CN114932557A - Adaptive admittance control method based on energy consumption under kinematic constraint - Google Patents
Adaptive admittance control method based on energy consumption under kinematic constraint Download PDFInfo
- Publication number
- CN114932557A CN114932557A CN202210729992.6A CN202210729992A CN114932557A CN 114932557 A CN114932557 A CN 114932557A CN 202210729992 A CN202210729992 A CN 202210729992A CN 114932557 A CN114932557 A CN 114932557A
- Authority
- CN
- China
- Prior art keywords
- damping
- energy consumption
- interaction
- admittance
- force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
- B25J11/0005—Manipulators having means for high-level communication with users, e.g. speech generator, face recognition means
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Manipulator (AREA)
Abstract
Description
技术领域technical field
本发明涉及人机环交互技术领域,尤其是一种运动学约束下基于能量消耗的自适应导纳控制方法。The invention relates to the technical field of human-machine-loop interaction, in particular to an adaptive admittance control method based on energy consumption under kinematic constraints.
背景技术Background technique
人机交互是操作人员牵引机械臂完成特定的运动,最为常见的是人机示教。协作机械臂从接受示教到能够自主实现轨迹复现,整个过程存在人机环多种交互模式。为了使交互过程更加柔顺和安全,机器人需要有能力适应操作人员的意图和交互中可能出现的危险。Human-machine interaction is that the operator pulls the robotic arm to complete a specific movement, and the most common one is human-machine teaching. There are multiple interaction modes of human-machine loop in the whole process from accepting teaching to realizing trajectory reproduction autonomously. To make the interaction process more compliant and safe, the robot needs to be able to adapt to the operator's intention and the dangers that may arise in the interaction.
传统的导纳控制方法存在柔顺性差和安全性差的问题。现有技术中,中国专利CN112276944A的一种基于意图识别的人机协作系统控制方法,该方法利用神经网络识别系统估计人的意图,虽然该方法降低了人机协作的交互力,但是没有考虑机械臂自身的约束条件,不能保证机械臂系统的安全性。中国专利CN107053179B的一种基于模糊强化学习的机械臂柔顺力控制方法,该方法采用模糊强化学习算法,通过在线学习训练导纳参数的实时调整策略,以完成机械臂的主动跟随任务,但是该方法收敛速度慢,降低了人机协作的柔顺性。中国专利CN113352322A的一种基于最优导纳参数的自适应人机协作控制方法,该方法通过积分强化学习的方式寻找最优导纳参数并在导纳控制方程中引入辅助力,但是该方法需要大量的数据训练,且只适用于特定任务。The traditional admittance control method has the problems of poor compliance and poor safety. In the prior art, Chinese patent CN112276944A discloses a method for controlling human-machine cooperation system based on intention recognition, which uses a neural network recognition system to estimate human intentions. Although this method reduces the interaction force of human-machine cooperation, it does not consider mechanical The constraints of the arm itself cannot guarantee the safety of the robotic arm system. Chinese patent CN107053179B is a fuzzy reinforcement learning-based robotic arm compliance control method. The method adopts a fuzzy reinforcement learning algorithm and trains a real-time adjustment strategy of admittance parameters through online learning, so as to complete the active follow-up task of the robotic arm, but this method The slow convergence speed reduces the flexibility of human-machine collaboration. Chinese patent CN113352322A is an adaptive man-machine cooperative control method based on optimal admittance parameters. This method searches for optimal admittance parameters by means of integral reinforcement learning and introduces auxiliary force into the admittance control equation, but this method requires A lot of data training, and only suitable for specific tasks.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术存在的缺陷,本发明提出一种运动学约束下考虑能量消耗的自适应导纳控制方法,提高人机环交互过程的柔顺性和安全性。In order to overcome the above-mentioned defects in the prior art, the present invention proposes an adaptive admittance control method considering energy consumption under kinematic constraints, so as to improve the flexibility and safety of the interaction process of the human-machine loop.
为实现上述目的,本发明采用以下技术方案,包括:To achieve the above object, the present invention adopts the following technical solutions, including:
一种运动学约束下基于能量消耗的自适应导纳控制方法,考虑人机环交互过程,根据交互力和机器人运动速度建立能力消耗最小准则,设计导纳控制律,对阻尼参数进行更新。An adaptive admittance control method based on energy consumption under kinematic constraints, considers the interaction process of human-machine loop, establishes the minimum capacity consumption criterion according to the interaction force and robot motion speed, designs the admittance control law, and updates the damping parameters.
优选的,人机交互的导纳控制器的阻尼更新公式,如下所示:Preferably, the damping update formula of the admittance controller for human-computer interaction is as follows:
其中,b为更新后的阻尼值,b0是初始阻尼值,e是自然常数,α是参数,fh是施加在机械臂上的力,v是机械臂在笛卡尔空间的速度。where b is the updated damping value, b 0 is the initial damping value, e is a natural constant, α is a parameter, f h is the force applied to the manipulator, and v is the speed of the manipulator in Cartesian space.
优选的,基于人机环交互过程的能量消耗最小准则,对人机交互的导纳控制器的阻尼系数进行更新,具体方法如下所示:Preferably, based on the minimum energy consumption criterion of the human-machine-loop interaction process, the damping coefficient of the admittance controller of the human-machine interaction is updated, and the specific method is as follows:
S11,人机交互过程中的能量消耗可用下式表示;S11, the energy consumption in the process of human-computer interaction can be expressed by the following formula;
其中,fh是施加在机械臂上的作用力,v是机械臂在笛卡尔空间的速度;Among them, f h is the force exerted on the manipulator, and v is the velocity of the manipulator in Cartesian space;
S12,考虑能量消耗与阻尼的关系,使交互过程能量消耗最小化,求取能量对阻尼的偏导;S12, consider the relationship between energy consumption and damping, minimize the energy consumption in the interaction process, and obtain the partial derivative of energy to damping;
其中,fh是施加在机械臂上的作用力,v是机械臂在笛卡尔空间的速度;Among them, f h is the force exerted on the manipulator, and v is the velocity of the manipulator in Cartesian space;
S13,得到导纳控制器的阻尼系数b随施加在机械臂上的操作力fh和机械臂在笛卡尔空间运动速度v的关系表达式,阻尼更新公式为:S13, the relationship expression between the damping coefficient b of the admittance controller and the operating force f h applied to the manipulator and the speed v of the manipulator in Cartesian space is obtained, and the damping update formula is:
其中,b为更新后的阻尼值,b0是初始阻尼值,e是自然常数,α是参数;Among them, b is the updated damping value, b 0 is the initial damping value, e is a natural constant, and α is a parameter;
S14,已知机械臂自身速度加速度和变加速度的限制,根据操作力fh和阻尼系数b,S14, the speed of the robotic arm itself is known acceleration and variable speed The limit of , according to the operating force f h and the damping coefficient b,
设定质量参数m的取值范围 Set the value range of the quality parameter m
其中,下标min表示最小值即下限,下标max表示最大值即上限。Among them, the subscript min represents the minimum value, that is, the lower limit, and the subscript max represents the maximum value, which is the upper limit.
优选的,机环交互的导纳控制器的阻尼更新公式,如下所示:Preferably, the damping update formula of the machine-loop interaction admittance controller is as follows:
其中,fe是机械臂与环境间的实际接触力,fd是机械臂与环境间的期望接触力,v是机械臂在笛卡尔空间的速度,ve是环境速度,b为更新后的阻尼值,b0是初始阻尼值,e是自然常数,α是参数。in, f e is the actual contact force between the manipulator and the environment, f d is the expected contact force between the manipulator and the environment, v is the speed of the manipulator in Cartesian space, ve is the environment speed, b is the updated damping value , b 0 is the initial damping value, e is a natural constant, and α is a parameter.
优选的,基于能量消耗最小准则,对机环交互中的导纳控制器的阻尼系数进行更新,具体方法如下所示:Preferably, based on the minimum energy consumption criterion, the damping coefficient of the admittance controller in the machine-loop interaction is updated, and the specific method is as follows:
S21,机械臂与环境交互过程中的能量消耗可用下式表示;S21, the energy consumption during the interaction between the robotic arm and the environment can be expressed by the following formula;
其中,fe是机械臂与环境间的实际接触力,fd是机械臂与环境间的期望接触力,v是机械臂在笛卡尔空间的速度,ve是环境速度;in, f e is the actual contact force between the manipulator and the environment, f d is the expected contact force between the manipulator and the environment, v is the speed of the manipulator in Cartesian space, and ve is the speed of the environment;
S22,为使交互过程能量消耗最小化,求取能量对阻尼的偏导;S22, in order to minimize the energy consumption in the interaction process, obtain the partial derivative of the energy to the damping;
其中,fe是机械臂与环境间的实际接触力,fd是机械臂与环境间的期望接触力,v是机械臂在笛卡尔空间的速度,ve是环境速度;in, f e is the actual contact force between the manipulator and the environment, f d is the expected contact force between the manipulator and the environment, v is the speed of the manipulator in Cartesian space, and ve is the speed of the environment;
S23,到导纳控制器的阻尼系数b随接触力偏差和速度偏差的关系表达式,机环交互的导纳控制器阻尼更新表达式为:S23, the damping coefficient b to the admittance controller deviates with the contact force and speed deviation The relational expression of , the damping update expression of the admittance controller of the machine-loop interaction is:
其中,fe是机械臂与环境间的实际接触力,fd是机械臂与环境间的期望接触力,v是机械臂在笛卡尔空间的速度,ve是环境速度,b为更新后的阻尼值,b0是初始阻尼值,e是自然常数,α是参数;in, f e is the actual contact force between the manipulator and the environment, f d is the expected contact force between the manipulator and the environment, v is the speed of the manipulator in Cartesian space, ve is the environment speed, b is the updated damping value , b 0 is the initial damping value, e is a natural constant, α is a parameter;
S24,已知机械臂速度加速度和变加速度的限制,根据作用力偏差阻尼系数b以及环境速度环境加速度和环境变加速度 S24, the known speed of the manipulator acceleration and variable speed limit, according to the force deviation Damping coefficient b and ambient speed environmental acceleration and environmental changes
设定质量参数m的取值范围 Set the value range of the quality parameter m
其中, in,
下标min表示最小值即下限,下标max表示最大值即上限。The subscript min represents the minimum value, which is the lower limit, and the subscript max, which represents the maximum value, which is the upper limit.
本发明的优点在于:The advantages of the present invention are:
(1)本发明提出人机环交互过程的能量消耗最小准则,在综合考虑交互力和机器人运动速度的基础上设计导纳控制律,对阻尼参数进行更新,人机环交互开始阶段阻尼系数随着操作者施加的力和机械臂运动速度呈指数下降,提高人机环协作的柔顺性;运动过程中阻尼系数保持在一个较小的值,减小协作过程的能量消耗;机械臂需要执行精细化工作或紧急停止运动时,阻尼系数会指数上升,提高机械臂的控制精度和安全性。(1) The present invention proposes the minimum energy consumption criterion for the interaction between the human-machine loop and the robot. The admittance control law is designed on the basis of comprehensively considering the interactive force and the motion speed of the robot, and the damping parameters are updated. As the force exerted by the operator and the movement speed of the robotic arm decrease exponentially, the flexibility of the man-machine-loop cooperation is improved; the damping coefficient is kept at a small value during the movement process, which reduces the energy consumption of the cooperation process; the robotic arm needs to perform fine During chemical work or emergency stop motion, the damping coefficient will increase exponentially, improving the control accuracy and safety of the robotic arm.
(2)本发明还根据机器人运动学约束给出导纳控制器的质量参数范围,考虑了机器臂自身的速度、加速度、变加速度的限制,防止导纳参数过小导致机器臂运动不稳定,保证了机器臂系统运动的安全性。(2) The present invention also provides the quality parameter range of the admittance controller according to the kinematic constraints of the robot, and considers the limitations of the speed, acceleration and variable acceleration of the robot arm itself, so as to prevent the movement of the robot arm from being unstable due to too small admittance parameters, The safety of the movement of the robotic arm system is guaranteed.
(3)本发明的自适应导纳控制方法保证了机械臂在人机环协作过程中能够识别操作人员的运动意图,提高了机械臂系统的柔顺性。(3) The adaptive admittance control method of the present invention ensures that the manipulator can recognize the movement intention of the operator in the process of man-machine-loop cooperation, and improves the flexibility of the manipulator system.
附图说明Description of drawings
图1为本发明的自适应导纳控制框图。FIG. 1 is a block diagram of the adaptive admittance control of the present invention.
图2为本发明的自适应导纳的轨迹跟踪效果图。FIG. 2 is an effect diagram of trajectory tracking of the adaptive admittance of the present invention.
图3为本发明的阻尼系数在X方向上的变化图。FIG. 3 is a graph showing the change of the damping coefficient in the X direction according to the present invention.
图4为本发明的阻尼系数在Y方向上的变化图。FIG. 4 is a graph showing the change of the damping coefficient in the Y direction of the present invention.
附图中的英文含义如下所示:The English meanings in the attached drawings are as follows:
desired traj-期望轨迹、actual traj-跟踪轨迹。desired traj-desired trajectory, actual traj-tracking trajectory.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
由图1所示,一种运动学约束下基于能量消耗的人机环交互自适应导纳控制方法,具体过程如下所示:As shown in Figure 1, a man-machine-loop interaction adaptive admittance control method based on energy consumption under kinematic constraints, the specific process is as follows:
S1:机械臂建模。在Simulink中搭建机械臂的运动学模型;S1: Modeling of the robotic arm. Build the kinematics model of the robotic arm in Simulink;
S2:期望轨迹的生成。在任务空间XY平面规划一个轨迹,此轨迹作为机械臂后期轨迹跟踪的期望轨迹;S2: Generation of desired trajectory. Plan a trajectory in the XY plane of the task space, and this trajectory is used as the expected trajectory of the later trajectory tracking of the robotic arm;
S3:力信号的采集。根据机械臂的实际运动轨迹x和期望运动轨迹xd之间的偏差计算机械臂与操作者之间的作用力fh,用于导纳控制器的反馈控制,其中公式(1)中k是设定的环境刚度参数。S3: Collection of force signals. Calculate the force f h between the manipulator and the operator according to the deviation between the actual motion trajectory x and the expected motion trajectory x d of the manipulator, which is used for the feedback control of the admittance controller, where k in formula (1) is Set the environment stiffness parameter.
fh=k(x-xd) (1)f h =k(xx d ) (1)
S4:将能量消耗考虑到阻抗表达式中,使人机交互过程能量消耗最小化,求能量函数与阻尼的关系,如公式(2)、(3)所示。S4: Consider the energy consumption into the impedance expression, minimize the energy consumption in the human-computer interaction process, and find the relationship between the energy function and the damping, as shown in formulas (2) and (3).
S5:阻尼系数的更新。采集机械臂在笛卡尔空间的速度v,根据步骤S3得到作用力fh,在线计算阻尼系数其中b0是初始阻尼值,e是自然常数,α是参数,fh是施加在机械臂上的力,v是机械臂在笛卡尔空间的速度。S5: Update of damping coefficient. Collect the velocity v of the robotic arm in Cartesian space, obtain the force f h according to step S3, and calculate the damping coefficient online where b 0 is the initial damping value, e is a natural constant, α is a parameter, f h is the force exerted on the manipulator, and v is the velocity of the manipulator in Cartesian space.
S6:导纳控制。将阻抗参数m、b和作用力fh代入公式计算出机械臂末端的位移修正量。其中分别是机械臂在笛卡尔空间的加速度和速度。S6: Admittance control. Substitute the impedance parameters m, b and the force f h into the formula Calculate the displacement correction of the end of the robot arm. in are the acceleration and velocity of the robotic arm in Cartesian space, respectively.
S7:机械臂运动控制。将导纳控制器计算得到的位移修正量Δx叠加到初始目标位置xd得到机械臂参考位置xr,如公式(4)所示。xr经逆运动学求解得到机械臂各关节的期望运动角度,通过位置控制器实现对机械臂的运动控制。S7: Robotic arm motion control. The displacement correction amount Δx calculated by the admittance controller is superimposed on the initial target position x d to obtain the reference position x r of the manipulator, as shown in formula (4). The desired motion angle of each joint of the manipulator is obtained through inverse kinematics solution of x r , and the motion control of the manipulator is realized by the position controller.
xr=xd+Δx (4)x r =x d +Δx (4)
图2为自适应导纳控制的轨迹跟踪效果图,实线为期望轨迹desired traj,虚线为跟踪轨迹actual traj,本发明的期望轨迹与跟踪轨迹重合。图3和图4分别是阻尼系数在X和Y方向上的变化图。FIG. 2 is a trajectory tracking effect diagram of adaptive admittance control, the solid line is the desired trajectory desired traj, the dotted line is the tracking trajectory actual traj, the desired trajectory of the present invention coincides with the tracking trajectory. Figures 3 and 4 are graphs of changes in the damping coefficient in the X and Y directions, respectively.
以上仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本发明创造的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明创造的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the present invention. within the scope of protection.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210729992.6A CN114932557B (en) | 2022-06-24 | 2022-06-24 | Self-adaptive admittance control method based on energy consumption under kinematic constraint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210729992.6A CN114932557B (en) | 2022-06-24 | 2022-06-24 | Self-adaptive admittance control method based on energy consumption under kinematic constraint |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114932557A true CN114932557A (en) | 2022-08-23 |
CN114932557B CN114932557B (en) | 2023-07-28 |
Family
ID=82869178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210729992.6A Active CN114932557B (en) | 2022-06-24 | 2022-06-24 | Self-adaptive admittance control method based on energy consumption under kinematic constraint |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114932557B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115890678A (en) * | 2022-11-29 | 2023-04-04 | 北京航空航天大学杭州创新研究院 | A robot control method, device, storage medium and electronic equipment |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5023808A (en) * | 1987-04-06 | 1991-06-11 | California Institute Of Technology | Dual-arm manipulators with adaptive control |
WO2015137877A1 (en) * | 2014-03-14 | 2015-09-17 | National University Of Singapore | Gait rehabilitation apparatus |
CN105242533A (en) * | 2015-09-01 | 2016-01-13 | 西北工业大学 | Variable-admittance teleoperation control method with fusion of multi-information |
US20160067061A1 (en) * | 2014-08-15 | 2016-03-10 | Honda Motor Co., Ltd | Integral admittance shaping for an exoskeleton control design framework |
CN107053179A (en) * | 2017-04-21 | 2017-08-18 | 哈尔滨思哲睿智能医疗设备有限公司 | A kind of mechanical arm Compliant Force Control method based on Fuzzy Reinforcement Learning |
CN109249394A (en) * | 2018-09-27 | 2019-01-22 | 上海电气集团股份有限公司 | Robot control method and system based on admittance control algorithms |
CN109366488A (en) * | 2018-12-07 | 2019-02-22 | 哈尔滨工业大学 | A Cartesian Impedance Control Method for Superimposed Oscillating Forces for Robot Assembly |
CN109910005A (en) * | 2019-03-04 | 2019-06-21 | 上海电气集团股份有限公司 | Change admittance control method and system for robot |
CN110597072A (en) * | 2019-10-22 | 2019-12-20 | 上海电气集团股份有限公司 | Robot admittance compliance control method and system |
CN110977974A (en) * | 2019-12-11 | 2020-04-10 | 遨博(北京)智能科技有限公司 | Admittance control method, device and system for avoiding singular position type of robot |
CN111230873A (en) * | 2020-01-31 | 2020-06-05 | 武汉大学 | A collaborative handling control system and method based on teaching and learning |
CN111281743A (en) * | 2020-02-29 | 2020-06-16 | 西北工业大学 | An adaptive compliance control method for an upper limb rehabilitation exoskeleton robot |
US20200206943A1 (en) * | 2019-01-02 | 2020-07-02 | Research & Business Foundation Sungkyunkwan University | Apparatus and method for controlling robot |
CN111660307A (en) * | 2020-05-27 | 2020-09-15 | 华中科技大学 | Robot operation high-assistance precision virtual clamp control method and system |
CN111660306A (en) * | 2020-05-27 | 2020-09-15 | 华中科技大学 | Robot variable admittance control method and system based on operator comfort |
CN112276944A (en) * | 2020-10-19 | 2021-01-29 | 哈尔滨理工大学 | Man-machine cooperation system control method based on intention recognition |
JP2021117918A (en) * | 2020-01-29 | 2021-08-10 | 株式会社人機一体 | Drive unit having admittance control |
CN113352322A (en) * | 2021-05-19 | 2021-09-07 | 浙江工业大学 | Adaptive man-machine cooperation control method based on optimal admittance parameters |
CN113568313A (en) * | 2021-09-24 | 2021-10-29 | 南京航空航天大学 | Method and system for variable admittance assisted assembly of large components based on operation intention recognition |
CN113733105A (en) * | 2021-10-18 | 2021-12-03 | 哈尔滨理工大学 | Cooperative mechanical arm fuzzy variable admittance control system and method based on human intention recognition |
WO2022007358A1 (en) * | 2020-07-08 | 2022-01-13 | 深圳市优必选科技股份有限公司 | Impedance control method and apparatus, impedance controller, and robot |
CN114406983A (en) * | 2021-12-06 | 2022-04-29 | 中国科学院深圳先进技术研究院 | Adaptive admittance control method and related device of lower limb exoskeleton robot |
-
2022
- 2022-06-24 CN CN202210729992.6A patent/CN114932557B/en active Active
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5023808A (en) * | 1987-04-06 | 1991-06-11 | California Institute Of Technology | Dual-arm manipulators with adaptive control |
WO2015137877A1 (en) * | 2014-03-14 | 2015-09-17 | National University Of Singapore | Gait rehabilitation apparatus |
US20160067061A1 (en) * | 2014-08-15 | 2016-03-10 | Honda Motor Co., Ltd | Integral admittance shaping for an exoskeleton control design framework |
CN105242533A (en) * | 2015-09-01 | 2016-01-13 | 西北工业大学 | Variable-admittance teleoperation control method with fusion of multi-information |
CN107053179A (en) * | 2017-04-21 | 2017-08-18 | 哈尔滨思哲睿智能医疗设备有限公司 | A kind of mechanical arm Compliant Force Control method based on Fuzzy Reinforcement Learning |
CN109249394A (en) * | 2018-09-27 | 2019-01-22 | 上海电气集团股份有限公司 | Robot control method and system based on admittance control algorithms |
CN109366488A (en) * | 2018-12-07 | 2019-02-22 | 哈尔滨工业大学 | A Cartesian Impedance Control Method for Superimposed Oscillating Forces for Robot Assembly |
US20200206943A1 (en) * | 2019-01-02 | 2020-07-02 | Research & Business Foundation Sungkyunkwan University | Apparatus and method for controlling robot |
CN109910005A (en) * | 2019-03-04 | 2019-06-21 | 上海电气集团股份有限公司 | Change admittance control method and system for robot |
CN110597072A (en) * | 2019-10-22 | 2019-12-20 | 上海电气集团股份有限公司 | Robot admittance compliance control method and system |
CN110977974A (en) * | 2019-12-11 | 2020-04-10 | 遨博(北京)智能科技有限公司 | Admittance control method, device and system for avoiding singular position type of robot |
JP2021117918A (en) * | 2020-01-29 | 2021-08-10 | 株式会社人機一体 | Drive unit having admittance control |
CN111230873A (en) * | 2020-01-31 | 2020-06-05 | 武汉大学 | A collaborative handling control system and method based on teaching and learning |
CN111281743A (en) * | 2020-02-29 | 2020-06-16 | 西北工业大学 | An adaptive compliance control method for an upper limb rehabilitation exoskeleton robot |
CN111660307A (en) * | 2020-05-27 | 2020-09-15 | 华中科技大学 | Robot operation high-assistance precision virtual clamp control method and system |
CN111660306A (en) * | 2020-05-27 | 2020-09-15 | 华中科技大学 | Robot variable admittance control method and system based on operator comfort |
WO2022007358A1 (en) * | 2020-07-08 | 2022-01-13 | 深圳市优必选科技股份有限公司 | Impedance control method and apparatus, impedance controller, and robot |
CN112276944A (en) * | 2020-10-19 | 2021-01-29 | 哈尔滨理工大学 | Man-machine cooperation system control method based on intention recognition |
CN113352322A (en) * | 2021-05-19 | 2021-09-07 | 浙江工业大学 | Adaptive man-machine cooperation control method based on optimal admittance parameters |
CN113568313A (en) * | 2021-09-24 | 2021-10-29 | 南京航空航天大学 | Method and system for variable admittance assisted assembly of large components based on operation intention recognition |
CN113733105A (en) * | 2021-10-18 | 2021-12-03 | 哈尔滨理工大学 | Cooperative mechanical arm fuzzy variable admittance control system and method based on human intention recognition |
CN114406983A (en) * | 2021-12-06 | 2022-04-29 | 中国科学院深圳先进技术研究院 | Adaptive admittance control method and related device of lower limb exoskeleton robot |
Non-Patent Citations (1)
Title |
---|
杨静宜等: "基于特征深度学习的机器人协调操作感知控制", 《计算机仿真》, vol. 38, no. 1, pages 307 - 311 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115890678A (en) * | 2022-11-29 | 2023-04-04 | 北京航空航天大学杭州创新研究院 | A robot control method, device, storage medium and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN114932557B (en) | 2023-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111660306B (en) | A robot variable admittance control method and system based on operator comfort | |
CN111546315B (en) | Robot flexible teaching and reproducing method based on human-computer cooperation | |
CN114260896B (en) | Flexible force control method and system for cooperative robot | |
CN105773623B (en) | SCARA robotic tracking control methods based on the study of forecasting type Indirect iteration | |
CN111941421B (en) | Self-adaptive fuzzy force tracking control method based on multi-robot cooperative operation | |
CN107053179B (en) | A kind of mechanical arm Compliant Force Control method based on Fuzzy Reinforcement Learning | |
CN114397810B (en) | Motion control method of quadruped robot based on adaptive virtual model control | |
CN112454359B (en) | Robot joint tracking control method based on neural network adaptation | |
CN108614560B (en) | A mobile robot vision servo guaranteed performance tracking control method | |
CN115157238A (en) | Multi-degree-of-freedom robot dynamics modeling and trajectory tracking method | |
CN113352322A (en) | Adaptive man-machine cooperation control method based on optimal admittance parameters | |
CN107422739B (en) | A robust control method for the attitude of the space robot base | |
CN107160396A (en) | A kind of robot vibration controller and method based on track optimizing | |
CN116922395B (en) | Integrated control method of mobile composite robot | |
CN115903806A (en) | Multi-Agent Formation Obstacle Avoidance Method Based on Adaptive Dynamic Window Method | |
CN112987568A (en) | Parallel processing robot feeding speed planning method and device | |
CN116512242A (en) | Quick terminal sliding mode-based fuzzy variable impedance control method for polishing robot | |
CN114932557A (en) | Adaptive admittance control method based on energy consumption under kinematic constraint | |
CN110421560A (en) | A kind of cooperation robot constant force massage method based on pid algorithm | |
Xie et al. | A fuzzy neural controller for model-free control of redundant manipulators with unknown kinematic parameters | |
CN107825449A (en) | Tendon is driving singly to refer to Dextrous Hand and its control system and control method | |
CN117055356A (en) | Damping self-adaptive impedance control method based on neural network adjustment parameters | |
CN117773929A (en) | A method for adaptive trajectory planning of a robotic arm | |
Xu et al. | Rules-reduced fuzzy neural network-based learning control for multiple constraints robots using online identification and compensation methods | |
WO2025050879A1 (en) | Control system and method for mobile manipulation robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |