CN114915227B - DC speed prediction control method of permanent magnet synchronous motor - Google Patents
DC speed prediction control method of permanent magnet synchronous motor Download PDFInfo
- Publication number
- CN114915227B CN114915227B CN202210654240.8A CN202210654240A CN114915227B CN 114915227 B CN114915227 B CN 114915227B CN 202210654240 A CN202210654240 A CN 202210654240A CN 114915227 B CN114915227 B CN 114915227B
- Authority
- CN
- China
- Prior art keywords
- disturbance
- axis
- speed
- permanent magnet
- prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/13—Observer control, e.g. using Luenberger observers or Kalman filters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/18—Estimation of position or speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/20—Estimation of torque
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及电机控制技术领域,尤其涉及一种永磁同步电机的直流速度预测控制方法。The present invention relates to the technical field of motor control, and in particular to a DC speed prediction control method for a permanent magnet synchronous motor.
背景技术Background Art
永磁同步电机(PMSM)是一种常用的三相同步交流电机,具有高效率、高功率密度等特点。随电机运行性能日益提高,有限控制集模型预测控制(FCS-MPC)因其实现简单、易于处理非线性和约束以及良好的动态性能而受到越来越广泛的使用以提高控制系统的动态性能。Permanent magnet synchronous motor (PMSM) is a commonly used three-phase synchronous AC motor with high efficiency and high power density. With the increasing performance of motors, finite control set model predictive control (FCS-MPC) is increasingly used to improve the dynamic performance of control systems due to its simple implementation, easy handling of nonlinearities and constraints, and good dynamic performance.
直接速度预测控制(MP-DSC)是FCS-MPC控制策略之一,它可以通过预测模型和目标函数直接控制速度,而无需采用级联结构。然而,传统的MP-DSC过于依赖模型参数和负载转矩的准确性。在实际应用中,当参数不匹配时,系统的性能会恶化。事实上,永磁同步电机在各种工作环境下运行时,环境温度、磁饱和和负载条件都会发生剧烈的变化,这会对电机参数产生重大影响。Direct speed predictive control (MP-DSC) is one of the FCS-MPC control strategies, which can directly control the speed through the prediction model and objective function without adopting a cascade structure. However, the traditional MP-DSC is too dependent on the accuracy of the model parameters and load torque. In practical applications, when the parameters do not match, the performance of the system will deteriorate. In fact, when the permanent magnet synchronous motor operates under various working environments, the ambient temperature, magnetic saturation and load conditions will change dramatically, which will have a significant impact on the motor parameters.
因此,当系统参数不准确或者发生变化时,预测的参考参数就会不准确,从而导致整个电机的鲁棒性降低。Therefore, when the system parameters are inaccurate or change, the predicted reference parameters will be inaccurate, resulting in reduced robustness of the entire motor.
发明内容Summary of the invention
本发明提供一种永磁同步电机的直流速度预测控制方法,用以解决上述现有技术中的缺陷。The present invention provides a DC speed prediction control method for a permanent magnet synchronous motor, which is used to solve the defects in the above-mentioned prior art.
本发明提供一种永磁同步电机的直流速度预测控制方法,其特征在于,包括步骤:The present invention provides a DC speed prediction control method for a permanent magnet synchronous motor, which is characterized by comprising the steps of:
S1根据永磁同步电机同步坐标系下的电压方程和运动方程,建立永磁同步电机的第一预测模型以及代价函数;S1 establishes a first prediction model and a cost function of the permanent magnet synchronous motor according to the voltage equation and the motion equation in the synchronous coordinate system of the permanent magnet synchronous motor;
S2基于所述第一预测模型分析得到电机参数误差模型,输出第二预测模型,获取由电气参数和机械参数不匹配产生的预测误差;S2 obtains a motor parameter error model based on the first prediction model analysis, outputs a second prediction model, and obtains a prediction error caused by the mismatch between electrical parameters and mechanical parameters;
S3基于所述预测误差,对所述电压方程和运动方程进行重构,并输出d、q轴扰动以及转速扰动模型;S3 reconstructs the voltage equation and the motion equation based on the prediction error, and outputs the d-axis and q-axis disturbance and speed disturbance models;
S4获取全参数扰动观测器,获取d、q轴扰动以及转速扰动的扰动估计值;S4 obtains a full-parameter disturbance observer to obtain disturbance estimation values of d-axis and q-axis disturbances and speed disturbances;
S5将所述扰动估计值补偿至所述第一预测模型,获取第三预测模型,通过所述第三预测模型获取永磁同步电机电气参数的预测值。S5 compensates the disturbance estimation value to the first prediction model, obtains a third prediction model, and obtains the prediction value of the electrical parameter of the permanent magnet synchronous motor through the third prediction model.
根据本发明提供的一种永磁同步电机的直流速度预测控制方法,步骤S1中的所述电压方程和运动方程为:According to a DC speed prediction control method for a permanent magnet synchronous motor provided by the present invention, the voltage equation and the motion equation in step S1 are:
利用一阶欧拉离散化方法得到预测模型为:The prediction model obtained by using the first-order Euler discretization method is:
其中,id、iq分别为同步坐标系下的d、q轴电流分量,ud、uq分别为同步坐标系下的d、q轴电压分量;Rs、Ls、ψf分别表示定子电阻、定子电感、永磁体磁链;J、B、p分别表示转动惯量、阻尼系数、极对数;ωe为转子电气转速,ωr为转子机械转速,Te为电磁转矩,TL为负载转矩;Wherein, i d , i q are the d-axis and q-axis current components in the synchronous coordinate system, respectively; ud , uq are the d-axis and q-axis voltage components in the synchronous coordinate system, respectively; R s , L s , ψ f represent the stator resistance, stator inductance, and permanent magnet flux linkage, respectively; J, B, and p represent the moment of inertia, damping coefficient, and pole pair number, respectively; ω e is the rotor electrical speed, ω r is the rotor mechanical speed, Te is the electromagnetic torque, and TL is the load torque;
id(k)、iq(k)分别为k时刻同步坐标系下的d、q轴电流采样值,ud(k)、uq(k)分别为k时刻同步坐标系下的d、q轴电压采样值;ip d(k+1)、ip q(k+1)和分别为第k+1时刻同步坐标系下的d、q轴电流预测值;ωe(k)为第k时刻转子电气转速采样值;ωp e(k+1)为第k+1时刻转子电气转速预测值;Ts为采样周期;TL(k)为第k时刻负载转矩采样值。i d (k) and i q (k) are the d-axis and q-axis current sampling values in the synchronous coordinate system at moment k, respectively; ud (k) and u q (k) are the d-axis and q-axis voltage sampling values in the synchronous coordinate system at moment k, respectively; i p d (k+1), i p q (k+1) and are the d-axis and q-axis current prediction values in the synchronous coordinate system at moment k+1, respectively; ω e (k) is the rotor electrical speed sampling value at moment k; ω p e (k+1) is the rotor electrical speed prediction value at moment k+1; T s is the sampling period; TL (k) is the load torque sampling value at moment k.
根据本发明提供的一种永磁同步电机的直流速度预测控制方法,步骤S2中,所述第二预测模型为:According to a DC speed prediction control method for a permanent magnet synchronous motor provided by the present invention, in step S2, the second prediction model is:
其中,ΔR、ΔL、Δψf分别表示定子电阻、定子电感、永磁体磁链真实值与标称值的误差;ΔJ、ΔB分别表示转动惯量、阻尼系数真实值与标称值的误差;Among them, ΔR, ΔL, Δψ f represent the errors between the actual value and the nominal value of the stator resistance, stator inductance, and permanent magnet flux linkage, respectively; ΔJ and ΔB represent the errors between the actual value and the nominal value of the moment of inertia and damping coefficient, respectively;
所述电气参数和机械参数包括电阻参数、电感参数和磁链参数,所述机械参数包括阻尼系数、负载转矩和转动惯量。The electrical parameters and mechanical parameters include resistance parameters, inductance parameters and flux linkage parameters, and the mechanical parameters include damping coefficient, load torque and moment of inertia.
根据本发明提供的一种永磁同步电机的直流速度预测控制方法,步骤S2中,将所述第二预测模型减去所述第一预测模型,获取由电气参数和机械参数不匹配产生的所述预测误差为:According to a DC speed prediction control method for a permanent magnet synchronous motor provided by the present invention, in step S2, the first prediction model is subtracted from the second prediction model to obtain the prediction error caused by the mismatch between electrical parameters and mechanical parameters:
Ed为d轴的电气参数预测误差,Eq为q轴的电气参数预测误差,Eω为转速预测误差。E d is the electrical parameter prediction error of the d-axis, E q is the electrical parameter prediction error of the q-axis, and E ω is the speed prediction error.
根据本发明提供的一种永磁同步电机的直流速度预测控制方法,S3中,对所述电压方程和运动方程进行重构得:According to a DC speed prediction control method for a permanent magnet synchronous motor provided by the present invention, in S3, the voltage equation and the motion equation are reconstructed to obtain:
建立d、q轴扰动以及转速扰动模型为:The d-axis, q-axis disturbance and speed disturbance models are established as follows:
其中,fd为d轴扰动、fq为q轴扰动、fω为转速扰动。Among them, fd is the d-axis disturbance, fq is the q-axis disturbance, and fω is the speed disturbance.
根据本发明提供的一种永磁同步电机的直流速度预测控制方法,S4中,所述全参数扰动观测器为:According to a DC speed prediction control method for a permanent magnet synchronous motor provided by the present invention, in S4, the full parameter disturbance observer is:
其中:z1、z2、z3为所述全参数扰动观测器的中间变量,l为扰动观测器的增益;为d轴扰动估计值、为q轴扰动估计值、为转速扰动估计值。Wherein: z 1 , z 2 , z 3 are intermediate variables of the full parameter disturbance observer, l is the gain of the disturbance observer; is the d-axis disturbance estimate, is the estimated value of the q-axis disturbance, is the estimated value of the speed disturbance.
根据本发明提供的一种永磁同步电机的直流速度预测控制方法,S5中,所述第三预测模型为:According to a DC speed prediction control method for a permanent magnet synchronous motor provided by the present invention, in S5, the third prediction model is:
其中,为第k时刻的d轴扰动估计值,为第k时刻的q轴扰动估计值,为第k时刻的转速扰动估计值。in, is the estimated value of the d-axis disturbance at the kth moment, is the estimated value of the q-axis disturbance at the kth moment, is the estimated value of the speed disturbance at the kth moment.
本发明还提供一种永磁同步电机直接速度预测控制系统,所述一种永磁同步电机直接速度预测控制系统用于执行上述任一项所述直流速度预测控制方法的步骤对永磁同步电机的电气参数和机械参数进行预测,并输出对应参数的预测值。The present invention also provides a permanent magnet synchronous motor direct speed prediction control system, which is used to execute the steps of any of the above-mentioned DC speed prediction control methods to predict the electrical parameters and mechanical parameters of the permanent magnet synchronous motor, and output the predicted values of the corresponding parameters.
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述直流速度预测控制方法的步骤。The present invention also provides a non-transitory computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the steps of any of the above-mentioned DC speed prediction control methods are implemented.
本发明提供的一种永磁同步电机直接速度预测控制方法,通过求取由电气参数和机械参数不匹配产生的预测误差,并基于所述预测误差获取建立的扰动模型中d、q轴扰动以及转速扰动的扰动估计值,将所述扰动估计值补偿至所述第一预测模型以获取第三预测模型,同时考虑了电气参数不准确和机械参数不准确产生的扰动,从而提高了预测模型的动态性能和稳态精度。The present invention provides a direct speed prediction control method for a permanent magnet synchronous motor. The method obtains a prediction error caused by the mismatch between electrical parameters and mechanical parameters, obtains disturbance estimation values of d-axis and q-axis disturbances and speed disturbances in an established disturbance model based on the prediction error, and compensates the disturbance estimation values to the first prediction model to obtain a third prediction model. The method also takes into account the disturbances caused by inaccurate electrical parameters and inaccurate mechanical parameters, thereby improving the dynamic performance and steady-state accuracy of the prediction model.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the present invention or the prior art, the following briefly introduces the drawings required for use in the embodiments or the description of the prior art. Obviously, the drawings described below are some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1是本发明提供的永磁同步电机直接速度预测控制方法的流程示意图;FIG1 is a schematic flow chart of a method for direct speed prediction control of a permanent magnet synchronous motor provided by the present invention;
图2是本发明提供的永磁同步电机直接速度预测控制方法的误差分布图之一;FIG2 is one of the error distribution diagrams of the direct speed prediction control method of a permanent magnet synchronous motor provided by the present invention;
图3是本发明提供的永磁同步电机直接速度预测控制方法的误差分布图之二;FIG3 is a second error distribution diagram of the direct speed prediction control method for a permanent magnet synchronous motor provided by the present invention;
图4是本发明提供的永磁同步电机直接速度预测控制方法的误差分布图之三;FIG4 is a third error distribution diagram of the direct speed prediction control method for a permanent magnet synchronous motor provided by the present invention;
图5是本发明提供的永磁同步电机直接速度预测控制方法的误差分布图之四;FIG5 is a fourth error distribution diagram of the direct speed prediction control method for a permanent magnet synchronous motor provided by the present invention;
图6是本发明提供的永磁同步电机直接速度预测控制方法的误差分布图之五;FIG6 is a fifth error distribution diagram of the direct speed prediction control method for a permanent magnet synchronous motor provided by the present invention;
图7是本发明提供的永磁同步电机直接速度预测控制方法的误差分布图之六;7 is a sixth error distribution diagram of the direct speed prediction control method for a permanent magnet synchronous motor provided by the present invention;
图8是本发明提供的永磁同步电机直接速度预测控制系统的结构示意图;8 is a schematic diagram of the structure of a direct speed prediction control system for a permanent magnet synchronous motor provided by the present invention;
图9是现有技术采用采用传统直接速度预测控制获取的结果示意图之一;FIG9 is a schematic diagram of a result obtained by using conventional direct speed prediction control in the prior art;
图10是本发明提供的直接速度预测控制方法获取的结果示意图之一;FIG10 is a schematic diagram of one of the results obtained by the direct speed prediction control method provided by the present invention;
图11是现有技术采用采用传统直接速度预测控制获取的结果示意图之二;FIG11 is a second schematic diagram of the results obtained by using the conventional direct speed predictive control in the prior art;
图12是本发明提供的直接速度预测控制方法获取的结果示意图之二;FIG12 is a second schematic diagram of the results obtained by the direct speed prediction control method provided by the present invention;
图13是现有技术采用采用传统直接速度预测控制获取的结果示意图之三;FIG13 is a third schematic diagram of the results obtained by using the conventional direct speed prediction control in the prior art;
图14是本发明提供的直接速度预测控制方法获取的结果示意图之三。FIG. 14 is a third schematic diagram of the results obtained by the direct speed prediction control method provided by the present invention.
具体实施方式DETAILED DESCRIPTION
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the present invention clearer, the technical solution of the present invention will be clearly and completely described below in conjunction with the drawings of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。The terms "first", "second", "third", etc. in the specification and claims of this application and the above-mentioned drawings are used to distinguish different objects, rather than to describe a specific order. In addition, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusions. For example, a process, method, system, product or device that includes a series of steps or units is not limited to the listed steps or units, but optionally includes steps or units that are not listed, or optionally includes other steps or units inherent to these processes, methods, products or devices.
在一个实施例中,如图1所示,本发明提供一种永磁同步电机的直流速度预测控制方法,包括步骤:In one embodiment, as shown in FIG1 , the present invention provides a DC speed prediction control method for a permanent magnet synchronous motor, comprising the steps of:
S1根据永磁同步电机同步坐标系下的电压方程和运动方程,建立永磁同步电机的第一预测模型以及代价函数;S1 establishes a first prediction model and a cost function of the permanent magnet synchronous motor according to the voltage equation and the motion equation in the synchronous coordinate system of the permanent magnet synchronous motor;
S2基于所述第一预测模型分析得到电机参数误差模型,输出第二预测模型,获取由电气参数和机械参数不匹配产生的预测误差;S2 obtains a motor parameter error model based on the first prediction model analysis, outputs a second prediction model, and obtains a prediction error caused by the mismatch between electrical parameters and mechanical parameters;
S3基于所述预测误差,对所述电压方程和运动方程进行重构,并输出d、q轴扰动以及转速扰动模型;S3 reconstructs the voltage equation and the motion equation based on the prediction error, and outputs the d-axis and q-axis disturbance and speed disturbance models;
S4获取全参数扰动观测器,获取d、q轴扰动以及转速扰动的扰动估计值;S4 obtains a full-parameter disturbance observer to obtain disturbance estimation values of d-axis and q-axis disturbances and speed disturbances;
S5将所述扰动估计值补偿至所述第一预测模型,获取第三预测模型,通过所述第三预测模型获取永磁同步电机电气参数的预测值。S5 compensates the disturbance estimation value to the first prediction model, obtains a third prediction model, and obtains the prediction value of the electrical parameter of the permanent magnet synchronous motor through the third prediction model.
根据本发明提供的一种永磁同步电机的直流速度预测控制方法,步骤S1中的所述电压方程和运动方程为:According to a DC speed prediction control method for a permanent magnet synchronous motor provided by the present invention, the voltage equation and the motion equation in step S1 are:
利用一阶欧拉离散化方法得到预测模型为:The prediction model obtained by using the first-order Euler discretization method is:
其中,id、iq分别为同步坐标系下的d、q轴电流分量,ud、uq分别为同步坐标系下的d、q轴电压分量;Rs、Ls、ψf分别表示定子电阻、定子电感、永磁体磁链;J、B、p分别表示转动惯量、阻尼系数、极对数;ωe为转子电气转速,ωr为转子机械转速,Te为电磁转矩,TL为负载转矩;Wherein, i d , i q are the d-axis and q-axis current components in the synchronous coordinate system, respectively; ud , uq are the d-axis and q-axis voltage components in the synchronous coordinate system, respectively; R s , L s , ψ f represent the stator resistance, stator inductance, and permanent magnet flux linkage, respectively; J, B, and p represent the moment of inertia, damping coefficient, and pole pair number, respectively; ω e is the rotor electrical speed, ω r is the rotor mechanical speed, Te is the electromagnetic torque, and TL is the load torque;
id(k)、iq(k)分别为k时刻同步坐标系下的d、q轴电流采样值,ud(k)、uq(k)分别为k时刻同步坐标系下的d、q轴电压采样值;ip d(k+1)、ip q(k+1)和分别为第k+1时刻同步坐标系下的d、q轴电流预测值;ωe(k)为第k时刻转子电气转速采样值;ωp e(k+1)为第k+1时刻转子电气转速预测值;Ts为采样周期;TL(k)为第k时刻负载转矩采样值;i d (k) and i q (k) are the d-axis and q-axis current sampling values in the synchronous coordinate system at time k, respectively; ud (k) and u q (k) are the d-axis and q-axis voltage sampling values in the synchronous coordinate system at time k, respectively; i p d (k+1), i p q (k+1) and are the d-axis and q-axis current prediction values in the synchronous coordinate system at time k+1, respectively; ω e (k) is the rotor electrical speed sampling value at time k; ω p e (k+1) is the rotor electrical speed prediction value at time k+1; T s is the sampling period; TL (k) is the load torque sampling value at time k;
为k时刻电磁转矩平均值,具体为: is the average electromagnetic torque at time k, specifically:
其中,建立的代价函数为:Among them, the established cost function is:
其中,ω*为给定电气转速,为给定q轴电流,λd为d轴电流权重系数,λq为q轴电流权重系数;Where, ω * is the given electrical speed, is the given q-axis current, λ d is the d-axis current weight coefficient, and λ q is the q-axis current weight coefficient;
可以通过建立的代价函数找到最优的电流预测值和对应的最优电压矢量。The optimal current prediction value and the corresponding optimal voltage vector can be found through the established cost function.
进一步,根据上述步骤建立的第一预测模型,分析当电阻、电感、磁链、转动惯量、阻尼系数以及负载转矩出现不准确时候的误差模型,定性分析得到各种电气参数以及机械参数不准确的情况下直接速度预测控制的影响;Further, according to the first prediction model established in the above steps, the error model is analyzed when the resistance, inductance, flux linkage, moment of inertia, damping coefficient and load torque are inaccurate, and the influence of direct speed prediction control when various electrical parameters and mechanical parameters are inaccurate is obtained by qualitative analysis;
具体的,电气参数以及机械参数不准确的情况即为获取的各种电气参数、机械参数的值与电机运行过程中各种电气参数、机械参数的实际值存在误差,步骤S2中,基于所述误差对第一预测模型进行改写,得到的第二预测模型为:Specifically, the electrical parameters and mechanical parameters are inaccurate when the values of the various electrical parameters and mechanical parameters obtained are different from the actual values of the various electrical parameters and mechanical parameters during the operation of the motor. In step S2, the first prediction model is rewritten based on the error, and the second prediction model obtained is:
其中,ΔR、ΔL、Δψf分别表示定子电阻、定子电感、永磁体磁链真实值与标称值的误差;ΔJ、ΔB分别表示转动惯量、阻尼系数真实值与标称值的误差;Among them, ΔR, ΔL, Δψ f represent the errors between the actual value and the nominal value of the stator resistance, stator inductance, and permanent magnet flux linkage, respectively; ΔJ and ΔB represent the errors between the actual value and the nominal value of the moment of inertia and damping coefficient, respectively;
其中,所述标称值为对应物理量的标准参数;Wherein, the nominal value is the standard parameter of the corresponding physical quantity;
所述电气参数和机械参数包括电阻参数、电感参数和磁链参数,所述机械参数包括阻尼系数、负载转矩和转动惯量。The electrical parameters and mechanical parameters include resistance parameters, inductance parameters and flux linkage parameters, and the mechanical parameters include damping coefficient, load torque and moment of inertia.
进一步的,步骤S2中,将所述第二预测模型减去所述第一预测模型,获取由电气参数和机械参数不匹配产生的所述预测误差为:Further, in step S2, the first prediction model is subtracted from the second prediction model to obtain the prediction error caused by the mismatch between the electrical parameters and the mechanical parameters:
Ed为d轴的电气参数预测误差,Eq为q轴的电气参数预测误差,Eω为转速预测误差;E d is the electrical parameter prediction error of the d-axis, E q is the electrical parameter prediction error of the q-axis, and E ω is the speed prediction error;
具体的,如图2-7所示,电感参数、磁链参数、阻尼系数和负载转矩的不准确是引起预测误差的主要因素,而转动惯量和电阻参数不准确引起的误差较小。Specifically, as shown in Figure 2-7, inaccuracies in inductance parameters, flux parameters, damping coefficient and load torque are the main factors causing prediction errors, while the errors caused by inaccuracies in moment of inertia and resistance parameters are smaller.
进一步的,在步骤S3中,基于电气参数和机械参数相对于对应实际值得误差,对步骤S1中的所述电压方程和运动方程进行重构得:Further, in step S3, based on the errors of the electrical parameters and mechanical parameters relative to the corresponding actual values, the voltage equation and the motion equation in step S1 are reconstructed to obtain:
建立d、q轴扰动以及转速扰动模型为:The d-axis, q-axis disturbance and speed disturbance models are established as follows:
其中,fd为d轴扰动、fq为q轴扰动、fω为转速扰动。Among them, fd is the d-axis disturbance, fq is the q-axis disturbance, and fω is the speed disturbance.
进一步,步骤S4中,通过建立全参数扰动观测器来针对步骤S3中d、q轴扰动以及转速扰动模型进行观测:Further, in step S4, a full parameter disturbance observer is established to observe the d-axis and q-axis disturbances and the speed disturbance model in step S3:
其中,z1、z2、z3为所述全参数扰动观测器的中间变量,l为扰动观测器的增益;为d轴扰动估计值、为q轴扰动估计值、为转速扰动估计值;Wherein, z 1 , z 2 , z 3 are intermediate variables of the full parameter disturbance observer, and l is the gain of the disturbance observer; is the d-axis disturbance estimate, is the estimated value of the q-axis disturbance, is the estimated value of the speed disturbance;
具体的,观测误差表示为:Specifically, the observation error It is expressed as:
建立李亚普诺夫函数:Create a Lyapunov function:
对上式进行求导得:Derivative the above formula:
由上式可知,根据李雅普诺夫稳定性判据,只要观测器参数满足l<0,即可确保观测器稳定,从而得到观测器的参数取值范围。From the above formula, we can see that according to the Lyapunov stability criterion, as long as the observer parameters satisfy l<0, the observer stability can be ensured, thus obtaining the parameter value range of the observer.
进一步的,在步骤S5中,将上述步骤S4测得的扰动补偿至第一预测模型,如图8所示,得到的所述第三预测模型为:Furthermore, in step S5, the disturbance measured in step S4 is compensated to the first prediction model, as shown in FIG8 , and the obtained third prediction model is:
其中,为第k时刻的d轴扰动估计值,为第k时刻的q轴扰动估计值,为第k时刻的转速扰动估计值;in, is the estimated value of the d-axis disturbance at the kth moment, is the estimated value of the q-axis disturbance at the kth moment, is the estimated value of the speed disturbance at the kth moment;
为k时刻电磁转矩平均值,具体为: is the average electromagnetic torque at time k, specifically:
改善后的预测模型同时考虑了所有电气参数和机械参数不准确所产生的影响,有效提升了系统的鲁棒性;The improved prediction model takes into account the impact of inaccuracies in all electrical and mechanical parameters, effectively improving the robustness of the system.
具体的,在一个实施例中,运用上述方法对电机的电气参数和机械参数进行预测,图9-10所示为电机采用传统直接速度预测控制和采用本发明所述的直接速度预测控制方法时运行在1500r/min、2N·m工况下的转速跟踪波形,可见本发明更好的实现了对实际转速值的模拟;图11-12所示为电机采用传统直接速度预测控制和本发明所述的直接速度预测控制方法时运行的q轴电流跟踪波形,可见本发明更好的实现了电流预测值的精度;图13-14所示为电机采用传统直接速度预测控制和本发明所述的直接速度预测控制方法时运行的q轴电流频谱图;Specifically, in one embodiment, the above method is used to predict the electrical parameters and mechanical parameters of the motor. Figures 9-10 show the speed tracking waveforms of the motor running under 1500r/min, 2N·m conditions when the motor adopts traditional direct speed prediction control and the direct speed prediction control method described in the present invention. It can be seen that the present invention better achieves the simulation of the actual speed value; Figures 11-12 show the q-axis current tracking waveforms of the motor running when the motor adopts traditional direct speed prediction control and the direct speed prediction control method described in the present invention. It can be seen that the present invention better achieves the accuracy of the current prediction value; Figures 13-14 show the q-axis current spectrum diagrams of the motor running when the motor adopts traditional direct speed prediction control and the direct speed prediction control method described in the present invention;
可见,本发明实现了改善传统直接速度预测控制的参数鲁棒性,有助于提升系统的动态性能和稳态精度,可以提高电气参数和机械参数的预测精度。It can be seen that the present invention achieves improvement in the parameter robustness of the traditional direct speed predictive control, helps to improve the dynamic performance and steady-state accuracy of the system, and can improve the prediction accuracy of electrical parameters and mechanical parameters.
本发明还提供一种永磁同步电机直接速度预测控制系统,所述一种永磁同步电机直接速度预测控制系统用于执行上述任一项所述直流速度预测控制方法的步骤对永磁同步电机的电气参数和机械参数进行预测,并输出对应参数的预测值。The present invention also provides a permanent magnet synchronous motor direct speed prediction control system, which is used to execute the steps of any of the above-mentioned DC speed prediction control methods to predict the electrical parameters and mechanical parameters of the permanent magnet synchronous motor, and output the predicted values of the corresponding parameters.
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的一种永磁同步电机的直流速度预测控制方法,包括步骤:S1根据永磁同步电机同步坐标系下的电压方程和运动方程,建立永磁同步电机的第一预测模型以及代价函数;S2基于所述第一预测模型分析得到电机参数误差模型,输出第二预测模型,获取由电气参数和机械参数不匹配产生的预测误差;S3基于所述预测误差,对所述电压方程和运动方程进行重构,并输出d、q轴扰动以及转速扰动模型;S4获取全参数扰动观测器,获取d、q轴扰动以及转速扰动的扰动估计值;S5将所述扰动估计值补偿至所述第一预测模型,获取第三预测模型,通过所述第三预测模型获取永磁同步电机电气参数和机械参数的参考值。On the other hand, the present invention also provides a computer program product, which includes a computer program stored on a non-transitory computer-readable storage medium, and the computer program includes program instructions. When the program instructions are executed by a computer, the computer can execute a DC speed prediction control method for a permanent magnet synchronous motor provided by the above methods, including the following steps: S1 establishes a first prediction model and a cost function of the permanent magnet synchronous motor according to the voltage equation and the motion equation in the synchronous coordinate system of the permanent magnet synchronous motor; S2 obtains a motor parameter error model based on the first prediction model analysis, outputs a second prediction model, and obtains a prediction error caused by the mismatch between electrical parameters and mechanical parameters; S3 reconstructs the voltage equation and the motion equation based on the prediction error, and outputs a d-axis disturbance and a speed disturbance model; S4 obtains a full-parameter disturbance observer, obtains disturbance estimation values of the d-axis disturbance and the q-axis disturbance and the speed disturbance; S5 compensates the disturbance estimation value to the first prediction model, obtains a third prediction model, and obtains reference values of the electrical parameters and mechanical parameters of the permanent magnet synchronous motor through the third prediction model.
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述的一种永磁同步电机的直流速度预测控制方法,包括步骤:S1根据永磁同步电机同步坐标系下的电压方程和运动方程,建立永磁同步电机的第一预测模型以及代价函数;S2基于所述第一预测模型分析得到电机参数误差模型,输出第二预测模型,获取由电气参数和机械参数不匹配产生的预测误差;S3基于所述预测误差,对所述电压方程和运动方程进行重构,并输出d、q轴扰动以及转速扰动模型;S4获取全参数扰动观测器,获取d、q轴扰动以及转速扰动的扰动估计值;S5将所述扰动估计值补偿至所述第一预测模型,获取第三预测模型,通过所述第三预测模型获取永磁同步电机电气参数和机械参数的参考值。On the other hand, the present invention also provides a non-transitory computer-readable storage medium having a computer program stored thereon, which is implemented when the processor executes the above-mentioned method for predicting and controlling the DC speed of a permanent magnet synchronous motor, including the following steps: S1 establishes a first prediction model and a cost function of the permanent magnet synchronous motor according to the voltage equation and the motion equation in the synchronous coordinate system of the permanent magnet synchronous motor; S2 obtains a motor parameter error model based on the analysis of the first prediction model, outputs a second prediction model, and obtains a prediction error caused by the mismatch between electrical parameters and mechanical parameters; S3 reconstructs the voltage equation and the motion equation based on the prediction error, and outputs a d-axis disturbance and a speed disturbance model; S4 obtains a full-parameter disturbance observer, obtains disturbance estimation values of the d-axis disturbance and the q-axis disturbance and the speed disturbance; S5 compensates the disturbance estimation value to the first prediction model, obtains a third prediction model, and obtains reference values of the electrical parameters and mechanical parameters of the permanent magnet synchronous motor through the third prediction model.
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the scheme of this embodiment. Those of ordinary skill in the art may understand and implement it without creative work.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。Through the description of the above implementation methods, those skilled in the art can clearly understand that each implementation method can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware. Based on this understanding, the above technical solution is essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, a disk, an optical disk, etc., including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in each embodiment or some parts of the embodiments.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit it. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the aforementioned embodiments, or make equivalent replacements for some of the technical features therein. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210654240.8A CN114915227B (en) | 2022-06-10 | 2022-06-10 | DC speed prediction control method of permanent magnet synchronous motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210654240.8A CN114915227B (en) | 2022-06-10 | 2022-06-10 | DC speed prediction control method of permanent magnet synchronous motor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114915227A CN114915227A (en) | 2022-08-16 |
CN114915227B true CN114915227B (en) | 2024-09-03 |
Family
ID=82770834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210654240.8A Active CN114915227B (en) | 2022-06-10 | 2022-06-10 | DC speed prediction control method of permanent magnet synchronous motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114915227B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115694289B (en) * | 2022-10-26 | 2024-09-24 | 浙江大学 | Active disturbance rejection explicit model predictive direct speed control method for permanent magnet synchronous motor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000358400A (en) * | 1999-06-11 | 2000-12-26 | Okuma Corp | Control device for synchronous motor |
CN114006557A (en) * | 2021-09-30 | 2022-02-01 | 湖南科技大学 | Mechanical parameter identification method of permanent magnet synchronous motor based on extended sliding mode observer |
-
2022
- 2022-06-10 CN CN202210654240.8A patent/CN114915227B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000358400A (en) * | 1999-06-11 | 2000-12-26 | Okuma Corp | Control device for synchronous motor |
CN114006557A (en) * | 2021-09-30 | 2022-02-01 | 湖南科技大学 | Mechanical parameter identification method of permanent magnet synchronous motor based on extended sliding mode observer |
Also Published As
Publication number | Publication date |
---|---|
CN114915227A (en) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Robust model predictive direct speed control for SPMSM drives based on full parameter disturbances and load observer | |
Briz et al. | Dynamic operation of carrier-signal-injection-based sensorless direct field-oriented AC drives | |
Sumner et al. | Autocommissioning for voltage-referenced voltage-fed vector-controlled induction motor drives | |
CN111162708B (en) | Asynchronous motor model prediction control method | |
CN112910362B (en) | Model-free predictive current control method for permanent magnet synchronous motor | |
CN109150029A (en) | Permanent magnet synchronous motor method for controlling position-less sensor based on smooth non-singular terminal sliding mode observer | |
CN113206626B (en) | Control method, device, equipment and medium for three-phase permanent magnet synchronous motor | |
CN114915227B (en) | DC speed prediction control method of permanent magnet synchronous motor | |
CN108712120A (en) | Magneto current forecasting resonance control method based on disturbance observer | |
Solvar et al. | Sensorless second order sliding mode observer for induction motor | |
KR101845412B1 (en) | Flux Observer of Induction Motor and Estimating Method Thereof | |
CN113965129B (en) | Compensation method for current measurement offset error of permanent magnet synchronous motor control system | |
CN118381392B (en) | Permanent magnet synchronous motor control method, device and equipment | |
Teler et al. | Analysis of the stator current prediction capabilities in induction motor drive using the LSTM network | |
CN109932648B (en) | A test method for measuring the q-axis inductance saturation characteristics of a synchronous motor | |
Li et al. | Encoderless predictive control of pmsm drives combining sliding-mode and luenberger observers | |
CN115133837B (en) | Weight selection method for PTC control strategy of surface mounted permanent magnet synchronous motor | |
Yang et al. | Improved predictive current control of IM drives based on a sliding mode observer | |
CN114900085B (en) | Robot joint servo motor model prediction parameter optimization method and device | |
CN112803854A (en) | Model reference self-adaption based permanent magnet synchronous motor parameter online identification method | |
CN118659695B (en) | Acquisition method of control input voltage and related device | |
Krzemiński et al. | Speed observer based on extended model of induction machine | |
CN118739933B (en) | Adaptive Offline Parameter Identification Method of Permanent Magnet Synchronous Motor Based on Hill Climbing Algorithm | |
CN114285344B (en) | Active damping method for basic voltage vector compensation | |
CN114900101B (en) | A method for optimizing the value of error feedback matrix of speed sensorless motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |