CN114921469B - Application of silkworm olfactory receptor gene BmOR56 - Google Patents
Application of silkworm olfactory receptor gene BmOR56 Download PDFInfo
- Publication number
- CN114921469B CN114921469B CN202210380688.5A CN202210380688A CN114921469B CN 114921469 B CN114921469 B CN 114921469B CN 202210380688 A CN202210380688 A CN 202210380688A CN 114921469 B CN114921469 B CN 114921469B
- Authority
- CN
- China
- Prior art keywords
- silkworm
- bmor56
- silkworms
- target site
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000255789 Bombyx mori Species 0.000 title claims abstract description 86
- 108050002069 Olfactory receptors Proteins 0.000 title abstract description 14
- 238000009395 breeding Methods 0.000 claims abstract description 15
- 230000001488 breeding effect Effects 0.000 claims abstract description 15
- 235000013601 eggs Nutrition 0.000 claims description 17
- 108090000623 proteins and genes Proteins 0.000 claims description 16
- 235000003228 Lactuca sativa Nutrition 0.000 claims description 14
- 108091027544 Subgenomic mRNA Proteins 0.000 claims description 14
- 240000007124 Brassica oleracea Species 0.000 claims description 13
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 claims description 13
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 claims description 13
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 claims description 13
- 108020005004 Guide RNA Proteins 0.000 claims description 10
- 101150038500 cas9 gene Proteins 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 4
- 240000008415 Lactuca sativa Species 0.000 claims 1
- 230000000384 rearing effect Effects 0.000 claims 1
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 241000208822 Lactuca Species 0.000 description 13
- 108020004414 DNA Proteins 0.000 description 9
- 238000013461 design Methods 0.000 description 6
- 241000220225 Malus Species 0.000 description 5
- 240000008042 Zea mays Species 0.000 description 5
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 5
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 235000005822 corn Nutrition 0.000 description 5
- 238000010195 expression analysis Methods 0.000 description 5
- 235000013305 food Nutrition 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 240000000249 Morus alba Species 0.000 description 4
- 235000008708 Morus alba Nutrition 0.000 description 4
- 235000021016 apples Nutrition 0.000 description 4
- 230000012447 hatching Effects 0.000 description 4
- 108091033409 CRISPR Proteins 0.000 description 3
- 102000012547 Olfactory receptors Human genes 0.000 description 3
- 241000220324 Pyrus Species 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000010354 CRISPR gene editing Methods 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- XMLSXPIVAXONDL-PLNGDYQASA-N Jasmone Chemical compound CC\C=C/CC1=C(C)CCC1=O XMLSXPIVAXONDL-PLNGDYQASA-N 0.000 description 2
- 108020004485 Nonsense Codon Proteins 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- IVLCENBZDYVJPA-ARJAWSKDSA-N cis-Jasmone Natural products C\C=C/CC1=C(C)CCC1=O IVLCENBZDYVJPA-ARJAWSKDSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004634 feeding behavior Effects 0.000 description 2
- 230000003031 feeding effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000001057 ionotropic effect Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000037434 nonsense mutation Effects 0.000 description 2
- 235000021017 pears Nutrition 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000009366 sericulture Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- XMLSXPIVAXONDL-UHFFFAOYSA-N trans-jasmone Natural products CCC=CCC1=C(C)CCC1=O XMLSXPIVAXONDL-UHFFFAOYSA-N 0.000 description 2
- 241000208838 Asteraceae Species 0.000 description 1
- 241000255783 Bombycidae Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000218231 Moraceae Species 0.000 description 1
- 240000007643 Phytolacca americana Species 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241001106462 Ulmus Species 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003364 biologic glue Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000009402 cross-breeding Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005058 diapause Effects 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/43504—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
- C07K14/43563—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
- C07K14/43586—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from silkworms
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/60—New or modified breeds of invertebrates
- A01K67/61—Genetically modified invertebrates, e.g. transgenic or polyploid
- A01K67/65—Genetically modified arthropods
- A01K67/68—Genetically modified insects
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/89—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
- A01K2217/075—Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/70—Invertebrates
- A01K2227/706—Insects, e.g. Drosophila melanogaster, medfly
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/02—Animal zootechnically ameliorated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Environmental Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Animal Husbandry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Tropical Medicine & Parasitology (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Insects & Arthropods (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了家蚕嗅觉受体基因BmOR56的用途,用于家蚕育种,能够提升家蚕的食性范围。
The invention discloses the use of the silkworm olfactory receptor gene BmOR56, which is used for silkworm breeding and can increase the feeding range of the silkworm.
Description
技术领域Technical field
本发明涉及家蚕育种相关技术领域。更具体地说,本发明涉及一种家蚕嗅觉受体基因BmOR56的用途。The present invention relates to the technical field related to silkworm breeding. More specifically, the present invention relates to the use of a Bombyx mori olfactory receptor gene BmOR56.
背景技术Background technique
家蚕是一种典型的鳞翅目昆虫,主要以桑叶为食,也能取食桑科、菊科或榆树科等其它植物。有研究表明,通过对非洲爪蟾卵母细胞中所有幼虫表达的嗅觉受体进行功能分析,发现其中一种嗅觉受体BmOR56对顺式茉莉酮具有很高的敏感性,而顺式茉莉酮是桑叶的主要挥发物质之一,能特异性的吸引家蚕幼虫。因此,将BmOR56基因用于家蚕育种,可能提升家蚕的食性范围。Bombyx mori is a typical lepidopteran insect that mainly feeds on mulberry leaves, but can also feed on other plants such as Moraceae, Asteraceae or Ulmus. Studies have shown that through functional analysis of olfactory receptors expressed by all larvae in Xenopus oocytes, it was found that one of the olfactory receptors, BmOR56, is highly sensitive to cis-jasmone, and cis-jasmone is One of the main volatile substances in mulberry leaves can specifically attract silkworm larvae. Therefore, using the BmOR56 gene for silkworm breeding may increase the range of feeding habits of silkworms.
发明内容Contents of the invention
本发明的一个目的是提供一种家蚕嗅觉受体基因BmOR56的用途,能够用于家蚕育种,提升家蚕的食性范围。One object of the present invention is to provide a use of the silkworm olfactory receptor gene BmOR56, which can be used for silkworm breeding and improve the feeding range of silkworms.
为了实现本发明的这些目的和其它优点,根据本发明的一个方面,本发明提供了家蚕嗅觉受体基因BmOR56的用途,用于家蚕育种。In order to achieve these objects and other advantages of the present invention, according to one aspect of the present invention, the present invention provides the use of the silkworm olfactory receptor gene BmOR56 for silkworm breeding.
进一步地,对家蚕嗅觉受体基因BmOR56执行敲除,将敲除BmOR56的家蚕用于家蚕育种。Furthermore, the silkworm olfactory receptor gene BmOR56 was deleted, and the BmOR56-deficient silkworms were used for silkworm breeding.
进一步地,根据BmOR56基因CDS序列信息,设计gRNA靶位点,靶位点序列如SEQ IDNO.2~3所示;根据靶位点序列设计引物并合成sgRNA,引物序列如SEQ ID NO.4~6所示;将sgRNA和cas9蛋白注射入家蚕蚕卵;注射蚕卵孵化后经过饲养,筛选出所需的家蚕品系用于家蚕育种。Further, according to the BmOR56 gene CDS sequence information, the gRNA target site is designed, and the target site sequence is as shown in SEQ ID NO.2~3; primers are designed according to the target site sequence and sgRNA is synthesized, and the primer sequence is as SEQ ID NO.4~ As shown in 6; sgRNA and cas9 protein are injected into silkworm eggs; after hatching, the injected silkworm eggs are raised and the required silkworm strains are selected for silkworm breeding.
进一步地,用于培育不同取食行为的家蚕。Further, it is used to cultivate silkworms with different feeding behaviors.
进一步地,用于培育取食生菜的家蚕。Further, it is used to cultivate silkworms that feed on lettuce.
进一步地,用于培育取食甘蓝的家蚕。Further, it is used to breed silkworms that feed on cabbage.
进一步地,用于培育不同生长速度的家蚕。Further, it is used to cultivate silkworms with different growth rates.
本发明至少包括以下有益效果:The present invention at least includes the following beneficial effects:
本发明提供了家蚕嗅觉受体基因BmOR56的用途,能够用于家蚕育种,提升家蚕的食性范围。The present invention provides the use of the silkworm olfactory receptor gene BmOR56, which can be used for silkworm breeding and improve the feeding range of the silkworm.
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。Other advantages, objects, and features of the present invention will be apparent in part from the description below, and in part will be understood by those skilled in the art through study and practice of the present invention.
附图说明Description of drawings
图1为通过CRISPR/cas9获得突变体;(A)BmOR56基因结构和gRNA位点,BmOR56基因位于第28染色体,有6个外显子,黑线表示内含子,矩形表示外显子,Met表示起始密码子,stop表示终止密码子;2个gRNA靶位点均位于第一外显子上,红色背景序列为gRNA靶序列,蓝色背景序列为PAM(protospacer adjacent motif);(B)纯合突变体的产生;将sgRNA和cas9蛋白的混合物注射到蚕卵中,在发育成蛾并产卵后,对其基因型进行鉴定,并保留杂合子突变体留种,最终在G3代中筛选出纯合突变体;Figure 1 shows the mutant obtained through CRISPR/cas9; (A) BmOR56 gene structure and gRNA site. The BmOR56 gene is located on chromosome 28 and has 6 exons. The black line represents the intron, the rectangle represents the exon, Met Indicates the start codon, stop indicates the stop codon; the two gRNA target sites are both located on the first exon, the red background sequence is the gRNA target sequence, and the blue background sequence is PAM (protospacer adjacent motif); (B) Generation of homozygous mutants; inject a mixture of sgRNA and cas9 protein into silkworm eggs. After developing into moths and laying eggs, their genotypes are identified, and heterozygous mutants are retained for seeding, and finally in the G3 generation Homozygous mutants were screened;
图2为突变系中BmOR56基因结构分析和氨基酸结构分析;(A)两种突变体在1号靶点的基因组结构变化;(B)两种突变体在2号靶点的基因组结构变化;(C)突变体中基因发生无义突变;Figure 2 shows the gene structure analysis and amino acid structure analysis of BmOR56 in the mutant line; (A) The changes in the genome structure of the two mutants at target site No. 1; (B) The changes in the genome structure of the two mutants at target site No. 2; ( C) nonsense mutation occurs in the gene in the mutant;
图3为BmOR56及相关基因的表达分析;(A)BmOR56在不同发育时期的表达分析;(B)BmOrco在不同发育时期的表达分析;(C)离子型受体的表达分析;*表示T检验结果P<0.05,**表示T检验结果P<0.01,***表示T检验结果P<0.001;Figure 3 shows the expression analysis of BmOR56 and related genes; (A) Expression analysis of BmOR56 at different developmental stages; (B) Expression analysis of BmOrco at different developmental stages; (C) Expression analysis of ionotropic receptors; * indicates T test The result is P<0.05, ** indicates the T test result P<0.01, *** indicates the T test result P<0.001;
图4为突变体中肠解剖模式图;给饥饿12h后的五龄起幼虫分别饲喂苹果(A)、梨(B)、玉米(C)、生菜(D)和甘蓝(E),喂食12h后的家蚕中肠显示为苹果(F)、梨(G)、玉米(H)、生菜(I)和甘蓝(J);Figure 4 shows the anatomical model of the mutant midgut; the fifth instar larvae after starvation for 12 hours were fed apples (A), pears (B), corn (C), lettuce (D) and cabbage (E) for 12 hours. The rear silkworm midgut is shown as apple (F), pear (G), corn (H), lettuce (I) and cabbage (J);
图5为突变体家蚕广食性检测分析;A:体重变化;B:形体变化模式图;C:蚕沙数;D:添食前状态;E:添食后状态;统计分析每头家蚕的平均数据。Figure 5 shows the detection and analysis of the polyphagous nature of mutant silkworms; A: Changes in body weight; B: Pattern of body changes; C: Number of silkworm pellets; D: State before feeding; E: State after feeding; statistical analysis of the average data of each silkworm .
具体实施方式Detailed ways
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。The present invention will be further described in detail below with reference to the accompanying drawings, so that those skilled in the art can implement it with reference to the text of the description.
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不排除一个或多个其它元件或其组合的存在或添加。It should be understood that terms such as "having," "comprising," and "including" as used herein do not exclude the presence or addition of one or more other elements or combinations thereof.
本申请的实施例提供了家蚕嗅觉受体基因BmOR56的用途,用于家蚕育种;BmOR56基因位于第28染色体,BmOR56被敲除后,家蚕嗅觉灵敏性降低,食性范围在一定程度上扩大,突变体相对野生型能更好的取食诸如苹果、玉米、生菜等食物,能应用于广食性家蚕品种的选育。The embodiments of the present application provide the use of the silkworm olfactory receptor gene BmOR56 for silkworm breeding; the BmOR56 gene is located on chromosome 28. After BmOR56 is knocked out, the olfactory sensitivity of silkworms is reduced, and the food range of the silkworm is expanded to a certain extent. The mutant Compared with the wild type, it can better feed on foods such as apples, corn, lettuce, etc., and can be used in the breeding of polyphagous silkworm varieties.
在另一些实施例中,对家蚕嗅觉受体基因BmOR56执行敲除,将敲除BmOR56的家蚕用于家蚕育种,使用CRISPR/cas9基因编辑技术,在家蚕体内敲除顺式茉莉酮受体BmOR56。In other embodiments, the Bombyx mori olfactory receptor gene BmOR56 is knocked out, the BmOR56-knocked-out silkworms are used for silkworm breeding, and CRISPR/cas9 gene editing technology is used to knock out the cis-jasmonone receptor BmOR56 in the silkworm.
在另一些实施例中,根据BmOR56基因CDS序列信息,设计gRNA靶位点,靶位点序列如SEQ ID NO.2~3所示;根据靶位点序列设计引物并合成sgRNA,引物序列如SEQ ID NO.4~6所示;将sgRNA和cas9蛋白注射入家蚕蚕卵;注射蚕卵孵化后经过饲养,筛选出所需的家蚕品系用于家蚕育种具体地,(1)利用gRNA设计网站在BmOR56上设计2个gRNA靶位点并利用sgRNA体外合成试剂盒合成sgRNA并纯化;(2)sgRNA与cas9蛋白混合,利用家蚕显微注射系统注射蚕卵;(3)注射后的蚕卵正常孵化并进行分子鉴定,筛选出阳性个体用于制种;(4)通过不断杂交和分子鉴定,获得纯合突变体;(5)纯合突变体用于食性鉴定,用不同食物喂食,比较野生型与突变型之间的差异;(6)将纯合突变体用于杂交育种。In other embodiments, the gRNA target site is designed based on the BmOR56 gene CDS sequence information, and the target site sequence is as shown in SEQ ID NO. 2-3; primers are designed according to the target site sequence and sgRNA is synthesized, and the primer sequence is as SEQ ID NO. As shown in ID NO.4 to 6; sgRNA and cas9 protein are injected into silkworm eggs; after hatching, the injected silkworm eggs are raised and the required silkworm strains are selected for silkworm breeding. Specifically, (1) use gRNA to design the website in Design 2 gRNA target sites on BmOR56 and use sgRNA in vitro synthesis kit to synthesize and purify sgRNA; (2) sgRNA is mixed with cas9 protein, and silkworm eggs are injected using the silkworm microinjection system; (3) Silkworm eggs hatch normally after injection Molecular identification is carried out to screen out positive individuals for seed production; (4) Homozygous mutants are obtained through continuous hybridization and molecular identification; (5) Homozygous mutants are used for feeding habits identification, fed with different foods, and compared with the wild type Differences between mutants; (6) Use homozygous mutants for cross breeding.
在另一些实施例中,用于培育不同取食行为的家蚕,经过培育使得家蚕能够取食诸如苹果、玉米、生菜、甘蓝等食物,降低对桑叶的依赖。In other embodiments, silkworms with different feeding behaviors are cultivated so that the silkworms can feed on foods such as apples, corn, lettuce, cabbage, etc., thereby reducing their dependence on mulberry leaves.
在另一些实施例中,用于培育取食生菜的家蚕。In other embodiments, the method is used to breed silkworms that feed on lettuce.
在另一些实施例中,用于培育取食甘蓝的家蚕。In other embodiments, the method is used to breed silkworms that feed on cabbage.
在另一些实施例中,用于培育不同生长速度的家蚕,取食生菜、甘蓝后,家蚕的体重增长快,可配合其它基因型,培育生长速度更快的家蚕。In other embodiments, it is used to cultivate silkworms with different growth rates. After eating lettuce and cabbage, the weight of silkworms increases rapidly. Other genotypes can be used to breed silkworms with faster growth rates.
以下以具体实施例具体说明。The following is a detailed description with specific examples.
(1)gRNA设计和sgRNA的合成(1) gRNA design and sgRNA synthesis
根据BmOR56基因CDS序列信息(SEQ ID NO.1),在sgRNA设计网站(http://crispr.dbcls.jp)上设计gRNA靶位点,2个靶位点(SEQ ID NO.2和SEQ ID NO.3)均为BmOR56基因第一外显子上(图1A)。According to the BmOR56 gene CDS sequence information (SEQ ID NO.1), the gRNA target site was designed on the sgRNA design website (http://crispr.dbcls.jp), and 2 target sites (SEQ ID NO.2 and SEQ ID NO.3) are all located on the first exon of the BmOR56 gene (Figure 1A).
根据靶序列设计引物sgRNA_OR56_1F(SEQ ID NO.4),sgRNA_OR56_2F(SEQ IDNO.5)和sgRNA_R(SEQ ID NO.6),参考EnGensgRNA合成试剂盒体外分别合成sgRNA,测定浓度后稀释至1000ng/μL备用。Design primers sgRNA_OR56_1F (SEQ ID NO.4), sgRNA_OR56_2F (SEQ ID NO.5) and sgRNA_R (SEQ ID NO.6) according to the target sequence. Refer to the EnGensgRNA synthesis kit to synthesize sgRNA in vitro. After measuring the concentration, dilute it to 1000ng/μL for later use. .
(2)家蚕蚕卵显微注射(2) Microinjection of silkworm eggs
将2种sgRNA和cas9蛋白按体积比2:2:1的比例混合,取5μL混合液到显微注射系统的玻璃针内备用。用刚产下2小时内的非滞育卵,粘黏到载玻片上,用钢针在蚕卵上扎一个小孔,再将盛有混合液的玻璃针深入小孔,注入10-15pL溶液,之后将小孔用无毒生物胶封闭,待凝固后用福尔马林溶液熏蒸消毒,而后保湿并催青。Mix the two sgRNA and cas9 proteins in a volume ratio of 2:2:1, and put 5 μL of the mixed solution into the glass needle of the microinjection system for later use. Use non-diapause eggs that have just been laid within 2 hours, stick them on a glass slide, use a steel needle to poke a small hole in the silkworm egg, then insert the glass needle containing the mixed solution into the small hole, and inject 10-15pL solution , then the small holes are sealed with non-toxic biological glue, and after solidification, they are fumigated and disinfected with formalin solution, and then moisturized and greened.
(3)纯合品系筛选(3) Homozygous strain screening
将注射蚕卵在28℃下正常催青,孵化后用新鲜桑叶在标准条件下(温度25±2℃,湿度75±5%,12h黑暗/12h白天)饲养,化蛾后进行随机交配,产卵后对雌雄蛾分别进行分子鉴定,在靶位点两端设计引物BmOR56_test_F(SEQ ID NO.7)和BmOR56_test_R(SEQ IDNO.8),用雌雄蛾提取基因组DNA,在进行PCR后,对PCR产物进行测序,当出现重叠峰时即为阳性个体,所产蚕卵继续进行饲养,后代进行区内随机自交,产卵后对蚕蛾继续进行PCR鉴定,选取雌雄蛾均为阳性的杂交组合留种,经过2-3代即可获得纯合突变品系,通过克隆测序的方式对突变类型进行最终的确认(图1B)。The injected silkworm eggs will be greened normally at 28°C. After hatching, they will be raised with fresh mulberry leaves under standard conditions (temperature 25±2°C, humidity 75±5%, 12 hours dark/12 hours day). After hatching, random mating will be carried out. After laying eggs, perform molecular identification on male and female moths respectively. Design primers BmOR56_test_F (SEQ ID NO.7) and BmOR56_test_R (SEQ IDNO.8) at both ends of the target site. Use male and female moths to extract genomic DNA. After performing PCR, perform PCR The products are sequenced, and when overlapping peaks appear, they are considered positive individuals. The silkworm eggs produced will continue to be raised, and the offspring will be randomly selfed in the area. After the eggs are laid, the silkworm moths will continue to be identified by PCR, and the hybrid combinations in which both male and female moths are positive will be selected and retained. After 2-3 generations, homozygous mutant lines can be obtained, and the mutation type can be finally confirmed through cloning and sequencing (Figure 1B).
通过筛选,获得了2个突变品系,其中突变品系M1中在靶位点1处有2个碱基被113个碱基替换(图2A),靶位点2没有变化(图2B),突变品系M2中在靶位点1处有4个碱基缺失(图2A),靶位点2处有25个碱基缺失(图2B),两种突变体均出现无义突变,导致基因功能完全丧失(图2C)。Through screening, two mutant lines were obtained. In the mutant line M1, 2 bases were replaced by 113 bases at target site 1 (Figure 2A), and target site 2 had no change (Figure 2B). The mutant line In M2, 4 bases are deleted at target site 1 (Figure 2A), and 25 bases are deleted at target site 2 (Figure 2B). Both mutants have nonsense mutations, resulting in complete loss of gene function. (Figure 2C).
(4)基因表达量分析鉴定(4) Gene expression analysis and identification
将BmOR56基因成功敲除后,对BmOR56,BmOrco和部分离子型受体进行了表达量分析,以进一步确认BmOR56敲除后与食性相关的基因表达量发生了变化,结果表明3类嗅觉受体表达量均上调表达,受到了显著影响(图3)After the BmOR56 gene was successfully knocked out, the expression levels of BmOR56, BmOrco and some ionotropic receptors were analyzed to further confirm that the expression levels of genes related to feeding habits have changed after BmOR56 knockout. The results showed that the expression of three types of olfactory receptors The expression was up-regulated and significantly affected (Figure 3)
(5)突变体食性鉴定与分析(5) Identification and analysis of mutant feeding habits
5龄起蚕时,分别用苹果、梨、玉米、生菜和甘蓝对2种突变体和野生型家蚕进行添食,每组蚕20头,12小时后以20头蚕平均值对取食效果、家蚕体重变化和蚕砂量进行统计和分析。对家蚕进行解剖,查看中肠组织,确认家蚕已经取食且已经对食物消化,中肠中充满了对应的食物残渣(图4)。通过对蚕体重和蚕砂统计,取食生菜和甘蓝的家蚕效果较好,野生型家蚕体重分别增加0.111g/头和0.043g/头,而M1分别增加0.241g/头和0.114g/头,M2分别增加0.226g/头和0.047g/头,结果表明突变体取食生菜和甘蓝后体重增加更快(图5A和5B)。统计蚕砂量,发现突变体的蚕砂量整体比野生型多,其中取食生菜和甘蓝组变化最大,野生型分别为2.47粒/头和2.45粒/头,M1分别为11.67粒/头和9.75粒/头,M2分别为5.91粒/头和4.05粒/头(图5C)。When the silkworms were at the fifth instar, the two mutants and wild-type silkworms were fed with apples, pears, corn, lettuce and cabbage respectively. There were 20 silkworms in each group. After 12 hours, the feeding effect of the 20 silkworms was averaged. The weight changes of silkworms and the amount of silkworm excrement were statistically analyzed. Dissect the silkworm and check the midgut tissue to confirm that the silkworm has eaten and digested the food, and the midgut is full of corresponding food residues (Figure 4). Statistics on silkworm weight and silkworm excrement show that silkworms feeding on lettuce and cabbage have better results. The weight of wild-type silkworms increases by 0.111g/head and 0.043g/head respectively, while the weight of M1 silkworms increases by 0.241g/head and 0.114g/head respectively. M2 increased by 0.226g/head and 0.047g/head respectively. The results showed that the mutant gained faster weight after feeding on lettuce and cabbage (Figure 5A and 5B). Counting the amount of silkworm excrement, it was found that the overall amount of silkworm excrement in the mutant was more than that of the wild type. Among them, the lettuce and cabbage groups had the largest changes. The wild type had 2.47 grains/head and 2.45 grains/head respectively, and the M1 had 11.67 grains/head and 11.67 grains/head respectively. 9.75 grains/head, M2 were 5.91 grains/head and 4.05 grains/head respectively (Figure 5C).
综上分析,BmOR56缺失突变体对生菜、甘蓝等的取食效果明显比野生型好,表明BmOR56可用于家蚕育种,特别是广食性家蚕品种的选育,突变体取食生菜和甘蓝后,突变体的体重增加更快,表明BmOR56还可能用于不同生长速度的家蚕品种选育。In summary, the above analysis shows that the BmOR56 deletion mutant has a significantly better feeding effect on lettuce, cabbage, etc. than the wild type, indicating that BmOR56 can be used for silkworm breeding, especially the selection of polyphagous silkworm varieties. After the mutant feeds on lettuce and cabbage, the mutation The body weight increased faster, indicating that BmOR56 may also be used in the breeding of silkworm varieties with different growth rates.
这里说明的设备数量和处理规模是用来简化本发明的说明的。对本发明家蚕嗅觉受体基因BmOR56的用途的应用、修改和变化对本领域的技术人员来说是显而易见的。The equipment numbers and processing scales described here are intended to simplify the description of the present invention. Applications, modifications and variations of the use of the silkworm olfactory receptor gene BmOR56 of the present invention will be apparent to those skilled in the art.
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。Although the embodiments of the present invention have been disclosed above, they are not limited to the applications listed in the description and embodiments. They can be applied to various fields suitable for the present invention. For those familiar with the art, they can easily Additional modifications may be made, and the invention is therefore not limited to the specific details and illustrations shown and described herein without departing from the general concept defined by the claims and equivalent scope.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 广西壮族自治区蚕业技术推广站、中国农业科学院蚕业研究所<110> Guangxi Zhuang Autonomous Region Sericulture Technology Promotion Station, Sericulture Research Institute, Chinese Academy of Agricultural Sciences
<120> 家蚕嗅觉受体基因BmOR56的用途<120> Use of Bombyx mori olfactory receptor gene BmOR56
<130> CN21NN13180I<130> CN21NN13180I
<160> 8<160> 8
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 1206<211> 1206
<212> DNA<212> DNA
<213> BmOR56基因<213> BmOR56 gene
<400> 1<400> 1
atgaagctcc tggagaagct agaggacccc gatcgtcctt tactaggacc aaacgtcaaa 60atgaagctcc tggagaagct agaggacccc gatcgtcctt tactaggacc aaacgtcaaa 60
gctttgaagt tctgggggct tctgttaccg gaaagcagat caaaaaagta tttttaccta 120gctttgaagt tctgggggct tctgttaccg gaaagcagat caaaaaagta tttttaccta 120
tttatgcatt tcgctgtgac tgttttcact gccactgaat atatagacgt atggtttgtt 180tttatgcatt tcgctgtgac tgttttcact gccactgaat atatagacgt atggtttgtt 180
aaatcagacc tagctttgtt attaaacaat ctgaagataa caatgttggc gactgtaagc 240aaatcagacc tagctttgtt attaaacaat ctgaagataa caatgttggc gactgtaagc 240
gttttgaagg ttaccacttt tttgttgtgg caaaatgcct ggcgtgacct cattggttac 300gttttgaagg ttaccacttt tttgttgtgg caaaatgcct ggcgtgacct cattggttac 300
gtatctcgag ctgatttaga gcaaagggcc acttcggact cgagaaagtt ggctctgata 360gtatctcgag ctgatttaga gcaaagggcc acttcggact cgagaaagtt ggctctgata 360
aacggattta ccggctactg ccgcaaaata acgtattatt actggttctt gatgtatacg 420aacggattta ccggctactg ccgcaaaata acgtattatt actggttctt gatgtatacg 420
accgtggcaa ttgttacagt acaaccaata tttaagtttt tttcatcagc tgcctacaga 480accgtggcaa ttgttacagt acaaccaata tttaagtttt tttcatcagc tgcctacaga 480
ctggacgtcc aatctggaaa cggtacatac ctgcaagtag taagttcctg gataccgtgg 540ctggacgtcc aatctggaaa cggtacatac ctgcaagtag taagttcctg gataccgtgg 540
gataaaaata ctttacccgg atacctattg gcctctattt accagacata cgcagccatt 600gataaaaata ctttacccgg atacctattg gcctctattt accagacata cgcagccatt 600
tatggtggag gctggatcac gtccttcgac accaatgcca tagttataat ggtatttttt 660tatggtggag gctggatcac gtccttcgac accaatgcca tagttataat ggtatttttt 660
agagctgaat tggaactatt gaggattgat tgtgctgctt tatttgatga tgaaaaatct 720agagctgaat tggaactatt gaggattgat tgtgctgctt tatttgatga tgaaaaatct 720
ttcggtgata tggcttttat gaggagattg aaagagtgtc atagaagaca tacagaactt 780ttcggtgata tggcttttat gaggagattg aaagagtgtc atagaagaca tacagaactt 780
gtcaaacatt ctcggctgtt cgattcttgt ttgtcgccga taatgcttct ctacatgttt 840gtcaaacatt ctcggctgtt cgattcttgt ttgtcgccga taatgcttct ctacatgttt 840
gtctgctcgg taatgctttg tgtgacggct taccaaatta caatagaaac aaatccgatg 900gtctgctcgg taatgctttg tgtgacggct taccaaatta caatagaaac aaatccgatg 900
gaacggttcc tcatgaccga gtatttggtt ttcggcgtgg cccagctatt catgtactgt 960gaacggttcc tcatgaccga gtatttggtt ttcggcgtgg cccagctatt catgtactgt 960
tggcacagta atgatgttct ctatgcgagt caggatctat ccagaggtcc ttacgagagt 1020tggcacagta atgatgttct ctatgcgagt caggatctat ccagaggtcc ttacgagagt 1020
gcctggtggt cgagagatgt gaagtaccgc aaaaatttat atatattggt ggcgcagttt 1080gcctggtggt cgagagatgt gaagtaccgc aaaaatttat atatattggt ggcgcagttt 1080
aacaaggtta ttgtcttttc cgcgggcccc ttcactaagc ttacggtcgc cacttttatc 1140aacaaggtta ttgtcttttc cgcgggcccc ttcactaagc ttacggtcgc cacttttatc 1140
aggatcctca aaggagccta tagttactac acactgctca gtcagtcgca aatgaataaa 1200aggatcctca aaggagccta tagttactac acactgctca gtcagtcgca aatgaataaa 1200
acatga 1206acatga 1206
<210> 2<210> 2
<211> 23<211> 23
<212> DNA<212> DNA
<213> 靶位点1<213> Target site 1
<400> 2<400> 2
ggtcctagta aaggacgatc ggg 23ggtcctagta aaggacgatc ggg 23
<210> 3<210> 3
<211> 23<211> 23
<212> DNA<212> DNA
<213> 靶位点2<213> Target site 2
<400> 3<400> 3
ggtcctagta aaggacgatc ggg 23ggtcctagta aaggacgatc ggg 23
<210> 4<210> 4
<211> 55<211> 55
<212> DNA<212> DNA
<213> sgRNA_OR56_1F<213> sgRNA_OR56_1F
<400> 4<400> 4
ttctaatacg actcactata gggtcctagt aaaggacgat cgttttagag ctaga 55ttctaatacg actcactata gggtcctagt aaaggacgat cgttttagag ctaga 55
<210> 5<210> 5
<211> 55<211> 55
<212> DNA<212> DNA
<213> sgRNA_OR56_2F<213> sgRNA_OR56_2F
<400> 5<400> 5
ttctaatacg actcactata gaatgcctgg cgtgacctca tgttttagag ctaga 55ttctaatacg actcactata gaatgcctgg cgtgacctca tgttttagag ctaga 55
<210> 6<210> 6
<211> 80<211> 80
<212> DNA<212> DNA
<213> sgRNA_R<213> sgRNA_R
<400> 6<400> 6
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60
ggcaccgagt cggtgctttt 80ggcaccgagt cggtgctttt 80
<210> 7<210> 7
<211> 21<211> 21
<212> DNA<212> DNA
<213> BmOR56_test_F<213> BmOR56_test_F
<400> 7<400> 7
atacaatgga gcttgattcg t 21atacaatgga gcttgattcg t 21
<210> 8<210> 8
<211> 23<211> 23
<212> DNA<212> DNA
<213> BmOR56_test_R<213> BmOR56_test_R
<400> 8<400> 8
ggtcgtatac atcaagaacc agt 23ggtcgtatac atcaagaacc agt 23
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210380688.5A CN114921469B (en) | 2022-04-12 | 2022-04-12 | Application of silkworm olfactory receptor gene BmOR56 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210380688.5A CN114921469B (en) | 2022-04-12 | 2022-04-12 | Application of silkworm olfactory receptor gene BmOR56 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114921469A CN114921469A (en) | 2022-08-19 |
CN114921469B true CN114921469B (en) | 2024-02-27 |
Family
ID=82806051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210380688.5A Active CN114921469B (en) | 2022-04-12 | 2022-04-12 | Application of silkworm olfactory receptor gene BmOR56 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114921469B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116042725B (en) * | 2022-07-06 | 2024-10-25 | 华南师范大学 | Molecular breeding method for omnivorous silkworm and application method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016076240A1 (en) * | 2014-11-14 | 2016-05-19 | 国立研究開発法人農業生物資源研究所 | Female silkworm lethal strain of bombyx mori |
JP2017085958A (en) * | 2015-11-09 | 2017-05-25 | 国立研究開発法人農業・食品産業技術総合研究機構 | Production method of transgenic silkworm |
WO2018062201A1 (en) * | 2016-09-29 | 2018-04-05 | 住友化学株式会社 | Odorant receptor complex and cells expressing same |
CN108795933A (en) * | 2017-04-27 | 2018-11-13 | 中国科学院上海生命科学研究院 | A kind of method and its application changing silkworm feeding habits |
CN109804067A (en) * | 2016-09-29 | 2019-05-24 | 住友化学株式会社 | Olfactory receptor coreceptor |
WO2022024902A1 (en) * | 2020-07-27 | 2022-02-03 | 住友化学株式会社 | Mutant insect olfactory receptor protein |
-
2022
- 2022-04-12 CN CN202210380688.5A patent/CN114921469B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016076240A1 (en) * | 2014-11-14 | 2016-05-19 | 国立研究開発法人農業生物資源研究所 | Female silkworm lethal strain of bombyx mori |
JP2017085958A (en) * | 2015-11-09 | 2017-05-25 | 国立研究開発法人農業・食品産業技術総合研究機構 | Production method of transgenic silkworm |
WO2018062201A1 (en) * | 2016-09-29 | 2018-04-05 | 住友化学株式会社 | Odorant receptor complex and cells expressing same |
CN109804067A (en) * | 2016-09-29 | 2019-05-24 | 住友化学株式会社 | Olfactory receptor coreceptor |
CN108795933A (en) * | 2017-04-27 | 2018-11-13 | 中国科学院上海生命科学研究院 | A kind of method and its application changing silkworm feeding habits |
WO2022024902A1 (en) * | 2020-07-27 | 2022-02-03 | 住友化学株式会社 | Mutant insect olfactory receptor protein |
Non-Patent Citations (4)
Title |
---|
Song WenTing等.The molecular mechanisms and factors affecting the feeding habits of silkworm (Lepidoptera: Bombyxidae).Journal of Asia-Pacific Entomology.2021,第24卷第955-962页. * |
刘群.家蚕嗅觉相关基因的功能研究.博士电子期刊出版库.2019,(第05期),第1-147页. * |
家蚕嗅觉相关基因的功能研究;刘群;博士电子期刊出版库(第05期);第1-147页 * |
稚蚕摄食人工饲料的家蚕种质资源筛选及实用品种选育;贾晓虎;硕士电子期刊出版库(第05期);1-50 * |
Also Published As
Publication number | Publication date |
---|---|
CN114921469A (en) | 2022-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | A determining factor for insect feeding preference in the silkworm, Bombyx mori | |
Handler et al. | Prospects for gene transformation in insects | |
O’Brochta et al. | Transformation of Stomoxys calcitrans with a Hermes gene vector | |
Bai et al. | CRISPR/Cas9‐mediated mutagenesis of the white gene in an ectoparasitic wasp, Habrobracon hebetor | |
CN114921469B (en) | Application of silkworm olfactory receptor gene BmOR56 | |
Matsuda et al. | Direct parental CRISPR gene editing in the predatory bug Orius strigicollis, a biocontrol agent against small arthropods | |
Chan et al. | Electroporation-based CRISPR/Cas9 mosaic mutagenesis of β-tubulin in the cultured oyster | |
CN111849977B (en) | Method for preparing transgenic animals by sperm vector, sgRNA for preparing short and small transgenic chickens and preparation method | |
Mao et al. | High-resolution linkage and quantitative trait locus mapping using an interspecific cross between Argopecten irradians irradians (♀) and A. purpuratus (♂) | |
CN112369376A (en) | Breeding method of silkworm with densonucleosis resistance | |
JP2014147378A (en) | Method for breeding fish having high feed efficiency | |
US20230413790A1 (en) | Genetically edited albino-red germlines of tilapia fish | |
CN113481207B (en) | Essential gene Bmtret1 for silkworm egg diapause and application thereof | |
Zou et al. | Disruption of Zfh3 abolishes mulberry‐specific monophagy in silkworm larvae | |
Chen et al. | β2-tubulin and its promoter in the brown planthopper: A versatile tool for genetic control strategies | |
WO2013056664A1 (en) | Method and uses for bombyx mori silk fibroin heavy chain gene mutation sequence and mutant | |
CN110402893B (en) | Preparation of a zebrafish mutant with deletion of Nrf2 gene and its application | |
CN114908124B (en) | Application of zinc-combined alcohol dehydrogenase gene in regulation and control of insect mating behavior | |
Buhroo et al. | Biotechnological advances in silkworm improvement: current trends and future prospectus | |
CN118240829B (en) | Application of NompC gene in controlling Bactrocera dorsalis | |
CN116042725B (en) | Molecular breeding method for omnivorous silkworm and application method thereof | |
JP7644496B2 (en) | Controlling insect behavior via taste | |
CN118620900B (en) | Application of allantoinase gene in regulation and control of silkworm cocoon silk yield | |
CN115725590B (en) | Application and method of OSER1 gene in improving animal fertility or delaying reproductive aging | |
CN114600837B (en) | Animal model for granulocytopenia, construction method thereof and application of ikzf1 and cmyb in construction model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |