CN114923896B - Control system of photoelectric nose and photoelectric nose - Google Patents
Control system of photoelectric nose and photoelectric nose Download PDFInfo
- Publication number
- CN114923896B CN114923896B CN202210331597.2A CN202210331597A CN114923896B CN 114923896 B CN114923896 B CN 114923896B CN 202210331597 A CN202210331597 A CN 202210331597A CN 114923896 B CN114923896 B CN 114923896B
- Authority
- CN
- China
- Prior art keywords
- main control
- control board
- nose
- control
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/76—Chemiluminescence; Bioluminescence
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
本发明提供一种光电子鼻的控制系统和光电子鼻,光电子鼻的控制系统包括终端、主控板和光子计数器,终端与主控板电连接,光子计数器与主控板电连接;终端用于设置第一控制参数和第二控制参数;主控板根据第一控制参数控制光子计数器;光子计数器通过主控板向终端发送测量数据;主控板还用于与光电子鼻中的注射泵、多通道切换阀和气体质量流量控制器电连接;主控板根据第二控制参数控制注射泵、多通道切换阀和气体质量流量控制器,注射泵、多通道切换阀和气体质量流量控制器通过主控板向终端反馈第一状态信息。本发明提供的光电子鼻的控制系统解决了现有技术中光电子鼻操作复杂的问题。
The present invention provides a control system of an optoelectronic nose and an optoelectronic nose. The control system of the optoelectronic nose includes a terminal, a main control board and a photon counter. The terminal is electrically connected to the main control board, and the photon counter is electrically connected to the main control board. The terminal is used to set a first control parameter and a second control parameter. The main control board controls the photon counter according to the first control parameter. The photon counter sends measurement data to the terminal through the main control board. The main control board is also used to be electrically connected to an injection pump, a multi-channel switching valve and a gas mass flow controller in the optoelectronic nose. The main control board controls the injection pump, the multi-channel switching valve and the gas mass flow controller according to the second control parameter, and the injection pump, the multi-channel switching valve and the gas mass flow controller feed back first state information to the terminal through the main control board. The control system of the optoelectronic nose provided by the present invention solves the problem of complex operation of the optoelectronic nose in the prior art.
Description
技术领域Technical Field
本发明涉及呼吸气检测技术领域,尤其涉及一种光电子鼻的控制系统和光电子鼻。The present invention relates to the technical field of respiratory gas detection, and in particular to a control system of an optoelectronic nose and an optoelectronic nose.
背景技术Background Art
现有的呼吸气中的VOC(Volatile Organic Compounds,挥发性有机化合物)检测设备包括离子迁移谱、气相色谱-质谱和质子转移反应质谱,这些检测设备检测结果准确,但是设备昂贵、结构复杂并且对设备的操作要求较高。电子鼻是利用气体传感器阵列的响应图案来识别气味的电子系统,目前应用广泛的传感器阵列包括金属氧化物型传感器阵列和电化学型传感器阵列,但是这些传感器阵列的检测灵敏度较低,无法满足呼吸气中的VOC含量检测要求。Existing VOC (Volatile Organic Compounds) detection equipment in breath includes ion mobility spectrometry, gas chromatography-mass spectrometry and proton transfer reaction mass spectrometry. These detection equipment have accurate detection results, but the equipment is expensive, complex in structure and has high requirements for equipment operation. The electronic nose is an electronic system that uses the response pattern of a gas sensor array to identify odors. Currently, the widely used sensor arrays include metal oxide sensor arrays and electrochemical sensor arrays, but these sensor arrays have low detection sensitivity and cannot meet the requirements for VOC content detection in breath.
以催化化学发光为原理的光传感器具有更高的检测灵敏度,以光传感器阵列为基础的光电子鼻可以用于呼吸气VOC检测,光电子鼻包括多个光传感器,每个光传感器中具有不同的催化涂层,从而与呼吸气中不同组分产生反应,得出反应数据,需要使用专用的分析仪器对反应数据进行采集和分析。光电子鼻还包括注射泵、流量计、切换阀等装置,各装置均有需要调节的参数,在需要更改其中一个装置或者多个装置的参数时,需要操作人员在每个装置内逐一进行更改,并且各装置的工作状态无法进行实时监控。Optical sensors based on the principle of catalytic chemiluminescence have higher detection sensitivity. Photoelectronic noses based on optical sensor arrays can be used for breath VOC detection. The photoelectronic nose includes multiple optical sensors, each with a different catalytic coating, which reacts with different components in the breath to obtain reaction data. Special analytical instruments are required to collect and analyze the reaction data. The photoelectronic nose also includes devices such as syringe pumps, flow meters, and switching valves. Each device has parameters that need to be adjusted. When the parameters of one or more devices need to be changed, the operator needs to make changes in each device one by one, and the working status of each device cannot be monitored in real time.
使用现有的光电子鼻进行呼吸气VOC检测时操作复杂。The operation of using existing photoelectric noses to detect VOC in breath is complicated.
发明内容Summary of the invention
本发明提供了一种光电子鼻的控制系统和光电子鼻,光电子鼻的控制系统解决了现有技术中光电子鼻操作复杂的问题。The invention provides a control system of an optoelectronic nose and an optoelectronic nose. The control system of the optoelectronic nose solves the problem of complicated operation of the optoelectronic nose in the prior art.
本发明提供一种光电子鼻的控制系统,包括终端、主控板和光子计数器,终端与主控板电连接,光子计数器与主控板电连接;The present invention provides a control system for an optoelectronic nose, comprising a terminal, a main control board and a photon counter, wherein the terminal is electrically connected to the main control board, and the photon counter is electrically connected to the main control board;
终端用于设置第一控制参数和第二控制参数;The terminal is used to set the first control parameter and the second control parameter;
主控板用于获取第一控制参数并根据第一控制参数控制光子计数器;The main control board is used to obtain the first control parameter and control the photon counter according to the first control parameter;
光子计数器用于采集光电子鼻中的反应模块的测量数据,并通过主控板向终端发送测量数据;The photon counter is used to collect the measurement data of the reaction module in the photoelectronic nose and send the measurement data to the terminal through the main control board;
终端用于接收测量数据;The terminal is used to receive measurement data;
主控板还用于与光电子鼻中的注射泵、多通道切换阀和气体质量流量控制器电连接;The main control board is also used to electrically connect with the syringe pump, multi-channel switching valve and gas mass flow controller in the photoelectronic nose;
主控板用于获取第二控制参数并根据第二控制参数控制注射泵、多通道切换阀和气体质量流量控制器,注射泵、多通道切换阀和气体质量流量控制器通过主控板向终端反馈第一状态信息。The main control board is used to obtain the second control parameter and control the injection pump, the multi-channel switching valve and the gas mass flow controller according to the second control parameter. The injection pump, the multi-channel switching valve and the gas mass flow controller feed back the first state information to the terminal through the main control board.
在一种可能的实施方式中,本发明提供的光电子鼻的控制系统,光子计数器的数量为多个,且光子计数器与光电子鼻中的多个反应模块一一对应设置,光子计数器用于采集与光子计数器对应的反应模块的测量数据;In a possible implementation, in the control system of the photoelectronic nose provided by the present invention, the number of photon counters is multiple, and the photon counters are arranged in a one-to-one correspondence with the multiple reaction modules in the photoelectronic nose, and the photon counters are used to collect measurement data of the reaction modules corresponding to the photon counters;
或者,还包括移动模块,移动模块与光子计数器连接,移动模块用于控制光子计数器在光电子鼻中的各反应模块之间移动,以使光子计数器采集与光子计数器对应的反应模块的测量数据。Alternatively, it also includes a moving module, which is connected to the photon counter and is used to control the photon counter to move between the reaction modules in the photoelectron nose so that the photon counter collects measurement data of the reaction module corresponding to the photon counter.
在一种可能的实施方式中,本发明提供的光电子鼻的控制系统,第一控制参数包括采样时间、开机和关机中的至少一者;In a possible implementation manner, in the control system of the photoelectronic nose provided by the present invention, the first control parameter includes at least one of sampling time, power on and power off;
第二控制参数包括注射泵的初始化设置、注射速度设置、注射量设置和自动注射设置中的至少一者,第二控制参数还包括气体质量流量控制器的控制流量设置和测量当前流量设置中的至少一者,第二控制参数还包括多通道切换阀的改变切换速度设置和改变切换位置中的至少一者;The second control parameters include at least one of an initialization setting, an injection speed setting, an injection volume setting, and an automatic injection setting of the injection pump, the second control parameters also include at least one of a control flow setting and a measurement current flow setting of the gas mass flow controller, and the second control parameters also include at least one of a change switching speed setting and a change switching position setting of the multi-channel switching valve;
第一状态信息包括注射泵的注射泵状态和注射过程状态中的至少一者,第一状态信息还包括气体质量流量控制器的当前设定流量值和当前测量流量值中的至少一者,第一状态信息还包括多通道切换阀的设定切换速度和当前切换阀位置中的至少一者。The first state information includes at least one of the injection pump state and the injection process state of the injection pump, the first state information also includes at least one of the current set flow value and the current measured flow value of the gas mass flow controller, and the first state information also includes at least one of the set switching speed and the current switching valve position of the multi-channel switching valve.
在一种可能的实施方式中,本发明提供的光电子鼻的控制系统,主控板上具有第一接口和第二接口,主控板通过第一接口与光子计数器电连接,第二接口包括多个子接口,光电子鼻中的注射泵、多通道切换阀和气体质量流量控制器分别通过不同子接口与主控板电连接;In a possible implementation, the control system of the photoelectronic nose provided by the present invention has a first interface and a second interface on a main control board, the main control board is electrically connected to the photon counter through the first interface, the second interface includes a plurality of sub-interfaces, and the injection pump, the multi-channel switching valve and the gas mass flow controller in the photoelectronic nose are electrically connected to the main control board through different sub-interfaces respectively;
移动模块通过子接口与主控板电连接;The mobile module is electrically connected to the main control board via the sub-interface;
终端用于设置第三控制参数,主控板用于获取第三控制参数并根据第三控制参数控制移动模块,移动模块通过主控板向终端反馈第二状态信息。The terminal is used to set the third control parameter, the main control board is used to obtain the third control parameter and control the mobile module according to the third control parameter, and the mobile module feeds back the second state information to the terminal through the main control board.
在一种可能的实施方式中,本发明提供的光电子鼻的控制系统,第三控制参数包括移动模块的设定移动速度、模块归零和设定移动位置中的至少一者,第二状态信息为移动模块否归零和移动速度中的至少一者。In a possible implementation, in the control system of the photoelectric nose provided by the present invention, the third control parameter includes at least one of a set moving speed of the moving module, module zeroing, and a set moving position, and the second state information is at least one of whether the moving module is zeroed and the moving speed.
在一种可能的实施方式中,本发明提供的光电子鼻的控制系统,还包括多个温度控制模块,温度控制模块与子接口一一对应电连接;In a possible implementation, the control system of the optoelectronic nose provided by the present invention further includes a plurality of temperature control modules, and the temperature control modules are electrically connected to the sub-interfaces in a one-to-one correspondence;
终端用于设置第四控制参数和发送查询指令,主控板用于获取第四控制参数并根据第四控制参数控制温度控制模块,主控板还用于通过发送查询指令查询温度控制模块的工作状态;The terminal is used to set the fourth control parameter and send a query instruction, the main control board is used to obtain the fourth control parameter and control the temperature control module according to the fourth control parameter, and the main control board is also used to query the working status of the temperature control module by sending a query instruction;
反应模块为光传感器,温度控制模块用于与光传感器一一对应连接,温度控制模块用于根据第四控制参数控制与温度控制模块连接的光传感器的工作温度,温度控制模块通过主控板向终端反馈第三状态信息。The reaction module is a light sensor, the temperature control module is used to be connected to the light sensor in a one-to-one correspondence, the temperature control module is used to control the working temperature of the light sensor connected to the temperature control module according to the fourth control parameter, and the temperature control module feeds back the third state information to the terminal through the main control board.
在一种可能的实施方式中,本发明提供的光电子鼻的控制系统,温度控制模块包括加热单元和温度控制单元,加热单元用于加热反应模块,温度控制单元与加热单元电连接,以控制加热单元的加热温度。In a possible embodiment, in the control system of the photoelectronic nose provided by the present invention, the temperature control module includes a heating unit and a temperature control unit, the heating unit is used to heat the reaction module, and the temperature control unit is electrically connected to the heating unit to control the heating temperature of the heating unit.
在一种可能的实施方式中,本发明提供的光电子鼻的控制系统,第四控制参数包括温度控制模块的设定目标温度和设定温度控制参数中的至少一者;In a possible implementation manner, in the control system of the photoelectronic nose provided by the present invention, the fourth control parameter includes at least one of a set target temperature and a set temperature control parameter of the temperature control module;
第三状态信息为温度控制模块的目标温度、当前温度和温度控制参数中的至少一者;The third state information is at least one of a target temperature, a current temperature and a temperature control parameter of the temperature control module;
查询指令包括查看当前温度、查看目标温度和查看温度控制参数中的至少一者。The query instruction includes at least one of checking the current temperature, checking the target temperature, and checking the temperature control parameters.
在一种可能的实施方式中,本发明提供的光电子鼻的控制系统,还包括电源开关继电器、等离子发生器和水冷泵,等离子发生器和水冷泵均与电源开关继电器电连接,等离子发生器用于增强光传感器的信号,水冷泵用于冷却光子计数器,主控板上具有第三接口,主控板通过第三接口与电源开关继电器电连接;In a possible implementation, the control system of the photoelectronic nose provided by the present invention further includes a power switch relay, a plasma generator and a water cooling pump, wherein the plasma generator and the water cooling pump are both electrically connected to the power switch relay, the plasma generator is used to enhance the signal of the light sensor, the water cooling pump is used to cool the photon counter, and a third interface is provided on the main control board, and the main control board is electrically connected to the power switch relay through the third interface;
终端用于发送开闭指令,主控板用于根据开闭指令控制电源开关继电器的开闭,以在电源开关继电器打开时,等离子发生器和水冷泵均打开,电源开关继电器关闭时,等离子发生器和水冷泵均关闭。The terminal is used to send opening and closing instructions, and the main control board is used to control the opening and closing of the power switch relay according to the opening and closing instructions, so that when the power switch relay is turned on, the plasma generator and the water cooling pump are both turned on, and when the power switch relay is turned off, the plasma generator and the water cooling pump are both turned off.
本发明还提供了一种光电子鼻,包括光电子鼻本体和与光电子鼻本体电连接的上述光电子鼻的控制系统。The present invention also provides a photoelectronic nose, comprising a photoelectronic nose body and a control system of the photoelectronic nose electrically connected to the photoelectronic nose body.
本发明提供的光电子鼻的控制系统和光电子鼻,光电子鼻的控制系统通过终端设置第一控制参数和第二控制参数,主控板获取第一控制参数并根据第一控制参数控制光子计数器,主控板获取第二控制参数并根据第二控制参数控制注射泵、多通道切换阀和气体质量流量控制器,光子计数器通过主控板向终端发送测量数据,注射泵、多通道切换阀和气体质量流量控制器通过主控板向终端反馈第一状态信息,由此,通过在终端上进行操作即可对光子计数器、注射泵、多通道切换阀和气体质量流量控制器进行控制,在终端上即可获得光子计数器的测量数据和注射泵、多通道切换阀和气体质量流量控制器的第一状态信息,从而解决了现有技术中光电子鼻操作复杂的问题。The control system of the photoelectronic nose and the photoelectronic nose provided by the present invention, the control system of the photoelectronic nose sets a first control parameter and a second control parameter through a terminal, the main control board obtains the first control parameter and controls the photon counter according to the first control parameter, the main control board obtains the second control parameter and controls the injection pump, the multi-channel switching valve and the gas mass flow controller according to the second control parameter, the photon counter sends measurement data to the terminal through the main control board, the injection pump, the multi-channel switching valve and the gas mass flow controller feed back first status information to the terminal through the main control board, thereby, the photon counter, the injection pump, the multi-channel switching valve and the gas mass flow controller can be controlled by operating on the terminal, and the measurement data of the photon counter and the first status information of the injection pump, the multi-channel switching valve and the gas mass flow controller can be obtained on the terminal, thereby solving the problem of complex operation of the photoelectronic nose in the prior art.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following briefly introduces the drawings required for use in the embodiments or the description of the prior art. Obviously, the drawings described below are some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1为本发明实施例提供的光电子鼻的控制系统的结构示意图;FIG1 is a schematic diagram of the structure of a control system of an optoelectronic nose provided in an embodiment of the present invention;
图2为本发明实施例提供的光电子鼻的控制系统和光电子鼻本体的连接示意图;FIG2 is a schematic diagram showing the connection between the control system of the optoelectronic nose and the optoelectronic nose body provided in an embodiment of the present invention;
图3是本发明实施例提供的光电子鼻的结构示意图。FIG3 is a schematic diagram of the structure of the optoelectronic nose provided in an embodiment of the present invention.
附图标记说明:Description of reference numerals:
100-光电子鼻的控制系统;100- Control system of optoelectronic nose;
110-终端;110-terminal;
120-主控板;121-第一接口;122-第二接口;1221-子接口;123-第三接口;120-main control board; 121-first interface; 122-second interface; 1221-sub-interface; 123-third interface;
130-光子计数器;130-photon counter;
140-移动模块;140-mobile module;
150-温度控制模块;150-temperature control module;
160-电源开关继电器;160-power switch relay;
170-等离子发生器;170-Plasma generator;
180-水冷泵;180-water cooling pump;
200-光电子鼻本体;200-photoelectronic nose body;
210-反应模块;210-reaction module;
220-注射泵;220-syringe pump;
230-多通道切换阀;230-Multi-channel switching valve;
240-气体质量流量控制器;240-Gas mass flow controller;
A-载气;A-carrier gas;
B-被测气体;B- measured gas;
C-废气。C- Exhaust gas.
具体实施方式DETAILED DESCRIPTION
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the embodiments of the present invention clearer, the technical solution in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以使固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。In the description of this application, it should be noted that, unless otherwise clearly specified and limited, the terms "installed", "connected", and "connected" should be understood in a broad sense, for example, it can be a fixed connection, or it can be an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements. For ordinary technicians in this field, the specific meanings of the above terms in this application can be understood according to specific circumstances.
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of the present application, it should be understood that the terms "upper", "lower", "front", "back", "vertical", "horizontal", "top", "bottom", "inside", "outside", etc., indicating orientations or positional relationships, are based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present application and simplifying the description, and do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be understood as a limitation on the present application.
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。The terms "first", "second", "third" (if any) in the specification and claims of this application and the above-mentioned drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence. It should be understood that the numbers used in this way can be interchanged where appropriate, so that the embodiments of the application described herein can be implemented in an order other than those illustrated or described herein, for example.
此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或维护工具不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或维护工具固有的其它步骤或单元。In addition, the terms "comprises," "comprising," and "having," and any variations thereof, are intended to cover a non-exclusive inclusion, for example, a process, method, system, product, or service tool that includes a series of steps or units is not necessarily limited to those steps or units explicitly listed, but may include other steps or units not explicitly listed or inherent to such process, method, product, or service tool.
肺癌患者呼吸气中的VOC成分与普通人的存在差异,通过对比呼吸气中的VOC成分可以实现肺癌的诊断。The VOC components in the breath of lung cancer patients are different from those of ordinary people. Lung cancer can be diagnosed by comparing the VOC components in the breath.
现有的呼吸气VOC检测设备包括离子迁移谱、气相色谱-质谱和质子转移反应质谱,这些检测设备检测结果准确,但是设备昂贵、结构复杂并且对设备的操作要求较高。Existing respiratory VOC detection equipment includes ion mobility spectrometry, gas chromatography-mass spectrometry and proton transfer reaction mass spectrometry. These detection devices have accurate detection results, but the equipment is expensive, complex in structure and has high requirements for equipment operation.
电子鼻是利用气体传感器阵列的响应图案来识别气味的电子系统。电子鼻识别气味的主要机理是电子鼻的传感器阵列中的每个传感器对被测气体都有不同的灵敏度,例如,一号气体可在某个传感器上产生高响应,而对其他传感器则是低响应,对二号气体产生高响应的传感器对一号气体则不敏感,由此,整个传感器阵列对不同成分气体的响应图案不同,电子鼻能根据传感器的响应图案来识别气味。The electronic nose is an electronic system that uses the response pattern of a gas sensor array to identify odors. The main mechanism by which the electronic nose identifies odors is that each sensor in the sensor array of the electronic nose has different sensitivities to the gas being measured. For example, gas No. 1 may produce a high response on a certain sensor, but a low response on other sensors. The sensor that produces a high response to gas No. 2 is not sensitive to gas No. 1. As a result, the entire sensor array has different response patterns to different component gases, and the electronic nose can identify odors based on the sensor's response pattern.
目前应用广泛的传感器阵列包括金属氧化物型传感器阵列和电化学型传感器阵列,但是这些传感器阵列的检测灵敏度较低,而呼吸气中VOC的含量降低,这些传感器无法满足呼吸气中的VOC含量检测要求。Currently, widely used sensor arrays include metal oxide sensor arrays and electrochemical sensor arrays, but these sensor arrays have low detection sensitivity. As the VOC content in the breath decreases, these sensors cannot meet the requirements for detecting the VOC content in the breath.
光传感器以催化化学发光为原理,具体的,催化化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,X、Y两种物质发生化学反应生成Z物质,反应释放的能量被Z物质的分子吸收并跃迁至激发态Z*,处于激发的Z*在回到基态的过程中产生光辐射,由此将化学能转化为光能。光传感器具有更高的检测灵敏度,以光传感器阵列为基础的光电子鼻可以用于检呼吸气中的VOC检测。The optical sensor is based on the principle of catalytic chemiluminescence. Specifically, catalytic chemiluminescence is a light radiation phenomenon that accompanies a substance during a chemical reaction. Substances X and Y undergo a chemical reaction to generate substance Z. The energy released by the reaction is absorbed by the molecules of substance Z and transitions to an excited state Z*. The excited Z* generates light radiation in the process of returning to the ground state, thereby converting chemical energy into light energy. Optical sensors have higher detection sensitivity, and an optoelectronic nose based on an optical sensor array can be used to detect VOCs in breath.
光电子鼻包括多个光传感器,每个光传感器中具有不同的催化涂层,从而与呼吸气中不同组分产生反应,得出反应数据,需要使用专用的分析仪器对反应数据进行采集和分析。光电子鼻还包括注射泵、流量计、切换阀等装置,各装置均有需要调节的参数,在需要更改其中一个装置或者多个装置的参数时,需要操作人员在每个装置内逐一进行更改,并且各装置的工作状态无法进行实时监控。The photoelectric nose includes multiple light sensors, each of which has a different catalytic coating, which reacts with different components in the breath to obtain reaction data, which requires the use of dedicated analytical instruments to collect and analyze the reaction data. The photoelectric nose also includes devices such as syringe pumps, flow meters, and switching valves. Each device has parameters that need to be adjusted. When the parameters of one or more devices need to be changed, the operator needs to change them one by one in each device, and the working status of each device cannot be monitored in real time.
使用现有的光电子鼻进行呼吸气VOC检测时操作复杂。The operation of using existing photoelectric noses to detect VOC in breath is complicated.
基于此,本发明提供了一种光电子鼻的控制系统和光电子鼻,光电子鼻的控制系统通过在终端上进行操作即可对光子计数器、注射泵、多通道切换阀和气体质量流量控制器进行控制,在终端上即可获得光子计数器的测量数据和注射泵、多通道切换阀和气体质量流量控制器的第一状态信息,从而解决了现有技术中光电子鼻操作复杂的问题。Based on this, the present invention provides a control system of a photoelectronic nose and a photoelectronic nose. The control system of the photoelectronic nose can control a photon counter, an injection pump, a multi-channel switching valve and a gas mass flow controller by operating on a terminal. The measurement data of the photon counter and the first state information of the injection pump, the multi-channel switching valve and the gas mass flow controller can be obtained on the terminal, thereby solving the problem of complex operation of the photoelectronic nose in the prior art.
图1为本发明实施例提供的光电子鼻的控制系统的结构示意图;图2为本发明实施例提供的光电子鼻的控制系统和光电子鼻本体的连接示意图;图3是本发明实施例提供的光电子鼻的结构示意图。如图1至图3所示,本发明提供的光电子鼻的控制系统100,包括终端110、主控板120和光子计数器130,终端110与主控板120电连接,光子计数器130与主控板120电连接,终端110用于设置第一控制参数和第二控制参数,主控板120用于获取第一控制参数并根据第一控制参数控制光子计数器130,光子计数器130用于采集光电子鼻中的反应模块210的测量数据,并通过主控板120向终端110发送测量数据,终端110用于接收测量数据。FIG1 is a schematic diagram of the structure of the control system of the photoelectronic nose provided in an embodiment of the present invention; FIG2 is a schematic diagram of the connection between the control system of the photoelectronic nose provided in an embodiment of the present invention and the photoelectronic nose body; FIG3 is a schematic diagram of the structure of the photoelectronic nose provided in an embodiment of the present invention. As shown in FIG1 to FIG3, the control system 100 of the photoelectronic nose provided in the present invention includes a terminal 110, a main control board 120 and a photon counter 130, the terminal 110 is electrically connected to the main control board 120, the photon counter 130 is electrically connected to the main control board 120, the terminal 110 is used to set a first control parameter and a second control parameter, the main control board 120 is used to obtain the first control parameter and control the photon counter 130 according to the first control parameter, the photon counter 130 is used to collect the measurement data of the reaction module 210 in the photoelectronic nose, and send the measurement data to the terminal 110 through the main control board 120, and the terminal 110 is used to receive the measurement data.
主控板120还用于与光电子鼻中的注射泵220、多通道切换阀230和气体质量流量控制器240电连接,主控板120用于获取第二控制参数并根据第二控制参数控制注射泵220、多通道切换阀230和气体质量流量控制器240,注射泵220、多通道切换阀230和气体质量流量控制器240通过主控板120向终端110反馈第一状态信息。The main control board 120 is also used to electrically connect to the injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 in the photoelectronic nose. The main control board 120 is used to obtain the second control parameter and control the injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 according to the second control parameter. The injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 feedback the first status information to the terminal 110 through the main control board 120.
光电子鼻中具有反应模块210,反应模块210用于测量呼吸气中的VOC成分,反应模块210可以通过催化化学发光将呼吸气中的VOC成分转化为可计数的光子。光子计数器130是一种光脉冲检测设备,光子计数器130可以采集反应模块210中产生的光子并将光子转化为测量数据,并在规定的采样时间内将测量数据发送给主控板120,通过主控板120发送给终端110。The photoelectronic nose has a reaction module 210, which is used to measure the VOC components in the breath. The reaction module 210 can convert the VOC components in the breath into countable photons through catalytic chemiluminescence. The photon counter 130 is a light pulse detection device. The photon counter 130 can collect the photons generated in the reaction module 210 and convert the photons into measurement data, and send the measurement data to the main control board 120 within the specified sampling time, and send it to the terminal 110 through the main control board 120.
具体的,反应模块210首先测量正常人的呼吸气中的VOC,光子计数器130通过采集光子获得正常人的测量数据,并通过主控板120发送给终端110,终端110将正常人的测量数据作为标准数据。反应模块210然后测量需要诊断人员的呼吸气中的VOC,光子计数器130通过采集光子获得需要诊断人员的测量数据,并通过主控板120发送给终端110,在终端110上对比测量数据与标准数据,即可为用户提供诊断的依据。Specifically, the reaction module 210 first measures the VOC in the breath of a normal person, and the photon counter 130 obtains the measurement data of the normal person by collecting photons, and sends it to the terminal 110 through the main control board 120. The terminal 110 uses the measurement data of the normal person as standard data. The reaction module 210 then measures the VOC in the breath of the person who needs to be diagnosed, and the photon counter 130 obtains the measurement data of the person who needs to be diagnosed by collecting photons, and sends it to the terminal 110 through the main control board 120. The terminal 110 compares the measurement data with the standard data to provide the user with a basis for diagnosis.
在本实施例中,终端110可以为具有显示屏的电子设备,例如终端110可以为计算机或手机,计算机或手机的显示屏可以提供光电子鼻的人机交互界面,用户可以通过终端110的人机交互界面设置第一控制参数。终端110可以通过USB、串口或者局域网与主控板120电连接。In this embodiment, the terminal 110 may be an electronic device with a display screen, for example, the terminal 110 may be a computer or a mobile phone, the display screen of the computer or the mobile phone may provide a human-machine interaction interface of the optoelectronic nose, and the user may set the first control parameter through the human-machine interaction interface of the terminal 110. The terminal 110 may be electrically connected to the main control board 120 via a USB, a serial port or a local area network.
主控板120可以是单片机,主控板120获取终端110设置的第一控制参数。主控板120上具有多个接口,主控板120通过其中一个或多个接口与光子计数器130连接,从而根据第一控制参数对光子计数器130进行相应的控制。具体的,在需要修改光子计数器130中的内置参数时,可以在终端110的人机交互界面上设置第一控制参数,通过主控板120发送给光子计数器130即可完成光子计数器130的内置参数修改。而无需在光子计数器130内部进行操作。The main control board 120 may be a single chip microcomputer, and the main control board 120 obtains the first control parameter set by the terminal 110. The main control board 120 has multiple interfaces, and the main control board 120 is connected to the photon counter 130 through one or more of the interfaces, so as to control the photon counter 130 accordingly according to the first control parameter. Specifically, when it is necessary to modify the built-in parameters in the photon counter 130, the first control parameter can be set on the human-computer interaction interface of the terminal 110, and the built-in parameter modification of the photon counter 130 can be completed by sending it to the photon counter 130 through the main control board 120. There is no need to operate inside the photon counter 130.
下面对注射泵220、多通道切换阀230和气体质量流量控制器240的结构进行说明。The structures of the syringe pump 220 , the multi-channel switching valve 230 , and the gas mass flow controller 240 are described below.
注射泵220是用于注入被测气体B的自动化机电设备,注射泵220包括步进电机、注射器腔、电磁阀(电磁阀包括进样电磁阀和注射电磁阀)、控制电路板。在通过注射泵220注入被测气体B时,在步进电机的作用下,首先打开进样电磁阀,将样品袋中气体吸入注射器腔,随后打开注射电磁阀,将被测气体B注入光电子鼻的气路中,被测气体B的流动过程是在控制电路板的控制下完成的。The syringe pump 220 is an automated electromechanical device for injecting the measured gas B. The syringe pump 220 includes a stepper motor, a syringe chamber, a solenoid valve (the solenoid valve includes an injection solenoid valve and an injection solenoid valve), and a control circuit board. When the measured gas B is injected through the syringe pump 220, the injection solenoid valve is first opened under the action of the stepper motor to suck the gas in the sample bag into the syringe chamber, and then the injection solenoid valve is opened to inject the measured gas B into the gas path of the photoelectronic nose. The flow process of the measured gas B is completed under the control of the control circuit board.
多通道切换阀230是用于多通道气路切换的机电设备,多通道切换阀230包括控制电路板、动子、入口和多个出口,多通道切换阀230的入口与注射泵220连接,在控制电路板的控制下,多通道切换阀230的动子转动,以使出口分别与不同的反应模块210连接,从而将被测气体B分别注入到不同的反应模块210中。The multi-channel switching valve 230 is an electromechanical device used for multi-channel gas circuit switching. The multi-channel switching valve 230 includes a control circuit board, a mover, an inlet and multiple outlets. The inlet of the multi-channel switching valve 230 is connected to the injection pump 220. Under the control of the control circuit board, the mover of the multi-channel switching valve 230 rotates so that the outlets are respectively connected to different reaction modules 210, thereby injecting the measured gas B into different reaction modules 210 respectively.
在注入被测气体B时,还需要空气作为载体,气体质量流量控制器240是用于对空气的质量流量进行测量和控制的机电设备。气体质量流量控制器240包括控制电路板和质量流量控制单元,在控制电路板的控制下,质量流量控制单元调节空气的质量流量,经过气体质量流量控制器240的具有一定质量流量的空气与被测气体B混合后,通过多通道切换阀230进入不同的反应模块210中。When injecting the measured gas B, air is also required as a carrier. The gas mass flow controller 240 is an electromechanical device for measuring and controlling the mass flow of air. The gas mass flow controller 240 includes a control circuit board and a mass flow control unit. Under the control of the control circuit board, the mass flow control unit adjusts the mass flow of air. After the air with a certain mass flow through the gas mass flow controller 240 is mixed with the measured gas B, it enters different reaction modules 210 through the multi-channel switching valve 230.
主控板120根据终端110所产生的第二控制参数来分别对注射泵220、多通道切换阀230和气体质量流量控制器240进行控制。注射泵220、多通道切换阀230和气体质量流量控制器240根据各自的工作状况产生第一状态信息,并通过各自的控制电路板发送给主控板120,通过主控板120反馈给终端110。The main control board 120 controls the injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 respectively according to the second control parameter generated by the terminal 110. The injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 generate first state information according to their respective working conditions, and send it to the main control board 120 through their respective control circuit boards, and then feed it back to the terminal 110 through the main control board 120.
本发明提供的光电子鼻的控制系统,通过终端110设置第一控制参数和第二控制参数,主控板120获取第一控制参数并根据第一控制参数控制光子计数器130,主控板120获取第二控制参数并根据第二控制参数控制注射泵220、多通道切换阀230和气体质量流量控制器240,光子计数器130通过主控板120向终端110发送测量数据,注射泵220、多通道切换阀230和气体质量流量控制器240通过主控板120向终端110反馈第一状态信息,由此,通过在终端110上进行操作即可对光子计数器130、注射泵220、多通道切换阀230和气体质量流量控制器240进行控制,在终端110上即可获得光子计数器130的测量数据和注射泵220、多通道切换阀230和气体质量流量控制器240的第一状态信息,从而解决了现有技术中光电子鼻操作复杂的问题。The control system of the photoelectric nose provided by the present invention sets a first control parameter and a second control parameter through a terminal 110, the main control board 120 obtains the first control parameter and controls the photon counter 130 according to the first control parameter, the main control board 120 obtains the second control parameter and controls the injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 according to the second control parameter, the photon counter 130 sends measurement data to the terminal 110 through the main control board 120, and the injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 feed back first state information to the terminal 110 through the main control board 120, thereby, the photon counter 130, the injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 can be controlled by operating on the terminal 110, and the measurement data of the photon counter 130 and the first state information of the injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 can be obtained on the terminal 110, thereby solving the problem of complex operation of the photoelectric nose in the prior art.
在一些实施例中,为了提高光电子鼻的检测效率,光子计数器130的数量为多个,且光子计数器130与光电子鼻中的多个反应模块210一一对应设置,光子计数器130用于采集与光子计数器对应的反应模块210的光子并转化为测量数据。In some embodiments, in order to improve the detection efficiency of the photoelectronic nose, there are multiple photon counters 130, and the photon counters 130 are arranged in a one-to-one correspondence with the multiple reaction modules 210 in the photoelectronic nose. The photon counters 130 are used to collect photons from the reaction modules 210 corresponding to the photon counters and convert them into measurement data.
光子计数器130将所获得的对应的反应模块210中的测量数据发送给主控板120,主控板120对数据进行分析处理并发送给终端110,终端110通过对比测量数据与标准数据,即可为用户提供诊断的依据。The photon counter 130 sends the obtained measurement data in the corresponding reaction module 210 to the main control board 120, and the main control board 120 analyzes and processes the data and sends it to the terminal 110. The terminal 110 can provide a diagnosis basis for the user by comparing the measurement data with the standard data.
在另一些实施例中,由于光子计数器130的成本较高,光子计数器130的数量少于反应模块210的数量,因此,光电子鼻的控制系统100中还可以包括移动模块140,移动模块140与光子计数器130连接,移动模块140用于控制光子计数器130在光电子鼻中的各反应模块210之间移动,以使光子计数器130采集与光子计数器130对应的反应模块210的测量数据。In other embodiments, since the cost of the photon counter 130 is relatively high and the number of the photon counters 130 is less than the number of the reaction modules 210, the control system 100 of the photoelectron nose may further include a mobile module 140, which is connected to the photon counter 130. The mobile module 140 is used to control the photon counter 130 to move between the reaction modules 210 in the photoelectron nose so that the photon counter 130 collects measurement data of the reaction module 210 corresponding to the photon counter 130.
可以设置一个或者少数的光子计数器130,移动模块140可以设置夹持装置,夹持装置与光子计数器130连接,移动模块140与主控板120电连接,移动模块140在主控板120的控制下,使光子计数器130在各反应模块210之间移动,以获得测量数据。One or a few photon counters 130 can be set up, and the mobile module 140 can be provided with a clamping device, which is connected to the photon counter 130. The mobile module 140 is electrically connected to the main control board 120. Under the control of the main control board 120, the mobile module 140 moves the photon counter 130 between the reaction modules 210 to obtain measurement data.
具体的,光子计数器130移动至其中一个反应模块210处,以获得与这个反应模块210对应的测量数据,并将测量数据存储在主控板120中,光子计数器130移动至另一个反应模块210处,以获得与这个反应模块210对应的测量数据,并将测量处理存储在主控板120中,移动模块140持续移动光子计数器130直至所有的反应模块210的测量数据采集完成,主控板120对测量数据进行分析处理并发送给终端110,终端110通过对比测量数据与标准数据,即可为用户提供诊断的依据。Specifically, the photon counter 130 moves to one of the reaction modules 210 to obtain measurement data corresponding to this reaction module 210, and stores the measurement data in the main control board 120. The photon counter 130 moves to another reaction module 210 to obtain measurement data corresponding to this reaction module 210, and stores the measurement processing in the main control board 120. The moving module 140 continues to move the photon counter 130 until the measurement data collection of all the reaction modules 210 is completed. The main control board 120 analyzes and processes the measurement data and sends it to the terminal 110. The terminal 110 can provide a basis for diagnosis to the user by comparing the measurement data with the standard data.
第一控制参数用于对光子计数器130进行控制,第一控制参数包括采样时间、开机和关机中的至少一者。The first control parameter is used to control the photon counter 130 , and the first control parameter includes at least one of sampling time, power on, and power off.
采样时间、开机和关机均属于光子计数器130的内置参数,通过在终端110的人机交互界面设置第一控制参数,即可对光子计数器130的内置参数进行更改。The sampling time, power on and power off are all built-in parameters of the photon counter 130 . By setting the first control parameter in the human-computer interaction interface of the terminal 110 , the built-in parameters of the photon counter 130 can be changed.
具体的,根据不同的被测气体B,可以选择将全部光子计数器130开机,以提高测量效率,也可以将一部分光子计数器130开机,一部分光子计数器130关机,以节省测量成本。此外,不同的测量气体在反应模块210中发生催化化学发光的时间也不同,因此,可以根据不同的测量气体设置光子计数器130不同采样时间,从而实现更精确的测量。Specifically, according to different measured gases B, all photon counters 130 may be turned on to improve measurement efficiency, or some photon counters 130 may be turned on and some photon counters 130 may be turned off to save measurement costs. In addition, different measurement gases have different times for catalytic chemiluminescence to occur in the reaction module 210, so different sampling times of the photon counters 130 may be set according to different measurement gases, thereby achieving more accurate measurement.
请继续参见图1和图2所示,主控板120上具有第一接口121和第二接口122,主控板120通过第一接口121与光子计数器130电连接,第二接口122包括多个子接口1221,光电子鼻中的注射泵220、多通道切换阀230和气体质量流量控制器240分别通过不同子接口1221与主控板120电连接。Please continue to refer to Figures 1 and 2. The main control board 120 has a first interface 121 and a second interface 122. The main control board 120 is electrically connected to the photon counter 130 through the first interface 121. The second interface 122 includes a plurality of sub-interfaces 1221. The injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 in the photoelectronic nose are electrically connected to the main control board 120 through different sub-interfaces 1221, respectively.
由于在光电子鼻的工作时间内,光子计数器130需要在设置的采样时间内定期向主控板120发送测量数据,为了保证光子计数器130和主控板120连接的稳定性以及数据发送的时效性,第一接口121与光子计数器130一一对应设置,第一接口121可以为RS232接口或者RS485接口。Since during the working time of the photoelectronic nose, the photon counter 130 needs to regularly send measurement data to the main control board 120 within the set sampling time, in order to ensure the stability of the connection between the photon counter 130 and the main control board 120 and the timeliness of data transmission, the first interface 121 is set one-to-one with the photon counter 130, and the first interface 121 can be an RS232 interface or an RS485 interface.
注射泵220、多通道切换阀230和气体质量流量控制器240中的控制电路板分别与子接口1221一一对应连接,并通过子接口1221与主控板120连接。The control circuit boards in the syringe pump 220 , the multi-channel switching valve 230 and the gas mass flow controller 240 are respectively connected to the sub-interfaces 1221 in a one-to-one correspondence, and are connected to the main control board 120 through the sub-interfaces 1221 .
第二接口122可以为RS485接口,第二接口122通过子接口1221与注射泵220、多通道切换阀230和气体质量流量控制器240中的控制电路板的连接方式为主从机的连接方式。The second interface 122 may be an RS485 interface, and the connection mode of the second interface 122 with the syringe pump 220 , the multi-channel switching valve 230 and the control circuit board in the gas mass flow controller 240 through the sub-interface 1221 is a master-slave connection mode.
具体的,注射泵220返回的第一状态信息中包含注射泵地址,主控板120根据注射泵地址来判断发送第一状态信息的装置为注射泵220。Specifically, the first status information returned by the syringe pump 220 includes the syringe pump address, and the main control board 120 determines that the device sending the first status information is the syringe pump 220 according to the syringe pump address.
气体质量流量控制器240返回的第一状态信息中包含气体质量流量控制器地址,主控板120根据气体质量流量控制器地址来判断发送第一状态信息的装置为来气体质量流量控制器240。The first state information returned by the gas mass flow controller 240 includes the gas mass flow controller address. The main control board 120 determines that the device sending the first state information is the gas mass flow controller 240 according to the gas mass flow controller address.
多通道切换阀230返回的第一状态信息中包含多通道切换阀地址,主控板120根据多通道切换阀地址来判断发送第一状态信息的装置为来多通道切换阀230。The first state information returned by the multi-channel switching valve 230 includes the multi-channel switching valve address. The main control board 120 determines that the device sending the first state information is the multi-channel switching valve 230 according to the multi-channel switching valve address.
主控板120发送第二控制参数时,在第二控制参数中设置第二控制参数地址,第二控制参数地址用于识别注射泵220、多通道切换阀230和气体质量流量控制器240中的一者,注射泵220、多通道切换阀230和气体质量流量控制器240中的控制电路板均接收第二控制参数,但是只有与第二控制参数地址匹配的装置才执行第二控制参数。When the main control board 120 sends the second control parameter, the second control parameter address is set in the second control parameter. The second control parameter address is used to identify one of the injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240. The control circuit boards in the injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 all receive the second control parameter, but only the device that matches the second control parameter address executes the second control parameter.
由此,注射泵220、多通道切换阀230和气体质量流量控制器240三者与主控板120使用主从机的连接方式,通过地址匹配,避免了注射泵220、多通道切换阀230和气体质量流量控制器240三者与主控板120进行通信时的信道混杂问题。Therefore, the injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 use a master-slave connection method with the main control board 120, and through address matching, the channel mixing problem when the injection pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 communicate with the main control board 120 is avoided.
由此,通过终端110的人机交互界面即可对注射泵220、多通道切换阀230和气体质量流量控制器240进行控制,而无需通过注射泵220、多通道切换阀230和气体质量流量控制器240各自的控制电路板进行设置。此外,通过终端110的人机交互界面可以根据第一状态信息来监控注射泵220、多通道切换阀230和气体质量流量控制器240的工作状况。Thus, the syringe pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 can be controlled through the human-machine interface of the terminal 110, without having to set them through the respective control circuit boards of the syringe pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240. In addition, the working conditions of the syringe pump 220, the multi-channel switching valve 230 and the gas mass flow controller 240 can be monitored according to the first state information through the human-machine interface of the terminal 110.
在本实施例中,第二控制参数包括注射泵220的初始化设置、注射速度设置、注射量设置和自动注射设置中的至少一者,第二控制参数还包括气体质量流量控制器240的控制流量设置和测量当前流量设置中的至少一者,第二控制参数还包括多通道切换阀230的改变切换速度设置和改变切换位置中的至少一者。In this embodiment, the second control parameters include at least one of the initialization setting, injection speed setting, injection volume setting and automatic injection setting of the injection pump 220, the second control parameters also include at least one of the control flow setting and the measurement current flow setting of the gas mass flow controller 240, and the second control parameters also include at least one of the change switching speed setting and the change switching position setting of the multi-channel switching valve 230.
第一状态信息包括注射泵220的注射泵状态和注射过程状态中的至少一者,第一状态信息还包括气体质量流量控制器240的当前设定流量值和当前测量流量值中的至少一者,第一状态信息还包括多通道切换阀230的设定切换速度和当前切换阀位置中的至少一者。The first state information includes at least one of the injection pump state and the injection process state of the injection pump 220, the first state information also includes at least one of the current set flow value and the current measured flow value of the gas mass flow controller 240, and the first state information also includes at least one of the set switching speed and the current switching valve position of the multi-channel switching valve 230.
首先,对与注射泵220相关的第二控制参数和第一状态信息进行说明。每次测量开始时,对注射泵220进行初始化设置,可以清除上一次测量时注射泵220的内置参数,以使注射泵220回到初始的工作状态,便于进行本次测量的参数设置。根据不同的被测气体B还需设置注射泵220的注射速度和注射量,此外,还可以将注射泵220设置成自动注射模式。这些设置均可以在终端110的人机交互界面上进行。根据注射泵220反馈的注射泵状态和注射过程状态,可以在终端110的人机交互界面上对注射泵220的工作状态进行实时监控。First, the second control parameter and the first state information related to the injection pump 220 are explained. At the beginning of each measurement, the injection pump 220 is initialized and set, and the built-in parameters of the injection pump 220 during the last measurement can be cleared so that the injection pump 220 returns to the initial working state, which is convenient for setting the parameters of this measurement. According to the different measured gases B, the injection speed and injection volume of the injection pump 220 need to be set. In addition, the injection pump 220 can also be set to automatic injection mode. These settings can be made on the human-computer interaction interface of the terminal 110. According to the injection pump status and injection process status fed back by the injection pump 220, the working status of the injection pump 220 can be monitored in real time on the human-computer interaction interface of the terminal 110.
然后,对与气体质量流量控制器240相关的第二控制参数和第一状态信息进行说明。可以针对不同的被测气体B来设置气体质量流量控制器240的不同流量,以使被测气体B在反应模块210中进行充足的反应。还可以对被测气体B的流量进行测量,确保当前设置流量与当前测量流量一致。当前设置流量与当前测量流量需作为第一状态信息通过主控板120反馈给终端110,以便于用于在终端110的人机交互界面及时进行调整。Then, the second control parameter and the first state information related to the gas mass flow controller 240 are described. Different flow rates of the gas mass flow controller 240 can be set for different measured gases B so that the measured gas B can be adequately reacted in the reaction module 210. The flow rate of the measured gas B can also be measured to ensure that the currently set flow rate is consistent with the currently measured flow rate. The currently set flow rate and the currently measured flow rate need to be fed back to the terminal 110 through the main control board 120 as the first state information, so as to be used for timely adjustment in the human-computer interaction interface of the terminal 110.
其次,对与多通道切换阀230相关的第二控制参数和第一状态信息进行说明。可以通过设置第二控制参数直接改变多通道切换阀230的位置,另外,根据多通道切换阀230中不同的动子,可以设置多通道切换阀230的不同切换速度。多通道切换阀230的设定切换速度和当前切换阀位置作为第一状态信息通过主控板120反馈给终端110,从而通过终端110的人机交互界面对多通道切换阀230进行实时监控。Secondly, the second control parameter and the first state information related to the multi-channel switching valve 230 are described. The position of the multi-channel switching valve 230 can be directly changed by setting the second control parameter. In addition, different switching speeds of the multi-channel switching valve 230 can be set according to different movers in the multi-channel switching valve 230. The set switching speed and the current switching valve position of the multi-channel switching valve 230 are fed back to the terminal 110 through the main control board 120 as the first state information, so that the multi-channel switching valve 230 is monitored in real time through the human-computer interaction interface of the terminal 110.
请继续参见图1和图2所示,移动模块140通过子接口1221与主控板120电连接;终端110用于设置第三控制参数,主控板120用于获取第三控制参数并根据第三控制参数控制移动模块140,移动模块140通过主控板120向终端110反馈第二状态信息。Please continue to refer to Figures 1 and 2. The mobile module 140 is electrically connected to the main control board 120 through the sub-interface 1221; the terminal 110 is used to set the third control parameter, the main control board 120 is used to obtain the third control parameter and control the mobile module 140 according to the third control parameter, and the mobile module 140 feeds back the second status information to the terminal 110 through the main control board 120.
移动模块140内的控制电路板也通过子接口1221与主控板120电连接。第三控制参数中包括第三控制参数地址,第三控制参数地址用于识别移动模块140,移动模块140中的控制电路板接受第三控制参数并执行第三控制参数。The control circuit board in the mobile module 140 is also electrically connected to the main control board 120 through the sub-interface 1221. The third control parameter includes a third control parameter address, which is used to identify the mobile module 140. The control circuit board in the mobile module 140 receives and executes the third control parameter.
移动模块140的第二状态信息也通过主控板120发送至终端110,由此,通过终端110的人机交互界面即可对移动模块140的内置参数进行更改,并且可以监控移动模块140的工作状态。The second status information of the mobile module 140 is also sent to the terminal 110 through the main control board 120 , so that the built-in parameters of the mobile module 140 can be changed through the human-computer interaction interface of the terminal 110 , and the working status of the mobile module 140 can be monitored.
在本实施例中,第三控制参数包括移动模块的设定移动速度、模块归零和设定移动位置中的至少一者,第二状态信息为移动模块否归零和移动速度中的至少一者。In this embodiment, the third control parameter includes at least one of a set moving speed, module zeroing and a set moving position of the moving module, and the second state information is at least one of whether the moving module is zeroed and the moving speed.
通过设定移动模块140的移动速度和移动位置可以通过移动模块140精确的移动的光子计数器130,使得光子计数器130及时采集测量数据。通过使移动模块140归零,可以对移动模块140进行校准,确保下次使用时的精度。By setting the moving speed and moving position of the moving module 140, the photon counter 130 can be accurately moved by the moving module 140, so that the photon counter 130 can collect measurement data in time. By returning the moving module 140 to zero, the moving module 140 can be calibrated to ensure accuracy when used next time.
通过移动模块否归零和移动速度可以及时判断移动模块140的工作状态,给用户准确及时的反馈。The working status of the mobile module 140 can be judged in time by whether the mobile module has returned to zero and the moving speed, giving the user accurate and timely feedback.
请继续参见图1和图2所示,光电子鼻的控制系统100还包括多个温度控制模块150,温度控制模块150与子接口1221一一对应电连接。Please continue to refer to FIG. 1 and FIG. 2 , the control system 100 of the optoelectronic nose further includes a plurality of temperature control modules 150 , and the temperature control modules 150 are electrically connected to the sub-interfaces 1221 in a one-to-one correspondence.
终端110用于设置第四控制参数和发送查询指令,主控板120用于获取第四控制参数并根据第四控制参数控制温度控制模块150,主控板120还用于通过发送查询指令查询温度控制模块150的工作状态。The terminal 110 is used to set the fourth control parameter and send a query instruction, the main control board 120 is used to obtain the fourth control parameter and control the temperature control module 150 according to the fourth control parameter, and the main control board 120 is also used to query the working status of the temperature control module 150 by sending a query instruction.
反应模块210为光传感器,温度控制模块150用于与光传感器一一对应连接,温度控制模块150用于根据第四控制参数控制与温度控制模块150连接的光传感器的工作温度,温度控制模块150通过主控板120向终端110反馈第三状态信息。The reaction module 210 is a light sensor, and the temperature control module 150 is used to be connected one-to-one with the light sensor. The temperature control module 150 is used to control the working temperature of the light sensor connected to the temperature control module 150 according to the fourth control parameter. The temperature control module 150 feeds back the third state information to the terminal 110 through the main control board 120.
温度控制模块150可以是单片机,温度控制模块150可以控制光传感器中的反应温度。The temperature control module 150 may be a single chip microcomputer, and the temperature control module 150 may control the reaction temperature in the light sensor.
每个光传感器中发生反应所需的温度不同,因此每个光传感器对应一个温度控制模块150。温度控制模块150通过子接口1221与主控板120电连接,通过终端110的人机交互界面即可设置用于控制温度控制模块150的第四控制参数。第四控制参数包括第四控制参数地址,第四控制参数地址用于识与不同子接口1221连接的温度控制模块150,多个温度控制模块150均接收第四控制参数,但是只有与第四控制参数地址匹配的温度控制模块150才执行第四控制参数,以控制不同的光传感器的温度。The temperature required for the reaction to occur in each light sensor is different, so each light sensor corresponds to a temperature control module 150. The temperature control module 150 is electrically connected to the main control board 120 through the sub-interface 1221, and the fourth control parameter for controlling the temperature control module 150 can be set through the human-computer interaction interface of the terminal 110. The fourth control parameter includes a fourth control parameter address, and the fourth control parameter address is used to identify the temperature control module 150 connected to different sub-interfaces 1221. Multiple temperature control modules 150 all receive the fourth control parameter, but only the temperature control module 150 that matches the fourth control parameter address executes the fourth control parameter to control the temperature of different light sensors.
终端110还用于发送查询指令,以查询温度控制模块150的工作状态。温度控制模块150识别查询指令的方式与识别第四控制参数的方式相同,在此不再一一赘述。The terminal 110 is also used to send a query instruction to query the working state of the temperature control module 150. The temperature control module 150 identifies the query instruction in the same manner as the fourth control parameter, which will not be described in detail here.
第三状态信息中包括与不同温度控制模块150对应的第三状态信息地址,主控板120根据第三状态信息地址来判断发送第三状态信息的温度控制模块150,从而判断对应的温度控制模块150的工作条件。The third state information includes third state information addresses corresponding to different temperature control modules 150 . The main control board 120 determines the temperature control module 150 that sends the third state information according to the third state information address, thereby determining the working condition of the corresponding temperature control module 150 .
在本实施例中,温度控制模块150包括加热单元和温度控制单元,加热单元用于加热反应模块210,温度控制单元与加热单元电连接,以控制加热单元的加热温度。In this embodiment, the temperature control module 150 includes a heating unit and a temperature control unit. The heating unit is used to heat the reaction module 210. The temperature control unit is electrically connected to the heating unit to control the heating temperature of the heating unit.
具体的,加热单元将PWM(Pulse Width Modulation,脉冲宽度调制)加热电压提供给光传感器内的加热电阻,使得光传感器在所需的温度下进行化学发光反应。温度控制单元可以为PID控制(proportion-integral-derivative,比例-积分-微分控制)单元,温度控制单元控制加热单元的加热温度,使得光传感器在恒温下工作。Specifically, the heating unit provides a PWM (Pulse Width Modulation) heating voltage to a heating resistor in the optical sensor, so that the optical sensor performs a chemiluminescent reaction at a desired temperature. The temperature control unit may be a PID control (proportion-integral-derivative) unit, which controls the heating temperature of the heating unit so that the optical sensor operates at a constant temperature.
在一些实施例中,第四控制参数包括温度控制模块150的设定目标温度和设定温度控制参数中的至少一者;第三状态信息为温度控制模块150的目标温度、当前温度和温度控制参数中的至少一者;查询指令包括查看当前温度、查看目标温度和查看温度控制参数中的至少一者。In some embodiments, the fourth control parameter includes at least one of the set target temperature and the set temperature control parameters of the temperature control module 150; the third status information is at least one of the target temperature, current temperature and temperature control parameters of the temperature control module 150; the query instruction includes checking the current temperature, checking the target temperature and checking at least one of the temperature control parameters.
第四控制参数覆盖了温度控制模块150所需设置的各个参数,由此,通过终端110的人机交互界面即可设置第四控制参数,以对温度控制模块150中的各参数进行修改,而无需通过每个温度控制模块150各自的控制电路板进行设置。查询指令覆盖了温度控制模块150所需确认的各种工作状态,通过终端110的人机交互界面发送查询指令即可对每个温度控制模块的工作状态进行查询。第三状态信息也覆盖了温度控制模块150的各种工作条件,通过终端110的人机交互界面即可确认温度控制模块150工作条件,以对温度控制模块150进行实时监控。The fourth control parameter covers the various parameters that need to be set for the temperature control module 150. Therefore, the fourth control parameter can be set through the human-computer interaction interface of the terminal 110 to modify the various parameters in the temperature control module 150 without having to set it through the control circuit board of each temperature control module 150. The query instruction covers the various working states that need to be confirmed by the temperature control module 150. The working state of each temperature control module can be queried by sending a query instruction through the human-computer interaction interface of the terminal 110. The third state information also covers the various working conditions of the temperature control module 150. The working conditions of the temperature control module 150 can be confirmed through the human-computer interaction interface of the terminal 110 to monitor the temperature control module 150 in real time.
请继续参见图1和图2所示,光电子鼻的控制系统还包括电源开关继电器160、等离子发生器170和水冷泵180,等离子发生器170和水冷泵180均与电源开关继电器160电连接,等离子发生器170用于增强光传感器的信号,水冷泵180用于冷却光子计数器130,主控板120上具有第三接口123,主控板120通过第三接口123与电源开关继电器160电连接。Please continue to refer to Figures 1 and 2. The control system of the photoelectric nose also includes a power switch relay 160, a plasma generator 170 and a water cooling pump 180. The plasma generator 170 and the water cooling pump 180 are both electrically connected to the power switch relay 160. The plasma generator 170 is used to enhance the signal of the light sensor. The water cooling pump 180 is used to cool the photon counter 130. The main control board 120 has a third interface 123. The main control board 120 is electrically connected to the power switch relay 160 through the third interface 123.
终端110用于发送开闭指令,主控板120用于根据开闭指令控制电源开关继电器160的开闭,以在电源开关继电器160打开时,等离子发生器170和水冷泵180均打开,电源开关继电器160关闭时,等离子发生器170和水冷泵180均关闭。The terminal 110 is used to send opening and closing instructions, and the main control board 120 is used to control the opening and closing of the power switch relay 160 according to the opening and closing instructions, so that when the power switch relay 160 is turned on, the plasma generator 170 and the water cooling pump 180 are both turned on, and when the power switch relay 160 is turned off, the plasma generator 170 and the water cooling pump 180 are both turned off.
电源开关继电器160可以控制等离子发生器170和水冷泵180的打开和关闭。等离子发生器170和水冷泵180均通过直流电源供电,等离子发生器170和水冷泵180均通过电源开关继电器160来控制直流电源的通断。The power switch relay 160 can control the opening and closing of the plasma generator 170 and the water cooling pump 180. The plasma generator 170 and the water cooling pump 180 are both powered by a DC power supply, and the plasma generator 170 and the water cooling pump 180 are both controlled by the power switch relay 160 to turn on and off the DC power supply.
第三接口123可以为GPIO(General-purpose input/output,通用型之输入输出)接口。在终端110的人机交互界面即可发送开闭指令,以控制等离子发生器170和水冷泵180的打开和关闭,而无需用户手动的去打开和关闭控制等离子发生器170和水冷泵180。The third interface 123 may be a GPIO (General-purpose input/output) interface. The human-computer interaction interface of the terminal 110 may send an opening and closing command to control the opening and closing of the plasma generator 170 and the water cooling pump 180 without the user having to manually open and close the plasma generator 170 and the water cooling pump 180.
本发明还提供了一种光电子鼻,包括光电子鼻本体200和与光电子鼻本体200电连接的上述实施例提供的光电子鼻的控制系统100。The present invention further provides an optoelectronic nose, comprising an optoelectronic nose body 200 and an optoelectronic nose control system 100 provided by the above embodiment and electrically connected to the optoelectronic nose body 200.
其中,光电子鼻的控制系统100的结构和工作方式已在上述实施例中进行了详细说明,此处不再一一赘述。The structure and working mode of the control system 100 of the optoelectronic nose have been described in detail in the above embodiments, and will not be described in detail here.
光电子鼻本体200以光传感器作为反应模块210,在光电子鼻的控制系统100的控制下进行工作的装置,光传感器以催化化学发光为原理。光传感器具有更高的检测灵敏度,因此可以用作光电子鼻的反应模块210。The photoelectric nose body 200 uses a light sensor as a reaction module 210, and is a device that works under the control of the photoelectric nose control system 100. The light sensor is based on the principle of catalytic chemiluminescence. The light sensor has a higher detection sensitivity, so it can be used as the reaction module 210 of the photoelectric nose.
请继续参见图2和图3所示,光电子鼻本体200还包括注射泵220、多通道切换阀230和气体质量流量控制器240。现在对光电子鼻的工作过程做简要的说明,空气作为载气A从气体质量流量控制器240进入,被测气体B由注射泵220注入,载气A和被测气体B汇合后进入等离子发生器170,在等离子发生器170中被活化,然后进入多通道切换阀230中,通过多通道切换阀230分别流入不同的反应模块210中,反应模块210通过温度控制模块150调节至不同的反应温度,从而进行催化化学发光反应,反应所得的光子被光子计数器130采集,从而获得反应数据。光子计数器130可以在移动模块140的作用下在多个反应模块210之间移动,光子计数器130还需通过水冷泵180进行冷却,完成反应后的废气C从反应模块210的另一端排出。Please continue to refer to FIG. 2 and FIG. 3 , the photonose body 200 also includes a syringe pump 220, a multi-channel switching valve 230 and a gas mass flow controller 240. Now, the working process of the photonose is briefly described. Air enters from the gas mass flow controller 240 as a carrier gas A, and the measured gas B is injected by the syringe pump 220. The carrier gas A and the measured gas B merge and enter the plasma generator 170, where they are activated and then enter the multi-channel switching valve 230. Through the multi-channel switching valve 230, they flow into different reaction modules 210 respectively. The reaction modules 210 are adjusted to different reaction temperatures by the temperature control module 150 to perform catalytic chemiluminescence reactions. The photons obtained by the reaction are collected by the photon counter 130 to obtain reaction data. The photon counter 130 can be moved between multiple reaction modules 210 under the action of the moving module 140. The photon counter 130 also needs to be cooled by the water cooling pump 180. The waste gas C after the reaction is discharged from the other end of the reaction module 210.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit it. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the aforementioned embodiments, or replace some or all of the technical features therein by equivalents. However, these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the scope of the technical solutions of the embodiments of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210331597.2A CN114923896B (en) | 2022-03-31 | 2022-03-31 | Control system of photoelectric nose and photoelectric nose |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210331597.2A CN114923896B (en) | 2022-03-31 | 2022-03-31 | Control system of photoelectric nose and photoelectric nose |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114923896A CN114923896A (en) | 2022-08-19 |
CN114923896B true CN114923896B (en) | 2024-09-24 |
Family
ID=82804601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210331597.2A Active CN114923896B (en) | 2022-03-31 | 2022-03-31 | Control system of photoelectric nose and photoelectric nose |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114923896B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101866007A (en) * | 2010-06-25 | 2010-10-20 | 北京理工大学 | Signal Acquisition and Processing System of Atmospheric Multi-parameter Detection LiDAR |
CN107085018A (en) * | 2017-04-27 | 2017-08-22 | 浙江清华长三角研究院 | An electronic nose system for VOC and malodorous gas detection |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110283770A1 (en) * | 2009-02-10 | 2011-11-24 | Hok Instrument Ab | Breath analysis |
CN107238572A (en) * | 2017-08-01 | 2017-10-10 | 北京怡孚和融科技有限公司 | A kind of integrated air content detection system and circuit arrangement |
US10948467B2 (en) * | 2018-05-17 | 2021-03-16 | East China University Of Science And Technology | Online centralized monitoring and analysis method for multi-point malodorous gases using electronic nose instrument |
CN111272853A (en) * | 2020-03-30 | 2020-06-12 | 北京纳通医学科技研究院有限公司 | Electronic nose system and gas detection method |
-
2022
- 2022-03-31 CN CN202210331597.2A patent/CN114923896B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101866007A (en) * | 2010-06-25 | 2010-10-20 | 北京理工大学 | Signal Acquisition and Processing System of Atmospheric Multi-parameter Detection LiDAR |
CN107085018A (en) * | 2017-04-27 | 2017-08-22 | 浙江清华长三角研究院 | An electronic nose system for VOC and malodorous gas detection |
Also Published As
Publication number | Publication date |
---|---|
CN114923896A (en) | 2022-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104198346B (en) | A mobile phone-controlled dust sensor monitoring system and its application method | |
CN201637726U (en) | A portable gas chromatograph | |
CN107238572A (en) | A kind of integrated air content detection system and circuit arrangement | |
CN105702553B (en) | A kind of ionic migration spectrometer and its carrier gas flux control method | |
CN207601552U (en) | air quality integrated detecting device | |
CN106645310B (en) | Semiconductor gas sensor dynamic detection system | |
CN106770738A (en) | The expiratory air multi-analyte immunoassay instrument and detection method of a kind of gas concentration lwevel amendment | |
CN109564180A (en) | Environment sensor system | |
CN207248719U (en) | A kind of integrated air content detection system | |
CN201041549Y (en) | Device for analyzing nitrogen oxide by chemiluminescence method | |
CN107238618A (en) | Reaction controlling and mass spectral analysis station associated with equipment pond in situ are characterized for X-ray | |
CN114923896B (en) | Control system of photoelectric nose and photoelectric nose | |
CN108195979A (en) | Air VOCs on-line preconcentrations sampling device and method | |
CN208872737U (en) | Ambient gas concentration data acquisition device | |
CN210465319U (en) | Thermal conductivity gas analyzer | |
CN102004130A (en) | Full-automatic multi-purpose adsorption instrument | |
CN104678112A (en) | Tandem differential electro-mobility analyzer control system and control method | |
CN204154607U (en) | A kind of mobile phone control type dust sensor monitoring system | |
CN202256134U (en) | Infrared analysis meter | |
CN213875347U (en) | Carbon aerosol component online analysis device | |
CN206353145U (en) | A kind of expiratory air multi-analyte immunoassay instrument of gas concentration lwevel amendment | |
CN103926070B (en) | Band position feedback type EGR valve response time proving installation | |
CN101246139B (en) | Zirconium oxide analyzer | |
Zhang et al. | Design of a bionic electronic nose for robot | |
CN209144163U (en) | Cell counter and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |