CN114922614B - 一种控压钻井工况下的地层压力监测方法 - Google Patents
一种控压钻井工况下的地层压力监测方法 Download PDFInfo
- Publication number
- CN114922614B CN114922614B CN202210721290.3A CN202210721290A CN114922614B CN 114922614 B CN114922614 B CN 114922614B CN 202210721290 A CN202210721290 A CN 202210721290A CN 114922614 B CN114922614 B CN 114922614B
- Authority
- CN
- China
- Prior art keywords
- pressure
- gas
- suction
- formation
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/06—Measuring temperature or pressure
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Geophysics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
Abstract
本发明提供一种控压钻井工况下的地层压力监测方法,包括:步骤1.控压钻井工况下,井内达到正常循环状态时,测量气测值;步骤2.通过PWD直测抽吸压力与井底压力;步骤3.建立基于蜂群优化算法的RNN神经网络模型,将气测值与抽吸压力的大小用于训练基于蜂群优化算法的RNN神经网络模型;步骤4.通过训练好的神经网络获得井筒内压差;根据压差公式,进而获得地层压力。本发明提供的种控压钻井工况下的地层压力监测方法,通过气测值拟合井筒压差,井底压力、抽吸压力提出了一种新的地层压力监测方法,实现了控压钻井条件下对碳酸盐岩地层孔隙压力随钻测量,提高了地层压力计算准确性。可以对井下地层压力做定性评价,具有实时监测,直观评价的特点。
Description
技术领域
本发明涉及石油、天然气等钻录井勘探开发技术领域,尤其涉及一种控压钻井工况下的地层压力监测方法。
背景技术
近年来,随着钻录井工程不断增加,随钻地层压力测量技术有了很大的发展。但碳酸盐岩地层孔隙压力预测仍是一个难题,因缺少对于钻井孔隙压力参数的分析,往往导致在钻井作业实际操作中缺乏对于井喷等未知事故爆发可能性的预测及应对措施,这就造成了井喷事故一旦发生,就会对施工人员的安全带来很大危险,同时也会造成一定环境污染。
控压钻井技术是解决窄安全密度窗口地层钻井难题的有效手段,目前国内外在钻井工程中监测地层压力通常采用随钻压力监测的方法,而目前随钻压力检测方法主要有标准钻速法、西格玛法、DC指数法、岩石强度等方法,这些方法均涉及中间参数较多,计算过程复杂,导致工程现场使用存在困难。特别地,利用欠压实理论预测碳酸盐岩地层孔隙压力数值通常会偏大或与正常规律相反。
公开号为CN109577969A的中国专利文献公开了一种基于岩石压缩系数计算碳酸盐岩地层孔隙压力的方法,依据岩石多孔弹性力学理论,通过分析岩石压缩系数与孔隙压力、有效应力的本构关系,结合Biot-Willis有效应力定律建立表征孔隙压力与岩石压缩系数关系的碳酸盐岩孔隙压力预测量化模型;然后通过大量岩石地层压实系数测试和数据模拟,根据拟合得到的岩石地层压实系数与有效应力、孔隙度的定量关系,结合碳酸盐岩岩石物理模拟数据开展孔隙压力预测量化模型验证分析,实测孔隙压力。公开号为CN101963056B的中国专利文献公开了一种利用测井资料预测碳酸盐岩地层孔隙压力的方法,利用测井资料预测碳酸盐岩地层孔隙压力的方法是基于有效应力定理,通过建立骨架纵波速度和孔隙流体纵波速度方程,以此建立碳酸盐岩地层孔隙压力方程,从而根据测得的测井数据检测碳酸盐岩地层孔隙压力。但以上两种方法均计算复杂,公式繁多,而且对地层压力的监测缺乏及时性和真实性。
发明内容
本发明的目的在于解决上述现有技术存在的缺陷,提供一种控压钻井工况下的地层压力监测方法。
一种控压钻井工况下的地层压力监测方法,包括以下步骤:
步骤1.控压钻井工况下,井内达到正常循环状态时,测量气测值;
步骤2.通过PWD直测抽吸压力与井底压力;
步骤3.建立基于蜂群优化算法的RNN神经网络模型,将气测值与抽吸压力的大小用于训练基于蜂群优化算法的RNN神经网络模型;
步骤4.通过训练好的神经网络获得井筒内压差;根据压差公式,进而获得地层压力。
进一步地,如上所述的控压钻井工况下的地层压力监测方法,所述步骤1包括:
井内达到正常循环状态时,停止钻进,将钻头放至井底循环,分离地层气与上提所产生的抽吸气;
停泵,以稳定速度上提一个单根,然后下放至井底,开泵循环将抽吸气分隔开;
以不同上提速度重复上述步骤两次,继续钻进,直至抽吸气反出地面,期间禁止停泵;
测量气测全烃峰值,减去气测基值,得到气体抽吸量;
将不同上提速度下气体抽吸量与抽吸压力的大小投入基于蜂群优化算法的RNN神经网络模型训练。
进一步地,如上所述的控压钻井工况下的地层压力监测方法,步骤4中通过训练好的神经网络获得井筒内压差包括:
通过所述RNN神经网络模型得到气测值与抽吸压力的关系,当气体抽吸量为零时,抽吸压力即为井筒内压差。
进一步地,如上所述的控压钻井工况下的地层压力监测方法,步骤4中所述压差公式为:
PP=ΔP+Pd
其中,Pp为地层压力,ΔP为井筒内压差,Pd为井底压力。
有益效果:
本发明提供的种控压钻井工况下的地层压力监测方法,通过气测值拟合井筒压差,井底压力、抽吸压力提出了一种新的地层压力监测方法,实现了控压钻井条件下对碳酸盐岩地层孔隙压力随钻测量,提高了地层压力计算准确性。可以对井下地层压力做定性评价,具有实时监测,直观评价的特点。
附图说明
图1为本发明涉及一种控压钻井工况下的地层压力监测方法流程图。
图2为本发明提供的实施例的流程图。
图3为实施例中上提速度与抽吸压力关系图。
图4为实施例中气测值与抽吸压力关系图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-图4所示,本发明提供一种控压钻井工况下的地层压力监测方法,包括以下操作方法:
(1)控压钻井工况下,井内达到正常循环状态时,测量气测值。
具体地,只有在井内达到正常循环状态时,压差=井筒压力-地层压力公式才成立。
(2)通过随钻压力监测系统PWD直测抽吸压力与井底压力。
(3)井内达到正常循环状态时,停止钻进,将钻头放至井底循环,分离地层气与上提所产生的抽吸气;
具体地,井内正常循环状态是公式成立的前提,停止钻进方便分离抽吸气,便于测量气体量。
(4)停泵,以稳定速度上提一个单根,然后下放至井底,开泵循环将抽吸气分隔开;
具体地,本步骤的目的是分隔抽吸气体,便于后续得到气体抽吸量。
(5)以不同上提速度重复上述步骤两次,继续钻进,直至抽吸气反出地面,期间禁止停泵;
具体地,在不同上提速度下的抽吸压力与气体抽吸量曲线中选出一条最具代表性的曲线,用做后续分析,提高整个拟合过程的精度。
(6)测量气测全烃峰值,减去气测基值,得到气体抽吸量;
具体地,本步骤目的是为得到井筒内压差。只有当气体抽吸量为零时,测得抽吸压力为井筒内压差。
(7)将不同上提速度下气体抽吸量与抽吸压力的大小投入基于蜂群优化算法的RNN神经网络模型训练;
具体地,不同上提速度下的抽吸压力通过以不同上提速度重复步骤3与步骤4,用PWD分别直测不同速度下的抽吸压力。
(8)通过对基于蜂群优化算法的RNN神经网络模型进行训练,得到气测值与抽吸压力的关系,而气体抽吸量为零时,抽吸压力即为井筒内压差;
(9)通过压差减去井底压力即可得到地层压力,实现通过气测值拟合压差,基于单根峰、井底压差、波动压力等参数监测地层压力。
结果如下:
表1数据记录
气测值/x | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
抽吸压力/y | 2.756 | 2.912 | 3.055 | 3.224 | 3.380 |
通过表1可知抽吸压力与气测值为线性关系,两者间具体关系为y=1.56x+2.5974。
本发明提供的种控压钻井工况下的地层压力监测方法,通过气测值拟合井筒压差,井底压力、抽吸压力提出了一种新的地层压力监测方法,实现了控压钻井条件下对碳酸盐岩地层孔隙压力随钻测量,提高了地层压力计算准确性。可以对井下地层压力做定性评价,具有实时监测,直观评价的特点。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (2)
1.一种控压钻井工况下的地层压力监测方法,其特征在于,包括以下步骤:
步骤1.控压钻井工况下,井内达到正常循环状态时,测量气测值;
步骤2.通过PWD直测抽吸压力与井底压力;
步骤3.建立基于蜂群优化算法的RNN神经网络模型,将气测值与抽吸压力的大小用于训练基于蜂群优化算法的RNN神经网络模型;
步骤4.通过训练好的神经网络获得井筒内压差;根据压差公式,进而获得地层压;
所述方法包括:
井内达到正常循环状态时,停止钻进,将钻头放至井底循环,分离地层气与上提所产生的抽吸气;
停泵,以稳定速度上提一个单根,然后下放至井底,开泵循环将抽吸气分隔开;
以不同上提速度重复上述步骤两次,继续钻进,直至抽吸气反出地面,期间禁止停泵;
测量气测全烃峰值,减去气测基值,得到气体抽吸量;
将不同上提速度下气体抽吸量与抽吸压力的大小投入基于蜂群优化算法的RNN神经网络模型训练;
通过所述RNN神经网络模型得到气测值与抽吸压力的关系,当气体抽吸量为零时,抽吸压力即为井筒内压差。
2.根据权利要求1所述的控压钻井工况下的地层压力监测方法,其特征在于,步骤4中所述压差公式为:
其中,Pp为地层压力,∆P为井筒内压差,Pd为井底压力。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210721290.3A CN114922614B (zh) | 2022-06-24 | 2022-06-24 | 一种控压钻井工况下的地层压力监测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210721290.3A CN114922614B (zh) | 2022-06-24 | 2022-06-24 | 一种控压钻井工况下的地层压力监测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114922614A CN114922614A (zh) | 2022-08-19 |
CN114922614B true CN114922614B (zh) | 2024-09-03 |
Family
ID=82815162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210721290.3A Active CN114922614B (zh) | 2022-06-24 | 2022-06-24 | 一种控压钻井工况下的地层压力监测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114922614B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117420150B (zh) * | 2023-12-18 | 2024-03-08 | 西安石油大学 | 一种基于钻井参数的分析预测系统及其预测方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4570480A (en) * | 1984-03-30 | 1986-02-18 | Nl Industries, Inc. | Method and apparatus for determining formation pressure |
US20020112888A1 (en) * | 2000-12-18 | 2002-08-22 | Christian Leuchtenberg | Drilling system and method |
CN101139925B (zh) * | 2006-09-08 | 2012-07-04 | 西南石油大学 | 一种随钻测试储层参数特性并实时调整钻井措施的方法 |
US20090159334A1 (en) * | 2007-12-19 | 2009-06-25 | Bp Corporation North America, Inc. | Method for detecting formation pore pressure by detecting pumps-off gas downhole |
CN101963056B (zh) * | 2010-08-19 | 2014-04-09 | 中国石油大学(北京) | 一种利用测井资料预测碳酸盐岩地层孔隙压力的方法 |
RU2585780C2 (ru) * | 2011-07-12 | 2016-06-10 | Халлибертон Энерджи Сервисез, Инк. | Способ испытания земляного пласта при бурении с контролем давления (варианты) |
RU2486337C1 (ru) * | 2012-08-24 | 2013-06-27 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ определения продуктивности пласта в процессе бурения скважины |
CN104100259B (zh) * | 2013-04-03 | 2017-02-15 | 中国石油天然气集团公司 | 一种精细控压钻井稳定井壁的方法及系统 |
CN104100219B (zh) * | 2013-04-03 | 2016-08-03 | 中国石油天然气集团公司 | 一种适应大流量变化的单节流通道控压钻井方法与装置 |
CN104563870A (zh) * | 2013-10-27 | 2015-04-29 | 中国石油化工集团公司 | 控压气体钻井装置及方法 |
WO2015073017A1 (en) * | 2013-11-15 | 2015-05-21 | Halliburton Energy Services, Inc. | Borehole pressure management methods and systems with adaptive learning |
US10385678B2 (en) * | 2014-03-21 | 2019-08-20 | Conocophillips Company | Method for analysing pore pressure in shale formations |
MY185413A (en) * | 2014-05-27 | 2021-05-18 | Halliburton Energy Services Inc | Elastic pipe control and compensation with managed pressure drilling |
AU2015419250A1 (en) * | 2015-12-31 | 2018-03-29 | Halliburton Energy Services, Inc. | Control system for managed pressure well bore operations |
CN107044263A (zh) * | 2017-06-21 | 2017-08-15 | 西南石油大学 | 一种控压钻井远程节流回压控制方法及系统 |
CN110318729B (zh) * | 2018-08-21 | 2023-02-21 | 中石化海洋石油工程有限公司 | 一种控压钻井中钻井液密度确定方法 |
CN109236286A (zh) * | 2018-10-23 | 2019-01-18 | 西南石油大学 | 一种新型地层孔隙压力随钻测量的方法 |
CN109577969B (zh) * | 2018-12-07 | 2021-10-22 | 中国地质大学(武汉) | 一种基于岩石压缩系数计算碳酸盐岩地层孔隙压力的方法 |
NO20211205A1 (zh) * | 2019-05-30 | 2021-10-07 | ||
US11047224B2 (en) * | 2019-08-28 | 2021-06-29 | Weatherford Technology Holdings, Llc | Automatic compensation for surge and swab during pipe movement in managed pressure drilling operation |
CN114075972A (zh) * | 2020-08-05 | 2022-02-22 | 中石化石油工程技术服务有限公司 | 基于随钻资料的钻井过程中动态井身结构优化设计方法 |
CN111980692B (zh) * | 2020-09-03 | 2024-06-07 | 中国石油天然气集团有限公司 | 一种基于井下全烃含量检测的压井方法 |
CN112800689B (zh) * | 2021-04-08 | 2021-06-18 | 中国石油大学(华东) | 一种基于人工蜂群算法的控压钻井井身结构设计方法 |
CN113323653B (zh) * | 2021-06-15 | 2024-05-03 | 中海油研究总院有限责任公司 | 一种深水钻井溢流早期预警方法和装置 |
-
2022
- 2022-06-24 CN CN202210721290.3A patent/CN114922614B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN114922614A (zh) | 2022-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102953726B (zh) | 一种水驱油田优势通道识别方法及装置 | |
CN101139925B (zh) | 一种随钻测试储层参数特性并实时调整钻井措施的方法 | |
CN111648764B (zh) | 一种多层气藏井下分布式温度监测产出剖面解释评价方法 | |
CN107462936B (zh) | 利用压力监测资料反演低渗透储层非达西渗流规律的方法 | |
CN110162922A (zh) | 一种水驱油藏优势渗流通道的综合识别方法 | |
CN104948176B (zh) | 一种基于渗透增大率识别碳酸盐岩储层裂缝的方法 | |
CN104695950A (zh) | 火山岩油藏产能预测方法 | |
CN107725034A (zh) | 一种用于多级压裂水平井判别来水方向的压力监测方法 | |
CN113792479B (zh) | 一种基于物理约束的煤层气藏压裂效果评价方法 | |
CN114370269B (zh) | 深层碳酸盐岩气藏有效储层物性下限综合确定方法 | |
Dolan et al. | Special applications of drill-stem test pressure data | |
CN114922614B (zh) | 一种控压钻井工况下的地层压力监测方法 | |
CN112343576B (zh) | 一种利用光纤传感手段监测油气井产量的工艺方法 | |
CN113468646A (zh) | 基于地质力学模型和机器学习检测地热井风险的方法 | |
CN115629188B (zh) | 一种岩心产能模拟实验系统 | |
CN106408208A (zh) | 体积压裂改造效果评价方法 | |
CN112699554B (zh) | 一种基于压裂示踪约束的致密油藏水平井压后分段试井分析方法 | |
CN109538199A (zh) | 一种煤系地层含气量评价方法、装置及电子设备 | |
CN110159260B (zh) | 用于裂缝部分闭合压裂直井主要来水方向判别方法及装置 | |
CN107725035A (zh) | 一种用于非均匀产液水平井判别来水方向的压力监测方法 | |
CN111706323A (zh) | 一种综合gwo-lssvm算法的水淹层精细解释评价方法 | |
CN111625916A (zh) | 井壁稳定性值计算方法及系统 | |
CN111950111A (zh) | 一种适用于底部开放的碳酸盐岩储层动态分析方法 | |
CN112035993A (zh) | 一种底部定压的碳酸盐岩储层测试评价方法 | |
EP3821107A1 (en) | Systems and methods to identify and inhibit spider web borehole failure in hydrocarbon wells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |