来国内外大量研究表明,利用拮抗微生物研发生防制剂已成为发展的必然趋势,如使用木霉属真菌、假单胞菌和芽孢杆菌等细菌对辣椒疫霉病、油菜菌核病、小麦赤霉病、水稻稻瘟病等植物病害进行生物防治。甘薯茎根腐病是一种毁灭性的病害,病原菌侵染后病害发展迅速,短时期内可造成严重的经济损失。然而,目前国内外利用生物防治手段防治甘薯茎根腐病的报道相对有限。为了有效防治该病害的严重发生,我们开展了该病害生物防治研究,依据田间和室内病害研究,制定了病害分级标准;筛选了生防菌株,研究了其拮抗机制;进行了病害防治试验,为生防菌株的应用提供了可靠的理论依据。而生防菌的开发和应用,将为防治甘薯茎根腐病提供广阔的市场与前景。Due to the wide host range and diversity of the pathogens of sweet potato stem and root rot, there is currently no effective prevention and control method for stem and root rot. Since the sweet potato cultivation area is still limited compared to crops, there is still a lack of research on diseases and disease-resistant breeding, and there are no disease-resistant varieties available in production. Disease control mainly relies on fungicides, such as 0.3% tetramycin, 72% agricultural streptomycin and 6% kasugamycin and other commonly used bacterial fungicides. The widespread use of fungicides not only kills beneficial microorganisms in the soil, but also causes the development of drug resistance in pathogens, and the use of large amounts of fungicides also poses potential hazards to ecology and human health. In recent years, a large number of studies at home and abroad have shown that the use of antagonistic microorganisms to develop biocontrol agents has become an inevitable trend of development, such as the use of Trichoderma fungi, Pseudomonas and Bacillus bacteria for biological control of plant diseases such as pepper blight, rapeseed sclerotinia, wheat scab, and rice blast. Sweet potato stem and root rot is a devastating disease. After infection by pathogens, the disease develops rapidly and can cause serious economic losses in a short period of time. However, there are relatively limited reports on the use of biological control methods to control sweet potato stem and root rot at home and abroad. In order to effectively prevent and control the serious occurrence of this disease, we carried out research on biological control of this disease. Based on field and indoor disease research, we developed a disease classification standard; screened biocontrol strains and studied their antagonistic mechanisms; and conducted disease control experiments, providing a reliable theoretical basis for the application of biocontrol strains. The development and application of biocontrol bacteria will provide a broad market and prospect for the prevention and control of sweet potato stem and root rot.
发明内容Summary of the invention
本发明提供一种可用于防治甘薯茎根腐病的贝莱斯芽孢杆菌,该筛选到的菌株对于达旦提狄克氏菌具有高效拮抗作用,能用于达旦提狄克氏菌引起的甘薯茎根腐病的防治,旨在提供一种解决甘薯茎根腐病的新思路与新手段。The invention provides a Bacillus Velezii that can be used for preventing and treating sweet potato stem and root rot. The screened strain has a highly effective antagonistic effect on Dictyopsis davidianensis and can be used for preventing and treating the sweet potato stem and root rot caused by Dictyopsis davidianensis, aiming to provide a new idea and new means for solving the sweet potato stem and root rot.
一种贝莱斯芽孢杆菌,分类命名为Bacillus velezensis,株号为JH22,已于2022年3月 22日保藏于位于武汉的中国典型培养物菌种保藏中心,保藏号为CCTCC NO:M2022299。A type of Bacillus velezensis, classified and named Bacillus velezensis, with strain number JH22, was deposited in the China Center for Type Culture Collection in Wuhan on March 22, 2022, with the deposit number CCTCC NO: M2022299.
该菌株的生物学及形态学特征:Biological and morphological characteristics of the strain:
菌株JH22在NA平板上恒温(30℃)培养24h,其菌落呈不规则圆形,菌落易积聚成线状,乳白色,不透明,表面干燥,接菌环轻触有轻微粘性,边缘有褶皱。The strain JH22 was cultured at a constant temperature (30°C) on a NA plate for 24 h. Its colonies were irregular circles, easily aggregated into lines, milky white, opaque, with a dry surface, and the inoculation ring was slightly sticky to the touch and had wrinkles on the edges.
该菌株的遗传学特征:Genetic characteristics of this strain:
菌株JH22的16S rRNA序列如SEQ ID NO:13所示;gyrA基因序列如SEQ ID NO:14所示;rpoB基因序列如SEQ ID NO:15所示;purH基因序列如SEQ ID NO:16所示;groEL 基因序列如SEQ ID NO:17所示;polC基因序列如SEQ ID NO:18所示。The 16S rRNA sequence of strain JH22 is shown in SEQ ID NO: 13; the gyrA gene sequence is shown in SEQ ID NO: 14; the rpoB gene sequence is shown in SEQ ID NO: 15; the purH gene sequence is shown in SEQ ID NO: 16; the groEL gene sequence is shown in SEQ ID NO: 17; and the polC gene sequence is shown in SEQ ID NO: 18.
本发明还提供一种所述贝莱斯芽孢杆菌在拮抗病原菌达旦提狄克氏菌(Dickeyadadantii) 中的应用。如用于制备拮抗病原菌达旦提狄克氏菌(Dickeya dadantii)ZJ97的菌剂。The present invention also provides an application of the Bacillus Velezii in antagonizing pathogenic bacteria Dickeya dadantii, such as being used to prepare a bacterial agent for antagonizing pathogenic bacteria Dickeya dadantii ZJ97.
本发明还提供一种所述贝莱斯芽孢杆菌在防治甘薯茎根腐病中的应用。The invention also provides an application of the Bacillus Velezii in preventing and treating sweet potato stem and root rot.
本发明还提供一种所述贝莱斯芽孢杆菌在甘薯促生中的应用。The present invention also provides an application of the Bacillus Velezii in promoting the growth of sweet potatoes.
可选的,将包含所述贝莱斯芽孢杆菌的菌剂施加于甘薯幼苗根部或茎基部。Optionally, the bacterial agent containing the Bacillus Velez subtilis is applied to the roots or stem bases of sweet potato seedlings.
本发明还提供一种用于防治甘薯茎根腐病的菌剂,包含所述的贝莱斯芽孢杆菌。The invention also provides a bacterial agent for preventing and treating sweet potato stem and root rot, comprising the Bacillus Velezii.
可选的,所述贝莱斯芽孢杆菌的浓度不低于107CFU/mL,优选约为107CFU/mL。Optionally, the concentration of Bacillus velez is not less than 10 7 CFU/mL, preferably about 10 7 CFU/mL.
本发明还提供一种甘薯生物防治方法或一种甘薯促生方法:选择具有三至四节长度的扦插薯苗,将包含所述贝莱斯芽孢杆菌的菌剂浇灌于甘薯苗的根部。The invention also provides a sweet potato biological control method or a sweet potato growth promotion method: selecting cutting potato seedlings with a length of three to four nodes, and pouring the bacterial agent containing the Velez bacillus onto the roots of the sweet potato seedlings.
可选的,所述菌剂中贝莱斯芽孢杆菌的浓度不低于107CFU/mL。Optionally, the concentration of Bacillus Velez subtilis in the bacterial agent is not less than 10 7 CFU/mL.
进一步可选的,所述菌剂中贝莱斯芽孢杆菌的浓度约为107CFU/mL;隔10~15天再浇灌一次所述菌剂;浇灌量为5~15mL(优选10mL)/株。Further optionally, the concentration of Bacillus Velez in the bacterial agent is about 10 7 CFU/mL; the bacterial agent is irrigated once every 10 to 15 days; and the irrigating amount is 5 to 15 mL (preferably 10 mL) per plant.
与现有技术相比,本发明至少具有如下有益效果之一:Compared with the prior art, the present invention has at least one of the following beneficial effects:
(1)本发明筛选到的贝莱斯芽孢杆菌Bacillus velezensis JH22对达旦提狄克氏菌具有高效拮抗作用,能用于达旦提狄克氏菌引起的甘薯茎根腐病的防治,通过常规细菌有伤接种防治试验,温室盆栽试验防效达54.1%。在植物发病前期,具有理想的防治效果,这一特性说明该菌株作为生物预防微生物制剂具有很大的应用潜力;(1) The Bacillus velezensis JH22 screened by the present invention has a highly effective antagonistic effect on Dictyopsis davidianensis and can be used to prevent and treat sweet potato stem and root rot caused by Dictyopsis davidianensis. Through conventional bacterial wound inoculation control tests and greenhouse potted plant tests, the control effect reached 54.1%. In the early stage of plant disease, it has an ideal control effect. This property shows that the strain has great application potential as a biological preventive microbial agent;
(2)本发明筛选到的贝莱斯芽孢杆菌Bacillus velezensis JH22对病原菌达旦提狄克氏菌生长的抑制效果显著,抑制率达75.8%,同样其无菌细胞上清液对病原菌生长抑制效果达 68.8%;(2) The Bacillus velezensis JH22 screened by the present invention has a significant inhibitory effect on the growth of the pathogen Dictyosphaeria davidantii, with an inhibition rate of 75.8%. Similarly, its sterile cell supernatant has an inhibitory effect on the growth of pathogens of 68.8%;
(3)本发明筛选到的贝莱斯芽孢杆菌Bacillus velezensis JH22对甘薯有伤病原菌侵染条件下的防效在54.1%;(3) The Bacillus velezensis JH22 screened by the present invention has a protective effect of 54.1% against sweet potato pathogens under infection conditions;
(4)本发明筛选到的贝莱斯芽孢杆菌Bacillus velezensis JH22拮抗化合物表达量高;(4) The expression level of the antagonistic compound of Bacillus velezensis JH22 screened by the present invention is high;
(5)本发明筛选到的贝莱斯芽孢杆菌Bacillus velezensis JH22对甘薯具有很好的促进生长作用。(5) The Bacillus velezensis JH22 screened by the present invention has a good growth-promoting effect on sweet potatoes.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为5株生防细菌对达旦提狄克氏菌的体外抑制作用图(A:菌株JH22、B:菌株JH38、 C:菌株JH59、D:菌株JH35、E:菌株JH16);FIG1 is a graph showing the in vitro inhibitory effect of five biocontrol bacteria on Dictyopsis davidantii (A: strain JH22, B: strain JH38, C: strain JH59, D: strain JH35, E: strain JH16);
图2为株系JH22在NA平板上形态观察图;Figure 2 is a morphological observation diagram of strain JH22 on NA plates;
图3为结合贝莱斯芽孢杆菌gyrA基因、rpoB基因、purH基因、groEL基因、polC基因序列构建的系统发育树;FIG3 is a phylogenetic tree constructed by combining the sequences of gyrA gene, rpoB gene, purH gene, groEL gene and polC gene of Bacillus velez;
图4为株系JH22和JH38脂肽化合物的MALDI-TOF-MS峰图谱(A:JH22、B:JH38);FIG4 is a MALDI-TOF-MS peak spectrum of lipopeptide compounds of strains JH22 and JH38 (A: JH22, B: JH38);
图5为株系JH22对病原菌达旦提狄克氏菌生物膜形成的影响结果图(A:不同稀释倍数孔中的颜色变化、B:生物膜形成的百分抑制率);FIG5 is a graph showing the effect of strain JH22 on biofilm formation of pathogenic bacteria Dictyosphaeria davidantii (A: color change in wells at different dilution multiples, B: percentage inhibition of biofilm formation);
图6为株系JH22对病原菌达旦提狄克氏菌游动性的影响结果图;FIG6 is a graph showing the effect of strain JH22 on the motility of pathogenic bacteria Dictyosphaeria davidantii;
图7为株系JH22对病原菌达旦提狄克氏菌群集运动的影响结果图;FIG7 is a graph showing the effect of strain JH22 on the swarming movement of pathogenic bacteria Dictyosphaeria davidantii;
图8为株系JH22对温室中甘薯茎根腐病防治效果结果图,图A对照,图B为处理组;FIG8 is a graph showing the control effect of strain JH22 on sweet potato stem and root rot in a greenhouse, FIGA is a control group, and FIGB is a treatment group;
图9为株系JH22对甘薯的促生效果结果图(左边为处理组,右边为对照)。FIG9 is a graph showing the growth-promoting effect of strain JH22 on sweet potato (the left side is the treatment group, and the right side is the control).
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those commonly understood by those skilled in the art of the present invention. The terms used in the specification of the present invention herein are only for the purpose of describing specific embodiments and are not intended to limit the present invention.
土壤环境复杂多样,生防病害的效果通常取决于生防剂对土壤的局部适应性,而引入菌株的竞争力差和土壤适应性差,只能取得有限的成功。针对不同地区的不同病原菌,筛选高效生防菌株仍是现在乃至未来各国科研工作者关注的方向。因此本发明筛选出适应当地土壤环境的高效生防菌株,因地制宜地进行相关防治研究工作,是针对该病害生物防治的重要任务。The soil environment is complex and diverse, and the effect of biological control of diseases usually depends on the local adaptability of the biocontrol agent to the soil. However, the poor competitiveness and soil adaptability of the introduced strains can only achieve limited success. For different pathogens in different regions, screening for efficient biocontrol strains is still a direction of concern for scientific researchers in various countries now and in the future. Therefore, the present invention screens out efficient biocontrol strains that are adapted to the local soil environment, and conducts relevant prevention and control research work according to local conditions, which is an important task for biological control of the disease.
筛选甘薯茎根腐病生物防治拮抗菌株,一方面能有效地防治甘薯茎根腐病,降低病害防治成本,提高甘薯产量,另一方面可以对环境保护,生物安全,产品工业化生产提供促进作用。芽孢杆菌是细菌生物防治的重要成员,在部分农业生产中可作为生物防治剂替代化学农药,解决植物生产实践中的病害问题;芽孢杆菌亦属于常用的植物促生根际细菌(PGPR),可以产生促进植物生长的化合物,提供生物固氮作用,触发植物根系的代谢活动。对芽孢杆菌的研究具良好的可持续应用前景。Screening for antagonistic strains of sweet potato stem and root rot biological control can effectively control sweet potato stem and root rot, reduce the cost of disease control, and increase sweet potato yields. On the other hand, it can promote environmental protection, biosafety, and industrial production of products. Bacillus is an important member of bacterial biological control. It can be used as a biological control agent to replace chemical pesticides in some agricultural production to solve disease problems in plant production practices. Bacillus is also a commonly used plant growth-promoting rhizobacteria (PGPR), which can produce compounds that promote plant growth, provide biological nitrogen fixation, and trigger metabolic activities of plant roots. Research on Bacillus has good prospects for sustainable application.
实施例1Example 1
一、菌株分离和筛选。1. Strain isolation and screening.
供试土样于2020年12月采自浙江省金华市婺城区(28°48′14″N,119°20′56″E)病情严重的连作甘薯田地,随机采集发病植株根系附近土样于无菌袋中,密封后于4℃冰箱中保存。The test soil samples were collected in December 2020 from a continuously cropped sweet potato field with severe disease in Wucheng District, Jinhua City, Zhejiang Province (28°48′14″N, 119°20′56″E). Soil samples near the roots of diseased plants were randomly collected in sterile bags, sealed and stored in a refrigerator at 4°C.
NA平板筛选土壤中的生防细菌:取1g土壤样品于无菌水中,震荡3min配制成土壤悬浮液,稀释浓度至10-4~10-6梯度。将配制的土壤悬浮液用无菌涂布棒均匀涂布在NA平板上, 30℃下生长48h。根据菌落的形状、颜色、大小、规则性、凹凸性等性状选择不同的单菌落,每个菌落纯化3次,制备菌液并加入30%的甘油保存于-40℃冰柜。15个土壤样品共筛选出 301株菌株。NA plate screening of biocontrol bacteria in soil: Take 1g of soil sample in sterile water, shake for 3min to prepare soil suspension, and dilute to a concentration of 10-4 to 10-6 . Spread the prepared soil suspension evenly on the NA plate with a sterile coating rod and grow at 30℃ for 48h. Select different single colonies according to the shape, color, size, regularity, concavity and other characteristics of the colony. Purify each colony 3 times, prepare bacterial solution and add 30% glycerol to store in a -40℃ freezer. A total of 301 strains were screened from 15 soil samples.
二、生防菌株的筛选。2. Screening of biocontrol strains.
通过琼脂扩散法评估分离菌株的拮抗活性。将分离获得的全部菌株接种于液体NA培养基中,在30℃、200rpm的HZQ-F100摇床中培养24h获得菌液(调至约107CFU/mL)。同样,将病原菌达旦提狄克氏菌ZJ97也接种于液体NA培养基,在上述条件下培养。取400μl达旦提狄克氏菌菌液(108CFU/mL)涂布于NA板(直径9cm)的表面。其表面插入3个等距离的牛津杯(直径6mm),将25μl待筛选菌株发酵液加入到牛津杯孔中。每个菌株重复3次。培养皿放置在30℃培养箱中培养24h后,观察和测量抑菌圈的直径。The antagonistic activity of the isolated strains was evaluated by agar diffusion method. All the isolated strains were inoculated in liquid NA medium and cultured in a HZQ-F100 shaker at 30°C and 200rpm for 24h to obtain a bacterial solution (adjusted to about 10 7 CFU/mL). Similarly, the pathogen Dictyosporidae ZJ97 was also inoculated in liquid NA medium and cultured under the above conditions. Take 400μl of Dictyosporidae bacterial solution (10 8 CFU/mL) and spread it on the surface of a NA plate (9cm in diameter). Three equidistant Oxford cups (6mm in diameter) were inserted on its surface, and 25μl of the fermentation liquid of the strain to be screened was added to the Oxford cup wells. Each strain was repeated 3 times. After the culture dish was placed in a 30°C incubator and cultured for 24h, the diameter of the inhibition zone was observed and measured.
依据抑菌圈的直径(直径大于13.0mm),共筛选得到5株高活性的候选菌株(表1),分别命名为JH16、JH22、JH35、JH38和JH59,它们都显著抑制病原菌生长(P<0.05),抑制效果分别为59.6%、75.8%、56.5%、69.8%、63.2%。According to the diameter of the inhibition zone (diameter greater than 13.0 mm), a total of 5 highly active candidate strains were screened (Table 1), named JH16, JH22, JH35, JH38 and JH59, which all significantly inhibited the growth of pathogens (P<0.05), with inhibition effects of 59.6%, 75.8%, 56.5%, 69.8% and 63.2%, respectively.
为了测定5个候选株系次生代谢物的活性,将上述培养的细菌悬浮液分别在4℃、6000 rpm下离心10分钟,获得无细胞上清液(CFS)。并通过0.22-μm过滤器对CFS进一步过滤。相似地,将病原菌达旦提狄克氏菌ZJ97接种于液体NA培养基,插入3个等距离的牛津杯,并将25μl无细胞上清液加入到牛津杯孔中,正如以上描述的。培养皿放置在30℃培养箱中培养24h后,观察和测量抑菌圈的直径。To determine the activity of secondary metabolites of the five candidate strains, the bacterial suspensions were centrifuged at 4 °C and 6000 rpm for 10 min to obtain cell-free supernatant (CFS). The CFS was further filtered through a 0.22-μm filter. Similarly, the pathogenic bacterium Dictyosporidae ZJ97 was inoculated in liquid NA medium, three equidistant Oxford cups were inserted, and 25 μl of cell-free supernatant was added to the wells of the Oxford cups, as described above. After the culture dishes were placed in an incubator at 30 °C for 24 h, the diameter of the inhibition zone was observed and measured.
5个候选株系次生代谢物的活性测定结果表明(图1所示),它们也都显著抑制病原菌生长(P<0.05),抑制效果分别为55.7%、68.8%、52.3%、62.9%、56.8%(表1)。由于菌株JH22 和JH38具有较高的抑制活性,它们被用于进一步研究。The results of the activity assay of secondary metabolites of the five candidate strains showed (as shown in Figure 1) that they all significantly inhibited the growth of pathogens (P<0.05), with the inhibitory effects of 55.7%, 68.8%, 52.3%, 62.9%, and 56.8%, respectively (Table 1). Since strains JH22 and JH38 had higher inhibitory activity, they were used for further research.
表1生防菌株对病原菌达旦提狄克氏菌的抑制效果Table 1 The inhibitory effect of biocontrol strains on pathogenic bacteria Dictyopsis davidianensis
a:细菌菌液;b:无细胞上清液a: bacterial culture; b: cell-free supernatant
抑制率(%)=(1-对照直径/处理组直径)×100%Inhibition rate (%) = (1-control diameter/treatment group diameter) × 100%
实施例2菌株的鉴定。Example 2 Identification of strains.
对筛选出具有高活性的2个菌株进行鉴定。Two strains with high activity were identified.
形态学观察见图2,菌株JH22在NA平板上恒温(30℃)培养24h,其菌落呈不规则圆形,菌落易积聚成线状,乳白色,不透明,表面干燥,接菌环轻触有轻微粘性,边缘有褶皱。Morphological observation is shown in Figure 2. The strain JH22 was cultured on a NA plate at a constant temperature (30°C) for 24 hours, and its colonies were irregular circles. The colonies tended to accumulate into lines, were milky white, opaque, and had a dry surface. The inoculation ring was slightly sticky to the touch and had wrinkles on the edges.
为对两个菌株JH22和JH38进行分子鉴定,分别对它们进行16S和5个看家基因的PCR 扩增。PCR扩增的引起见表2。PCR扩增反应体系为50μL:ddH2O 17.5μL,HLingene PCRMaster Mix 25μL,16S-27f 2.5μL,16S-1492r 2.5μL,DNA模板2.5μL。PCR反应程序为95℃5min 预变性;95℃ 30s变性;56℃ 30s退火;72℃ 60s延伸;35个循环;4℃保存。PCR扩增产物由北京擎科生物科技有限公司(杭州分部)进行双向测序,其中菌株JH22的16S rRNA序列如SEQ ID NO:13所示。获得的16S序列通过Blast搜索引擎与GenBank中的同源性序列比对,确定相应的属。To identify the two strains JH22 and JH38 molecularly, PCR amplification of 16S and five housekeeping genes was performed on them, respectively. The PCR amplification process is shown in Table 2. The PCR amplification reaction system was 50 μL: ddH 2 O 17.5 μL, HLingene PCR Master Mix 25 μL, 16S-27f 2.5 μL, 16S-1492r 2.5 μL, and DNA template 2.5 μL. The PCR reaction program was 95°C for 5 min pre-denaturation; 95°C for 30 s denaturation; 56°C for 30 s annealing; 72°C for 60 s extension; 35 cycles; and 4°C storage. The PCR amplification products were bidirectionally sequenced by Beijing Qingke Biotechnology Co., Ltd. (Hangzhou Branch), and the 16S rRNA sequence of strain JH22 is shown in SEQ ID NO: 13. The obtained 16S sequence was compared with the homology sequence in GenBank by the Blast search engine to determine the corresponding genus.
为区分属内不同密切相关的种,利用5个看家基因的序列,其中菌株JH22的gyrA基因序列如SEQ ID NO:14所示;rpoB基因序列如SEQ ID NO:15所示;purH基因序列如SEQ IDNO:16所示;groEL基因序列如SEQ ID NO:17所示;polC基因序列如SEQ ID NO:18 所示。并从GenBank中下载密切相关的种的gyrA基因、rpoB基因、purH基因、groEL基因和polC基因(表2)进行系统发育分析。将下载的Bacillus cereus ATCC14579作为外群。To distinguish different closely related species within the genus, the sequences of five housekeeping genes were used, among which the gyrA gene sequence of strain JH22 is shown in SEQ ID NO: 14; the rpoB gene sequence is shown in SEQ ID NO: 15; the purH gene sequence is shown in SEQ ID NO: 16; the groEL gene sequence is shown in SEQ ID NO: 17; and the polC gene sequence is shown in SEQ ID NO: 18. The gyrA gene, rpoB gene, purH gene, groEL gene and polC gene of closely related species were downloaded from GenBank (Table 2) for phylogenetic analysis. The downloaded Bacillus cereus ATCC14579 was used as an outgroup.
为了构建系统发育树,获得的序列用Clustalx1.83编辑,用MAFFT 7.273软件对每个基因的序列进行排列,用Gblocks 0.91b挑除模糊区域,用jModel Test 2.1.7获得最好的 GTR+I+G核苷酸置换模型,最后用RaxmlGUI v.1.5软件及用最大似然(ML)法构建系统发育树。In order to construct the phylogenetic tree, the obtained sequences were edited with Clustalx1.83, the sequences of each gene were arranged with MAFFT 7.273 software, the ambiguous regions were removed with Gblocks 0.91b, the best GTR+I+G nucleotide substitution model was obtained with jModel Test 2.1.7, and finally the phylogenetic tree was constructed with RaxmlGUI v.1.5 software and the maximum likelihood (ML) method.
如图3所示,两个测试分离株JH22和JH38与Bacillus velezensis BD568、BD569、B23190 和B23189聚类在一起,形成一个明确的分枝,具有100%靴带支持值。因此,两个株系都被鉴定为贝莱斯芽孢杆菌(Bacillus velezensis)。其中,JH22已于2022年3月22日保藏于位于武汉的中国典型培养物菌种保藏中心,保藏号为CCTCC NO:M 2022299。As shown in Figure 3, the two test isolates JH22 and JH38 clustered with Bacillus velezensis BD568, BD569, B23190 and B23189 to form a clear branch with a 100% bootstrap support value. Therefore, both strains were identified as Bacillus velezensis. Among them, JH22 was deposited in the China Center for Type Culture Collection in Wuhan on March 22, 2022, with the deposit number CCTCC NO: M 2022299.
表2 PCR扩增的引物Table 2 Primers for PCR amplification
实施例3菌株脂肽化合物的检测。Example 3 Detection of bacterial strain lipopeptide compounds.
候选株系的脂肽采用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)进行测定。将Bacillus velezensisJH22和JH38接种在NA平板上,30℃培养24h,挑取单菌落溶解于含有基质溶液的离心管(2.0mL)中。基质液含有10mg/mL氰基-4-羟基肉桂酸(溶解于70%乙腈),70%乙腈中含有0.1%三氟醋酸(TFA)。溶液混匀后在5000r/min下离心2min,然后吸取1μL样品滴加在MALDI-TOF MTP 384靶盘(Germany),用配置智能光束激光器的ultrafleXtremeTMMALDI-TOF质谱仪(Germany)记录数据。测量是在反射操作模式和离子源加速电压20kV条件下进行的。质谱数据贮藏在0.1~2kD间的低质量范围区。依据文献报道和测定的脂肽系列质谱峰,分析它们产生的脂肽化合物(表3)。Lipopeptides of candidate strains were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Bacillus velezensis JH22 and JH38 were inoculated on NA plates and cultured at 30°C for 24 h. Single colonies were picked and dissolved in centrifuge tubes (2.0 mL) containing matrix solution. The matrix solution contained 10 mg/mL cyano-4-hydroxycinnamic acid (dissolved in 70% acetonitrile) and 0.1% trifluoroacetic acid (TFA) in 70% acetonitrile. The solution was mixed and centrifuged at 5000 r/min for 2 min. Then 1 μL of the sample was aspirated and dropped onto a MALDI-TOF MTP 384 target plate (Germany) and the data were recorded using an ultrafleXtreme TM MALDI-TOF mass spectrometer (Germany) equipped with an intelligent beam laser. The measurements were performed in reflectron mode and with an ion source accelerating voltage of 20 kV. The mass spectral data were stored in the low mass range between 0.1 and 2 kD. Based on the mass spectrometry peaks of the lipopeptide series reported in the literature and determined, the lipopeptide compounds they produced were analyzed (Table 3).
MALDI-TOF MS分析表明(图4),株系JH22和JH38都产生3种脂肽化合物,包括表面活性素(surfactins)、伊枯草菌素(iturins)和丰原素(fengycins)(表3)。其中,峰(m/z)范围在 1016~1095为表面活性素,在1030~1100为伊枯草菌素,在1450~1544为丰原素。株系JH22 中,峰m/z 1030.705和1074.723归属于表面活性素;峰m/z 1043.680、1057.698、1065.616、 1079.634和1095.619归属于伊枯草菌素;峰m/z 1463.990、1478.019、1485.898、1499.915、 1515.904、1529.928和1543.927归属于丰原素。相似地,株系JH38中,峰m/z 1016.691、 1030.706、1044.725、1058.741和1074.723归属于表面活性素;峰m/z1065.595和1079.613 归属于伊枯草菌素;峰m/z 1471.946、1485.885、1499.901、1513.585和1529.811归属于丰原素。MALDI-TOF MS analysis showed (Figure 4) that strains JH22 and JH38 both produced three lipopeptide compounds, including surfactins, iturins, and fengycins (Table 3). Among them, the peak (m/z) range of 1016-1095 was surfactins, 1030-1100 was iturins, and 1450-1544 was fengycins. In strain JH22, peaks m/z 1030.705 and 1074.723 were attributed to surfactin; peaks m/z 1043.680, 1057.698, 1065.616, 1079.634 and 1095.619 were attributed to iturin; and peaks m/z 1463.990, 1478.019, 1485.898, 1499.915, 1515.904, 1529.928 and 1543.927 were attributed to fengycin. Similarly, in strain JH38, peaks m/z 1016.691, 1030.706, 1044.725, 1058.741 and 1074.723 were attributed to surfactin; peaks m/z 1065.595 and 1079.613 were attributed to iturin; and peaks m/z 1471.946, 1485.885, 1499.901, 1513.585 and 1529.811 were attributed to fengycin.
虽然株系JH22和JH38都产生3种脂肽化合物,但株系JH22产生3种脂肽化合物的强度显著高于JH38(图4),表明株系JH22产生脂肽化合物量高于株系JH38,这也一致于上述体外生物活性试验结果。因此,株系JH22被选为最有潜力的生防菌株,进一步用于研究对病原菌生物膜形成和运动性抑制以及生防效果和促生作用。Although strains JH22 and JH38 both produced three lipopeptide compounds, the intensity of the three lipopeptide compounds produced by strain JH22 was significantly higher than that of JH38 (Figure 4), indicating that strain JH22 produced more lipopeptide compounds than strain JH38, which was consistent with the above in vitro bioactivity test results. Therefore, strain JH22 was selected as the most promising biocontrol strain and was further used to study the inhibition of biofilm formation and motility of pathogens, as well as the biocontrol effect and growth promotion effect.
表3菌株的脂肽分析结果Table 3 Lipopeptide analysis results of strains
*:第7位的氨基酸是Val;**:第7位的氨基酸是Leu.*: The amino acid at position 7 is Val; **: The amino acid at position 7 is Leu.
实施例4生防菌剂对病原菌生物膜形成和运动性的抑制Example 4 Inhibition of biofilm formation and motility of pathogenic bacteria by biocontrol agents
一、对生物膜形成的抑制作用。1. Inhibitory effect on biofilm formation.
生防细菌种子液的制备:挑取Bacillus velezensis JH22单菌落接种于10mL的液体NA(无琼脂)液体培养基中,在30℃,200rpm条件下震荡培养24h,至培养液OD600为0.6~0.8,作为生防剂的液体发酵种子液。Preparation of biocontrol bacteria seed solution: Pick a single colony of Bacillus velezensis JH22 and inoculate it into 10 mL of liquid NA (no agar) liquid culture medium, and culture it at 30°C and 200 rpm with shaking for 24 hours until the OD 600 of the culture solution is 0.6-0.8, which is used as the liquid fermentation seed solution of the biocontrol agent.
液体发酵:取500μL生防细菌种子液,接种于500mL液体NA(无琼脂)培养基中,在30℃, 200rpm条件下震荡培养60h,得到生防细菌液体发酵液。调节发酵液中贝莱斯芽孢杆菌的浓度至约107CFU/mL,获得所述生防菌剂。Liquid fermentation: 500 μL of biocontrol bacteria seed solution was inoculated into 500 mL of liquid NA (no agar) medium, and cultured at 30°C and 200 rpm for 60 hours to obtain biocontrol bacteria liquid fermentation solution. The concentration of Bacillus Velezii in the fermentation solution was adjusted to about 10 7 CFU/mL to obtain the biocontrol agent.
无细胞上清液的制备:将生防细菌液体发酵液经6000rpm,离心10min,再利用0.22μm 细菌过滤器过滤残留菌体得到Bacillus velezensis JH22无细胞上清液。Preparation of cell-free supernatant: The biocontrol bacteria liquid fermentation broth was centrifuged at 6000 rpm for 10 min, and then the residual bacteria were filtered using a 0.22 μm bacterial filter to obtain Bacillus velezensis JH22 cell-free supernatant.
为了测定生防菌无细胞上清液对病原菌生物膜形成的影响,在96孔板中进行了生物膜形成抑制试验。首先在每个板孔中分别加入稀释5、10、25、50和100倍的无细胞上清液40μl,然后加入20μl病原菌达旦提狄克氏菌菌液(108CFU/mL),再加入140μl液体NA(无琼脂)培养基。最终,使每个板孔中的体积都达到200μl,而无细胞上清液最终分别被稀释到25、 50、125、250和500倍。并以加入40μl无菌生理盐水作为对照,每个处理重复3次。96孔板放置在在30℃条件下静置培养24h后,倒掉培养液,用灭菌水洗3次,移去未粘附的细胞,在超净工作台中风干然后每个板孔中加入100μl 99%甲醇保持15min,为固定生物膜。移去甲醇后,用1%结晶紫(CV)溶液染色30min,移去自由的染色,用去离子水洗涤两次,然后用200μl 33%乙酸洗脱生物膜,将溶液转移到干净的96孔板中,以量化生物膜形成的量。生物膜形成的量化采用Lambda 35UV/VIS(USA)分光光度计在590nm(OD590)处测定。In order to determine the effect of cell-free supernatant of biocontrol bacteria on biofilm formation of pathogens, a biofilm formation inhibition test was performed in a 96-well plate. First, 40 μl of cell-free supernatant diluted 5, 10, 25, 50 and 100 times was added to each well, followed by 20 μl of pathogen Dictyostomia davidii (10 8 CFU/mL) and 140 μl of liquid NA (no agar) medium. Finally, the volume in each well reached 200 μl, and the cell-free supernatant was finally diluted to 25, 50, 125, 250 and 500 times, respectively. The addition of 40 μl of sterile saline was used as a control, and each treatment was repeated 3 times. After the 96-well plate was placed at 30°C for 24 hours, the culture medium was discarded, washed three times with sterile water, non-adherent cells were removed, air-dried in a clean bench, and then 100 μl of 99% methanol was added to each well for 15 minutes to fix the biofilm. After removing the methanol, the plate was stained with 1% crystal violet (CV) solution for 30 minutes, free staining was removed, and the plate was washed twice with deionized water. The biofilm was then eluted with 200 μl of 33% acetic acid, and the solution was transferred to a clean 96-well plate to quantify the amount of biofilm formation. The quantification of biofilm formation was measured at 590 nm (OD 590 ) using a Lambda 35UV/VIS (USA) spectrophotometer.
生物膜抑制试验结果表明(图5中A),孔中颜色从浅紫色变为黑紫色是相应于稀释浓度的增加(25、50、125、250和500倍),即生物膜形成量的增加。根据生物膜抑制的百分比,无细胞上清液25倍稀释对生物膜形成的抑制活性最高(图5中B),其次分别是50、125、 250和500倍无细胞上清液稀释。此外,250倍和500倍无细胞上清液稀释间无显著差异(P<0.05)。The results of the biofilm inhibition test showed (Figure 5 A) that the color in the wells changed from light purple to dark purple corresponding to the increase in dilution concentration (25, 50, 125, 250 and 500 times), that is, the increase in the amount of biofilm formation. According to the percentage of biofilm inhibition, the 25-fold dilution of the cell-free supernatant had the highest inhibitory activity on biofilm formation (Figure 5 B), followed by 50, 125, 250 and 500-fold dilutions of the cell-free supernatant. In addition, there was no significant difference between the 250-fold and 500-fold dilutions of the cell-free supernatant (P<0.05).
二、病原菌运动性抑制试验。2. Pathogen motility inhibition test.
为了测定Bacillus velezensis JH22产生的无细胞发酵液对病原菌运动性的抑制作用,在半固体SM培养基(3g/L牛肉提取物、5g/L蛋白胨、不同浓度的琼脂和20%葡萄糖25ml/L) 进行了运动抑制试验。为了测定无细胞发酵液对病原菌达旦提狄克氏菌游动性抑制效果,制备含有无细胞上清液分别为20、40、100、200和400倍及含有0.3%琼脂的SM培养基。不含无细胞上清液的平板作为对照,每个处理重复3次。待平板凝固后,在每个板的中心加入 2μl病原菌达旦提狄克氏菌(108CFU/mL)菌液,将平板放置在30℃培养箱中,培养12h。然后,测量对达旦提狄克氏菌游动的菌落直径,并计算抑制率。抑制率(%)=(对照菌落直径–处理菌落直径)/对照菌落直径×100%。In order to determine the inhibitory effect of cell-free fermentation broth produced by Bacillus velezensis JH22 on the motility of pathogenic bacteria, a motility inhibition test was carried out in semi-solid SM medium (3g/L beef extract, 5g/L peptone, different concentrations of agar and 20% glucose 25ml/L). In order to determine the inhibitory effect of cell-free fermentation broth on the motility of pathogenic bacteria, SM medium containing 20, 40, 100, 200 and 400 times of cell-free supernatant and 0.3% agar was prepared. Plates without cell-free supernatant were used as controls, and each treatment was repeated 3 times. After the plates solidified, 2μl of pathogenic bacteria Dadantidix (10 8 CFU/mL) was added to the center of each plate, and the plates were placed in a 30℃ incubator and cultured for 12h. Then, the colony diameter of Dadantidix motility was measured and the inhibition rate was calculated. Inhibition rate (%) = (control colony diameter - treated colony diameter) / control colony diameter × 100%.
无细胞发酵液对病原菌游动抑制效果测定结果表明(图6),不同处理的无细胞发酵液都对病原菌达旦提狄克氏菌的游动性有显著的抑制效果(P<0.05)(图6中A),20倍、40倍、 100倍、200倍和400倍稀释对对病原菌游动抑制效果分别为92.6%、88.6%、81.2%、68.8%和62.5%,但20倍和40倍稀释间无显着差异(图6中B)。The results of the determination of the inhibitory effect of cell-free fermentation broth on pathogen motility showed (Figure 6) that the cell-free fermentation broths treated with different methods had a significant inhibitory effect on the motility of the pathogen Dictyoshi I. davidii (P<0.05) (Figure 6A). The inhibitory effects of 20-fold, 40-fold, 100-fold, 200-fold and 400-fold dilutions on pathogen motility were 92.6%, 88.6%, 81.2%, 68.8% and 62.5%, respectively, but there was no significant difference between the 20-fold and 40-fold dilutions (Figure 6B).
相似地,为了测定无细胞发酵液对病原菌达旦提狄克氏菌群集运动抑制效果,制备含有无细胞上清液分别为20、40、100、200和400倍及含有0.5%琼脂的SM培养基。不含无细胞上清液的平板作为对照,每个处理重复3次。待平板凝固后,在每个板的中心加入2μl病原菌达旦提狄克氏菌(108CFU/mL)菌液,将平板放置在30℃培养箱中,培养12h。测量对达旦提狄克氏菌游动的菌落直径,并计算抑制率同上。Similarly, in order to determine the inhibitory effect of cell-free fermentation broth on the swarming movement of pathogenic bacteria Dictyopsis davidiansis, SM medium containing 20, 40, 100, 200 and 400 times of cell-free supernatant and 0.5% agar was prepared. Plates without cell-free supernatant were used as controls, and each treatment was repeated 3 times. After the plates solidified, 2 μl of pathogenic bacteria Dictyopsis davidiansis (10 8 CFU/mL) was added to the center of each plate, and the plates were placed in a 30°C incubator and cultured for 12 hours. The colony diameter of Dictyopsis davidiansis was measured, and the inhibition rate was calculated as above.
无细胞发酵液对病原菌群集运动抑制效果测定结果表明(图7),不同处理的无细胞发酵液都对病原菌达旦提狄克氏菌的群集运动有显著的抑制效果(P<0.05)(图7中A),20倍、 40倍、100倍、200倍和400倍稀释对对病原菌游动抑制效果分别为93.4%、90.4%、81.1%、 73.2%和64.0%,但20倍和40倍稀释间无显着差异(图7中B)The results of the determination of the inhibitory effect of cell-free fermentation broth on the swarming movement of pathogens showed (Figure 7) that the cell-free fermentation broths treated with different treatments had a significant inhibitory effect on the swarming movement of the pathogen Dictyosphaeria davidianta (P<0.05) (Figure 7A). The inhibitory effects of 20-fold, 40-fold, 100-fold, 200-fold and 400-fold dilutions on the movement of pathogens were 93.4%, 90.4%, 81.1%, 73.2% and 64.0%, respectively, but there was no significant difference between the 20-fold and 40-fold dilutions (Figure 7B).
病原菌达旦提狄克氏菌在寄主分泌物刺激下,通过游动和群集运动到达寄主表面后形成生物膜,生物膜的产生促进病原菌与寄主互作,然后侵染寄主。而这个研究提供了Bacillus velezensis JH22可抑制病原菌的游动性、群集运动和生物膜的形成,为该株系作为生防菌提供了另外的理论依据。The pathogenic bacterium Dictyosphaeria davidianta, stimulated by host secretions, forms a biofilm after reaching the host surface through swimming and swarming. The formation of the biofilm promotes the interaction between the pathogen and the host, and then infects the host. This study provides that Bacillus velezensis JH22 can inhibit the motility, swarming and biofilm formation of pathogens, providing another theoretical basis for this strain as a biocontrol bacterium.
实施例5Example 5
一、生防防治甘薯茎根腐病的温室实验。1. Greenhouse experiment on biological control of sweet potato stem and root rot.
为测定体内生防菌株的防治效果,选用Bacillus velezensis JH22菌株进行温室病害防治试验。选育健康的甘薯(浙薯13号,一个感病品种)完整的薯块,放入75%酒精灭菌5min后,用无菌水冲洗后。再用2%次氯酸钠溶液表面灭菌5min,无菌水冲洗3次后,在超净工作台中风干薯块。播种薯块于含有营养土的蔬菜栽培塑料筐中。然后将筐移到温度为25-28℃和相对湿度80-90%的玻璃温室中。30天后(4~5叶期),选择高度一致的苗,从薯块上切取每个苗 (苗基部含有少量薯块残体),移栽于新的含有营养土花盆中。用无菌针刺伤每个苗茎基部,将制备的贝莱斯芽孢杆菌菌剂10mL(107CFU/mL)浇灌到每个甘薯幼苗茎基部,接种10mL 灭菌水为对照。并在24h后,分别浇灌制备的病原菌达旦提狄克氏菌菌剂10mL(107CFU/mL) 于相应的每个苗茎基部。每个处理为30个植株,每个处理重复3次,培养条件同上。病害发生后,每天观察病害发生症状,20天后,统计病害的发病率、病害严重度和防治效果。病害分级标准如下(采用0~4级评分量表):In order to determine the control effect of the biocontrol strain in vivo, the Bacillus velezensis JH22 strain was selected for greenhouse disease control experiments. Healthy sweet potato (Zheshu No. 13, a susceptible variety) tubers were selected and sterilized in 75% alcohol for 5 minutes, and then rinsed with sterile water. The tubers were then surface sterilized with 2% sodium hypochlorite solution for 5 minutes, rinsed with sterile water 3 times, and air-dried in a clean bench. The tubers were sown in a vegetable cultivation plastic basket containing nutrient soil. The basket was then moved to a glass greenhouse with a temperature of 25-28°C and a relative humidity of 80-90%. After 30 days (4-5 leaf stage), seedlings with consistent height were selected, and each seedling was cut from the tuber (the base of the seedling contained a small amount of tuber residue) and transplanted into a new pot containing nutrient soil. Use a sterile needle to pierce the base of each seedling stem, and pour 10mL (10 7 CFU/mL) of the prepared Bacillus Velez inoculum into the base of each sweet potato seedling stem, and inoculate 10mL of sterilized water as a control. And after 24 hours, pour 10mL (10 7 CFU/mL) of the prepared pathogenic bacteria Dadanti Dixon inoculum into the base of each corresponding seedling stem. Each treatment consists of 30 plants, and each treatment is repeated 3 times. The culture conditions are the same as above. After the disease occurs, observe the symptoms of the disease every day. After 20 days, the incidence, severity and control effect of the disease are statistically analyzed. The disease grading standard is as follows (using a 0-4 rating scale):
0=植株健康,无症状;0 = healthy plant, no symptoms;
1=地上部植株健康,仅围绕地面茎基部有可见褐色症状出现;1 = The aboveground plant is healthy, with only visible brown symptoms around the base of the stem above ground;
2=茎基部黑褐色症状明显,植株上部有变黄叶片或叶片卷曲或下垂;2 = Dark brown symptoms are obvious at the base of the stem, with yellowing leaves or curled or drooping leaves on the upper part of the plant;
3=地上植株叶片出现严重黄化或植株萎焉,茎基部腐烂严重;3 = The leaves of the above-ground plants are severely yellow or the plants wilt, and the base of the stems are severely rotten;
4=整个植株枯萎或死亡。4 = The entire plant wilts or dies.
发病率(%)=发病株数/总株数×100%;Incidence rate (%) = number of diseased plants/total number of plants × 100%;
病情指数(%)=Σ(级值×株数)/(4×总株数)×100%;Disease index (%) = Σ(grade value × number of plants)/(4 × total number of plants) × 100%;
防治效果(%)=(对照病情指数-处理病情指数)/对照病情指数×100%。Control effect (%) = (control disease index - treatment disease index) / control disease index × 100%.
生防防治甘薯茎根腐病的温室实验结果显示(图8)生防菌剂能延缓叶片症状,显著降低甘薯茎病害发生率和严重程度。接种病原菌的对照组在接种后57天出现为害症状,接近土壤线的茎基部出现深褐色症状,而浇灌菌剂的处理组植株无病害症状。接种11天后,处理组 (浇灌菌剂)部分植株出现类似为害症状,而对照组部分植株出现严重的病害症状。20天后,对照处理的大多数植株叶片变黄,茎、根腐烂症状严重,个别植株出现枯萎或死亡(图8中 A),而接种生防菌未出现枯萎症状,仅个别叶片变黄(图8中B),显示了很好的生防效果。病害防治统计结果显示(表4),生物防治减少病害发病率为37%,减少病情指数为达27%,防治效果为54.1%。同时,也观察到生防菌剂显著地促进了植株的生长。The results of the greenhouse experiment on the biocontrol of sweet potato stem and root rot showed (Figure 8) that the biocontrol agent can delay leaf symptoms and significantly reduce the incidence and severity of sweet potato stem diseases. The control group inoculated with pathogens showed damage symptoms 57 days after inoculation, and dark brown symptoms appeared at the base of the stem close to the soil line, while the plants in the treatment group irrigated with the agent showed no disease symptoms. 11 days after inoculation, some plants in the treatment group (irrigated with the agent) showed similar damage symptoms, while some plants in the control group showed serious disease symptoms. After 20 days, most of the leaves of the control plants turned yellow, and the stem and root rot symptoms were serious. Some plants withered or died (Figure 8 A), while the inoculated biocontrol bacteria did not show wilting symptoms, and only some leaves turned yellow (Figure 8 B), showing a good biocontrol effect. The statistical results of disease control showed (Table 4) that biological control reduced the incidence of diseases by 37%, reduced the disease index by 27%, and the control effect was 54.1%. At the same time, it was also observed that the biocontrol agent significantly promoted the growth of plants.
表4生防菌剂对甘薯茎根腐病的温室防控效果Table 4 Effect of biocontrol agents on greenhouse control of sweet potato stem and root rot
二、生防菌株对甘薯生长的促生作用。2. The growth-promoting effect of biocontrol strains on sweet potato growth.
为了评估Bacillus velezensis JH22菌剂的植物生长促进(PGP)能力,在温室条件下进行了PGP试验(条件同上)。浙薯13号苗的栽培方法同上。温室栽培30天后,选择苗长度和大小相近的甘薯苗,从茎基部窃取,栽培到含有营养土的盆中。种植后,浇灌10mL的Bacillus velezensis JH22的菌剂(约107CFU/mL)。菌剂的制备方法同上。10~15天后再浇灌10mL菌剂一次。浇灌相同体积的灭菌水作为对照。每30株甘薯苗作为一个处理,每个处理重复3次。在栽培45天后,统计促生效果。为了测定植物器官的干重,将它们放入烘箱中,在65℃条件下干燥3天。促生效果通过百分差异评价,即百分差异%=(处理-对照)/对照×100%。In order to evaluate the plant growth promoting (PGP) ability of Bacillus velezensis JH22 inoculant, a PGP test was conducted under greenhouse conditions (conditions as above). The cultivation method of Zhejiang Shu No. 13 seedlings was the same as above. After 30 days of greenhouse cultivation, sweet potato seedlings of similar seedling length and size were selected, stolen from the base of the stem, and cultivated in pots containing nutrient soil. After planting, 10 mL of Bacillus velezensis JH22 inoculant (about 10 7 CFU/mL) was poured. The preparation method of the inoculant was the same as above. After 10 to 15 days, 10 mL of the inoculant was poured again. The same volume of sterilized water was poured as a control. Every 30 sweet potato seedlings were used as a treatment, and each treatment was repeated 3 times. After 45 days of cultivation, the growth-promoting effect was counted. In order to determine the dry weight of plant organs, they were placed in an oven and dried at 65°C for 3 days. The growth-promoting effect was evaluated by percentage difference, that is, percentage difference % = (treatment-control)/control×100%.
促生效果试验结果表明,生防菌剂显著地促进了植物生物量的增加(图9),45天后对甘薯的茎长、根长、苗鲜重、苗干重、根鲜重和根干重分别增加30.3%、28.8%、21.1%、49.7%、 54.7%和65.0%(表5)。The results of the growth-promoting effect test showed that the biocontrol agent significantly promoted the increase of plant biomass (Figure 9). After 45 days, the stem length, root length, seedling fresh weight, seedling dry weight, root fresh weight and root dry weight of sweet potato increased by 30.3%, 28.8%, 21.1%, 49.7%, 54.7% and 65.0%, respectively (Table 5).
表5生防菌剂对甘薯的促生效果Table 5 Effect of biocontrol agents on the growth promotion of sweet potato
本发明针对甘薯茎根腐病难防难治的现状,筛选出一株能有效防治病原菌达旦提狄克氏菌引起茎根腐病的贝莱斯芽孢杆菌菌株JH22,且其生防剂能够高效抑制达旦提狄克氏菌生物膜的形成以及菌体的游动性和群集运动,利用该菌株开发的生防剂或生物农药具有很好的应用前景。In view of the current situation that sweet potato stem and root rot is difficult to prevent and treat, the present invention screens out a Velezii bacillus strain JH22 which can effectively prevent and control the stem and root rot caused by the pathogenic bacterium Dixidiella davidanti, and the biocontrol agent thereof can effectively inhibit the formation of biofilm of Dixidiella davidanti and the motility and cluster movement of bacteria, and the biocontrol agent or biological pesticide developed by using the strain has a good application prospect.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation methods of the present invention, and the descriptions thereof are relatively specific and detailed, but they cannot be understood as limiting the scope of the invention patent. It should be pointed out that, for ordinary technicians in this field, several variations and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention shall be subject to the attached claims.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 金华市农业科学研究院(浙江省农业机械研究院)<110> Jinhua Academy of Agricultural Sciences (Zhejiang Agricultural Machinery Research Institute)
<120> 一种贝莱斯芽孢杆菌及其在防治甘薯茎根腐病中的应用<120> A kind of Bacillus Velezii and its application in preventing and controlling sweet potato stem root rot
<130><130>
<160> 18<160> 18
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<220><220>
<223> Artificial sequence<223> Artificial sequence
<400> 1<400> 1
agagtttgat cctggctcag 20agagtttgat cctggctcag 20
<210> 2<210> 2
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<220><220>
<223> Artificial sequence<223> Artificial sequence
<400> 2<400> 2
aaggaggtga tccagccgca 20aaggaggtga tccagccgca 20
<210> 3<210> 3
<211> 24<211> 24
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<220><220>
<223> Artificial sequence<223> Artificial sequence
<400> 3<400> 3
cagtcaggaa atgcgtacgt cctt 24cagtcaggaa atgcgtacgt cctt 24
<210> 4<210> 4
<211> 24<211> 24
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<220><220>
<223> Artificial sequence<223> Artificial sequence
<400> 4<400> 4
caaggtaatg ctccaggcat tgct 24caaggtaatg ctccaggcat tgct 24
<210> 5<210> 5
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<220><220>
<223> Artificial sequence<223> Artificial sequence
<400> 5<400> 5
gacgtgggat ggctacaact 20gacgtgggat ggctacaact 20
<210> 6<210> 6
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<220><220>
<223> Artificial sequence<223> Artificial sequence
<400> 6<400> 6
attgtcgcct ttaacgatgg 20attgtcgcct ttaacgatgg 20
<210> 7<210> 7
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<220><220>
<223> Artificial sequence<223> Artificial sequence
<400> 7<400> 7
acagagcttg gcgttgaagt 20acagagcttg gcgttgaagt 20
<210> 8<210> 8
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<220><220>
<223> Artificial sequence<223> Artificial sequence
<400> 8<400> 8
gcttcttggc tgaatgaagg 20gcttcttggc tgaatgaagg 20
<210> 9<210> 9
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<220><220>
<223> Artificial sequence<223> Artificial sequence
<400> 9<400> 9
ttgtcgctca yaatgcaagc 20ttgtcgctca yaatgcaagc 20
<210> 10<210> 10
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<220><220>
<223> Artificial sequence<223> Artificial sequence
<400> 10<400> 10
ytcaagcatt tcrtctgtcg 20ytcaagcatt tcrtctgtcg 20
<210> 11<210> 11
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<220><220>
<223> Artificial sequence<223> Artificial sequence
<400> 11<400> 11
gagcttgaag tkgttgaagg 20gagcttgaag tkgttgaagg 20
<210> 12<210> 12
<211> 20<211> 20
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<220><220>
<223> Artificial sequence<223> Artificial sequence
<400> 12<400> 12
tgagcgtgtw acttttgtwg 20tgagcgtgtw acttttgtwg 20
<210> 13<210> 13
<211> 1440<211> 1440
<212> DNA<212> DNA
<213> Bacillus velezensis<213> Bacillus velezensis
<400> 13<400> 13
aaagctactt cggcggctgg ctcctaaagg ttacctcacc gacttcgggt gttacaaact 60aaagctactt cggcggctgg ctcctaaagg ttacctcacc gacttcgggt gttacaaact 60
ctcgtggtgt gacgggcggt gtgtacaagg cccgggaacg tattcaccgc ggcatgctga 120ctcgtggtgt gacgggcggt gtgtacaagg cccgggaacg tattcaccgc ggcatgctga 120
tccgcgatta ctagcgattc cagcttcacg cagtcgagtt gcagactgcg atccgaactg 180tccgcgatta ctagcgattc cagcttcacg cagtcgagtt gcagactgcg atccgaactg 180
agaacagatt tgtgggattg gcttaacctc gcggtttcgc tgccctttgt tctgtccatt 240agaacagatt tgtgggattg gcttaacctc gcggtttcgc tgccctttgt tctgtccatt 240
gtagcacgtg tgtagcccag gtcataaggg gcatgatgat ttgacgtcat ccccaccttc 300gtagcacgtg tgtagcccag gtcataaggg gcatgatgat ttgacgtcat ccccaccttc 300
ctccggtttg tcaccggcag tcaccttaga gtgcccaact gaatgctggc aactaagatc 360ctccggtttg tcaccggcag tcaccttaga gtgcccaact gaatgctggc aactaagatc 360
aagggttgcg ctcgttgcgg gacttaaccc aacatctcac gacacgagct gacgacaacc 420aagggttgcg ctcgttgcgg gacttaaccc aacatctcac gacacgagct gacgacaacc 420
atgcaccacc tgtcactctg cccccgaagg ggacgtccta tctctaggat tgtcagagga 480atgcaccacc tgtcactctg cccccgaagg ggacgtccta tctctaggat tgtcagagga 480
tgtcaagacc tggtaaggtt cttcgcgttg cttcgaatta aaccacatgc tccaccgctt 540tgtcaagacc tggtaaggtt cttcgcgttg cttcgaatta aaccacatgc tccaccgctt 540
gtgcgggccc ccgtcaattc ctttgagttt cagtcttgcg accgtactcc ccaggcggag 600gtgcgggccc ccgtcaattc ctttgagttt cagtcttgcg accgtactcc ccaggcggag 600
tgcttaatgc gttagctgca gcactaaggg gcggaaaccc cctaacactt agcactcatc 660tgcttaatgc gttagctgca gcactaaggg gcggaaaccc cctaacactt agcactcatc 660
gtttacggcg tggactacca gggtatctaa tcctgttcgc tccccacgct ttcgctcctc 720gtttacggcg tggactacca gggtatctaa tcctgttcgc tccccacgct ttcgctcctc 720
agcgtcagtt acagaccaga gagtcgcctt cgccactggt gttcctccac atctctacgc 780agcgtcagtt acagaccaga gagtcgcctt cgccactggt gttcctccac atctctacgc 780
atttcaccgc tacacgtgga attccactct cctcttctgc actcaagttc cccagtttcc 840atttcaccgc tacacgtgga attccactct cctcttctgc actcaagttc cccagtttcc 840
aatgaccctc cccggttgag ccgggggctt tcacatcaga cttaagaaac cgcctgcgag 900aatgaccctc cccggttgag ccgggggctt tcacatcaga cttaagaaac cgcctgcgag 900
ccctttacgc ccaataattc cggacaacgc ttgccaccta cgtattaccg cggctgctgg 960ccctttacgc ccaataattc cggacaacgc ttgccaccta cgtattaccg cggctgctgg 960
cacgtagtta gccgtggctt tctggttagg taccgtcaag gtgccgccct atttgaacgg 1020cacgtagtta gccgtggctt tctggttagg taccgtcaag gtgccgccct atttgaacgg 1020
cacttgttct tccctaacaa cagagcttta cgatccgaaa accttcatca ctcacgcggc 1080cacttgttct tccctaacaa cagagcttta cgatccgaaa accttcatca ctcacgcggc 1080
gttgctccgt cagactttcg tccattgcgg aagattccct actgctgcct cccgtaggag 1140gttgctccgt cagactttcg tccattgcgg aagattccct actgctgcct cccgtaggag 1140
tctgggccgt gtctcagtcc cagtgtggcc gatcaccctc tcaggtcggc tacgcatcgt 1200tctgggccgt gtctcagtcc cagtgtggcc gatcaccctc tcaggtcggc tacgcatcgt 1200
cgccttggtg agccgttacc tcaccaacta gctaatgcgc cgcgggtcca tctgtaagtg 1260cgccttggtg agccgttacc tcaccaacta gctaatgcgc cgcgggtcca tctgtaagtg 1260
gtagccgaag ccacctttta tgtctgaacc atgcggttca gacaaccatc cggtattagc 1320gtagccgaag ccacctttta tgtctgaacc atgcggttca gacaaccatc cggtattagc 1320
cccggtttcc cggagttatc ccagtcttac aggcaggtta cccacgtgtt actcacccgt 1380cccggtttcc cggagttatc ccagtcttac aggcaggtta cccacgtgtt actcacccgt 1380
ccgccgctaa catcagggag caagctccca tctgtccgct cgactgcatt atagcagccg 1440ccgccgctaa catcagggag caagctccca tctgtccgct cgactgcatt atagcagccg 1440
<210> 14<210> 14
<211> 960<211> 960
<212> DNA<212> DNA
<213> Bacillus velezensis<213> Bacillus velezensis
<400> 14<400> 14
gacgtatgca gatgagcgtt atcgtatccc gggcgcttcc ggatgtgcgt gacggtctga 60gacgtatgca gatgagcgtt atcgtatccc gggcgcttcc ggatgtgcgt gacggtctga 60
agccggttca cagacggatt ttgtacgcaa tgaatgattt aggcatgacc agtgacaaac 120agccggttca cagacggatt ttgtacgcaa tgaatgattt aggcatgacc agtgacaaac 120
catataaaaa atctgcccgt atcgtcggtg aagttatcgg taagtaccac ccgcacggtg 180catataaaaa atctgcccgt atcgtcggtg aagttatcgg taagtaccac ccgcacggtg 180
actcagcggt ttacgaatca atggtcagaa tggcgcagga ttttaactac cgctacatgc 240actcagcggt ttacgaatca atggtcagaa tggcgcagga ttttaactac cgctacatgc 240
ttgttgacgg acacggcaac ttcggttcgg ttgacggcga ctcagcggcc gcgatgcgtt 300ttgttgacgg acacggcaac ttcggttcgg ttgacggcga ctcagcggcc gcgatgcgtt 300
acacagaagc gagaatgtca aaaatcgcaa tggaaattct gcgtgacatt acgaaagaca 360acacagaagc gagaatgtca aaaatcgcaa tggaaattct gcgtgacatt acgaaagaca 360
cgattgacta tcaagataac tatgacggtt cagaaagaga gcctgccgtc atgccttcga 420cgattgacta tcaagataac tatgacggtt cagaaagaga gcctgccgtc atgccttcga 420
gatttccgaa tctgctcgta aacggggctg ccggtattgc ggtcggaatg gcgacaaaca 480gatttccgaa tctgctcgta aacggggctg ccggtattgc ggtcggaatg gcgacaaaca 480
ttcccccgca tcagcttggg gaagtcattg aaggcgtgct tgccgtaagt gagaatcctg 540ttcccccgca tcagcttggg gaagtcattg aaggcgtgct tgccgtaagt gagaatcctg 540
agattacaaa ccaggagctg atggaataca tcccgggccc ggattttccg actgcaggtc 600agattacaaa ccaggagctg atggaataca tcccgggccc ggattttccg actgcaggtc 600
agattttggg ccggagcggc atccgcaagg catatgaatc cggacgggga tcaatcacga 660agattttggg ccggagcggc atccgcaagg catatgaatc cggacgggga tcaatcacga 660
tccgggctaa ggctgaaatc gaagagactt catcgggaaa agaaagaatt attgtcacgg 720tccgggctaa ggctgaaatc gaagagactt catcgggaaa agaaagaatt attgtcacgg 720
aacttcctta tcaggtgaac aaagcgagat taattgaaaa aatcgcggat cttgtccggg 780aacttcctta tcaggtgaac aaagcgagat taattgaaaa aatcgcggat cttgtccggg 780
acaaaaaaat cgaaggaatt accgatctgc gagacgaatc cgaccgtaac ggaatgagaa 840acaaaaaaat cgaaggaatt accgatctgc gagacgaatc cgaccgtaac ggaatgagaa 840
tcgtcattga gatccgccgt gacgccaatg ctcacgtcat tttgaataac ctgtacaaac 900tcgtcattga gatccgccgt gacgccaatg ctcacgtcat tttgaataac ctgtacaaac 900
aaacggccct gcagacgtct ttcggaatca acctgctggc gctcgttgac ggacagccga 960aaacggccct gcagacgtct ttcggaatca acctgctggc gctcgttgac ggacagccga 960
<210> 15<210> 15
<211> 859<211> 859
<212> DNA<212> DNA
<213> Bacillus velezensis<213> Bacillus velezensis
<400> 15<400> 15
gaagcggttc ttgacaatcc ttacatctta atcacagaca aaaaaatcac aaacattcaa 60gaagcggttc ttgacaatcc ttacatctta atcacagaca aaaaaatcac aaacattcaa 60
gaaatccttc ctgtgcttga gcaagttgta cagcaaggca aaccattgct tctgatcgct 120gaaatccttc ctgtgcttga gcaagttgta cagcaaggca aaccattgct tctgatcgct 120
gaagatgttg aaggtgaagc tcttgctaca ctcgttgtca acaaacttcg cggcacattc 180gaagatgttg aaggtgaagc tcttgctaca ctcgttgtca acaaacttcg cggcacattc 180
aacgctgttg ccgttaaagc tcctggcttc ggtgaccgcc gtaaagcaat gcttgaagac 240aacgctgttg ccgttaaagc tcctggcttc ggtgaccgcc gtaaagcaat gcttgaagac 240
atctctgttc ttacaggcgg agaagtaatc acagaagact taggccttga cctgaaatct 300atctctgttc ttacaggcgg agaagtaatc acagaagact taggccttga cctgaaatct 300
actgaaatcg gacaattggg acgcgcttct aaagttgtgg taacgaaaga aaacacaaca 360actgaaatcg gacaattggg acgcgcttct aaagttgtgg taacgaaaga aaacacaaca 360
atcgtagaag gcgccggcga cactgaaaaa atcgctgctc gcgtcaacca aatccgcgct 420atcgtagaag gcgccggcga cactgaaaaa atcgctgctc gcgtcaacca aatccgcgct 420
caagtggaag aaacaacttc tgaattcgac agagaaaaat tacaagagcg tcttgcgaaa 480caagtggaag aaacaacttc tgaattcgac agagaaaaat tacaagagcg tcttgcgaaa 480
cttgccggcg gcgtagctgt catcaaagtc ggcgctgcga ctgaaactga gctgaaagag 540cttgccggcgcgcgtagctgt catcaaagtc ggcgctgcga ctgaaactga gctgaaagag 540
cgtaaacttc gcatcgaaga cgccctcaac tcaactcgcg cagctgttga agaaggtatc 600cgtaaacttc gcatcgaaga cgccctcaac tcaactcgcg cagctgttga agaaggtatc 600
gtatccggcg gtggtacagc gcttgtcaat gtatacaaca aagtcgctgc agtggaagct 660gtatccggcg gtggtacagc gcttgtcaat gtatacaaca aagtcgctgc agtggaagct 660
gaaggcgatg cgcaaacagg tatcaacatc gtgcttcgcg cgcttgaaga gccgatccgt 720gaaggcgatg cgcaaacagg tatcaacatc gtgcttcgcg cgcttgaaga gccgatccgt 720
caaatcgcac acaatgcagg ccttgaagga tctgtcatcg ttgagcgcct gaaaaacgaa 780caaatcgcac acaatgcagg ccttgaagga tctgtcatcg ttgagcgcct gaaaaacgaa 780
aaaatcggcg taggcttcaa cgctgcaacc ggcgaatggg taaacatgat cgaaaaaggt 840aaaatcggcg taggcttcaa cgctgcaacc ggcgaatggg taaacatgat cgaaaaaggt 840
atcgttgacc agacaaaag 859atcgttgacc agacaaaag 859
<210> 16<210> 16
<211> 818<211> 818
<212> DNA<212> DNA
<213> Bacillus velezensis<213> Bacillus velezensis
<400> 16<400> 16
ttgtcgttcc taacgcaagc tttgatatgg gatttttaaa tgtggcgtac aagcgtctac 60ttgtcgttcc taacgcaagc tttgatatgg gatttttaaa tgtggcgtac aagcgtctac 60
tgaaaacgga aaaagcgaaa aatccggtca ttgatacgct ggaactcgcg cgtttcctgt 120tgaaaacgga aaaagcgaaa aatccggtca ttgatacgct ggaactcgcg cgtttcctgt 120
atcctgagtt taaaaatcac cgcttaaata cgttatgtaa gaagtttgat atcgaattaa 180atcctgagtt taaaaatcac cgcttaaata cgttatgtaa gaagtttgat atcgaattaa 180
cccagcatca ccgagcggtc tttgacgctg aagcaacggg ctacctgctg ttgaaaatgc 240cccagcatca ccgagcggtc tttgacgctg aagcaacggg ctacctgctg ttgaaaatgc 240
tcaaagatgc cgctgaaaaa gacatttttt atcatgatca gctgaatgag aatatgggac 300tcaaagatgc cgctgaaaaa gacatttttt atcatgatca gctgaatgag aatatgggac 300
aatccaatgc ttatcaaaga tcaaggcctt atcacgctac attgcttgcc gtaaatgaga 360aatccaatgc ttatcaaaga tcaaggcctt atcacgctac attgcttgcc gtaaatgaga 360
ccggccttaa aaatctgttt aagctcgtgt ccatttctca tattcaatat ttctacagag 420ccggccttaa aaatctgttt aagctcgtgt ccatttctca tattcaatat ttctacagag 420
tgccgcgcat tccgaggtcg cagcttaata aatacagaga aggtctgtta atcggctctg 480tgccgcgcat tccgaggtcg cagcttaata aatacagaga aggtctgtta atcggctctg 480
cctgtgacag gggagaggtc tttgaaggca tgatgcaaaa atcacctgaa gaggttgaag 540cctgtgacag gggagaggtc tttgaaggca tgatgcaaaa atcacctgaa gaggttgaag 540
atatcgcatc attctatgat tatcttgaag tgcagccgcc ggaagtatac agacaccttc 600atatcgcatc attctatgat tatcttgaag tgcagccgcc ggaagtatac agacaccttc 600
tgcagcttga gctcgtccgg gatgaaaaag cgctgaaaga aatcatcgcc aacatcacga 660tgcagcttga gctcgtccgg gatgaaaaag cgctgaaaga aatcatcgcc aacatcacga 660
agctcgggga aaaattgaat aagccggtcg ttgccaccgg aaatgtccac tatttaaacg 720agctcgggga aaaattgaat aagccggtcg ttgccaccgg aaatgtccac tatttaaacg 720
atgaggacaa aatttaccgg aagatcttaa tatcttccca aggcggcgcc aacccgttaa 780atgaggacaa aatttaccgg aagatcttaa tatcttccca aggcggcgcc aacccgttaa 780
acaggcacga actgcctaaa gtgcacttca gaacgaca 818acaggcacga actgcctaaa gtgcacttca gaacgaca 818
<210> 17<210> 17
<211> 914<211> 914
<212> DNA<212> DNA
<213> Bacillus velezensis<213> Bacillus velezensis
<400> 17<400> 17
tcatttcgac cggaggaaca aaaaaacttc ttcaggaaaa cggtgtggat gtcatcggca 60tcatttcgac cggaggaaca aaaaaacttc ttcaggaaaa cggtgtggat gtcatcggca 60
tttcagaagt gaccggattt cctgaaatta tggacggacg gttaaaaaca ctccatccta 120tttcagaagt gaccggattt cctgaaatta tggacggacg gttaaaaaca ctccatccta 120
atattcacgg cggtctgctt gccgtaagag acaataaaga gcatatggcg cagatcaatg 180atattcacgg cggtctgctt gccgtaagag acaataaaga gcatatggcg cagatcaatg 180
aacacggcat tgcaccgatt gaccttgtgg tcgtcaacct ttatccgttt aaagaaacga 240aacacggcat tgcaccgatt gaccttgtgg tcgtcaacct ttatccgttt aaagaaacga 240
tttcaaaaga agacgtaaca tacgatgaag cgatagaaaa cattgatatc ggcggtcccg 300tttcaaaaga agacgtaaca tacgatgaag cgatagaaaa cattgatatc ggcggtcccg 300
gcatgctgcg cgccgcatcg aaaaaccatc aggatgtgac ggtcatcaca gaaccggccg 360gcatgctgcg cgccgcatcg aaaaaccatc aggatgtgac ggtcatcaca gaaccggccg 360
attacagctc cgtgctcaat gagatgaaag aacacggcgg cgtttcgctc aaaagaaaac 420attacagctc cgtgctcaat gagatgaaag aacacggcgg cgtttcgctc aaaagaaaac 420
gcgagcttgc ggccaaagta ttccgccata ccgcggcata cgacgcatta atcgctgatt 480gcgagcttgc ggccaaagta ttccgccata ccgcggcata cgacgcatta atcgctgatt 480
acttaacacg cgaggccggt gagaaagacc ctgagcaatt cactgttact tttgagaaaa 540acttaacacg cgaggccggt gagaaagacc ctgagcaatt cactgttact tttgagaaaa 540
aacagtcgct ccgctacggt gaaaaccctc accaagaggc ggttttctac caaagcgcac 600aacagtcgct ccgctacggt gaaaaccctc accaagaggc ggttttctac caaagcgcac 600
ttcctgtctc cggttccatc gcagcggcaa aacagcttca cggcaaagag ctttcttata 660ttcctgtctc cggttccatc gcagcggcaa aacagcttca cggcaaagag ctttcttata 660
acaatattaa ggacgcggat gcggccgttc aaatcgtccg ggaatttaca gaacccgcag 720acaatattaa ggacgcggat gcggccgttc aaatcgtccg ggaatttaca gaacccgcag 720
ctgttgccgt taaacatatg aatccatgcg gagtcggtac gggagcttca attgaggaag 780ctgttgccgt taaacatatg aatccatgcg gagtcggtac gggagcttca attgaggaag 780
cattcaataa agcgtatgaa gctgataaaa cctccatttt cggcggcatc atcgcgctga 840cattcaataa agcgtatgaa gctgataaaa cctccatttt cggcggcatc atcgcgctga 840
accgtgaagt tgatcaggca acggctgaag cccttcacgg catcttttta aaaatcatta 900accgtgaagt tgatcaggca acggctgaag cccttcacgg catcttttta aaaatcatta 900
tcgcctcttc tttc 914tcgcctcttc tttc 914
<210> 18<210> 18
<211> 988<211> 988
<212> DNA<212> DNA
<213> Bacillus velezensis<213> Bacillus velezensis
<400> 18<400> 18
atcatcatga gtgaacgcct tgtgaaaaga tgatgtatac acatctattc acattgaaga 60atcatcatga gtgaacgcct tgtgaaaaga tgatgtatac acatctattc acattgaaga 60
atatgaatca gaagcacgtg atacaaagct tggaccggaa gagatcaccc gcgatattcc 120atatgaatca gaagcacgtg atacaaagct tggaccggaa gagatcaccc gcgatattcc 120
aaacgtaggg gaagacgcgc ttcgcaacct tgatgaccgc ggaattatcc gtatcggcgc 180aaacgtaggg gaagacgcgc ttcgcaacct tgatgaccgc ggaattatcc gtatcggcgc 180
ggaagtcaac gacggagacc ttctcgtagg taaagtaacg cctaaaggtg taactgagct 240ggaagtcaac gacggagacc ttctcgtagg taaagtaacg cctaaaggtg taactgagct 240
tacggctgaa gaacgccttc ttcatgcgat ctttggagaa aaagcgcgtg aagtccgtga 300tacggctgaa gaacgccttc ttcatgcgat ctttggagaa aaagcgcgtg aagtccgtga 300
tacttctctc cgtgtgcctc acggcggcgg cggaattatc cacgacgtaa aagtcttcaa 360tacttctctc cgtgtgcctc acggcggcgg cggaattatc cacgacgtaa aagtcttcaa 360
ccgtgaagac ggcgacgaac ttcctccggg agtgaaccag cttgtacgcg tatatatcgt 420ccgtgaagac ggcgacgaac ttcctccggg agtgaaccag cttgtacgcg tatatatcgt 420
tcagaaacgt aagatttctg aaggtgataa aatggccgga cgtcacggaa ataaaggggt 480tcagaaacgt aagatttctg aaggtgataa aatggccgga cgtcacggaa ataaaggggt 480
tatctcgaag attcttcctg aagaagatat gccttacctt cctgacggca cgccgatcga 540tatctcgaag attcttcctg aagaagatat gccttacctt cctgacggca cgccgatcga 540
tatcatgctt aacccgctgg gtgtaccatc acgtatgaat atcggtcagg tattagaact 600tatcatgctt aacccgctgg gtgtaccatc acgtatgaat atcggtcagg tattagaact 600
tcacatgggt atggctgccc gctacctcgg cattcacatc gcgtcacctg tatttgacgg 660tcacatgggt atggctgccc gctacctcgg cattcacatc gcgtcacctg tatttgacgg 660
cgcgcgtgaa gaagatgtgt gggaaacact tgaagaagca ggcatgtcaa gagacgctaa 720cgcgcgtgaa gaagatgtgt gggaaacact tgaagaagca ggcatgtcaa gagacgctaa 720
aacagttctt tatgacggcc gtacgggaga accgttcgac aaccgtgtat cagtcggaat 780aacagttctt tatgacggcc gtacgggaga accgttcgac aaccgtgtat cagtcggaat 780
catgtacatg atcaaactgg ctcacatggt tgacgataaa cttcatgccc gttctacagg 840catgtacatg atcaaactgg ctcacatggt tgacgataaa cttcatgccc gttctacagg 840
tccttactca cttgttacgc agcagcctct cggcggtaaa gcccaattcg gcggacagcg 900tccttactca cttgttacgc agcagcctct cggcggtaaa gcccaattcg gcggacagcg 900
tttcggtgag atggaggttt gggcgcttga agcttacggc gcagcttaca cgcttcaaga 960tttcggtgag atggaggttt gggcgcttga agcttacggc gcagcttaca cgcttcaaga 960
aatcctgact gtgaagtccg atgacgtg 988aatcctgact gtgaagtccg atgacgtg 988
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210307165.8A CN114933982B (en) | 2022-03-25 | 2022-03-25 | Bacillus Velez and its application in preventing and controlling sweet potato stem and root rot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210307165.8A CN114933982B (en) | 2022-03-25 | 2022-03-25 | Bacillus Velez and its application in preventing and controlling sweet potato stem and root rot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114933982A CN114933982A (en) | 2022-08-23 |
CN114933982B true CN114933982B (en) | 2024-04-19 |
Family
ID=82861930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210307165.8A Active CN114933982B (en) | 2022-03-25 | 2022-03-25 | Bacillus Velez and its application in preventing and controlling sweet potato stem and root rot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114933982B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117535201B (en) * | 2023-12-01 | 2024-04-16 | 秦皇岛禾苗生物技术有限公司 | Bacillus bailii HM-6 and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113271780A (en) * | 2018-09-28 | 2021-08-17 | Fmc公司 | Bacillus amyloliquefaciens FCC1256 composition and method for controlling plant pathogens |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180020676A1 (en) * | 2014-12-29 | 2018-01-25 | Fmc Corporation | Bacillus velezensis rti301 compositions and methods of use for benefiting plant growth and treating plant disease |
-
2022
- 2022-03-25 CN CN202210307165.8A patent/CN114933982B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113271780A (en) * | 2018-09-28 | 2021-08-17 | Fmc公司 | Bacillus amyloliquefaciens FCC1256 composition and method for controlling plant pathogens |
Non-Patent Citations (2)
Title |
---|
Jieling Li, et al..Screening, Identification and E cacy Evaluation of Antagonistic Bacteria for Biocontrol of Soft Rot Disease Caused by Dickeya zeae.microorganisms.2020,1-19. * |
贝莱斯芽孢杆菌3A3-15生防和促生机制;刘雪娇 等;河北大学学报(自然科学版);第39卷(第3期);302-310 * |
Also Published As
Publication number | Publication date |
---|---|
CN114933982A (en) | 2022-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108330089A (en) | A kind of active Bei Laisi bacillus HNt7 of broad-spectrum antibacterial and preparation method and application | |
CN108029703B (en) | Application of a strain of Bacillus Veles in the control of Pepper Blight | |
CN115369062B (en) | A tomato bacterial wilt antagonistic bacterium WJB0802 and its application | |
KR102411304B1 (en) | Bacillus zanthoxyli strain promoting tolerance of plants and use thereof | |
CN103602610B (en) | Bacillus amyloliquefaciens and the control microbial inoculum utilizing it to prepare | |
CN111763629B (en) | Bacillus belgii and application thereof | |
WO2021073142A1 (en) | Strain of fluorescent pseudomonas 22g5 and application thereof in preventative treatment of verticillium wilt in crops | |
CN105462881B (en) | A kind of Paenibacillus polymyxa and its application for being used to prevent crop verticillium wilt | |
CN114891674B (en) | Bacillus belicus for preventing and treating vegetable sclerotinia and application thereof | |
EP2836612B1 (en) | Novel pseudomonas fluorescens strain and uses thereof in the biological control of bacterial or fungal diseases | |
CN111363691B (en) | Paenibacillus polymyxa and application thereof | |
CN103146609B (en) | Pseudomonas fluorescens and method for preventing phytophthora capsici thereby | |
CN114933982B (en) | Bacillus Velez and its application in preventing and controlling sweet potato stem and root rot | |
CN105132296A (en) | Hook-like trichoderma strain and application thereof | |
CN107858300B (en) | Bacillus amyloliquefaciens 2YN11 for disease prevention, growth promotion, quality improvement and stress resistance of tomato and its application | |
CN105462882B (en) | A kind of pseudomonas aeruginosa and its application for preventing crop verticillium wilt | |
CN114836329B (en) | Trichoderma harzianum HB40609 and application thereof | |
CN110317735A (en) | Biological and ecological methods to prevent plant disease, pests, and erosion pythium oligadrum and application | |
CN100557013C (en) | Strain PX35 for Controlling Greenhouse Vegetable Blight | |
CN110616166A (en) | Paenibacillus polymyxa for controlling bacterial wilt of eggplants, application and eggplant cultivation method | |
CN101974451A (en) | PopW antibacterial protein and pseudomonas fluorescens mixed biological preparation PopW-PF1 | |
CN111996126B (en) | Violet purpurea capable of being used for preventing and treating root-knot nematode and application thereof | |
CN110257254A (en) | A kind of preparation method and application of biocontrol bacterial strain TMN-1 and biocontrol agent | |
CN105132295B (en) | A kind of plan T. harzianum strains and its application | |
CN111838190A (en) | Biocontrol microbial inoculum for preventing and treating stem base rot and gummosis as well as preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |