CN114921429A - An acetylation-regulated lactate dehydrogenase mutant and its application - Google Patents
An acetylation-regulated lactate dehydrogenase mutant and its application Download PDFInfo
- Publication number
- CN114921429A CN114921429A CN202210485169.5A CN202210485169A CN114921429A CN 114921429 A CN114921429 A CN 114921429A CN 202210485169 A CN202210485169 A CN 202210485169A CN 114921429 A CN114921429 A CN 114921429A
- Authority
- CN
- China
- Prior art keywords
- ldha
- mutant
- lactate dehydrogenase
- strain
- acetylation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108700023483 L-lactate dehydrogenases Proteins 0.000 title claims abstract description 113
- 102000003855 L-lactate dehydrogenase Human genes 0.000 title claims abstract description 62
- 230000021736 acetylation Effects 0.000 title claims abstract description 34
- 238000006640 acetylation reaction Methods 0.000 title claims abstract description 33
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 30
- 101150041530 ldha gene Proteins 0.000 claims abstract description 120
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims abstract description 100
- 239000004310 lactic acid Substances 0.000 claims abstract description 50
- 235000014655 lactic acid Nutrition 0.000 claims abstract description 50
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 46
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 42
- 239000004472 Lysine Substances 0.000 claims abstract description 15
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims abstract description 15
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 10
- 238000011065 in-situ storage Methods 0.000 claims abstract description 6
- 239000004475 Arginine Substances 0.000 claims abstract description 5
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims abstract description 5
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 claims abstract description 3
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 4
- 101100398785 Streptococcus agalactiae serotype V (strain ATCC BAA-611 / 2603 V/R) ldhD gene Proteins 0.000 claims description 101
- 101100386830 Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4) ddh gene Proteins 0.000 claims description 101
- 101150026107 ldh1 gene Proteins 0.000 claims description 101
- ALRHLSYJTWAHJZ-UHFFFAOYSA-N 3-hydroxypropionic acid Chemical compound OCCC(O)=O ALRHLSYJTWAHJZ-UHFFFAOYSA-N 0.000 claims description 48
- 241000588724 Escherichia coli Species 0.000 claims description 34
- 230000014509 gene expression Effects 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 10
- 230000035772 mutation Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 40
- 230000000694 effects Effects 0.000 abstract description 24
- 108090000790 Enzymes Proteins 0.000 abstract description 14
- 102000004190 Enzymes Human genes 0.000 abstract description 12
- 238000002474 experimental method Methods 0.000 abstract description 7
- 101710088194 Dehydrogenase Proteins 0.000 abstract description 3
- 238000003209 gene knockout Methods 0.000 abstract description 2
- 230000002829 reductive effect Effects 0.000 abstract description 2
- 239000012634 fragment Substances 0.000 description 44
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 23
- 239000013612 plasmid Substances 0.000 description 23
- 238000000855 fermentation Methods 0.000 description 21
- 230000004151 fermentation Effects 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 20
- 238000011144 upstream manufacturing Methods 0.000 description 19
- 238000009825 accumulation Methods 0.000 description 18
- 239000002609 medium Substances 0.000 description 16
- 108090000623 proteins and genes Proteins 0.000 description 12
- 235000018977 lysine Nutrition 0.000 description 11
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000010261 cell growth Effects 0.000 description 9
- 239000002028 Biomass Substances 0.000 description 8
- 239000006227 byproduct Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 239000002773 nucleotide Substances 0.000 description 8
- 125000003729 nucleotide group Chemical group 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 230000033228 biological regulation Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000035939 shock Effects 0.000 description 7
- 238000010276 construction Methods 0.000 description 6
- 230000000813 microbial effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000001952 enzyme assay Methods 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 229940076788 pyruvate Drugs 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000011426 transformation method Methods 0.000 description 3
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- -1 agriculture Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 238000012269 metabolic engineering Methods 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 229910003208 (NH4)6Mo7O24·4H2O Inorganic materials 0.000 description 1
- WIIZWVCIJKGZOK-IUCAKERBSA-N 2,2-dichloro-n-[(1s,2s)-1,3-dihydroxy-1-(4-nitrophenyl)propan-2-yl]acetamide Chemical compound ClC(Cl)C(=O)N[C@@H](CO)[C@@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-IUCAKERBSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 235000019750 Crude protein Nutrition 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229920000704 biodegradable plastic Polymers 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 230000004098 cellular respiration Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 229920006238 degradable plastic Polymers 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- XPXMKIXDFWLRAA-UHFFFAOYSA-N hydrazinide Chemical compound [NH-]N XPXMKIXDFWLRAA-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 150000002669 lysines Chemical class 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000020015 peptidyl-lysine deacetylation Effects 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/42—Hydroxy-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/56—Lactic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01027—L-Lactate dehydrogenase (1.1.1.27)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种乳酸脱氢酶突变体及其应用,尤其涉及一种乙酰化调控的乳酸脱氢酶突变体及其应用。属于基因工程技术领域。The present invention relates to a lactate dehydrogenase mutant and its application, in particular to an acetylation-regulated lactate dehydrogenase mutant and its application. It belongs to the field of genetic engineering technology.
背景技术Background technique
乳酸是一种重要的大宗化学品,常用于食品的调味剂和防腐保鲜剂。乳酸也是一种刺激性甚微的天然保湿成分,应用于各类化妆品中。在医药方面,乳酸被广泛用作防腐剂、载体剂、助溶剂、药物制剂、pH调节剂等。同时,乳酸还可以作为单体合成聚乳酸,是一种新型的生物可降解塑料。因此,乳酸在食品、化妆品、医药、农业、化工、可降解塑料等领域均具有广泛的应用。目前,乳酸的合成方法主要包括微生物发酵法和化学合成法。其中微生物发酵法因其绿色环保、原料可持续等优势成为乳酸合成的主要方法。Lactic acid is an important bulk chemical commonly used in food flavorings and preservatives. Lactic acid is also a natural moisturizing ingredient with little irritation, which is used in various cosmetics. In medicine, lactic acid is widely used as a preservative, a carrier, a cosolvent, a pharmaceutical preparation, a pH adjuster, and the like. At the same time, lactic acid can also be used as a monomer to synthesize polylactic acid, which is a new type of biodegradable plastic. Therefore, lactic acid has a wide range of applications in food, cosmetics, medicine, agriculture, chemical industry, degradable plastics and other fields. At present, the synthesis methods of lactic acid mainly include microbial fermentation and chemical synthesis. Among them, microbial fermentation has become the main method for lactic acid synthesis due to its advantages of environmental protection and sustainable raw materials.
NAD依赖的乳酸脱氢酶(LdhA)是一种广泛存在于各类物种的保守酶,特异性催化丙酮酸转化为乳酸。在微生物合成乳酸的工程菌中,经常通过过表达乳酸脱氢酶LdhA实现乳酸产量的提升。然而LdhA的天然酶活性限制了乳酸的合成效率。优化LdhA的催化活性成为进一步提升乳酸产量和转化效率的重要方法。NAD-dependent lactate dehydrogenase (LdhA) is a conserved enzyme widely found in various species that specifically catalyzes the conversion of pyruvate to lactate. In engineering bacteria that synthesize lactic acid by microorganisms, the production of lactic acid is often improved by overexpressing the lactate dehydrogenase LdhA. However, the natural enzymatic activity of LdhA limits the efficiency of lactate synthesis. Optimizing the catalytic activity of LdhA has become an important method to further improve the yield and conversion efficiency of lactic acid.
另外,在其他生物基化学品的合成过程中,乳酸也是一种重要的副产物。当底物的快速消耗和有限的细胞呼吸能力不平衡时,导致丙酮酸和NADH大量积累,LdhA催化丙酮酸转化为乳酸。乳酸的合成会浪费目标产物合成途径的碳源,影响目标产物的产量和转化效率。在其他生物基化学品的合成过程中为避免乳酸副产物的合成,常用的方法是直接敲除基因组上的ldhA基因。ldhA基因的直接敲除虽然会抑制乳酸的产生,但同时也影响了生物量的积累。因此探索一种新的代谢调控方法,在维持细胞正常生物量积累的前体下抑制乳酸副产物的合成,有望解决目前微生物合成过程中乳酸副产物积累的共性问题。In addition, lactic acid is also an important by-product in the synthesis of other bio-based chemicals. LdhA catalyzes the conversion of pyruvate to lactate when the rapid depletion of substrates and limited cellular respiration capacity are unbalanced, resulting in massive accumulation of pyruvate and NADH. The synthesis of lactic acid will waste the carbon source of the target product synthesis pathway, affecting the yield and conversion efficiency of the target product. In order to avoid the synthesis of lactic acid by-products during the synthesis of other bio-based chemicals, a common method is to directly knock out the ldhA gene on the genome. Although direct knockout of the ldhA gene inhibited lactate production, it also affected biomass accumulation. Therefore, exploring a new metabolic regulation method to inhibit the synthesis of lactic acid byproducts under the precursors that maintain the normal biomass accumulation of cells is expected to solve the common problem of lactic acid byproducts accumulation in the current microbial synthesis process.
赖氨酸乙酰化修饰是一种保守的翻译后修饰机制,影响酶的活性、代谢流分配、复制转录等多种细胞生理和代谢过程。然而,目前赖氨酸乙酰化修饰在细菌乳酸脱氢酶LdhA的活性和乳酸合成调控中的作用暂无报道。进一步的,有关通过调控乳酸脱氢酶的赖氨酸乙酰化修饰,改变乳酸脱氢酶的活性,实现乳酸合成调控的方法,以及相关乙酰化调控的乳酸脱氢酶突变体及其应用也还未见报道。Lysine acetylation is a conservative post-translational modification mechanism that affects various cellular physiological and metabolic processes such as enzyme activity, metabolic flux distribution, replication and transcription. However, the role of lysine acetylation in the regulation of bacterial lactate dehydrogenase LdhA activity and lactate synthesis has not yet been reported. Further, the related methods of regulating the lysine acetylation modification of lactate dehydrogenase, changing the activity of lactate dehydrogenase, and realizing the regulation of lactate synthesis, as well as the related acetylation-regulated lactate dehydrogenase mutants and their applications are also disclosed. Not reported.
发明内容SUMMARY OF THE INVENTION
针对乳酸作为目标产物的微生物合成过程中,其乳酸脱氢酶LdhA的天然活性限制问题,以及在其他生物基化学品合成过程中,乳酸作为副产物积累的问题,本发明的目的是提供一种乙酰化调控的乳酸脱氢酶突变体及其应用。通过调控乳酸脱氢酶LdhA的特定赖氨酸乙酰化位点,依据合成需求提高或降低乳酸脱氢酶的活性,实现对乳酸的合成调控。Aiming at the problem of the natural activity limitation of lactate dehydrogenase LdhA in the microbial synthesis process of lactic acid as the target product, and the problem of accumulation of lactic acid as a by-product in the synthesis process of other bio-based chemicals, the object of the present invention is to provide a Acetylation-regulated lactate dehydrogenase mutants and their applications. By regulating the specific lysine acetylation site of lactate dehydrogenase LdhA, the activity of lactate dehydrogenase can be increased or decreased according to the synthetic requirements, so as to realize the regulation of lactate synthesis.
本发明所述的乙酰化调控的乳酸脱氢酶突变体,其特征在于:所述突变体是乳酸脱氢酶LdhA蛋白的第9位赖氨酸突变为精氨酸形成的,命名为K9R突变体,其氨基酸序列如SEQ ID NO.1所示。The acetylation-regulated lactate dehydrogenase mutant of the present invention is characterized in that: the mutant is formed by mutating the 9th lysine of the lactate dehydrogenase LdhA protein to arginine, and is named as K9R mutation body, the amino acid sequence of which is shown in SEQ ID NO.1.
进一步的,本发明所述乙酰化调控的乳酸脱氢酶突变体在提高乳酸的合成中的应用。Further, the application of the acetylation-regulated lactate dehydrogenase mutant of the present invention in improving the synthesis of lactic acid.
本发明提供了一种上述乙酰化调控的乳酸脱氢酶K9R突变体的表达菌株,其特征在于:所述菌株中携带如SEQ ID NO.3所示的K9R突变的乳酸脱氢酶基因ldhA。The present invention provides an expression strain of the above acetylation-regulated lactate dehydrogenase K9R mutant, characterized in that: the strain carries the K9R mutant lactate dehydrogenase gene ldhA shown in SEQ ID NO.3.
上述乙酰化调控的乳酸脱氢酶K9R突变体的表达菌株优选是命名为E.coli BL21(DE3)/pETDuet1-ldhA(K9R)的菌株。其构建方法是:The expression strain of the above-mentioned acetylation-regulated lactate dehydrogenase K9R mutant is preferably a strain named E. coli BL21(DE3)/pETDuet1-ldhA(K9R). Its build method is:
1)以大肠杆菌的基因组DNA为模板,以引物pETDuet1-ldhA-5’(CCGGGATCCGATGAAACTCGCCGTTTATAGC)和pETDuet1-ldhA(K9R)-3’(AGGTACTTCTTGTCGTACTGACGTGTGCTATAAACGGCGAGTT)克隆获得K9R突变的乳酸脱氢酶基因ldhA的上游片段,以引物pETDuet1-ldhA-3’(CCGGAGCTCTTAAACCAGTTCGTTCGGGC)和pETDuet1-ldhA(K9R)-5’(AACTCGCCGTTTATAGCACACG TCAGTA CGACAAG AAGTACCT)克隆获得K9R突变的乳酸脱氢酶基因ldhA的下游片段,利用片段搭桥法搭桥K9R突变的乳酸脱氢酶基因ldhA的上游和下游片段,获得K9R突变的乳酸脱氢酶基因ldhA,其核苷酸序列如SEQ ID NO.3所示;1) Using the genomic DNA of Escherichia coli as a template, the upstream of K9R mutant lactate dehydrogenase gene ldhA was cloned with primers pETDuet1-ldhA-5'(CCG GGATCC GATGAAACTCGCCGTTTATAGC) and pETDuet1-ldhA(K9R)-3'(AGGTACTTCTTGTCGTACTGACGTGTGCTATAAACGGCGAGTT) The fragment was cloned with primers pETDuet1-ldhA-3'(CCGGAGCTCTTAAACCAGTTCGTTCGGGC) and pETDuet1-ldhA(K9R)-5'(AACTCGCCGTTTATAGCACACG TCAGTA CGACAAG AAGTACCT) to obtain the downstream fragment of K9R mutated lactate dehydrogenase gene ldhA, and used fragment bridging method to bridge K9R The upstream and downstream fragments of the mutated lactate dehydrogenase gene ldhA are obtained to obtain a K9R mutated lactate dehydrogenase gene ldhA, the nucleotide sequence of which is shown in SEQ ID NO.3;
2)将步骤1)所得的K9R突变的乳酸脱氢酶基因ldhA连接到表达载体上,获得重组质粒;2) connecting the K9R mutant lactate dehydrogenase gene ldhA obtained in step 1) to the expression vector to obtain a recombinant plasmid;
3)将步骤2)所得的重组质粒导入受体细胞E.coli BL21(DE3)中,获得K9R突变体的表达菌株E.coli BL21(DE3)/pETDuet1-ldhA(K9R)。3) The recombinant plasmid obtained in step 2) was introduced into the recipient cell E.coli BL21(DE3) to obtain the K9R mutant expression strain E.coli BL21(DE3)/pETDuet1-ldhA(K9R).
其中,步骤2)所述表达载体为pETDuet1,购自Novagen公司。Wherein, the expression vector in step 2) is pETDuet1, which was purchased from Novagen Company.
本发明所述K9R突变体的表达菌株在提高乳酸产量和转化效率中的应用。The application of the expression strain of the K9R mutant of the present invention in improving lactic acid production and transformation efficiency.
其中,所述提高乳酸产量和转化效率优选的技术方案是:在乳酸发酵培养基中,接种上述的K9R突变体的表达菌株,以葡萄糖为碳源,37℃,100rpm的条件下发酵24h。Wherein, the preferred technical solution for improving lactic acid production and transformation efficiency is: inoculating the above-mentioned K9R mutant expression strain in a lactic acid fermentation medium, and fermenting for 24 hours at 37° C. and 100 rpm with glucose as the carbon source.
本发明还公开了一种乙酰化调控的乳酸脱氢酶双突变体,其特征在于:所述双突变体是乳酸脱氢酶LdhA蛋白的第154位和248位的赖氨酸突变为谷氨酰胺形成的,命名为K154Q-K248Q双突变体,其氨基酸序列如SEQ ID NO.2所示。The invention also discloses an acetylation-regulated lactate dehydrogenase double mutant, characterized in that: the double mutant is that the lysines at the 154th and 248th positions of the lactate dehydrogenase LdhA protein are mutated into glutamate amide formed, named as K154Q-K248Q double mutant, the amino acid sequence of which is shown in SEQ ID NO.2.
进一步的,所述乙酰化调控的乳酸脱氢酶双突变体在抑制乳酸的合成中的应用。Further, the application of the acetylation-regulated lactate dehydrogenase double mutant in inhibiting the synthesis of lactate.
相应的,本发明提供了一种上述乙酰化调控的乳酸脱氢酶K154Q-K248Q双突变体菌株,其特征在于:所述菌株中基因组的乳酸脱氢酶基因ldhA突变,原位替换为如SEQ IDNO.4所示的K154Q-K248Q双突变的乳酸脱氢酶基因ldhA,该菌株命名为E.coli BL21(DE3)ldhA::ldhA(K154Q-K248Q)。其构建方法是:Correspondingly, the present invention provides a K154Q-K248Q double mutant strain of lactate dehydrogenase regulated by the above-mentioned acetylation, characterized in that: the lactate dehydrogenase gene ldhA in the genome of the strain is mutated, and the in situ replacement is as shown in SEQ The K154Q-K248Q double-mutated lactate dehydrogenase gene ldhA shown in ID NO.4, the strain was named E. coli BL21(DE3)ldhA::ldhA(K154Q-K248Q). Its build method is:
1)以大肠杆菌的基因组DNA为模板,以引物pRE112-ldhA(K154Q-K248Q)-5’(CAACATCACTGGAGAAAGTCTTATGAAACTCGCCGTTTATAGC)和ldhA(K154Q)-3’(CGCAGCATCGCCACACCGATCTGACCGGTACCGATAACGCCTG)克隆获得K154Q突变的乳酸脱氢酶基因ldhA的上游片段,以引物pRE112-ldhA(K154Q-K248Q)-3’(GGTTGCAGGGGAGCGGCAAGATTAAACCAGTTCGTTCGGGC)和ldhA(K154Q)-5’(CAGGCGTTATCGG TACCGGTCAGATCGGTGTGGCGATGCTGCG)克隆获得K154Q突变的乳酸脱氢酶基因ldhA的下游片段,利用片段搭桥法搭桥K154Q突变的乳酸脱氢酶基因ldhA的上游和下游片段,获得K154Q突变的乳酸脱氢酶基因ldhA;1) Using the genomic DNA of Escherichia coli as a template, the primers pRE112-ldhA(K154Q-K248Q)-5'(CAACATCACTGGAGAAAGTCTTATGAAACTCGCCGTTTATAGC) and ldhA(K154Q)-3'(CGCAGCATCGCCACACCGATCTGACCGGTACCGATAACGCCTG) were cloned to obtain the K154Q mutant lactate dehydrogenase gene ldhA The upstream fragment was cloned with primers pRE112-ldhA(K154Q-K248Q)-3'(GGTTGCAGGGGAGCGGCAAGATTAAACCAGTTCGTTCGGGC) and ldhA(K154Q)-5'(CAGGCGTTATCGG TACCGGTCAGATCGGTGTGGCGATGCTGCG) to obtain the downstream fragment of K154Q-mutated lactate dehydrogenase gene ldhA, using the fragment bridging method By bridging the upstream and downstream fragments of the K154Q-mutated lactate dehydrogenase gene ldhA, the K154Q-mutated lactate dehydrogenase gene ldhA was obtained;
2)以K154Q突变的乳酸脱氢酶基因ldhA为模板,以引物pRE112-ldhA(K154Q-K248Q)-5’(CAACATCACTGGAGAAAGTCTTATGAAACTCGCCGTTTATAGC)和ldhA(K248Q)-3’(AACGAACCAATTTTCTGATTCTGCAGCGCTTCAATTGCTGCCT)克隆获得K154Q-K248Q突变的乳酸脱氢酶基因ldhA的上游片段,以引物pRE112-ldhA(K154Q-K248Q)-3’(GGTTGCAGGGGAGCGGCAAGATTAAACCAGTTCGTTCGGGC)和ldhA(K248Q)-5’(AACGAACCAATTTTCTGATTCTGCAGCGCTTCAATTGCTGCCT)克隆获得K154Q-K248Q突变的乳酸脱氢酶基因ldhA的下游片段,利用片段搭桥法搭桥K154Q-K248Q突变的乳酸脱氢酶基因ldhA的上游和下游片段,获得K154Q-K248Q双突变的乳酸脱氢酶基因ldhA,其核苷酸序列如SEQ ID NO.4所示;2) Using the K154Q-mutated lactate dehydrogenase gene ldhA as a template, the K154Q-mutated lactate was cloned with primers pRE112-ldhA(K154Q-K248Q)-5'(CAACATCACTGGAGAAAGTCTTATGAAACTCGCCGTTTATAGC) and ldhA(K248Q)-3'(AACGAACCAATTTTCTGATTCTGCAGCGCTTCAATTGCTGCCT) The upstream fragment of dehydrogenase gene ldhA was cloned with primers pRE112-ldhA(K154Q-K248Q)-3'(GGTTGCAGGGGAGCGGCAAGATTAAACCAGTTCGTTCGGGC) and ldhA(K248Q)-5'(AACGAACCAATTTTCTGATTCTGCAGCGCTTCAATTGCTGCCT) to obtain K154Q-K248Q mutant lactate dehydrogenase gene ldhA The downstream fragment is used to bridge the upstream and downstream fragments of the K154Q-K248Q mutant lactate dehydrogenase gene ldhA by using the fragment bridging method to obtain the K154Q-K248Q double mutant lactate dehydrogenase gene ldhA, and its nucleotide sequence is as SEQ ID NO.4 shown;
3)以大肠杆菌的基因组DNA为模板,以引物pRE112-up-5’(CCGTCTAGACAGTTGCTGGATATCAGAGG)和pRE112-up-3’(GCTATAAACGGCGAGTTTCATAAGACTTTCTCCAGTGATGTTG)克隆获得ldhA基因的上游同源片段Up序列,以引物pRE112-dwon-5’(GCCCGAACGAACTGGTTTAATCTTGCCGCTCCCCTGCAACC)和pRE112-dwon-3’(CCGGAGCTCGTCGATGTCCAGTAGTGGAG)克隆获得ldhA基因的下游同源片段Down序列,利用片段搭桥法搭桥获得Up-ldhA(K154Q-248Q)-Down片段,其核苷酸序列如SEQ ID NO.5所示。3) Taking the genomic DNA of Escherichia coli as a template, using primers pRE112-up-5' (CCG TCTAGA CAGTTGCTGGATATCAGAGG) and pRE112-up-3' (GCTATAAACGGCGAGTTTCATAAGACTTTCTCCAGTGATGTTG) to clone the upstream homologous fragment Up sequence of the ldhA gene, and use the primers pRE112- dwon-5'(GCCCGAACGAACTGGTTTAATCTTGCCGCTCCCCTGCAACC) and pRE112-dwon-3'(CCGGAGCTCGTCGATGTCCAGTAGTGGAG) were cloned to obtain the Down sequence of the downstream homologous fragment of the ldhA gene, and the Up-ldhA(K154Q-248Q)-Down fragment was obtained by bridging by fragment bridging method. The acid sequence is shown in SEQ ID NO.5.
4)将步骤3)获得的Up-ldhA(K154Q-248Q)-Down片段构建至自杀质粒pRE112,利用自杀质粒pRE112介导的同源重组,将受体细胞的乳酸脱氢酶基因ldhA,原位替换为K154Q-K248Q双突变的ldhA基因,获得K154Q-K248Q双突变体菌株(E.coli BL21(DE3)ldhA::ldhA(K154Q-K248Q)。4) The Up-ldhA(K154Q-248Q)-Down fragment obtained in step 3) was constructed into the suicide plasmid pRE112, and the lactate dehydrogenase gene ldhA of the recipient cell was in situ using the homologous recombination mediated by the suicide plasmid pRE112. The K154Q-K248Q double mutant ldhA gene was replaced to obtain a K154Q-K248Q double mutant strain (E. coli BL21(DE3)ldhA::ldhA(K154Q-K248Q).
本发明所述K154Q-K248Q双突变体菌株在抑制乳酸的合成中的应用。The application of the K154Q-K248Q double mutant strain of the present invention in inhibiting the synthesis of lactic acid.
其中,所述抑制乳酸的合成优选的技术方案是:在3-羟基丙酸发酵培养基中,接种上述的K154Q-K248Q双突变体菌株,以葡萄糖为碳源,37℃,180rpm的条件下发酵48h。Wherein, the preferred technical solution for inhibiting the synthesis of lactic acid is: in 3-hydroxypropionic acid fermentation medium, inoculate the above-mentioned K154Q-K248Q double mutant strain, use glucose as carbon source, and ferment at 37°C and 180rpm. 48h.
本发明所述K154Q-K248Q双突变菌株在3-羟基丙酸生物合成中的应用。The application of the K154Q-K248Q double mutant strain of the present invention in the biosynthesis of 3-hydroxypropionic acid.
其中,所述3-羟基丙酸生物合成优选的技术方案是:Wherein, the preferred technical scheme of the 3-hydroxypropionic acid biosynthesis is:
1)按照感受态制备试剂盒操作说明制备K154Q-K248Q双突变体菌株的感受态细胞;1) Prepare the competent cells of the K154Q-K248Q double mutant strain according to the operation instructions of the competent preparation kit;
2)将3-羟基丙酸的合成质粒pA-accADBC和pMCR-N-C-N940V/K1106W/S1114R导入步骤1)制备的感受态细胞中,制备3-羟基丙酸的重组菌株;2) introducing the synthetic plasmids pA-accADBC and pMCR-N-C-N940V/K1106W/S1114R of 3-hydroxypropionic acid into the competent cells prepared in step 1) to prepare a recombinant strain of 3-hydroxypropionic acid;
3)将步骤2)制备的重组菌株接种至3-羟基丙酸发酵培养基中,以葡萄糖为碳源,37℃,180rpm的条件下发酵48h。3) Inoculate the recombinant strain prepared in step 2) into a 3-hydroxypropionic acid fermentation medium, use glucose as a carbon source, and ferment for 48 hours at 37° C. and 180 rpm.
本发明公开了一种乙酰化调控的乳酸脱氢酶突变体及其应用。首次通过调控乳酸脱氢酶LdhA的特定赖氨酸乙酰化修饰位点,按需求提高或降低乳酸脱氢酶LdhA的活性,实现乳酸的合成调控。实验证实:LdhA第9位的赖氨酸(K)突变为精氨酸(R)后,K9R突变体的酶活比野生型LdhA提高2.5倍。当过表达含K9R突变体的乳酸脱氢酶基因ldhA时,乳酸的产量和转化效率比对照菌株提高1.63倍。LdhA第154位和248位的赖氨酸(K)突变为谷氨酰胺(Q)后,K154Q-K248Q突变体的酶活下降至野生型的12.6%。当大肠杆菌E.coli BL21(DE3)菌株基因组上的ldhA基因原位替换为含K154Q-K248Q突变体的ldhA基因时,乳酸的积累显著降低,与目前常用的控制乳酸合成的方法,即ldhA直接敲除的方法相比,乳酸抑制效果相似,但生物量积累显著高于ldhA敲除菌株。在生物基化学品3-羟基丙酸的合成过程中,K154Q-K248Q突变菌株能够将乳酸副产物降低82.3%,与ldhA敲除菌株效果类似。双突变体菌株的3HP产量显著高于对照菌株和ldhA敲除菌株。由此表明,本发明通过蛋白赖氨酸乙酰化修饰降低ldhA酶活的方法抑制乳酸副产物合成,可以实现与目前常用方法(ldhA基因直接敲除)类似的效果,但本发明的方法在细胞生物量积累和目标产物合成方面更具优势。进一步的,本发明首次通过调控蛋白的赖氨酸乙酰化修饰位点获得乳酸脱氢酶突变体,可以按需提高或降低乳酸的合成,实现微生物合成的柔性调控。鉴于蛋白乙酰化修饰是一种非常保守和广泛的翻译后修饰机制,本发明的技术方案在其他物种乳酸合成调控方面均具有参考价值,可以广泛应用于其他生物基化学品的合成过程中抑制乳酸副产物积累。The invention discloses an acetylation-regulated lactate dehydrogenase mutant and its application. For the first time, by regulating the specific lysine acetylation modification site of lactate dehydrogenase LdhA, the activity of lactate dehydrogenase LdhA can be increased or decreased according to the demand to realize the regulation of lactate synthesis. Experiments confirmed that: after the lysine (K) at position 9 of LdhA was mutated to arginine (R), the enzyme activity of the K9R mutant was 2.5 times higher than that of the wild-type LdhA. When the lactate dehydrogenase gene ldhA containing the K9R mutant was overexpressed, the production and transformation efficiency of lactate were increased by 1.63 times compared with the control strain. After the lysine (K) at positions 154 and 248 of LdhA was mutated to glutamine (Q), the enzyme activity of the K154Q-K248Q mutant decreased to 12.6% of the wild type. When the ldhA gene on the genome of E.coli BL21(DE3) strain was in situ replaced with the ldhA gene containing the K154Q-K248Q mutant, the accumulation of lactate was significantly reduced, which was directly related to the currently commonly used method for controlling lactate synthesis, namely ldhA. Compared with the knockout method, the lactate inhibitory effect was similar, but the biomass accumulation was significantly higher than that of the ldhA knockout strain. During the synthesis of the biobased chemical 3-hydroxypropionic acid, the K154Q-K248Q mutant strain was able to reduce lactate by-products by 82.3%, similar to the ldhA knockout strain. The 3HP production of the double mutant strain was significantly higher than that of the control strain and the ldhA knockout strain. This shows that the method of the present invention to reduce ldhA enzyme activity by protein lysine acetylation modification inhibits the synthesis of lactic acid by-products, and can achieve a similar effect to the currently commonly used method (direct knockout of ldhA gene), but the method of the present invention is in cells. It has more advantages in biomass accumulation and target product synthesis. Further, the present invention obtains the lactate dehydrogenase mutant by regulating the lysine acetylation modification site of the protein for the first time, which can increase or decrease the synthesis of lactic acid as needed, so as to realize the flexible regulation of microbial synthesis. Given that protein acetylation modification is a very conservative and extensive post-translational modification mechanism, the technical solution of the present invention has reference value in the regulation of lactic acid synthesis in other species, and can be widely applied to inhibit lactic acid in the synthesis process of other bio-based chemicals accumulation of by-products.
附图说明Description of drawings
图1为乳酸脱氢酶的乙酰化修饰位点突变对酶活的影响。Figure 1 shows the effect of acetylation modification site mutation of lactate dehydrogenase on enzyme activity.
图2为K9R突变的乳酸脱氢酶在乳酸合成过程中对细胞生长、乳酸合成和转化率的影响。Figure 2 shows the effect of K9R mutant lactate dehydrogenase on cell growth, lactate synthesis and conversion rate during lactate synthesis.
图3为K154Q-K248Q的双突变体菌株与ldhA敲除菌株在细胞生长和乳酸积累方面的比较。Figure 3 is a comparison of the double mutant strain of K154Q-K248Q with the ldhA knockout strain in terms of cell growth and lactate accumulation.
图4为K154Q-K248Q的双突变体菌株与ldhA敲除菌株在3-羟基丙酸的发酵过程中细胞生长、乳酸积累和3-羟基丙酸合成的比较。Figure 4 is a comparison of cell growth, lactic acid accumulation and 3-hydroxypropionic acid synthesis in the K154Q-K248Q double mutant strain and the ldhA knockout strain during the fermentation of 3-hydroxypropionic acid.
具体实施方式Detailed ways
一般性说明:General notes:
以下实施例中所用材料、试剂、仪器和方法,未经特殊说明,均为本领域中的常规材料、试剂、仪器和方法,均可通过商业渠道获得。The materials, reagents, instruments and methods used in the following examples, unless otherwise specified, are conventional materials, reagents, instruments and methods in the art, and can be obtained through commercial channels.
所用酶试剂购自MBI Fermentas公司,提取质粒所用的试剂盒和回收DNA片段所用的试剂盒购自美国OMEGA公司,相应的操作步骤按照产品说明书进行;所有培养基如无特别说明均用去离子水配制。The enzyme reagents used were purchased from MBI Fermentas, and the kits used for plasmid extraction and DNA fragment recovery were purchased from OMEGA, the United States. The corresponding operation steps were carried out according to the product instructions; all media were deionized water unless otherwise specified. formulate.
培养基配方:Medium formula:
1)LB培养基:5g/L酵母粉,10g/L NaCl,10g/L蛋白胨,其余为水,121℃,20min灭菌。1) LB medium: 5g/L yeast powder, 10g/L NaCl, 10g/L peptone, the rest is water, sterilized at 121°C for 20min.
2)乳酸发酵培养基:0.42g/L柠檬酸,2g/L KH2PO4,1.6g/L K2HPO4,5.4g/L NH4Cl,0.25g/L MgSO4·7H2O,1/1000微量元素(3.7g/L(NH4)6Mo7O24·4H2O,2.9g/L ZnSO4·7H2O,24.7g/L H3BO3,2.5g/L CuSO4·5H2O,15.8g/L MnCl2·4H2O)。2) Lactic acid fermentation medium: 0.42g/L citric acid, 2g/L KH 2 PO 4 , 1.6g/L K 2 HPO 4 , 5.4g/L NH 4 Cl, 0.25g/L MgSO 4 ·7H 2 O, 1 /1000 trace elements (3.7g/L(NH 4 ) 6 Mo 7 O 24 ·4H 2 O, 2.9g/L ZnSO 4 ·7H 2 O, 24.7g/LH 3 BO 3 , 2.5g/L CuSO 4 ·5H 2 O, 15.8 g/L MnCl 2 ·4H 2 O).
3)3-羟基丙酸发酵培养基:14g/L K2HPO4·3H2O,5.2g/L KH2PO,1g/L NaCl,1g/LNH4Cl,0.25g/L MgSO4·7H2O,0.2g/L酵母粉,20g/L葡萄糖。3) 3-Hydroxypropionic acid fermentation medium: 14g/LK 2 HPO 4 ·3H2O, 5.2g/L KH 2 PO, 1g/L NaCl, 1g/LNH 4 Cl, 0.25g/L MgSO 4 ·7H 2 O, 0.2g/L yeast powder, 20g/L glucose.
在实际培养过程中,可向上述培养基中添加一定浓度的抗生素以维持质粒的稳定性,如50mg/L的氯霉素,100mg/L的氨苄青霉素。In the actual culture process, a certain concentration of antibiotics can be added to the above medium to maintain the stability of the plasmid, such as 50 mg/L chloramphenicol, 100 mg/L ampicillin.
本发明所述的大肠杆菌为E.coli BL21(DE3),购自Invitrogen公司。The Escherichia coli described in the present invention is E. coli BL21 (DE3), purchased from Invitrogen Company.
本发明中乳酸脱氢酶基因ldhA来源于大肠杆菌E.coli BL21(DE3)。In the present invention, the lactate dehydrogenase gene ldhA is derived from Escherichia coli E. coli BL21 (DE3).
本发明所述重组质粒导入宿主细胞的方法为热激转化法。The method for introducing the recombinant plasmid of the present invention into a host cell is a heat shock transformation method.
本发明所述的pRE112介导的同源重组法是本领域基因替换的常用技术之一,按照标准的操作方法操作即可。The pRE112-mediated homologous recombination method of the present invention is one of the commonly used techniques for gene replacement in the art, and can be operated according to standard operation methods.
实例中3-羟基丙酸的重组质粒为pA-accADBC和pMCR-N-C-N940V/K1106W/S1114R,该重组质粒的信息和构建方法详见Metabolic Engineering 34(2016)104–111。The recombinant plasmids of 3-hydroxypropionic acid in the examples are pA-accADBC and pMCR-N-C-N940V/K1106W/S1114R. For the information and construction method of the recombinant plasmids, please refer to Metabolic Engineering 34 (2016) 104-111.
本发明中所涉及的定义和缩写对照如下:The definitions and abbreviations involved in the present invention are contrasted as follows:
乳酸脱氢酶:LdhA。Lactate dehydrogenase: LdhA.
3-羟基丙酸:3HP。3-Hydroxypropionic acid: 3HP.
大肠杆菌(Escherichia coli):E.coli。Escherichia coli: E. coli.
本发明中“热激转化”或“热转化”指分子生物学中转染技术的一种,用来将外来基因整合到宿主基因中并稳定表达,其利用受到热激后,细胞膜出现裂隙,将外来基因导入宿主基因或将外来质粒导入宿主原生质体,又热激转化或热转化等。In the present invention, "heat shock transformation" or "heat transformation" refers to a kind of transfection technology in molecular biology, which is used to integrate foreign genes into host genes and express them stably. The introduction of foreign genes into host genes or the introduction of foreign plasmids into host protoplasts, and heat shock transformation or thermal transformation, etc.
本发明中过表达”指特定的基因在生物体中大量表达,表达量超过正常水平(即,野生型表达水平),可以通过增强内源表达或引入外源基因来实现。In the present invention, "overexpression" means that a specific gene is highly expressed in an organism, and the expression level exceeds the normal level (ie, the wild-type expression level), which can be achieved by enhancing endogenous expression or introducing exogenous genes.
本发明使用了基因工程和分子生物学领域常规的技术和方法。本领域的技术人员可以在本发明提供的实施方式的基础上采用本领域其它常规技术、方法和试剂,而不限于本发明具体实施例的限定。The present invention employs techniques and methods conventional in the fields of genetic engineering and molecular biology. Those skilled in the art can use other conventional techniques, methods and reagents in the art on the basis of the embodiments provided by the present invention, and are not limited to the limitations of the specific embodiments of the present invention.
下面结合具体实施例对本发明的技术内容做进一步阐述。The technical content of the present invention will be further elaborated below in conjunction with specific embodiments.
实施例1:乙酰化调控的乳酸脱氢酶LdhA突变体的构建和酶活测定。Example 1: Construction and enzymatic activity assay of acetylation-regulated lactate dehydrogenase LdhA mutants.
构建乳酸脱氢酶LdhA蛋白的第9位赖氨酸突变为精氨酸的乳酸脱氢酶LdhA突变体K9R;或者构建乳酸脱氢酶LdhA蛋白的第154位和248位赖氨酸突变为谷氨酰胺的LdhA双突变体K154Q-K248Q,并测定突变体的酶活。Construct the lactate dehydrogenase LdhA mutant K9R in which the 9th lysine of the lactate dehydrogenase LdhA protein is mutated to arginine; LdhA double mutant K154Q-K248Q of aminoamide, and the enzyme activity of the mutant was determined.
具体步骤如下:Specific steps are as follows:
1)LdhA突变体的扩增1) Amplification of LdhA mutants
以大肠杆菌的基因组DNA为模板,以引物pETDuet1-ldhA-5’(CCGGGATCCGATGAAACTCGCCGTTTATAGC)和pETDuet1-ldhA(K9R)-3’(AGGTACTTCTTGTCGTACTGACGTGTGCTATAAACGGCGAGTT)克隆获得K9R突变的乳酸脱氢酶基因ldhA的上游片段,以引物pETDuet1-ldhA-3’(CCGGAGCTCTTAAACCAG TTCGTTCGGGC)和pETDuet1-ldhA(K9R)-5’(AACTCGCCGTTTATAGCACACG TCAGTA CGACAAG AAGTACCT),通过PCR克隆获得K9R突变的乳酸脱氢酶基因ldhA的下游片段,利用片段搭桥法搭桥K9R突变的乳酸脱氢酶基因ldhA的上游和下游片段,获得K9R突变的乳酸脱氢酶基因ldhA,其核苷酸序列如SEQ ID NO.3所示;Using the genomic DNA of Escherichia coli as a template, the upstream fragment of K9R mutant lactate dehydrogenase gene ldhA was cloned with primers pETDuet1-ldhA-5'(CCG GGATCC GATGAAACTCGCCGTTTATAGC) and pETDuet1-ldhA(K9R)-3'(AGGTACTTCTTGTCGTACTGACGTGTGCTATAAACGGCGAGTT). Using primers pETDuet1-ldhA-3'(CCGGAGCTCTTAAACCAG TTCGTTCGGGC) and pETDuet1-ldhA(K9R)-5'(AACTCGCCGTTTATAGCACACG TCAGTA CGACAAG AAGTACCT), the downstream fragment of K9R mutated lactate dehydrogenase gene ldhA was obtained by PCR cloning, using fragment bridging method By bridging the upstream and downstream fragments of the K9R-mutated lactate dehydrogenase gene ldhA, the K9R-mutated lactate dehydrogenase gene ldhA is obtained, and its nucleotide sequence is shown in SEQ ID NO.3;
以大肠杆菌的基因组DNA为模板,以引物pETDuet1-ldhA-5’(CCGGGATCCGATGAAACTCGCCGTTTATAGC)和ldhA(K154Q)-3’(CGCAGCATCGCCACACCGATCTGACCGGTACCGATAACGCCTG),通过PCR克隆获得K154Q突变的乳酸脱氢酶基因ldhA的上游片段,以引物pETDuet1-ldhA-3’(CCGGAGCTCTTAAACCAG TTCGTTCGGGC)和ldhA(K154Q)-5’(CAGGCGTTATCGGTACCGGTCAGATCGGTGTGGCGATGCTGCG),通过PCR克隆获得K154Q突变的乳酸脱氢酶基因ldhA的下游片段,利用片段搭桥法搭桥K154Q突变的乳酸脱氢酶基因ldhA的上游和下游片段,获得K154Q突变的乳酸脱氢酶基因ldhA;Using the genomic DNA of Escherichia coli as a template, using primers pETDuet1-ldhA-5'(CCG GGATCC GATGAAACTCGCCGTTTATAGC) and ldhA(K154Q)-3'(CGCAGCATCGCCACACCGATCTGACCGGTACCGATAACGCCTG), the upstream fragment of K154Q mutant lactate dehydrogenase gene ldhA was obtained by PCR cloning , using primers pETDuet1-ldhA-3'(CCGGAGCTCTTAAACCAG TTCGTTCGGGC) and ldhA(K154Q)-5'(CAGGCGTTATCGGTACCGGTCAGATCGGTGTGGCGATGCTGCG), the downstream fragment of K154Q mutant lactate dehydrogenase gene ldhA was obtained by PCR cloning, and the K154Q mutant was bridged by the fragment bridge method. The upstream and downstream fragments of the lactate dehydrogenase gene ldhA, to obtain the K154Q mutant lactate dehydrogenase gene ldhA;
以K154Q突变的乳酸脱氢酶基因ldhA为模板,以引物pETDuet1-ldhA-5’(CCGGGATCCGATGAAACTCGCCGTTTATAGC)和ldhA(K248Q)-3’(AACGAACCAATTTTCTGATTCTGCAGCGCTTCAATTGCTGCCT),通过PCR克隆获得K154Q-K248Q突变的乳酸脱氢酶基因ldhA的上游片段,以引物pETDuet1-ldhA-3’(CCGGAGCTCTTAAACCAGTTCGTTCGGGC)和ldhA(K248Q)-5’(AACGAACC AATTTTCTGAT TCTGC AGCGC TTCAA TTGCTGCCT),通过PCR克隆获得K154Q-K248Q突变的乳酸脱氢酶基因ldhA的下游片段,利用片段搭桥法搭桥K154Q-K248Q突变的乳酸脱氢酶基因ldhA的上游和下游片段,获得K154Q-K248Q双突变的乳酸脱氢酶基因ldhA,其核苷酸序列如SEQ ID NO.4所示;K154Q-mutated lactate dehydrogenase gene ldhA was used as a template and primers pETDuet1-ldhA-5' (CCG GGATCC GATGAAACTCGCCGTTTATAGC) and ldhA(K248Q)-3' (AACGAACCAATTTTCTGATTCTGCAGCGCTTCAATTGCTGCCT) were cloned to obtain K154Q-K248Q-mutated lactate dehydrogenase by PCR. The upstream fragment of the enzyme gene ldhA was cloned by PCR with primers pETDuet1-ldhA-3'(CCGGAGCTCTTAAAACCAGTTCGTTCGGGC) and ldhA(K248Q)-5'(AACGAACC AATTTTCTGAT TCTGC AGCGC TTCAA TTGCTGCCT) to obtain K154Q-K248Q mutant lactate dehydrogenase gene ldhA The downstream fragment, utilizes the fragment bridging method to bridge the upstream and downstream fragments of the lactate dehydrogenase gene ldhA of K154Q-K248Q mutation, and obtains the lactate dehydrogenase gene ldhA of K154Q-K248Q double mutation, and its nucleotide sequence is such as SEQ ID NO. 4 shown;
上述PCR扩增体系为50μl,其中包含:25μL 2×PrimeSTARMAX,1μL上游引物(10μM)1μL下游引物(10μM),23uL去离子水,加入大肠杆菌菌落为模板。The above PCR amplification system is 50 μl, which contains: 25
上述PCR扩增程序为:95℃3min(95℃30s,58℃30s,72℃1min,30个循环)72℃3min。The above PCR amplification procedure is: 95°C for 3 min (95°C for 30s, 58°C for 30s, 72°C for 1 min, 30 cycles) and 72°C for 3 min.
2)重组质粒的构建2) Construction of recombinant plasmid
将步骤1)获得的K9R突变的乳酸脱氢酶基因ldhA和K154Q-K248Q双突变的乳酸脱氢酶基因ldhA以及表达载体pETDuet1分别利用BamHI和SacI双酶切,酶切体系为50μL,其中包含:20μL基因或载体,1μL BamHI,1μLSacI,5μL 10*buffer,23uL去离子水。回收酶切产物后,利用T4连接酶分别连接酶切后的突变体ldhA基因片段和载体片段,获得重组质粒,分别命名为:pETDuet1-ldhA(K9R)和pETDuet1-ldhA(K154Q-K248Q)。The K9R mutated lactate dehydrogenase gene ldhA and the K154Q-K248Q double mutated lactate dehydrogenase gene ldhA obtained in step 1) and the expression vector pETDuet1 were digested with BamHI and SacI, respectively, and the digestion system was 50 μL, including: 20 μL gene or vector, 1 μL BamHI, 1 μL SacI, 5
3)转化3) Conversion
按照感受态制备试剂盒操作说明制备大肠杆菌E.coli BL21(DE3)的感受态细胞,将步骤2)制备的重组质粒分别加入制备的感受态细胞中,冰浴30min;冰浴后,放入42℃水浴锅中热激90s;热激后取出,迅速置于冰上,冰浴10min;取出冰浴后的离心管中,并加入500μL液体LB培养基,置于37℃活化1h左右;活化后的细胞,4℃条件下4000g离心2min,弃上清,用100μL液体LB重新悬浮细胞,并涂布于含有100mg/L氨苄青霉素固体LB平板上,涂布后的平板置于37℃恒温培养箱过夜培养至长出单克隆,相应获得乳酸脱氢酶突变体K9R的表达菌株,命名为E.coli BL21(DE3)/pETDuet1-ldhA(K9R)和K154Q-248Q双突变体的表达菌株,命名为E.coli BL21(DE3)/pETDuet1-ldhA(K154Q-248Q)。Prepare competent cells of E.coli BL21 (DE3) according to the operation instructions of the competent preparation kit, add the recombinant plasmids prepared in step 2) to the prepared competent cells respectively, and take an ice bath for 30 minutes; Heat shock in a water bath at 42°C for 90s; take out after heat shock, quickly place on ice for 10min; take out the centrifuge tube after ice bath, add 500 μL of liquid LB medium, and activate at 37°C for about 1h; activate The resulting cells were centrifuged at 4000g for 2 min at 4°C, the supernatant was discarded, the cells were resuspended with 100 μL of liquid LB, and coated on solid LB plates containing 100 mg/L ampicillin, and the coated plates were incubated at 37°C at a constant temperature. Incubate overnight to grow a single clone, correspondingly obtain the expression strain of lactate dehydrogenase mutant K9R, named E. coli BL21(DE3)/pETDuet1-ldhA(K9R) and K154Q-248Q double mutant expression strain, named E.coli BL21(DE3)/pETDuet1-ldhA(K154Q-248Q).
4)酶活测定4) Enzyme activity assay
将步骤3)获得的菌株分别接种至含50mL LB培养基的三角摇瓶中,37℃180rpm培养至OD600约为0.8时,加入0.1mM的IPTG诱导表达,30℃180rpm继续培养18h后离心收集细胞,通过高压破碎获得蛋白粗制品,利用镍亲和层析柱进行蛋白纯化,相应获得乳酸脱氢酶的K9R突变体和K154Q-K248Q突变体的纯蛋白,并进行酶活测定。The strains obtained in step 3) were respectively inoculated into Erlenmeyer flasks containing 50 mL of LB medium. When the OD600 was about 0.8 at 180 rpm at 37 °C, 0.1 mM IPTG was added to induce expression, and the cells were collected by centrifugation at 30 °C and 180 rpm for 18 h. , the crude protein product was obtained by high pressure crushing, protein purification was carried out by nickel affinity chromatography column, and the K9R mutant and K154Q-K248Q mutant of lactate dehydrogenase were obtained correspondingly, and the enzyme activity was determined.
酶活测定反应体系200μL含:0.2M磷酸盐缓冲液(A液:将71.64g Na2HPO4.12H2O溶于1L纯水中;B液:将31.21g NaH2PO4.2H2O溶于1L纯水中:将84ml A液与16ml B液混合均匀,pH7.5,即为0.2M磷酸盐缓冲液),20mM NADH,20mM丙酮酸钠,40nM纯化的蛋白样品,利用酶标仪测定340nm波长的吸光值。Enzyme activity
酶活测定结果如图1所示,K9R突变体的酶活比野生型LdhA提高2.5倍,K154Q-K248Q突变体的酶活下降至野生型的12.6%。The enzyme activity assay results are shown in Figure 1. The enzyme activity of the K9R mutant was 2.5 times higher than that of the wild-type LdhA, and the enzyme activity of the K154Q-K248Q mutant decreased to 12.6% of the wild-type.
实施例2.K9R突变体的表达菌株在提高乳酸产量和转化效率中的应用The application of the expression strain of embodiment 2.K9R mutant in improving lactic acid production and transformation efficiency
本实施例将比较野生型乳酸脱氢酶的表达菌株及其K9R突变体的表达菌株在乳酸发酵过程中的细胞生长、乳酸积累和底物转化率的差异。本实施例共进行二组实验,以说明本发明所能够获得的效果。This example will compare the differences in cell growth, lactate accumulation and substrate conversion rate during lactic acid fermentation between the wild-type lactate dehydrogenase expressing strain and its K9R mutant expressing strain. In this embodiment, two sets of experiments are carried out to illustrate the effects that can be obtained by the present invention.
对照组:E.coli BL21(DE3)/pETDuet1-ldhAControl group: E.coli BL21(DE3)/pETDuet1-ldhA
实验组:E.coli BL21(DE3)/pETDuet1-ldhA(K9R)Experimental group: E.coli BL21(DE3)/pETDuet1-ldhA(K9R)
具体步骤如下:Specific steps are as follows:
1)参考实施例1的步骤,以大肠杆菌的基因组DNA为模板,以引物pETDuet1-ldhA-5’(CCGGGATCCGATGAAACTCGCCGTTTATAGC)和pETDuet1-ldhA-3’(CCGGAGCTCTTAA ACCAGTTCGTTCGGGC)经PCR克隆获得野生型ldhA基因,并构建至pETDuet1表达质粒,获得重组质粒pETDuet1-ldhA,将该重组质粒转化至E.coli BL21(DE3)的感受态细胞,获得野生型乳酸脱氢酶的表达菌株E.coli BL21(DE3)/pETDuet1-ldhA(对照组)。1) With reference to the steps of Example 1, using the genomic DNA of Escherichia coli as a template, the wild-type ldhA gene was obtained by PCR cloning with primers pETDuet1-ldhA-5' (CCG GGATCC GATGAAACTCGCCGTTTATAGC) and pETDuet1-ldhA-3' (CCGGAGCTCTTAA ACCAGTTCGTTCGGGC) , and construct it into the pETDuet1 expression plasmid to obtain the recombinant plasmid pETDuet1-ldhA, transform the recombinant plasmid into the competent cells of E.coli BL21(DE3), and obtain the expression strain E.coli BL21(DE3) of wild-type lactate dehydrogenase /pETDuet1-ldhA (control group).
2)分别将野生型乳酸脱氢酶的表达菌株(对照组)和K9R突变体的表达菌株(实验组)接种至含3mL LB培养基的试管中,37℃过夜培养。2) The wild-type lactate dehydrogenase expression strain (control group) and the K9R mutant expression strain (experimental group) were respectively inoculated into test tubes containing 3 mL of LB medium, and cultured at 37°C overnight.
2)将过夜培养后的菌株分别按1:50的体积比例接种到含有100mL乳酸发酵培养基的250mL摇瓶中(内含100mg/L的氨苄青霉素),37℃、180rpm条件下培养至OD600约为0.8时,加入0.1mM的IPTG诱导蛋白表达,转至30℃100rpm条件进行乳酸发酵24h。2) Inoculate the strains after overnight culture into 250mL shake flasks containing 100mL lactic acid fermentation medium (containing 100mg/L ampicillin) at a volume ratio of 1:50, and cultivate to about OD600 at 37°C and 180rpm. When it was 0.8, 0.1 mM IPTG was added to induce protein expression, and then it was transferred to 30 °C and 100 rpm for lactic acid fermentation for 24 h.
3)发酵结束后,利用分光光度计分别测定细胞的OD600吸光值。同时,取1mL发酵液,4℃,12000rpm离心10min,取上清,0.22μm滤膜过滤后利用HPLC检测乳酸浓度。3) After the fermentation, use a spectrophotometer to measure the OD600 absorbance value of the cells respectively. At the same time, 1 mL of fermentation broth was taken, centrifuged at 12000 rpm for 10 min at 4°C, the supernatant was taken, filtered with a 0.22 μm filter membrane, and the lactic acid concentration was detected by HPLC.
检测结果如图2所示,K9R突变体表达菌株的细胞生物量积累与对照组基本一致,K9R突变体的乳酸产量和转化效率比对照菌株提高约1.63倍。The test results are shown in Figure 2. The cell biomass accumulation of the K9R mutant expressing strain is basically the same as that of the control group, and the lactic acid production and transformation efficiency of the K9R mutant are about 1.63 times higher than that of the control strain.
实施例3.K154Q-K248Q双突变体菌株在抑制乳酸的合成中的应用Example 3. Application of K154Q-K248Q double mutant strain in inhibiting the synthesis of lactic acid
本实施例将比较野生E.coli BL21(DE3)菌株,乳酸脱氢酶基因ldhA敲除菌株(E.coli BL21(DE3)ΔldhA)和基因组上ldhA的K154Q-K248Q双突变体菌株(E.coli BL21(DE3)ldhA::ldhA(K154Q-K248Q))的细胞生长和乳酸合成差异。本实施例共进行三组实验,以说明本发明所能够获得的效果。This example will compare the wild-type E.coli BL21(DE3) strain, the lactate dehydrogenase gene ldhA knockout strain (E.coli BL21(DE3)ΔldhA) and the K154Q-K248Q double mutant strain of ldhA on the genome (E.coli Differences in cell growth and lactate synthesis of BL21(DE3)ldhA::ldhA(K154Q-K248Q)). In this embodiment, three groups of experiments are carried out to illustrate the effects that the present invention can obtain.
对照组1:E.coli BL21(DE3)Control 1: E.coli BL21(DE3)
对照组2:E.coli BL21(DE3)ΔldhAControl 2: E. coli BL21(DE3)ΔldhA
实验组:E.coli BL21(DE3)ldhA::ldhA(K154Q-K248Q)Experimental group: E.coli BL21(DE3)ldhA::ldhA(K154Q-K248Q)
具体步骤如下:Specific steps are as follows:
1)构建ldhA的敲除菌株1) Construction of a knockout strain of ldhA
按照P1噬菌体转导法的标准实验操作流程,敲除E.coli BL21(DE3)的ldhA基因,获得ldhA的敲除菌株E.coli BL21(DE3)ΔldhA(对照组2)。According to the standard experimental procedure of P1 phage transduction method, the ldhA gene of E.coli BL21(DE3) was knocked out to obtain the ldhA knockout strain E.coli BL21(DE3)ΔldhA (control group 2).
2)构建K154Q-K248Q双突变体菌株2) Construction of K154Q-K248Q double mutant strain
参考实施例1的PCR扩增体系和程序,以大肠杆菌的基因组DNA为模板,以引物pRE112-ldhA(K154Q-K248Q)-5’(CAACATCACTGGAGAAAGTCTTATGAAACTCGCCGTTTATAGC)和ldhA(K154Q)-3’(CGCAGCATCGCCACACCGATCTGACCGGTACCGATAACGCCTG)克隆获得K154Q突变的乳酸脱氢酶基因ldhA的上游片段,以引物pRE112-ldhA(K154Q-K248Q)-3’(GGTTGCAGGGGAGCGGCAAGATTAAACCAGTTCGTTCGGGC)和ldhA(K154Q)-5’(CAGGCGTTATCGGTACCGGTCAGATCGGTGTGGCGATGCTGCG)克隆获得K154Q突变的乳酸脱氢酶基因ldhA的下游片段,利用片段搭桥法搭桥K154Q突变的乳酸脱氢酶基因ldhA的上游和下游片段,获得K154Q突变的乳酸脱氢酶基因ldhA;Referring to the PCR amplification system and procedure of Example 1, the genomic DNA of Escherichia coli was used as a template, and the primers pRE112-ldhA(K154Q-K248Q)-5'(CAACATCACTGGAGAAAGTCTTATGAAACTCGCCGTTTATAGC) and ldhA(K154Q)-3'(CGCAGCATCGCCACACCGATCTGACCGGTACCGATAACGCCTG) were cloned and obtained The upstream fragment of K154Q-mutated lactate dehydrogenase gene ldhA was cloned with primers pRE112-ldhA(K154Q-K248Q)-3'(GGTTGCAGGGGAGCGGCAAGATTAAACCAGTTCGTTCGGGC) and ldhA(K154Q)-5'(CAGGCGTTATCGGTACCGGTCAGATCGGTGTGGCGATGCTGCG) to obtain K154Q-mutated lactate dehydrogenase gene The downstream fragment of ldhA was used to bridge the upstream and downstream fragments of the K154Q-mutated lactate dehydrogenase gene ldhA to obtain the K154Q-mutated lactate dehydrogenase gene ldhA;
以K154Q突变的乳酸脱氢酶基因ldhA为模板,以引物pRE112-ldhA(K154Q-K248Q)-5’(CAACATCACTGGAGAAAGTCTTATGAAACTCGCCGTTTATAGC)和ldhA(K248Q)-3’(AACGAACCAATTTTCTGATTCTGCAGCGCTTCAATTGCTGCCT)克隆获得K154Q-K248Q突变的乳酸脱氢酶基因ldhA的上游片段,以引物pRE112-ldhA(K154Q-K248Q)-3’(GGTTGCAGGGGAGCGGCAAGATTAAACCAGTTCGTTCGGGC)和ldhA(K248Q)-5’(AACGAACCAATTTTCTGATTCTGCAGCGCTTCAATTGCTGCCT)克隆获得K154Q-K248Q突变的乳酸脱氢酶基因ldhA的下游片段,利用片段搭桥法搭桥K154Q-K248Q突变的乳酸脱氢酶基因ldhA的上游和下游片段,获得K154Q-K248Q双突变的乳酸脱氢酶基因ldhA,其核苷酸序列如SEQ ID NO.4所示;K154Q-mutated lactate dehydrogenase gene ldhA was used as a template and primers pRE112-ldhA(K154Q-K248Q)-5'(CAACATCACTGGAGAAAGTCTTATGAAACTCGCCGTTTATAGC) and ldhA(K248Q)-3'(AACGAACCAATTTTCTGATTCTGCAGCGCTTCAATTGCTGCCT) were cloned to obtain K154Q-K248Q-mutated lactate dehydrogenase The upstream fragment of the enzyme gene ldhA was cloned with primers pRE112-ldhA(K154Q-K248Q)-3'(GGTTGCAGGGGAGCGGCAAGATTAAACCAGTTCGTTCGGGC) and ldhA(K248Q)-5'(AACGAACCAATTTTCTGATTCTGCAGCGCTTCAATTGCTGCCT) to obtain the downstream fragment of the K154Q-K248Q mutant lactate dehydrogenase gene ldhA , the upstream and downstream fragments of the K154Q-K248Q mutated lactate dehydrogenase gene ldhA were bridged by the fragment bridging method to obtain a K154Q-K248Q double-mutated lactate dehydrogenase gene ldhA, the nucleotide sequence of which is shown in SEQ ID NO.4 ;
以大肠杆菌的基因组DNA为模板,以引物pRE112-up-5’(CCGTCTAGACAGTTGCTGGATATCAGAGG)和pRE112-up-3’(GCTATAAACGGCGAGTTTCATAAGACTTTCTCCAGTGATGTTG)克隆获得ldhA基因的上游同源片段Up序列,以引物pRE112-dwon-5’(GCCCGAACGAACTGGTTTAATCTTGCCGCTCCCCTGCAACC)和pRE112-dwon-3’(CCGGAGCTCGTCGATGTCCAGTAGTGGAG)克隆获得ldhA基因的下游同源片段Down序列,利用片段搭桥法搭桥获得Up-ldhA(K154Q-248Q)-Down片段,其核苷酸序列如SEQ ID NO.5所示。Using the genomic DNA of Escherichia coli as a template, the upstream homologous fragment Up sequence of the ldhA gene was cloned with primers pRE112-up-5' (CCG TCTAGA CAGTTGCTGGATATCAGAGG) and pRE112-up-3' (GCTATAAACGGCGAGTTTCATAAGACTTTCTCCAGTGATGTTG), followed by primers pRE112-dwon- 5'(GCCCGAACGAACTGGTTTAATCTTGCCGCTCCCCTGCAACC) and pRE112-dwon-3'(CCGGAGCTCGTCGATGTCCAGTAGTGGAG) were cloned to obtain the Down sequence of the downstream homologous fragment of the ldhA gene, and the Up-ldhA(K154Q-248Q)-Down fragment was obtained by using the fragment bridging method. As shown in SEQ ID NO.5.
将步骤3)获得的Up-ldhA(K154Q-248Q)-Down片段和自杀质粒pRE112利用XbaI和SacI双酶切后,利用T4连接酶连接形成含同源臂重组质粒pRE112-Up-ldhA(K154Q-248Q)-Down,将该重组质粒利用热激转化法转化至受体细胞E.colix7213(方法参考实施例1步骤3),E.coliχ7213为DAP营养缺陷型菌株,培养时每毫升培养基需加入50μg/mL的DAP。将已转入上述重组质粒的E.coliχ7213菌株与ldhA的敲除菌株E.coli BL21(DE3)ΔldhA经过接合和两次同源重组,通过自杀质粒pRE112介导,将基因组上的乳酸脱氢酶基因ldhA原位替换为K154Q-K248Q双突变的ldhA基因,获得K154Q-K248Q双突变体菌株(E.coli BL21(DE3)ldhA::ldhA(K154Q-K248Q)(实验组)。The Up-ldhA(K154Q-248Q)-Down fragment obtained in step 3) and the suicide plasmid pRE112 were double digested with XbaI and SacI, and then ligated with T4 ligase to form a homology arm-containing recombinant plasmid pRE112-Up-ldhA(K154Q- 248Q)-Down, this recombinant plasmid is transformed into recipient cell E.colix7213 (method reference embodiment 1 step 3) using heat shock transformation method, E.coliχ7213 is a DAP auxotrophic strain, and every milliliter of culture medium needs to add during culturing 50 μg/mL of DAP. The E.coliχ7213 strain that has been transformed into the above recombinant plasmid and the ldhA knockout strain E.coli BL21(DE3)ΔldhA undergo conjugation and two homologous recombinations, and the lactate dehydrogenase on the genome is mediated by the suicide plasmid pRE112. The gene ldhA was replaced in situ with the K154Q-K248Q double mutant ldhA gene to obtain the K154Q-K248Q double mutant strain (E. coli BL21(DE3)ldhA::ldhA(K154Q-K248Q) (experimental group).
3)将步骤1)构建的ldhA敲除菌株(对照组2),步骤2)构建的ldhA(K154Q-248Q)双突变菌株(实验组)和野生型E.coli BL21(DE3)菌株(对照组1)分别接种至3mL LB培养基的试管中,37℃过夜培养。将过夜培养后的菌株分别按1:50的体积比例接种到含有50mL3HP发酵培养基的250mL摇瓶中,37℃180rpm连续培养48h,发酵过程中多次取样检测细胞的生长和乳酸积累情况。3) The ldhA knockout strain constructed in step 1) (control group 2), the ldhA (K154Q-248Q) double mutant strain constructed in step 2) (experimental group) and the wild-type E. coli BL21 (DE3) strain (control group) 1) Inoculate into test tubes of 3 mL LB medium respectively, and cultivate overnight at 37°C. The strains after overnight culture were inoculated into 250 mL shake flasks containing 50 mL of 3HP fermentation medium at a volume ratio of 1:50, and cultured at 37°C and 180 rpm for 48 hours. During the fermentation process, multiple samples were taken to detect cell growth and lactic acid accumulation.
检测结果如图3所示,ldhA的敲除菌株和ldhA(K154Q-248Q)双突变菌株均能够将乳酸控制在0.5g/L以下的水平,而野生菌株的乳酸含量在1.04g/L-3.23g/L之间。ldhA的敲除菌株和ldhA(K154Q-248Q)双突变菌株虽然初期细胞生长速度优于对照菌株,但ldhA敲除菌株在24h后进入稳定期,细胞生物量积累保持不变,而野生菌株和ldhA(K154Q-248Q)双突变菌株的细胞生物量积累持续增加并获得相似水平。由此说明,ldhA(K154Q-248Q)双突变菌达到了ldhA敲除菌株类似的乳酸抑制能力,但在细胞生长和生物量积累方面显著优于ldhA敲除菌株。The test results are shown in Figure 3. Both the ldhA knockout strain and the ldhA(K154Q-248Q) double mutant strain can control the lactate level below 0.5g/L, while the lactate content of the wild strain is 1.04g/L-3.23 between g/L. Although the ldhA knockout strain and the ldhA(K154Q-248Q) double mutant strain had better initial cell growth rate than the control strain, the ldhA knockout strain entered a stable phase after 24 h, and the cell biomass accumulation remained unchanged, while the wild strain and ldhA The cellular biomass accumulation of the (K154Q-248Q) double mutant strain continued to increase and achieved similar levels. This indicated that the ldhA(K154Q-248Q) double mutant reached the lactate inhibitory ability similar to the ldhA knockout strain, but was significantly better than the ldhA knockout strain in terms of cell growth and biomass accumulation.
实施例4.K154Q-K248Q双突变菌株在3-羟基丙酸生物合成中的应用Example 4. Application of K154Q-K248Q double mutant strain in 3-hydroxypropionic acid biosynthesis
本实施例将比较野生E.coli BL21(DE3)菌株,乳酸脱氢酶基因ldhA敲除菌株和K154Q-K248Q双突变体菌株在生物基化学品3-羟基丙酸的发酵过程中,细胞生长、乳酸合成和3-羟基丙酸合成的差异。本实施例共进行三组实验,以说明本发明所能够获得的效果。In this example, the wild-type E. coli BL21 (DE3) strain, the lactate dehydrogenase gene ldhA knockout strain and the K154Q-K248Q double mutant strain will be compared in the fermentation process of the biobased chemical 3-hydroxypropionic acid, cell growth, Differences between lactic acid synthesis and 3-hydroxypropionic acid synthesis. In this embodiment, three groups of experiments are carried out to illustrate the effects that the present invention can obtain.
具体实验方法如下:The specific experimental methods are as follows:
1)利用感受态指标试剂盒操作说明制备实施例3中的对照组1、对照组2和实验组的感受态细胞。1) Competent cells of the control group 1, the
2)将3-羟基丙酸的合成质粒pA-accADBC和pMCR-N-C-N940V/K1106W/S1114R参考实施例1步骤3)的热激转化法,分别导入步骤1)制备的三种感受态细胞中,获得合成3-羟基丙酸的重组菌株,分别为2) The synthetic plasmids pA-accADBC and pMCR-N-C-N940V/K1106W/S1114R of 3-hydroxypropionic acid were introduced into the three competent cells prepared in step 1) by the heat shock transformation method in step 3) of reference example 1, respectively. , to obtain recombinant strains for synthesizing 3-hydroxypropionic acid, respectively
对照组1:E.coli BL21(DE3)/pA-accADBC/pMCR-N-C-N940V/K1106W/S1114RControl 1: E.coli BL21(DE3)/pA-accADBC/pMCR-N-C-N940V/K1106W/S1114R
对照组2:E.coli BL21(DE3)ΔldhA/pA-accADBC/pMCR-N-C-N940V/K1106W/S1114RControl 2: E.coli BL21(DE3)ΔldhA/pA-accADBC/pMCR-N-C-N940V/K1106W/S1114R
实验组:E.coli BL21(DE3)ldhA::ldhA(K154Q-K248Q)/pA-accADBC/Experimental group: E.coli BL21(DE3)ldhA::ldhA(K154Q-K248Q)/pA-accADBC/
pMCR-N-C-N940V/K1106W/S1114RpMCR-N-C-N940V/K1106W/S1114R
上述的3-羟基丙酸的重组质粒pA-accADBC和pMCR-N-C-N940V/K1106W/S1114R的信息和构建方式详见Metabolic Engineering 34(2016)104–111。For the information and construction methods of the above-mentioned 3-hydroxypropionic acid recombinant plasmids pA-accADBC and pMCR-N-C-N940V/K1106W/S1114R, please refer to Metabolic Engineering 34 (2016) 104-111.
3)将步骤2)获得的3-羟基丙酸的重组菌株,即本实施例所述的对照组1、对照组2和实验组菌株分别接种至3mL LB培养基的试管中,37℃过夜培养。将过夜培养后的菌株分别按1:50的体积比例接种到含有50mL 3HP发酵培养基的250mL摇瓶中,37℃180rpm培养至OD600约为0.8,加入0.1M IPTG诱导蛋白表达,转至30℃180rpm条件继续发酵48h。3) The recombinant strains of 3-hydroxypropionic acid obtained in step 2), namely the control group 1, the
4)发酵结束后,利用分光光度计分别测定细胞的OD600吸光值。同时,取1mL发酵液,4℃,12000rpm离心10min,取上清,0.22μm滤膜过滤后利用HPLC检测3-羟基丙酸和乳酸浓度。4) After the fermentation, the OD600 absorbance values of the cells were measured using a spectrophotometer. At the same time, 1 mL of fermentation broth was taken, centrifuged at 12000 rpm for 10 min at 4°C, the supernatant was taken, filtered with a 0.22 μm filter membrane, and the concentrations of 3-hydroxypropionic acid and lactic acid were detected by HPLC.
3-羟基丙酸的发酵结果如图4所述,实验组和对照组2的乳酸积累基本一致,说明通过乙酰化修饰调控的ldhA双突变菌株在抑制乳酸合成方面可以达到与ldhA基因敲除相似的效果。但实验组的3-羟基丙酸产量达到2.05g/L,均高于对照组1的1.57g/L和对照组2的1.79g/L。提示K154Q-K248Q双突变菌株在3-羟基丙酸生物合成中应用前景广阔。The fermentation results of 3-hydroxypropionic acid are shown in Figure 4. The accumulation of lactic acid in the experimental group and
本领域技术人员应该理解,上述各个步骤均按照标准的分子克隆技术进行。Those skilled in the art should understand that each of the above steps is performed according to standard molecular cloning techniques.
虽然本发明已以较佳的实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明精神和范围内,都可以做各种的改动与修饰,因此,本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, , the protection scope of the present invention should be defined by the claims.
序 列 表sequence list
<110> 山东大学<110> Shandong University
<120> 一种乙酰化调控的乳酸脱氢酶突变体及其应用<120> An acetylation-regulated lactate dehydrogenase mutant and its application
<141> 2022-05-05<141> 2022-05-05
<160> 5<160> 5
<210> 1<210> 1
<211> 272<211> 272
<212> PRT<212> PRT
<213>人工序列<213> Artificial sequences
<221> 乙酰化调控的乳酸脱氢酶K9R突变体的氨基酸序列<221> Amino acid sequence of an acetylation-regulated lactate dehydrogenase K9R mutant
<222>(1)…(272)<222> (1)…(272)
<400> 1<400> 1
MKLAVYSTRQ YDKKYLQQVN ESFGFELEFF DFLLTEKTAK TANGCEAVCI FVNDDGSRPV 60MKLAVYSTRQ YDKKYLQQVN ESFGFELEFF
LEELKKHGVK YIALRCAGFN NVDLDAAKEL GLKVVRVPAY DPEAVAEHAI GMMMTLNRRI 120LEELKKHGVK YIALRCAGFN NVDLDAAKEL GLKVVRVPAY DPEAVAEHAI GMMMTLNRRI 120
HRAYQRTRDA NFSLEGLTGF TMYGKTAGVI GTGKIGVAML RILKGFGMRL LAFDPYPSAA 180HRAYQRTRDA NFSLEGLTGF TMYGKTAGVI GTGKIGVAML RILKGFGMRL LAFDPYPSAA 180
ALELGVEYVD LPTLFSESDV ISLHCPLTPE NYHLLNEAAF EQMKNGVMIV NTSRGALIDS 240ALELGVEYVD LPTLFSESDV ISLHCPLTPE NYHLLNEAAF EQMKNGVMIV NTSRGALIDS 240
QAAIEALKNQ KIGSLGMDVY ENERDLFFED KS 272QAAIEALKNQ KIGSLGMDVY ENERDLFFED KS 272
<210> 2<210> 2
<211> 272<211> 272
<212> PRT<212> PRT
<213>人工序列<213> Artificial sequences
<221> 乙酰化调控的乳酸脱氢酶K154Q-K248Q双突变体的氨基酸序列<221> Amino acid sequence of acetylation-regulated lactate dehydrogenase K154Q-K248Q double mutant
<222>(1)…(272)<222> (1)…(272)
<400> 2<400> 2
MKLAVYSTKQ YDKKYLQQVN ESFGFELEFF DFLLTEKTAK TANGCEAVCI FVNDDGSRPV 60MKLAVYSTKQ YDKKYLQQVN ESFGFELEFF
LEELKKHGVK YIALRCAGFN NVDLDAAKEL GLKVVRVPAY DPEAVAEHAI GMMMTLNRRI 120LEELKKHGVK YIALRCAGFN NVDLDAAKEL GLKVVRVPAY DPEAVAEHAI GMMMTLNRRI 120
HRAYQRTRDA NFSLEGLTGF TMYGKTAGVI GTGRIGVAML RILKGFGMRL LAFDPYPSAA 180HRAYQRTRDA NFSLEGLTGF TMYGKTAGVI GTGRIGVAML RILKGFGMRL LAFDPYPSAA 180
ALELGVEYVD LPTLFSESDV ISLHCPLTPE NYHLLNEAAF EQMKNGVMIV NTSRGALIDS 240ALELGVEYVD LPTLFSESDV ISLHCPLTPE NYHLLNEAAF EQMKNGVMIV NTSRGALIDS 240
QAAIEALRNQ KIGSLGMDVY ENERDLFFED KS 272QAAIEALRNQ KIGSLGMDVY ENERDLFFED KS 272
<210> 3<210> 3
<211> 990<211> 990
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequences
<221> K9R突变的乳酸脱氢酶基因ldhA核苷酸序列<221> K9R mutant lactate dehydrogenase gene ldhA nucleotide sequence
<222>(1)…(990)<222>(1)…(990)
<400> 3<400> 3
atgaaactcg ccgtttatag cacacgtcag tacgacaaga agtacctgca acaggtgaac 60atgaaactcg ccgtttatag cacacgtcag tacgacaaga agtacctgca acaggtgaac 60
gagtcctttg gctttgagct ggaatttttt gactttctgc tgacggaaaa aaccgctaaa 120gagtcctttg gctttgagct ggaatttttt gactttctgc tgacggaaaa aaccgctaaa 120
actgccaatg gctgcgaagc ggtatgtatt ttcgtaaacg atgacggcag ccgcccggtg 180actgccaatg gctgcgaagc ggtatgtatt ttcgtaaacg atgacggcag ccgcccggtg 180
ctggaagagc tgaaaaagca cggcgttaaa tatatcgccc tgcgctgtgc cggtttcaat 240ctggaagagc tgaaaaagca cggcgttaaa tatatcgccc tgcgctgtgc cggtttcaat 240
aacgtcgacc ttgacgcggc aaaagaactg gggctgaaag tagtccgtgt tccagcctat 300aacgtcgacc ttgacgcggc aaaagaactg gggctgaaag tagtccgtgt tccagcctat 300
gatccagagg ccgttgctga acacgccatc ggtatgatga tgacgctgaa ccgccgtatt 360gatccagagg ccgttgctga acacgccatc ggtatgatga tgacgctgaa ccgccgtatt 360
caccgcgcgt atcagcgtac ccgtgatgct aacttctctc tggaaggtct gaccggcttt 420caccgcgcgt atcagcgtac ccgtgatgct aacttctctc tggaaggtct gaccggcttt 420
actatgtatg gcaaaacggc aggcgttatc ggtaccggta aaatcggtgt ggcgatgctg 480actatgtatg gcaaaacggc aggcgttatc ggtaccggta aaatcggtgt ggcgatgctg 480
cgcattctga aaggttttgg tatgcgtctg ctggcgttcg atccgtatcc aagtgcagcg 540cgcattctga aaggttttgg tatgcgtctg ctggcgttcg atccgtatcc aagtgcagcg 540
gcgctggaac tcggtgtgga gtatgtcgat ctgccaaccc tgttctctga atcagacgtt 600gcgctggaac tcggtgtgga gtatgtcgat ctgccaaccc tgttctctga atcagacgtt 600
atctctctgc actgcccgct gacaccggaa aactatcatc tgttgaacga agccgccttc 660atctctctgc actgcccgct gacaccggaa aactatcatc tgttgaacga agccgccttc 660
gaacagatga aaaatggcgt gatgatcgtc aataccagtc gcggtgcatt gattgattct 720gaacagatga aaaatggcgt gatgatcgtc aataccagtc gcggtgcatt gattgattct 720
caggcagcaa ttgaagcgct gaaaaatcag aaaattggtt cgttgggtat ggacgtgtat 780caggcagcaa ttgaagcgct gaaaaatcag aaaattggtt cgttgggtat ggacgtgtat 780
gagaacgaac gcgatctatt ctttgaagat aaatccaacg acgtgatcca ggatgacgta 840gagaacgaac gcgatctatt ctttgaagat aaatccaacg acgtgatcca ggatgacgta 840
ttccgtcgcc tgtctgcctg ccacaacgtg ctgtttaccg ggcaccaggc attcctgaca 900ttccgtcgcc tgtctgcctg ccacaacgtg ctgtttaccg ggcaccaggc attcctgaca 900
gcagaagctc tgaccagtat ttctcagact acgctgcaaa acttaagcaa tctggaaaaa 960gcagaagctc tgaccagtat ttctcagact acgctgcaaa acttaagcaa tctggaaaaa 960
ggcgaaacct gcccgaacga actggtttaa 990ggcgaaacct gcccgaacga actggtttaa 990
<210> 4<210> 4
<211> 990<211> 990
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequences
<221> K154Q-K248Q双突变的乳酸脱氢酶基因ldhA核苷酸序列<221> K154Q-K248Q double mutant lactate dehydrogenase gene ldhA nucleotide sequence
<222>(1)…(990)<222>(1)…(990)
<400> 4<400> 4
atgaaactcg ccgtttatag cacaaaacag tacgacaaga agtacctgca acaggtgaac 60atgaaactcg ccgtttatag cacaaaacag tacgacaaga agtacctgca acaggtgaac 60
gagtcctttg gctttgagct ggaatttttt gactttctgc tgacggaaaa aaccgctaaa 120gagtcctttg gctttgagct ggaatttttt gactttctgc tgacggaaaa aaccgctaaa 120
actgccaatg gctgcgaagc ggtatgtatt ttcgtaaacg atgacggcag ccgcccggtg 180actgccaatg gctgcgaagc ggtatgtatt ttcgtaaacg atgacggcag ccgcccggtg 180
ctggaagagc tgaaaaagca cggcgttaaa tatatcgccc tgcgctgtgc cggtttcaat 240ctggaagagc tgaaaaagca cggcgttaaa tatatcgccc tgcgctgtgc cggtttcaat 240
aacgtcgacc ttgacgcggc aaaagaactg gggctgaaag tagtccgtgt tccagcctat 300aacgtcgacc ttgacgcggc aaaagaactg gggctgaaag tagtccgtgt tccagcctat 300
gatccagagg ccgttgctga acacgccatc ggtatgatga tgacgctgaa ccgccgtatt 360gatccagagg ccgttgctga acacgccatc ggtatgatga tgacgctgaa ccgccgtatt 360
caccgcgcgt atcagcgtac ccgtgatgct aacttctctc tggaaggtct gaccggcttt 420caccgcgcgt atcagcgtac ccgtgatgct aacttctctc tggaaggtct gaccggcttt 420
actatgtatg gcaaaacggc aggcgttatc ggtaccggtc atatcggtgt ggcgatgctg 480actatgtatg gcaaaacggc aggcgttatc ggtaccggtc atatcggtgt ggcgatgctg 480
cgcattctga aaggttttgg tatgcgtctg ctggcgttcg atccgtatcc aagtgcagcg 540cgcattctga aaggttttgg tatgcgtctg ctggcgttcg atccgtatcc aagtgcagcg 540
gcgctggaac tcggtgtgga gtatgtcgat ctgccaaccc tgttctctga atcagacgtt 600gcgctggaac tcggtgtgga gtatgtcgat ctgccaaccc tgttctctga atcagacgtt 600
atctctctgc actgcccgct gacaccggaa aactatcatc tgttgaacga agccgccttc 660atctctctgc actgcccgct gacaccggaa aactatcatc tgttgaacga agccgccttc 660
gaacagatga aaaatggcgt gatgatcgtc aataccagtc gcggtgcatt gattgattct 720gaacagatga aaaatggcgt gatgatcgtc aataccagtc gcggtgcatt gattgattct 720
caggcagcaa ttgaagcgct gcataatcag aaaattggtt cgttgggtat ggacgtgtat 780caggcagcaa ttgaagcgct gcataatcag aaaattggtt cgttgggtat ggacgtgtat 780
gagaacgaac gcgatctatt ctttgaagat aaatccaacg acgtgatcca ggatgacgta 840gagaacgaac gcgatctatt ctttgaagat aaatccaacg acgtgatcca ggatgacgta 840
ttccgtcgcc tgtctgcctg ccacaacgtg ctgtttaccg ggcaccaggc attcctgaca 900ttccgtcgcc tgtctgcctg ccacaacgtg ctgtttaccg ggcaccaggc attcctgaca 900
gcagaagctc tgaccagtat ttctcagact acgctgcaaa acttaagcaa tctggaaaaa 960gcagaagctc tgaccagtat ttctcagact acgctgcaaa acttaagcaa tctggaaaaa 960
ggcgaaacct gcccgaacga actggtttaa 990ggcgaaacct gcccgaacga actggtttaa 990
<210> 5<210> 5
<211> 2351<211> 2351
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<221> Up-ldhA(K154Q-248Q)-Down的核苷酸序列<221> Nucleotide sequence of Up-ldhA(K154Q-248Q)-Down
<222>(1)…(2351)<222>(1)…(2351)
<400> 5<400> 5
cagttgctgg atatcagagg ttaatgcgag agagagtttt ccctgccatt cctgccaggg 60cagttgctgg atatcagagg ttaatgcgag agagagtttt ccctgccatt cctgccaggg 60
agaaaaaatc agtttatcga tattgatcca ggtgttaggc agcatggact gccactgcgc 120agaaaaaatc agtttatcga tattgatcca ggtgttaggc agcatggact gccactgcgc 120
gagggttttt ggagcagctg gcgattgctc cgtctgcggc aatttcgcca gacaagcaga 180gagggttttt ggagcagctg gcgattgctc cgtctgcggc aatttcgcca gacaagcaga 180
atcaagttct accatgccga cgttcaataa ccagcggctg ggatgtgaaa ggctggcgtt 240atcaagttct accatgccga cgttcaataa ccagcggctg ggatgtgaaa ggctggcgtt 240
ggtgatatgc gcaagctgac aatctcccac cagataacgg agatcgggaa tgattaaacc 300ggtgatatgc gcaagctgac aatctcccac cagataacgg agatcgggaa tgattaaacc 300
tttacgcgta atgcgtgggc tttcatctaa tgcaatacgt gtcccgagcg gtagccagat 360tttacgcgta atgcgtgggc tttcatctaa tgcaatacgt gtcccgagcg gtagccagat 360
gcccgccagc gtgggaaccc acagcccgag cgtcatcagc agcgtcaacg gcacaagaat 420gcccgccagc gtgggaaccc acagcccgag cgtcatcagc agcgtcaacg gcacaagaat 420
aatcagtaat aacagcgcga gaacggcttt atatttaccc agcatgggta gttaatatcc 480aatcagtaat aacagcgcga gaacggcttt atatttaccc agcatgggta gttaatatcc 480
tgatttagcg aaaaattaag cattcaatac gggtattgtg gcatgtttaa ccgttcagtt 540tgatttagcg aaaaattaag cattcaatac gggtattgtg gcatgtttaa ccgttcagtt 540
gaaggttgcg cctacactaa gcatagttgt tgatgaattt ttcaatatcg ccatagcttt 600gaaggttgcg cctacactaa gcatagttgt tgatgaattt ttcaatatcg ccatagcttt 600
caattatatt tgaaattttg taaaatattt ttagtagctt aaatgtgatt caacatcact 660caattatatt tgaaattttg taaaatattt ttagtagctt aaatgtgatt caacatcact 660
ggagaaagtc ttatgaaact cgccgtttat agcacaaaac agtacgacaa gaagtacctg 720ggagaaagtc ttatgaaact cgccgtttat agcacaaaac agtacgacaa gaagtacctg 720
caacaggtga acgagtcctt tggctttgag ctggaatttt ttgactttct gctgacggaa 780caacaggtga acgagtcctt tggctttgag ctggaatttt ttgactttct gctgacggaa 780
aaaaccgcta aaactgccaa tggctgcgaa gcggtatgta ttttcgtaaa cgatgacggc 840aaaaccgcta aaactgccaa tggctgcgaa gcggtatgta ttttcgtaaa cgatgacggc 840
agccgcccgg tgctggaaga gctgaaaaag cacggcgtta aatatatcgc cctgcgctgt 900agccgcccgg tgctggaaga gctgaaaaag cacggcgtta aatatatcgc cctgcgctgt 900
gccggtttca ataacgtcga ccttgacgcg gcaaaagaac tggggctgaa agtagtccgt 960gccggtttca ataacgtcga ccttgacgcg gcaaaagaac tggggctgaa agtagtccgt 960
gttccagcct atgatccaga ggccgttgct gaacacgcca tcggtatgat gatgacgctg 1020gttccagcct atgatccaga ggccgttgct gaacacgcca tcggtatgat gatgacgctg 1020
aaccgccgta ttcaccgcgc gtatcagcgt acccgtgatg ctaacttctc tctggaaggt 1080aaccgccgta ttcaccgcgc gtatcagcgt acccgtgatg ctaacttctc tctggaaggt 1080
ctgaccggct ttactatgta tggcaaaacg gcaggcgtta tcggtaccgg tcatatcggt 1140ctgaccggct ttactatgta tggcaaaacg gcaggcgtta tcggtaccgg tcatatcggt 1140
gtggcgatgc tgcgcattct gaaaggtttt ggtatgcgtc tgctggcgtt cgatccgtat 1200gtggcgatgc tgcgcattct gaaaggtttt ggtatgcgtc tgctggcgtt cgatccgtat 1200
ccaagtgcag cggcgctgga actcggtgtg gagtatgtcg atctgccaac cctgttctct 1260ccaagtgcag cggcgctgga actcggtgtg gagtatgtcg atctgccaac cctgttctct 1260
gaatcagacg ttatctctct gcactgcccg ctgacaccgg aaaactatca tctgttgaac 1320gaatcagacg ttatctctct gcactgcccg ctgacaccgg aaaactatca tctgttgaac 1320
gaagccgcct tcgaacagat gaaaaatggc gtgatgatcg tcaataccag tcgcggtgca 1380gaagccgcct tcgaacagat gaaaaatggc gtgatgatcg tcaataccag tcgcggtgca 1380
ttgattgatt ctcaggcagc aattgaagcg ctgcataatc agaaaattgg ttcgttgggt 1440ttgattgatt ctcaggcagc aattgaagcg ctgcataatc agaaaattgg ttcgttgggt 1440
atggacgtgt atgagaacga acgcgatcta ttctttgaag ataaatccaa cgacgtgatc 1500atggacgtgt atgagaacga acgcgatcta ttctttgaag ataaatccaa cgacgtgatc 1500
caggatgacg tattccgtcg cctgtctgcc tgccacaacg tgctgtttac cgggcaccag 1560caggatgacg tattccgtcg cctgtctgcc tgccacaacg tgctgtttac cgggcaccag 1560
gcattcctga cagcagaagc tctgaccagt atttctcaga ctacgctgca aaacttaagc 1620gcattcctga cagcagaagc tctgaccagt atttctcaga ctacgctgca aaacttaagc 1620
aatctggaaa aaggcgaaac ctgcccgaac gaactggttt aatcttgccg ctcccctgca 1680aatctggaaa aaggcgaaac ctgcccgaac gaactggttt aatcttgccg ctcccctgca 1680
acccagggga gctgattcag ataatcccca atgacctttc attctctatt cttaaaatag 1740acccagggga gctgattcag ataatcccca atgacctttc attctctatt cttaaaatag 1740
tcctgagtca gaaactgtaa ttgagaacca caatgaagaa agtagccgcg tttgttgcgc 1800tcctgagtca gaaactgtaa ttgagaacca caatgaagaa agtagccgcg tttgttgcgc 1800
taagcctgct gatggcggga tgtgtaagta atgacaaaat tgctgttacg ccagaacagc 1860taagcctgct gatggcggga tgtgtaagta atgacaaaat tgctgttacg ccagaacagc 1860
tacagcatca tcgctttgtg ctggaaagcg taaacggtaa gcccgtgacc agcgataaaa 1920tacagcatca tcgctttgtg ctggaaagcg taaacggtaa gcccgtgacc agcgataaaa 1920
atccgccaga aatcagcttt ggtgaaaaaa tgatgatttc cggcagcatg tgtaaccgct 1980atccgccaga aatcagcttt ggtgaaaaaa tgatgatttc cggcagcatg tgtaaccgct 1980
ttagcggtga aggcaaactg tctaatggtg aactgacagc caaagggctg gcaatgaccc 2040ttagcggtga aggcaaactg tctaatggtg aactgacagc caaagggctg gcaatgaccc 2040
gtatgatgtg cgctaacccg cagcttaatg aactcgataa caccattagc gaaatgctga 2100gtatgatgtg cgctaacccg cagcttaatg aactcgataa caccattagc gaaatgctga 2100
aagaaggtgc acaagtggat ctgaccgcga accagttaac gctggcgacc gcgaaacaga 2160aagaaggtgc acaagtggat ctgaccgcga accagttaac gctggcgacc gcgaaacaga 2160
cattaactta taagctggcg gatttaatga attaatagct gccacagctc ccggcggcaa 2220cattaactta taagctggcg gatttaatga attaatagct gccacagctc ccggcggcaa 2220
gtgactgttc gctacagcgt ttgccgttgg gtaatgcaca catcccaatc gccgtaccat 2280gtgactgttc gctacagcgt ttgccgttgg gtaatgcaca catcccaatc gccgtaccat 2280
ccagttgacg ggcaacagaa agcgaaccgc cgatcattgc acaatttgct tctccactac 2340ccagttgacg ggcaacagaa agcgaaccgc cgatcattgc acaatttgct tctccactac 2340
tggacatcga c 2351tggacatcga c 2351
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210485169.5A CN114921429B (en) | 2022-05-06 | 2022-05-06 | Acetylation-regulated lactate dehydrogenase mutant and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210485169.5A CN114921429B (en) | 2022-05-06 | 2022-05-06 | Acetylation-regulated lactate dehydrogenase mutant and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114921429A true CN114921429A (en) | 2022-08-19 |
CN114921429B CN114921429B (en) | 2023-09-19 |
Family
ID=82806568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210485169.5A Active CN114921429B (en) | 2022-05-06 | 2022-05-06 | Acetylation-regulated lactate dehydrogenase mutant and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114921429B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116585293A (en) * | 2023-05-16 | 2023-08-15 | 山东大学 | Use of phenolic compound-induced iron death in cell growth and tumor treatment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200407397A1 (en) * | 2019-06-28 | 2020-12-31 | Research Foundation for SUNY | Compositions and methods for inhibiting lacate dehydrogenase a activity |
-
2022
- 2022-05-06 CN CN202210485169.5A patent/CN114921429B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200407397A1 (en) * | 2019-06-28 | 2020-12-31 | Research Foundation for SUNY | Compositions and methods for inhibiting lacate dehydrogenase a activity |
Non-Patent Citations (1)
Title |
---|
NCBI: "HBE2817393.1", GENBANK, pages 1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116585293A (en) * | 2023-05-16 | 2023-08-15 | 山东大学 | Use of phenolic compound-induced iron death in cell growth and tumor treatment |
Also Published As
Publication number | Publication date |
---|---|
CN114921429B (en) | 2023-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2281880B1 (en) | Mutant microorganism with high ability of producing putrescine and preparation of putrescine using same | |
EP2379730B1 (en) | Method for the preparation of diols | |
KR101814888B1 (en) | 5-aminolevulinic acid high-yield bacterial strain, preparation method and uses thereof | |
CN112961875B (en) | A kind of construction method of engineering strain for producing tetrahydropyrimidine by biological method | |
KR20220139351A (en) | Modified Microorganisms and Methods for Improved Production of Ectoins | |
EP2025759B1 (en) | Method for production of glycolic acid by enhancing the synthesis of coenzyme | |
CN108546698A (en) | A kind of aspartic acid enzyme mutant | |
CN112210521B (en) | A recombinant strain for screening the CT subunit of propionyl-CoA carboxylase pcc and its construction method and application | |
CN114921429B (en) | Acetylation-regulated lactate dehydrogenase mutant and application thereof | |
KR102149044B1 (en) | Method of producing 2-hydroxy gamma butyrolactone or 2,4-dihydroxybutanoic acid | |
CN108546697B (en) | Enzyme method for preparing beta alanine | |
CN113913317A (en) | Recombinant saccharomyces cerevisiae and method for improving enzymatic activity of glucose dehydrogenase displayed on surface of recombinant saccharomyces cerevisiae | |
CN110499259A (en) | A kind of Yarrowia Yarrowia YW100-1 and its application | |
CN113789307B (en) | A kind of pantothenic acid synthetase mutant, coding gene, carrier and application | |
CN110607335A (en) | A kind of nicotinamide adenine dinucleotide compound biosynthesis method | |
CN117126792A (en) | Recombinant plasmid, genetic engineering strain and method for producing L-theanine | |
CN114891820A (en) | A kind of Bacillus licheniformis for efficiently synthesizing hydroxytyrosol, construction method and application | |
CN114854658A (en) | A method for enhancing the utilization of acetic acid and improving the fermentation production of L-arginine by Escherichia coli | |
CN108949654B (en) | A kind of engineering bacteria and its application in producing α-ketoglutaric acid | |
CN106754778B (en) | A kind of oxidase and its application | |
CN110592038A (en) | A kind of engineering bacterium and method for efficiently producing danshensu | |
CN116064441B (en) | L-pantolactone dehydrogenase mutant and its encoding gene and application | |
CN113174375B (en) | ARO3 protein mutants and their applications | |
CN117645985B (en) | Acetylglucosamine-6 phosphate phosphatase mutant and application thereof | |
CN106754791B (en) | A kind of oxidase and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |