[go: up one dir, main page]

CN114914712A - Reconfigurable elastic wave absorber based on metal nanowire aerogel and preparation method thereof - Google Patents

Reconfigurable elastic wave absorber based on metal nanowire aerogel and preparation method thereof Download PDF

Info

Publication number
CN114914712A
CN114914712A CN202210680950.8A CN202210680950A CN114914712A CN 114914712 A CN114914712 A CN 114914712A CN 202210680950 A CN202210680950 A CN 202210680950A CN 114914712 A CN114914712 A CN 114914712A
Authority
CN
China
Prior art keywords
metal nanowire
aerogel
reconfigurable
nanowire aerogel
polymer elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210680950.8A
Other languages
Chinese (zh)
Other versions
CN114914712B (en
Inventor
魏葳
南泽
张宇曦
张凡
常晶晶
林珍华
张苗
苏杰
胡赵胜
姜泓成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202210680950.8A priority Critical patent/CN114914712B/en
Publication of CN114914712A publication Critical patent/CN114914712A/en
Application granted granted Critical
Publication of CN114914712B publication Critical patent/CN114914712B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/002Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using short elongated elements as dissipative material, e.g. metallic threads or flake-like particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/008Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with a particular shape

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种基于金属纳米线气凝胶的可重构弹性吸波体,由上至下包括:第一吸波层、第二吸波层和金属纳米线背板;第一吸波层包括第一高分子弹性体介质层和包裹在其内的第一金属纳米线气凝胶微结构阵列;第二吸波层包括第二高分子弹性体介质层和包裹在其内的第二金属纳米线气凝胶微结构阵列;第一金属纳米线气凝胶微结构阵列包括等间距周期性排列的多个第一金属纳米线气凝胶微结构;第二金属纳米线气凝胶微结构阵列包括等间距周期性排列的多个第二金属纳米线气凝胶微结构;金属纳米线背板由高分子弹性体薄膜表面涂布金属纳米线分散液得到。本发明能实现结构简化、柔性可重构、吸波性能可调谐且具有优良的阻抗匹配特性的宽频超材料吸波体。

Figure 202210680950

The invention discloses a reconfigurable elastic wave absorbing body based on metal nanowire aerogel, comprising from top to bottom: a first wave absorbing layer, a second wave absorbing layer and a metal nanowire backplane; a first wave absorbing layer The layer includes a first polymer elastomer dielectric layer and a first metal nanowire aerogel microstructure array wrapped therein; the second wave absorbing layer includes a second polymer elastomer dielectric layer and a second polymer elastomer dielectric layer wrapped therein Metal nanowire aerogel microstructure array; the first metal nanowire aerogel microstructure array includes a plurality of first metal nanowire aerogel microstructures arranged periodically at equal intervals; the second metal nanowire aerogel microstructure The structure array includes a plurality of second metal nanowire aerogel microstructures arranged periodically at equal intervals; the metal nanowire backplane is obtained by coating the surface of a polymer elastomer film with a metal nanowire dispersion. The invention can realize a broadband metamaterial wave absorbing body with simplified structure, flexible reconfiguration, tunable wave absorbing performance and excellent impedance matching characteristics.

Figure 202210680950

Description

基于金属纳米线气凝胶的可重构弹性吸波体及其制备方法Reconfigurable elastic wave absorber based on metal nanowire aerogel and preparation method thereof

技术领域technical field

本发明属于电磁吸波体领域,具体涉及一种基于金属纳米线气凝胶的可重构弹性吸波体及其制备方法。The invention belongs to the field of electromagnetic wave absorbers, in particular to a reconfigurable elastic wave absorber based on metal nanowire aerogel and a preparation method thereof.

背景技术Background technique

目前,随着电磁环境的日益复杂化,电磁吸波体在隐身技术、电磁防护等方面有着蓬勃的需求,可重点应用于飞机、雷达、集成电路以及可穿戴设备等领域。而电磁吸波体的发展过程中,由于基于刚性结构的吸波体一旦被制造,就很难对其吸波性能进行实时调谐。因此使这类电磁吸波器在应用实践中受到了一定的限制,无法起到最理想的电磁防护效果,特别是应用于雷达等信号发射系统时效果较差。同时,在实际工程应用中,刚性曲面载体在进行电磁防护时,需要吸波材料具有良好的柔性,满足共形的需求,因此电磁吸波器的可重构技术被广泛关注。At present, with the increasing complexity of the electromagnetic environment, electromagnetic absorbers have a vigorous demand for stealth technology, electromagnetic protection, etc., and can be mainly used in aircraft, radar, integrated circuits, and wearable devices. However, in the development process of electromagnetic absorbers, it is difficult to tune their absorbing properties in real time because the absorbers based on rigid structures are fabricated. Therefore, the application of this type of electromagnetic wave absorber is limited to a certain extent, and it cannot achieve the most ideal electromagnetic protection effect, especially when it is applied to signal transmission systems such as radar, the effect is poor. At the same time, in practical engineering applications, when the rigid curved carrier is used for electromagnetic protection, the absorbing material needs to have good flexibility to meet the requirements of conformality. Therefore, the reconfigurable technology of electromagnetic wave absorbers has been widely concerned.

目前,针对电磁吸波器的可重构技术,主要包括三个研究方向:1.改变吸波系统的集总原件特性;该方式主要通过改变半导体器件(如PIN管、变容二极管等)的参数进行调谐。但是,这类复杂的有源吸波体不仅需要复杂合理的馈电网络提供器件工作的激励,而且一般为刚性平板结构,无法满足实际设备应用的共形需求。2.改变吸波体的电磁参数;该方式主要通过外部激励对吸波体内部材料电磁参数进行调控从而实现动态调谐的功能。但这种方式在大多数情况下同样无法满足现代工程中曲面共形的要求。3.改变材料的机械结构参数;该方式宏观上通过改变干涉路径来实现吸波体可重构,比如通过机械拉伸或者挤压等手段进行可重构。这种方式相比于前两种方式,吸波体结构简单,调节吸波峰值较为方便。但目前多使用氧化铟锡等导电材料,其拉伸性能较差,无法满足大尺度拉伸需求。因此,在此基础上,研究人员纷纷开始致力于新型吸波材料的探求和改进。At present, the reconfigurable technology for electromagnetic wave absorbers mainly includes three research directions: 1. Change the characteristics of the lumped components of the wave absorbing system; this method mainly changes the parameters to tune. However, such complex active absorbers not only require complex and reasonable feeding networks to provide excitation for device operation, but also generally have rigid flat-plate structures, which cannot meet the conformal requirements of practical device applications. 2. Change the electromagnetic parameters of the absorber; this method mainly controls the electromagnetic parameters of the material inside the absorber through external excitation to realize the function of dynamic tuning. However, in most cases, this method cannot meet the requirements of surface conformality in modern engineering. 3. Change the mechanical structure parameters of the material; in this way, the absorber can be reconfigured by changing the interference path macroscopically, such as by mechanical stretching or extrusion. Compared with the first two methods, this method has a simpler structure of the wave absorber and is more convenient to adjust the peak value of the wave absorption. However, at present, conductive materials such as indium tin oxide are mostly used, which have poor tensile properties and cannot meet the needs of large-scale stretching. Therefore, on this basis, researchers have begun to work on the exploration and improvement of new absorbing materials.

近年来出现的电磁超材料是由人工原子或分子(即人工设计的微结构)周期性排列组成的电磁媒质。在加工设计中,通过不断优化和改进微结构,可以使超材料在宏观上表现出不同的奇异电磁现象。尤其是在电磁吸波领域,相比于传统吸波材料,电磁超材料表现出轻质、耗材小以及吸波性能优越等特性,在空间研究、广播卫星、固定通讯业务卫星以及雷达等方面具有重要用途。Electromagnetic metamaterials that have emerged in recent years are electromagnetic media composed of artificial atoms or molecules (ie, artificially designed microstructures) that are periodically arranged. In the processing design, by continuously optimizing and improving the microstructure, metamaterials can exhibit different exotic electromagnetic phenomena at the macroscopic level. Especially in the field of electromagnetic wave absorption, compared with traditional wave absorption materials, electromagnetic metamaterials show the characteristics of light weight, small consumables and superior wave absorption performance. important use.

因此,如何设计出结构简化、柔性可重构、吸波性能可调谐且具有优良的阻抗匹配特性的宽频超材料吸波体,是本领域一个非常重要的研究方向。Therefore, how to design a broadband metamaterial absorber with simplified structure, flexible reconfiguration, tunable absorber performance and excellent impedance matching characteristics is a very important research direction in this field.

发明内容SUMMARY OF THE INVENTION

本发明实施例的目的在于提供一种基于金属纳米线气凝胶的可重构弹性吸波体及其制备方法,以实现提供结构简化、柔性可重构、吸波性能可调谐且具有优良的阻抗匹配特性的宽频超材料吸波体的目的。具体技术方案如下:The purpose of the embodiments of the present invention is to provide a reconfigurable elastic wave absorber based on metal nanowire aerogel and a preparation method thereof, so as to provide a simplified structure, flexible and reconfigurable, tunable wave absorption performance and excellent Impedance matching properties of broadband metamaterial absorbers for the purpose. The specific technical solutions are as follows:

第一方面,本发明实施例提供了一种基于金属纳米线气凝胶的可重构弹性吸波体,由上至下包括:In a first aspect, an embodiment of the present invention provides a reconfigurable elastic wave absorber based on a metal nanowire aerogel, including from top to bottom:

第一吸波层、第二吸波层和金属纳米线背板;a first wave-absorbing layer, a second wave-absorbing layer and a metal nanowire backplane;

其中,所述第一吸波层包括第一高分子弹性体介质层和包裹在所述第一高分子弹性体介质层内的第一金属纳米线气凝胶微结构阵列;所述第二吸波层包括第二高分子弹性体介质层和包裹在所述第二高分子弹性体介质层内的第二金属纳米线气凝胶微结构阵列;所述第一金属纳米线气凝胶微结构阵列包括等间距周期性排列的多个第一金属纳米线气凝胶微结构;所述第二金属纳米线气凝胶微结构阵列包括等间距周期性排列的多个第二金属纳米线气凝胶微结构;所述金属纳米线背板由高分子弹性体薄膜表面涂布金属纳米线分散液得到。Wherein, the first wave-absorbing layer includes a first polymer elastomer medium layer and a first metal nanowire aerogel microstructure array wrapped in the first polymer elastomer medium layer; the second absorber The wave layer includes a second polymer elastomer medium layer and a second metal nanowire aerogel microstructure array wrapped in the second polymer elastomer medium layer; the first metal nanowire aerogel microstructure The array includes a plurality of first metal nanowire aerogel microstructures arranged periodically at equal intervals; the second metal nanowire aerogel microstructure array includes a plurality of second metal nanowire aerogels periodically arranged at equal intervals Adhesive microstructure; the metal nanowire backplane is obtained by coating the surface of a polymer elastomer film with a metal nanowire dispersion.

在本发明的一个实施例中,所述第一高分子弹性体介质层、所述第二高分子弹性体介质层和所述高分子弹性体薄膜中的高分子弹性体,包括:In an embodiment of the present invention, the polymer elastomer in the first polymer elastomer medium layer, the second polymer elastomer medium layer and the polymer elastomer film includes:

聚二甲基硅氧烷PDMS、脂肪族芳香族无规共聚酯Ecoflex、水性聚氨酯WPU、热塑性聚氨脂橡胶TPU和天然橡胶NR。Polydimethylsiloxane PDMS, aliphatic aromatic random copolyester Ecoflex, waterborne polyurethane WPU, thermoplastic polyurethane rubber TPU and natural rubber NR.

在本发明的一个实施例中,所述第一金属纳米线气凝胶微结构、所述第二金属纳米线气凝胶微结构和所述金属纳米线分散液中的金属纳米线,包括:In an embodiment of the present invention, the first metal nanowire aerogel microstructure, the second metal nanowire aerogel microstructure, and the metal nanowires in the metal nanowire dispersion include:

金纳米线、银纳米线和铜纳米线。Gold nanowires, silver nanowires and copper nanowires.

在本发明的一个实施例中,所述第一金属纳米线气凝胶微结构和所述第二金属纳米线气凝胶微结构为金属纳米线气凝胶的图形化结构。In an embodiment of the present invention, the first metal nanowire aerogel microstructure and the second metal nanowire aerogel microstructure are patterned structures of metal nanowire aerogel.

在本发明的一个实施例中,所述图形化结构包括回字形结构、开口谐振环形结构和十字形结构。In one embodiment of the present invention, the patterned structure includes a zigzag structure, an open resonance ring structure and a cross-shaped structure.

在本发明的一个实施例中,针对所述回字形结构:In an embodiment of the present invention, for the back-shaped structure:

每个第一金属纳米线气凝胶微结构的电导率为0.1~10S/m;其中回字形结构的外层正方形边长为12~16mm;内层正方形边长为6~10mm;回字形结构的厚度为1.6~2.0mm;所述第一高分子弹性体介质层的长度为13~23mm;所述第一高分子弹性体介质层的宽度为13~23mm;所述第一高分子弹性体介质层的厚度为1.5~2mm;The electrical conductivity of each first metal nanowire aerogel microstructure is 0.1-10 S/m; the side length of the outer square of the back-shaped structure is 12-16 mm; the side length of the inner square is 6-10 mm; the back-shaped structure The thickness of the first polymer elastomer medium layer is 1.6-2.0mm; the length of the first polymer elastomer medium layer is 13-23mm; the width of the first polymer elastomer medium layer is 13-23mm; the first polymer elastomer The thickness of the dielectric layer is 1.5 to 2 mm;

每个第二金属纳米线气凝胶微结构的电导率为0.1~10S/m;其中回字形结构的外层正方形边长为6~10mm;内层正方形边长为1~5mm;回字形结构的厚度为1.6~2.0mm;所述第二高分子弹性体介质层的长度为13~23mm;所述第二高分子弹性体介质层的宽度为13~23mm;所述第二高分子弹性体介质层的厚度为1.5~2mm。The electrical conductivity of each second metal nanowire aerogel microstructure is 0.1-10 S/m; the side length of the outer square of the back-shaped structure is 6-10 mm; the side length of the inner square is 1-5 mm; the back-shaped structure The thickness of the second polymer elastomer medium layer is 1.6-2.0mm; the length of the second polymer elastomer medium layer is 13-23mm; the width of the second polymer elastomer medium layer is 13-23mm; the second polymer elastomer The thickness of the dielectric layer is 1.5-2 mm.

在本发明的一个实施例中,针对所述开口谐振环形结构:In an embodiment of the present invention, for the split resonant ring structure:

每个第一金属纳米线气凝胶微结构的电导率为0.1~10S/m;其中开口谐振环形结构的外圆半径为6~8mm;内圆半径为3~5mm;开口矩形长为6~10mm;开口矩形宽为2~6mm;圆心到开口矩形较远边长的垂直距离为5~8mm;开口谐振环形结构的厚度为1.3~1.5mm;所述第一高分子弹性体介质层的长度为13~23mm;所述第一高分子弹性体介质层的宽度为13~23mm;所述第一高分子弹性体介质层的厚度为1.5~2mm;The electrical conductivity of each first metal nanowire aerogel microstructure is 0.1-10 S/m; the outer radius of the open resonant ring structure is 6-8 mm; the inner radius is 3-5 mm; the length of the opening rectangle is 6-8 mm 10mm; the width of the open rectangle is 2-6mm; the vertical distance from the center of the circle to the far side of the open rectangle is 5-8mm; the thickness of the open resonant ring structure is 1.3-1.5mm; the length of the first polymer elastomer dielectric layer is 13-23mm; the width of the first polymer elastomer medium layer is 13-23mm; the thickness of the first polymer elastomer medium layer is 1.5-2mm;

每个第二金属纳米线气凝胶微结构的电导率为0.1~10S/m;其中开口谐振环形结构的外圆半径为3~5mm;内圆半径为0.5~2.5mm;开口矩形长为2~6mm,开口矩形宽为2~6mm,圆心到开口矩形较远边长的垂直距离为3~6mm;开口谐振环形结构的厚度为1.3~1.5mm;所述第二高分子弹性体介质层的长度为13~23mm;所述第二高分子弹性体介质层的宽度为13~23mm;所述第二高分子弹性体介质层的厚度为1.5~2mm。The electrical conductivity of each second metal nanowire aerogel microstructure is 0.1-10 S/m; the outer radius of the open resonant ring structure is 3-5 mm; the inner radius is 0.5-2.5 mm; the length of the open rectangle is 2 ~6mm, the width of the open rectangle is 2~6mm, the vertical distance from the center of the circle to the far side of the open rectangle is 3~6mm; the thickness of the open resonant ring structure is 1.3~1.5mm; The length is 13-23 mm; the width of the second high-molecular elastomer medium layer is 13-23 mm; the thickness of the second high-molecular elastomer medium layer is 1.5-2 mm.

在本发明的一个实施例中,所述金属纳米线背板的电导率为10000~20000S/m;厚度为0.1~0.3mm;涂布的金属纳米线分散液的浓度范围为45mg/ml~60mg/ml。In an embodiment of the present invention, the electrical conductivity of the metal nanowire backplane is 10000-20000 S/m; the thickness is 0.1-0.3 mm; the concentration range of the coated metal nanowire dispersion liquid is 45 mg/ml-60 mg /ml.

在本发明的一个实施例中,所述基于金属纳米线气凝胶的可重构弹性吸波体的应用频段包括:In an embodiment of the present invention, the application frequency band of the metal nanowire aerogel-based reconfigurable elastic wave absorber includes:

X波段和Ku波段。X-band and Ku-band.

第二方面,本发明实施例提供了一种基于金属纳米线气凝胶的可重构弹性吸波体的制备方法,所述方法包括:In a second aspect, an embodiment of the present invention provides a method for preparing a reconfigurable elastic wave absorber based on a metal nanowire aerogel, the method comprising:

步骤1,针对目标波段,在预设浓度范围内以预设采样间隔获取不同浓度的金属纳米线分散液所铸造的气凝胶材料的电磁参数,确定各电磁参数范围;其中,所述电磁参数包括电导率和介电常数;Step 1, for the target wavelength band, obtain electromagnetic parameters of aerogel materials cast by metal nanowire dispersions of different concentrations at preset sampling intervals within a preset concentration range, and determine the range of each electromagnetic parameter; wherein, the electromagnetic parameters Including conductivity and dielectric constant;

步骤2,对基于金属纳米线气凝胶的可重构弹性吸波体进行仿真建模,其结构由上至下包括:第一吸波层、第二吸波层和高分子弹性体薄膜;所述第一吸波层包括第一高分子弹性体介质层和包裹在所述第一高分子弹性体介质层内的第一金属纳米线气凝胶微结构阵列;所述第二吸波层包括第二高分子弹性体介质层和包裹在所述第二高分子弹性体介质层内的第二金属纳米线气凝胶微结构阵列;所述第一金属纳米线气凝胶微结构阵列包括等间距周期性排列的多个第一金属纳米线气凝胶微结构;所述第二金属纳米线气凝胶微结构阵列包括等间距周期性排列的多个第二金属纳米线气凝胶微结构;并对仿真建模得到的所述基于金属纳米线气凝胶的可重构弹性吸波体进行几何参数扫描和优化,得到模型初始几何参数;Step 2, simulate and model the reconfigurable elastic wave absorber based on the metal nanowire aerogel, the structure of which includes from top to bottom: a first wave absorbing layer, a second wave absorbing layer and a polymer elastomer film; The first wave-absorbing layer includes a first high-molecular elastomer medium layer and a first metal nanowire aerogel microstructure array wrapped in the first high-molecular elastomer medium layer; the second wave-absorbing layer It includes a second polymer elastomer medium layer and a second metal nanowire aerogel microstructure array wrapped in the second polymer elastomer medium layer; the first metal nanowire aerogel microstructure array includes A plurality of first metal nanowire aerogel microstructures arranged periodically at equal intervals; the second metal nanowire aerogel microstructure array includes a plurality of second metal nanowire aerogel microstructures periodically arranged at equal intervals structure; and perform geometric parameter scanning and optimization on the reconfigurable elastic wave absorber based on metal nanowire aerogel obtained by simulation modeling to obtain the initial geometric parameters of the model;

步骤3,在所述模型初始几何参数基础上,基于对应的电磁参数范围,对所述基于金属纳米线气凝胶的可重构弹性吸波体进行电学参数扫描,确定各电磁参数的优选值;Step 3: On the basis of the initial geometric parameters of the model, and based on the corresponding electromagnetic parameter range, scan the electrical parameters of the reconfigurable elastic wave absorber based on the metal nanowire aerogel, and determine the preferred value of each electromagnetic parameter ;

步骤4,根据所述模型初始几何参数和所述各电磁参数的优选值,采用冷冻干燥的工艺制备对应的图形化金属纳米线气凝胶,得到所述第一金属纳米线气凝胶微结构;利用等间距周期性排列的多个第一金属纳米线气凝胶微结构形成所述第一金属纳米线微结构阵列,将所述第一金属纳米线微结构阵列四周包裹所述第一高分子弹性体介质层形成所述第一吸波层;Step 4, according to the initial geometric parameters of the model and the preferred values of the electromagnetic parameters, use a freeze-drying process to prepare a corresponding patterned metal nanowire aerogel to obtain the first metal nanowire aerogel microstructure ; Use a plurality of first metal nanowire aerogel microstructures arranged periodically at equal intervals to form the first metal nanowire microstructure array, and wrap the first metal nanowire microstructure array around the first high The molecular elastomer dielectric layer forms the first wave absorbing layer;

步骤5,调整工艺参数,重复步骤4形成所述第二吸波层;Step 5, adjusting process parameters, repeating Step 4 to form the second wave absorbing layer;

步骤6,在固化的所述高分子弹性体薄膜上悬涂预设浓度的金属纳米线分散液,加热烘干形成金属纳米线背板;Step 6: Suspend a metal nanowire dispersion with a predetermined concentration on the cured polymer elastomer film, and heat and dry to form a metal nanowire backplane;

步骤7,将制备得到的所述第一吸波层、所述第二吸波层和所述金属纳米线背板自上而下依次贴合,组成所述基于金属纳米线气凝胶的可重构弹性吸波体。Step 7: Laminate the prepared first wave absorbing layer, the second wave absorbing layer and the metal nanowire backplane in sequence from top to bottom to form the metal nanowire-based aerogel. Reconstructed elastic absorber.

本发明的有益效果:Beneficial effects of the present invention:

本发明实施例利用高分子弹性体复合的气凝胶高弹性体优异的形变能力,设计了一种基于金属纳米线气凝胶的可重构弹性吸波体,通过机械拉伸简便实现可重构吸波体。该吸波体三层导电功能层均采用金属纳米线制备,具有优异的可拉伸性能,能够使得该吸波体整体可保持大尺度拉伸,能够最大程度保证机械形变的稳定性,使吸波器具有稳定可重构性能。In the embodiment of the present invention, a reconfigurable elastic wave absorber based on metal nanowire aerogel is designed by utilizing the excellent deformability of the aerogel high-elastomer compounded by the polymer elastomer. Construct the absorber. The three-layer conductive functional layers of the absorber are all made of metal nanowires, which have excellent stretchability, so that the absorber can maintain large-scale stretching as a whole, and can ensure the stability of mechanical deformation to the greatest extent. The wave filter has stable and reconfigurable performance.

并且,本发明实施例利用气凝胶多孔结构制备超材料结构单元。由于采用金属纳米线多孔气凝胶,当电磁波入射该气凝胶表面时,会与该气凝胶表面空隙形成较好的阻抗匹配,能够极大程度增强电磁波入射进入超材料内部的几率。同时该气凝胶也作为电磁波吸收剂,使得电磁波在通过该气凝胶内部时,其内部丰富的胞壁表面CWS可以对电磁波进行多次反射损耗,从而大大增强材料的吸波性能。此外,该气凝胶内部丰富的孔隙也为高分子弹性体灌装提供了空间,能够形成多相复合材料。Moreover, the embodiment of the present invention utilizes the aerogel porous structure to prepare the metamaterial structural unit. Since the metal nanowire porous aerogel is used, when the electromagnetic wave is incident on the surface of the aerogel, it will form a good impedance match with the voids on the surface of the aerogel, which can greatly enhance the probability of the electromagnetic wave entering the interior of the metamaterial. At the same time, the aerogel also acts as an electromagnetic wave absorber, so that when the electromagnetic wave passes through the inside of the aerogel, the abundant cell wall surface CWS in the aerogel can perform multiple reflection losses on the electromagnetic wave, thereby greatly enhancing the wave absorbing performance of the material. In addition, the abundant pores inside the aerogel also provide space for polymer elastomer filling, enabling the formation of multiphase composites.

另外,本发明实施例采用高分子弹性体对金属纳米线气凝胶进行封装,能够极大减少环境中特定等化学物质的侵蚀,有效防止金属纳米线发生不良化学反应,能够大幅度提升金属纳米线气凝胶的导电网络的稳定性。同时,由于金属纳米线气凝胶内部微孔结构浸润在高分子弹性体中,也能够增强气凝胶结构的稳定性,提升其拉伸性能。此外,采用高分子弹性体能够赋予吸波体弹性形变能力,使该吸波体具有良好的共形能力,可以简单方便地贴附于需要电磁防护的设备表面;同时在形变过程中,本发明实施例的吸波器机械稳定度高、柔性好,可任意弯折、扭曲甚至拉伸,能够针对不同电磁波吸收防护要求以及在较宽频段实现重复使用的需求。In addition, the embodiment of the present invention uses a polymer elastomer to encapsulate the metal nanowire aerogel, which can greatly reduce the erosion of specific chemical substances in the environment, effectively prevent adverse chemical reactions of the metal nanowires, and greatly improve the metal nanowires. Stability of the conductive network of wire aerogels. At the same time, since the internal microporous structure of the metal nanowire aerogel is infiltrated in the polymer elastomer, the stability of the aerogel structure can also be enhanced and its tensile properties can be improved. In addition, the use of polymer elastomers can endow the wave absorber with elastic deformation ability, so that the wave absorber has good conformal ability, and can be easily and conveniently attached to the surface of the equipment requiring electromagnetic protection; at the same time, during the deformation process, the present invention The wave absorber of the embodiment has high mechanical stability and good flexibility, and can be bent, twisted or even stretched arbitrarily, and can meet the requirements of different electromagnetic wave absorption and protection requirements and the requirements of repeated use in a wide frequency band.

附图说明Description of drawings

图1为本发明实施例所提供的一种基于金属纳米线气凝胶的可重构弹性吸波体的侧视结构示意图;1 is a schematic side view of a structure of a reconfigurable elastic wave absorber based on a metal nanowire aerogel according to an embodiment of the present invention;

图2为本发明实施例回字形结构的金属纳米线气凝胶微结构的平面示意图;FIG. 2 is a schematic plan view of a metal nanowire aerogel microstructure with a zigzag structure according to an embodiment of the present invention;

图3为本发明实施例以回字形结构的一组金属纳米线气凝胶微结构示例的基于金属纳米线气凝胶的可重构弹性吸波体的爆炸图;3 is an exploded diagram of a reconfigurable elastic wave absorber based on a metal nanowire aerogel, which is exemplified by a group of metal nanowire aerogel microstructures with a zigzag structure according to an embodiment of the present invention;

图4为本发明实施例以回字形结构的一组金属纳米线气凝胶微结构示例的基于金属纳米线气凝胶的可重构弹性吸波体的俯视图;FIG. 4 is a top view of a reconfigurable elastic wave absorber based on a metal nanowire aerogel, which is exemplified by a group of metal nanowire aerogel microstructures with a zigzag structure according to an embodiment of the present invention;

图5为本发明实施例以回字形结构的金属纳米线气凝胶微结构阵列示例的基于金属纳米线气凝胶的可重构弹性吸波体的俯视图;5 is a top view of a reconfigurable elastic wave absorber based on a metal nanowire aerogel exemplified by a metal nanowire aerogel microstructure array with a zigzag structure according to an embodiment of the present invention;

图6为本发明实施例开口谐振环形结构的金属纳米线气凝胶微结构的平面示意图;6 is a schematic plan view of a metal nanowire aerogel microstructure of an open resonant ring structure according to an embodiment of the present invention;

图7为本发明实施例的一组开口谐振环形结构的金属纳米线气凝胶微结构的俯视图;7 is a top view of a group of metal nanowire aerogel microstructures of an open resonant ring structure according to an embodiment of the present invention;

图8为具有图形化结构的传统超材料吸波体与本发明实施例基于金属纳米线气凝胶的可重构弹性吸波体的吸收效率对比图;8 is a comparison diagram of the absorption efficiency of a traditional metamaterial wave absorber with a patterned structure and a reconfigurable elastic wave absorber based on a metal nanowire aerogel according to an embodiment of the present invention;

图9为银纳米线气凝胶的SEM图(电子扫描显像图);Figure 9 is a SEM image (scanning electron image) of silver nanowire aerogel;

图10为本发明实施例采用有限元法计算得到的基于回字形结构的基于金属纳米线气凝胶的可重构弹性吸波体的频率可重构的吸收效率图;10 is a diagram of the frequency-reconfigurable absorption efficiency of a metal nanowire aerogel-based reconfigurable elastic wave absorber based on a zigzag structure, calculated by using a finite element method according to an embodiment of the present invention;

图11为本发明实施例采用有限元法计算得到的基于开口谐振环结构的基于金属纳米线气凝胶的可重构弹性吸波体的频率可重构的吸收效率图。11 is a diagram of the frequency-reconfigurable absorption efficiency of the metal nanowire aerogel-based reconfigurable elastic wave absorber based on the split resonant ring structure calculated by the finite element method according to an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

为了便于理解本发明实施例的方案,首先对本发明实施例的发明构思进行简单介绍。In order to facilitate the understanding of the solutions of the embodiments of the present invention, the inventive concept of the embodiments of the present invention is briefly introduced first.

目前,以气凝胶为代表的新型多孔材料在电磁吸波领域开始崭露头角。这种低维材料制备的新型吸波体具有独特的三维网络结构以及高比表面积、低密度等优点,可在低填充量的条件下实现高效导电网络的构筑,进而赋予材料较强的电磁波衰减能力。并且多孔材料其丰富的孔道结构为不仅为电磁参数调控和阻抗匹配优化奠定了重要结构基础,而且也为材料回填高分子弹性体,提升其拉伸和压缩性能提供可能。因此,本发明考虑利用气凝胶结构弹性体制备可重构超材料。这样不仅能够从宏观调控吸波性能,而且还能够在赋予材料弹性的基础上,对材料阻抗匹配特性进行优化,增强吸波性能。At present, new porous materials represented by aerogels have begun to emerge in the field of electromagnetic wave absorption. The new absorber prepared from this low-dimensional material has a unique three-dimensional network structure, high specific surface area, low density and other advantages, which can realize the construction of high-efficiency conductive network under the condition of low filling amount, and then endow the material with strong electromagnetic wave attenuation. ability. And the rich pore structure of porous materials not only lays an important structural foundation for electromagnetic parameter regulation and impedance matching optimization, but also provides the possibility for materials to backfill polymer elastomers and improve their tensile and compressive properties. Therefore, the present invention contemplates the preparation of reconfigurable metamaterials using aerogel-structured elastomers. In this way, not only can the absorbing performance be controlled macroscopically, but also the impedance matching characteristics of the material can be optimized on the basis of giving the material elasticity to enhance the absorbing performance.

经过深入研究,为了实现设计出结构简化、柔性可重构、吸波性能可调谐且具有优良的阻抗匹配特性的宽频超材料吸波体的目的,本发明实施例提供了一种基于金属纳米线气凝胶的可重构弹性吸波体及其制备方法。After in-depth research, in order to achieve the purpose of designing a broadband metamaterial wave absorber with simplified structure, flexible reconfiguration, tunable wave absorption performance and excellent impedance matching characteristics, the embodiment of the present invention provides a metal nanowire-based absorber. Reconfigurable elastic wave absorber of aerogel and preparation method thereof.

下面,首先对本发明实施例所提供的一种基于金属纳米线气凝胶的可重构弹性吸波体进行介绍。如图1所示,图1为本发明实施例所提供的一种基于金属纳米线气凝胶的可重构弹性吸波体的侧视结构示意图。本发明实施例所提供的一种基于金属纳米线气凝胶的可重构弹性吸波体,由上至下包括:In the following, a reconfigurable elastic wave absorber based on a metal nanowire aerogel provided by an embodiment of the present invention is first introduced. As shown in FIG. 1 , FIG. 1 is a schematic side view structure diagram of a reconfigurable elastic wave absorber based on a metal nanowire aerogel provided by an embodiment of the present invention. The reconfigurable elastic wave absorber based on metal nanowire aerogel provided by the embodiment of the present invention includes, from top to bottom:

第一吸波层、第二吸波层和金属纳米线背板;a first wave-absorbing layer, a second wave-absorbing layer and a metal nanowire backplane;

其中,所述第一吸波层包括第一高分子弹性体介质层和包裹在所述第一高分子弹性体介质层内的第一金属纳米线气凝胶微结构阵列;所述第二吸波层包括第二高分子弹性体介质层和包裹在所述第二高分子弹性体介质层内的第二金属纳米线气凝胶微结构阵列;所述第一金属纳米线气凝胶微结构阵列包括等间距周期性排列的多个第一金属纳米线气凝胶微结构;所述第二金属纳米线气凝胶微结构阵列包括等间距周期性排列的多个第二金属纳米线气凝胶微结构;所述金属纳米线背板由高分子弹性体薄膜表面涂布金属纳米线分散液得到。Wherein, the first wave-absorbing layer includes a first polymer elastomer medium layer and a first metal nanowire aerogel microstructure array wrapped in the first polymer elastomer medium layer; the second absorber The wave layer includes a second polymer elastomer medium layer and a second metal nanowire aerogel microstructure array wrapped in the second polymer elastomer medium layer; the first metal nanowire aerogel microstructure The array includes a plurality of first metal nanowire aerogel microstructures arranged periodically at equal intervals; the second metal nanowire aerogel microstructure array includes a plurality of second metal nanowire aerogels periodically arranged at equal intervals Adhesive microstructure; the metal nanowire backplane is obtained by coating the surface of a polymer elastomer film with a metal nanowire dispersion.

在图1中,110表示第一吸波层;120表示第二吸波层;130表示金属纳米线背板;1101表示第一高分子弹性体介质层;1102表示第一金属纳米线气凝胶微结构;1201表示第二高分子弹性体介质层;1202表示第二金属纳米线气凝胶微结构。In FIG. 1, 110 represents the first wave absorbing layer; 120 represents the second wave absorbing layer; 130 represents the metal nanowire backplane; 1101 represents the first polymer elastomer dielectric layer; 1102 represents the first metal nanowire aerogel Microstructure; 1201 represents the second polymer elastomer medium layer; 1202 represents the second metal nanowire aerogel microstructure.

其中,所述第一吸波层、所述第二吸波层和所述金属纳米线背板从上至下依次贴合形成所述基于金属纳米线气凝胶的可重构弹性吸波体。为了便于制备以及便于调谐,所述第一高分子弹性体介质层、所述第二高分子弹性体介质层和所述高分子弹性体薄膜采用相同的高分子弹性体;所述第一金属纳米线气凝胶微结构、所述第二金属纳米线气凝胶微结构和所述金属纳米线分散液采用相同金属制备得到的金属纳米线,高分子弹性体和金属纳米线可以根据具体需要进行合理选择。Wherein, the first wave absorbing layer, the second wave absorbing layer and the metal nanowire backplane are laminated in sequence from top to bottom to form the reconfigurable elastic wave absorber based on the metal nanowire aerogel . In order to facilitate preparation and tuning, the first polymer elastomer medium layer, the second polymer elastomer medium layer and the polymer elastomer film use the same polymer elastomer; the first metal nanometer The wire aerogel microstructure, the second metal nanowire aerogel microstructure and the metal nanowire dispersion are prepared from the same metal. Reasonable choice.

可选的一种实施方式中,所述第一高分子弹性体介质层、所述第二高分子弹性体介质层和所述高分子弹性体薄膜中的高分子弹性体,包括:In an optional embodiment, the polymer elastomer in the first polymer elastomer medium layer, the second polymer elastomer medium layer and the polymer elastomer film includes:

聚二甲基硅氧烷PDMS、脂肪族芳香族无规共聚酯Ecoflex、水性聚氨酯WPU、热塑性聚氨脂橡胶TPU和天然橡胶(Natural rubber,NR)。Polydimethylsiloxane PDMS, aliphatic aromatic random copolyester Ecoflex, waterborne polyurethane WPU, thermoplastic polyurethane rubber TPU and natural rubber (NR).

可以理解的是,本发明实施例中的高分子弹性体能够赋予吸波体形变的能力,保证吸波体具有良好共形能力,使得吸波体可以简单方便地贴附于需要电磁防护的设备表面;同时在形变过程中,由于可任意弯折、扭曲甚至拉伸,能够保证吸波体具有较高的机械稳定度和较好的柔性。同时,本发明实施例采用高分子弹性体对吸波体中金属纳米线气凝胶进行封装,能够极大地减少环境中硫化氢H2S、羰基硫化物OCS、硝酸HNO3以及水氧等化学物质的侵蚀,有效防止金属纳米线被硫化等出现不良化学反应,能够大幅度提升金属纳米线气凝胶的导电网络的稳定性。并且由于金属纳米线气凝胶内部微孔结构浸润在高分子弹性体中,也能够增强气凝胶结构的稳定性,提升拉伸性能。It can be understood that the polymer elastomer in the embodiment of the present invention can endow the wave absorber with the ability to deform, so as to ensure that the wave absorber has good conformal ability, so that the wave absorber can be easily and conveniently attached to the equipment that needs electromagnetic protection. At the same time, in the process of deformation, because it can be bent, twisted or even stretched arbitrarily, it can ensure that the absorber has high mechanical stability and good flexibility. At the same time, in the embodiment of the present invention, the polymer elastomer is used to encapsulate the metal nanowire aerogel in the wave absorber, which can greatly reduce the chemical emissions of hydrogen sulfide H 2 S, carbonyl sulfide OCS, nitric acid HNO 3 and water oxygen in the environment. The erosion of substances can effectively prevent the metal nanowires from being vulcanized and other adverse chemical reactions, and can greatly improve the stability of the conductive network of the metal nanowire aerogel. And because the internal microporous structure of the metal nanowire aerogel is infiltrated in the polymer elastomer, the stability of the aerogel structure can also be enhanced and the tensile properties can be improved.

可选的一种实施方式中,所述第一金属纳米线气凝胶微结构、所述第二金属纳米线气凝胶微结构和所述金属纳米线分散液中的金属纳米线,包括:In an optional embodiment, the first metal nanowire aerogel microstructure, the second metal nanowire aerogel microstructure, and the metal nanowires in the metal nanowire dispersion include:

金纳米线、银纳米线和铜纳米线。Gold nanowires, silver nanowires and copper nanowires.

关于金属纳米线的制备和获取过程属于现有技术,在此不做详细说明。The preparation and acquisition process of metal nanowires belong to the prior art, and will not be described in detail here.

本发明实施例中,第一吸波层、第二吸波层和金属纳米线背板形成了三层导电功能层,均采用金属纳米线制备,均具有优异的可拉伸性能,使得吸波体整体可以保持大尺度拉伸。这样能够最大程度保证吸波体机械形变的稳定性,从而使得吸波器具有稳定的可重构性能。In the embodiment of the present invention, the first wave absorbing layer, the second wave absorbing layer and the metal nanowire backplane form three layers of conductive functional layers, all of which are made of metal nanowires, and all have excellent stretchability, making the wave absorbing The body as a whole can maintain large-scale stretch. In this way, the stability of the mechanical deformation of the wave absorber can be ensured to the greatest extent, so that the wave absorber has stable reconfigurability.

同时,由于采用金属纳米线气凝胶这种多孔材料,这样当电磁波入射金属纳米线气凝胶表面时,会与其表面空隙形成较好的阻抗匹配,极大程度地增强电磁波入射进入材料内部的几率。同时,金属纳米线气凝胶也作为电磁波吸收剂,这样电磁波在通过金属纳米线气凝胶内部时,其内部丰富的胞壁表面CWS可以对电磁波进行多次反射损耗,从而大大增强材料的吸波性能。此外,金属纳米线气凝胶内部丰富的孔隙也为高分子弹性体灌装提供了空间,可以形成多相复合材料。At the same time, due to the use of porous materials such as metal nanowire aerogels, when electromagnetic waves are incident on the surface of metal nanowire aerogels, a better impedance match will be formed with the surface voids, which greatly enhances the incidence of electromagnetic waves entering the material. probability. At the same time, the metal nanowire aerogel also acts as an electromagnetic wave absorber, so that when the electromagnetic wave passes through the inside of the metal nanowire aerogel, the abundant cell wall surface CWS can carry out multiple reflection losses on the electromagnetic wave, thereby greatly enhancing the absorption of the material. wave performance. In addition, the abundant pores inside the metal nanowire aerogel also provide space for polymer elastomer filling, which can form multiphase composites.

本发明实施例中,所述第一金属纳米线气凝胶微结构和所述第二金属纳米线气凝胶微结构为金属纳米线气凝胶的图形化结构。本发明实施例通过对气凝胶多孔结构进行图形化处理形成超材料,填补了高损耗电磁波吸波剂的发明与研究中的一例空白。本发明实施例可以根据需要设计内部具有空隙或者边缘具有空隙的各种图形化结构。In the embodiment of the present invention, the first metal nanowire aerogel microstructure and the second metal nanowire aerogel microstructure are patterned structures of metal nanowire aerogel. In the embodiment of the present invention, the metamaterial is formed by patterning the aerogel porous structure, which fills a blank in the invention and research of the high-loss electromagnetic wave absorber. In the embodiments of the present invention, various patterned structures with voids in the interior or voids in the edges can be designed as required.

比如,可选的一种实施方式中,所述图形化结构可以包括回字形结构、开口谐振环形结构和十字形结构等。可以理解的是,回字形结构、开口谐振环形结构和十字形结构是指所述图形化结构的平面形态,实际上所述图形化结构具有一定的厚度,在图1的侧视图中,仅以矩形作为所述图形化结构的侧视图示例,但并不作为对其结构形态的限制。当然,本发明实施例的图形化结构不限于以上所述的三种形式。For example, in an optional implementation manner, the patterned structure may include a back-shaped structure, an open resonance ring structure, a cross-shaped structure, and the like. It can be understood that the back-shaped structure, the open resonance ring structure and the cross-shaped structure refer to the planar shape of the patterned structure. In fact, the patterned structure has a certain thickness. In the side view of FIG. A rectangle is used as an example of a side view of the graphic structure, but not as a limitation on its structural form. Of course, the graphical structure of the embodiment of the present invention is not limited to the above three forms.

需要说明的是,由于第一高分子弹性体介质层和第二高分子弹性体介质层的存在,第一金属纳米线气凝胶微结构的下表面和第二金属纳米线气凝胶微结构的上表面并不直接接触。It should be noted that, due to the existence of the first polymer elastomer medium layer and the second polymer elastomer medium layer, the lower surface of the first metal nanowire aerogel microstructure and the second metal nanowire aerogel microstructure are not in direct contact with the top surface.

本发明实施例利用高分子弹性体复合的气凝胶高弹性体优异的形变能力,设计了一种基于金属纳米线气凝胶的可重构弹性吸波体,通过机械拉伸简便实现可重构吸波体。该吸波体三层导电功能层均采用金属纳米线制备,具有优异的可拉伸性能,能够使得该吸波体整体可保持大尺度拉伸,能够最大程度保证机械形变的稳定性,使吸波器具有稳定可重构性能。In the embodiment of the present invention, a reconfigurable elastic wave absorber based on metal nanowire aerogel is designed by utilizing the excellent deformability of the aerogel high-elastomer compounded by the polymer elastomer. Construct the absorber. The three-layer conductive functional layers of the absorber are all made of metal nanowires, which have excellent stretchability, so that the absorber can maintain large-scale stretching as a whole, and can ensure the stability of mechanical deformation to the greatest extent. The wave filter has stable and reconfigurable performance.

并且,本发明实施例利用气凝胶多孔结构制备超材料结构单元。由于采用金属纳米线多孔气凝胶,当电磁波入射该气凝胶表面时,会与该气凝胶表面空隙形成较好的阻抗匹配,能够极大程度增强电磁波入射进入超材料内部的几率。同时该气凝胶也作为电磁波吸收剂,使得电磁波在通过该气凝胶内部时,其内部丰富的胞壁表面CWS可以对电磁波进行多次反射损耗,从而大大增强材料的吸波性能。此外,该气凝胶内部丰富的孔隙也为高分子弹性体灌装提供了空间,能够形成多相复合材料。Moreover, the embodiment of the present invention utilizes the aerogel porous structure to prepare the metamaterial structural unit. Since the metal nanowire porous aerogel is used, when the electromagnetic wave is incident on the surface of the aerogel, it will form a good impedance match with the voids on the surface of the aerogel, which can greatly enhance the probability of the electromagnetic wave entering the interior of the metamaterial. At the same time, the aerogel also acts as an electromagnetic wave absorber, so that when the electromagnetic wave passes through the inside of the aerogel, the abundant cell wall surface CWS in the aerogel can perform multiple reflection losses on the electromagnetic wave, thereby greatly enhancing the wave absorbing performance of the material. In addition, the abundant pores inside the aerogel also provide space for polymer elastomer filling, enabling the formation of multiphase composites.

另外,本发明实施例采用高分子弹性体对金属纳米线气凝胶进行封装,能够极大减少环境中特定等化学物质的侵蚀,有效防止金属纳米线发生不良化学反应,能够大幅度提升金属纳米线气凝胶的导电网络的稳定性。同时,由于金属纳米线气凝胶内部微孔结构浸润在高分子弹性体中,也能够增强气凝胶结构的稳定性,提升其拉伸性能。此外,采用高分子弹性体能够赋予吸波体弹性形变能力,使该吸波体具有良好的共形能力,可以简单方便地贴附于需要电磁防护的设备表面;同时在形变过程中,本发明实施例的吸波器机械稳定度高、柔性好,可任意弯折、扭曲甚至拉伸,能够针对不同电磁波吸收防护要求以及在较宽频段实现重复使用的需求。In addition, the embodiment of the present invention uses a polymer elastomer to encapsulate the metal nanowire aerogel, which can greatly reduce the erosion of specific chemical substances in the environment, effectively prevent adverse chemical reactions of the metal nanowires, and greatly improve the metal nanowires. Stability of the conductive network of wire aerogels. At the same time, since the internal microporous structure of the metal nanowire aerogel is infiltrated in the polymer elastomer, the stability of the aerogel structure can also be enhanced and its tensile properties can be improved. In addition, the use of polymer elastomers can endow the wave absorber with elastic deformation ability, so that the wave absorber has good conformal ability, and can be easily and conveniently attached to the surface of the equipment requiring electromagnetic protection; at the same time, during the deformation process, the present invention The wave absorber of the embodiment has high mechanical stability and good flexibility, and can be bent, twisted or even stretched arbitrarily, and can meet the requirements of different electromagnetic wave absorption and protection requirements and the requirements of repeated use in a wide frequency band.

以下结合两种不同的图形化结构,分别对本发明实施例中基于金属纳米线气凝胶的可重构弹性吸波体的参数范围进行说明,以下可选的参数数值利用大量不同浓度的金属纳米线分散液对应铸造的气凝胶测试样本数据,通过仿真建模参数优化得到的,具体内容请见第二方面的基于金属纳米线气凝胶的可重构弹性吸波体的制备方法中相关内容。The following describes the parameter ranges of the reconfigurable elastic wave absorber based on metal nanowire aerogel in the embodiment of the present invention in combination with two different graphical structures. The following optional parameter values use a large number of metal nanowires with different concentrations. The wire dispersion corresponds to the cast aerogel test sample data, which is obtained by optimizing the simulation modeling parameters. For details, please refer to the second aspect of the preparation method of the reconfigurable elastic wave absorber based on metal nanowire aerogel. content.

(一)回字形结构(1) Back-shaped structure

回字形结构的第一金属纳米线气凝胶微结构或第二金属纳米线气凝胶微结构的平面结构图请参见图2,图2为本发明实施例回字形结构的金属纳米线气凝胶微结构的平面示意图。该回字形结构为内外边长不同的两个正方形组成的环状结构,在作为第一金属纳米线气凝胶微结构或第二金属纳米线气凝胶微结构时具有一定的厚度,且该回字形结构中的中空区域填充有高分子弹性体介质。Please refer to FIG. 2 for the plane structure diagram of the first metal nanowire aerogel microstructure or the second metal nanowire aerogel microstructure of the zigzag structure, and FIG. 2 is the metal nanowire aerogel of the zigzag structure according to the embodiment of the present invention. Schematic plan view of the glue microstructure. The back-shaped structure is a ring structure composed of two squares with different inner and outer side lengths, and has a certain thickness when used as the first metal nanowire aerogel microstructure or the second metal nanowire aerogel microstructure, and the The hollow area in the back-shaped structure is filled with a polymer elastomer medium.

图3为本发明实施例以回字形结构的一组金属纳米线气凝胶微结构示例的基于金属纳米线气凝胶的可重构弹性吸波体的爆炸图。图4为本发明实施例以回字形结构的一组金属纳米线气凝胶微结构示例的基于金属纳米线气凝胶的可重构弹性吸波体的俯视图。图5为本发明实施例以回字形结构的金属纳米线气凝胶微结构阵列示例的基于金属纳米线气凝胶的可重构弹性吸波体的俯视图。可以理解的是,图4和图5中的嵌套回字形是第一金属纳米线气凝胶微结构和第二金属纳米线气凝胶微结构的俯视重叠效果。FIG. 3 is an exploded diagram of a reconfigurable elastic wave absorber based on a metal nanowire aerogel, which is exemplified by a group of metal nanowire aerogel microstructures with a zigzag structure according to an embodiment of the present invention. FIG. 4 is a top view of a reconfigurable elastic wave absorber based on a metal nanowire aerogel, which is exemplified by a group of metal nanowire aerogel microstructures with a zigzag structure according to an embodiment of the present invention. FIG. 5 is a top view of a reconfigurable elastic wave absorber based on a metal nanowire aerogel, which is exemplified by a metal nanowire aerogel microstructure array with a zigzag structure according to an embodiment of the present invention. It can be understood that the nested zigzags in FIG. 4 and FIG. 5 are the top-view overlapping effect of the first metal nanowire aerogel microstructure and the second metal nanowire aerogel microstructure.

可选的实施方式中,针对所述回字形结构:In an optional implementation manner, for the back-shaped structure:

每个第一金属纳米线气凝胶微结构的电导率σ1为0.1~10S/m;其中回字形结构的外层正方形边长a1为12~16mm;内层正方形边长a2为6~10mm;回字形结构的厚度d1为1.6~2.0mm;所述第一高分子弹性体介质层的长度l1为13~23mm;所述第一高分子弹性体介质层的宽度w1为13~23mm;所述第一高分子弹性体介质层的厚度h1为1.5~2mm;The electrical conductivity σ 1 of each first metal nanowire aerogel microstructure is 0.1-10 S/m; the side length a 1 of the outer square of the zigzag structure is 12-16 mm; the side length a 2 of the inner square is 6 ~10mm; the thickness d1 of the back-shaped structure is 1.6~2.0mm; the length l1 of the first polymer elastomer medium layer is 13~23mm; the width w1 of the first polymer elastomer medium layer is 13 to 23 mm; the thickness h 1 of the first polymer elastomer medium layer is 1.5 to 2 mm;

每个第二金属纳米线气凝胶微结构的电导率σ2为0.1~10S/m;其中回字形结构的外层正方形边长b1为6~10mm;内层正方形边长b2为1~5mm;回字形结构的厚度d2为1.6~2.0mm;所述第二高分子弹性体介质层的长度l2为13~23mm;所述第二高分子弹性体介质层的宽度w2为13~23mm;所述第二高分子弹性体介质层的厚度h2为1.5~2mm。The electrical conductivity σ 2 of each second metal nanowire aerogel microstructure is 0.1-10 S/m; the side length b 1 of the outer square of the zigzag structure is 6-10 mm; the side length b 2 of the inner square is 1 ~5mm; the thickness d2 of the back-shaped structure is 1.6~2.0mm; the length l2 of the second polymer elastomer medium layer is 13~23mm; the width w2 of the second polymer elastomer medium layer is 13-23 mm; the thickness h 2 of the second polymer elastomer medium layer is 1.5-2 mm.

所述回字形结构的间隔参数x1、y1、x2、y2的范围相等,均为5-8mm,其中各间隔参数定义为:x1=(l1-a1)/2;y1=(w1-a1)/2;x2=(l2-a2)/2;y2=(w2-a2)/2,为了简化,上述间隔参数不再进行图示说明,请结合图3和图4理解。The range of the interval parameters x 1 , y 1 , x 2 , and y 2 of the back-shaped structure is equal, and all are 5-8 mm, wherein each interval parameter is defined as: x 1 =(l 1 -a 1 )/2; y 1 =(w 1 -a 1 )/2; x 2 =(l 2 -a 2 )/2; y 2 =(w 2 -a 2 )/2, for simplicity, the above interval parameters will not be illustrated , please understand in conjunction with Figure 3 and Figure 4.

优选的实施方式中,σ1=σ2=2S/m;σ3=10000S/m;a1=15mm;a2=9mm;d1=1.95mm;l1=l2=18mm;w1=w2=18mm;h1=h2=2mm;b1=9mm;b2=3.75mm;d2=1.95mm;d3=0.1mm;间隔参数x1=y1=x2=y2=6mm。In a preferred embodiment, σ 12 =2S/m;σ 3 =10000S/m;a 1 =15mm;a 2 =9mm;d 1 =1.95mm;l 1 =l 2 =18mm;w 1 = w 2 =18mm; h 1 =h 2 = 2mm ;b 1 =9mm;b 2 = 3.75mm;d 2 = 1.95mm;d 3 =0.1mm ; 6mm.

(二)开口谐振环形结构(2) Open resonance ring structure

开口谐振环形结构的第一金属纳米线气凝胶微结构或第二金属纳米线气凝胶微结构的平面结构图请参见图6,图6为本发明实施例开口谐振环形结构的金属纳米线气凝胶微结构的平面示意图。该开口谐振环形结构为内外半径不同的两个同心圆形组成的开口环状结构,两个圆形开口方向一致,开口形状为矩形。开口谐振环形结构在作为第一金属纳米线气凝胶微结构或第二金属纳米线气凝胶微结构时具有一定的厚度,且该开口谐振环形结构中的中空区域填充有高分子弹性体介质。Please refer to FIG. 6 for a plane structure diagram of the first metal nanowire aerogel microstructure or the second metal nanowire aerogel microstructure of the open resonant ring structure, and FIG. 6 is the metal nanowire of the open resonant ring structure according to the embodiment of the present invention. Schematic plan view of the aerogel microstructure. The open resonance ring structure is an open ring structure composed of two concentric circles with different inner and outer radii, the opening directions of the two circles are the same, and the shape of the opening is a rectangle. The open resonant annular structure has a certain thickness when used as the first metal nanowire aerogel microstructure or the second metal nanowire aerogel microstructure, and the hollow region in the open resonant annular structure is filled with a polymer elastomer medium .

图7为本发明实施例的一组开口谐振环形结构的金属纳米线气凝胶微结构的俯视图。可以理解的是,图7中的嵌套开口谐振环形结构是第一金属纳米线气凝胶微结构和第二金属纳米线气凝胶微结构的俯视重叠效果。7 is a top view of a group of metal nanowire aerogel microstructures of an open resonant ring structure according to an embodiment of the present invention. It can be understood that the nested open resonant ring structure in FIG. 7 is a top-view overlapping effect of the first metal nanowire aerogel microstructure and the second metal nanowire aerogel microstructure.

可选的一种实施方式中,针对所述开口谐振环形结构:In an optional implementation manner, for the open resonant ring structure:

每个第一金属纳米线气凝胶微结构的电导率σ1为0.1~10S/m;其中开口谐振环形结构的外圆半径c1为6~8mm;内圆半径c2为3~5mm;开口矩形长n1为6~10mm;开口矩形宽m1为2~6mm;圆心到开口矩形较远边长的垂直距离f1为5~8mm;开口谐振环形结构的厚度d1为1.3~1.5mm;所述第一高分子弹性体介质层的长度l1为13~23mm;所述第一高分子弹性体介质层的宽度w1为13~23mm;所述第一高分子弹性体介质层的厚度h1为1.5~2mm;The electrical conductivity σ 1 of each first metal nanowire aerogel microstructure is 0.1-10 S/m; the outer radius c 1 of the open resonant ring structure is 6-8 mm; the inner radius c 2 is 3-5 mm; The length n 1 of the opening rectangle is 6-10mm; the width m 1 of the opening rectangle is 2-6mm; the vertical distance f 1 from the center of the circle to the far side of the opening rectangle is 5-8mm; the thickness d 1 of the opening resonant ring structure is 1.3-1.5 mm; the length l 1 of the first macromolecular elastomer medium layer is 13-23 mm; the width w 1 of the first macromolecular elastomer medium layer is 13-23 mm; the first macromolecular elastomer medium layer The thickness h1 is 1.5~2mm;

每个第二金属纳米线气凝胶微结构的电导率σ2为0.1~10S/m;其中开口谐振环形结构的外圆半径e1为3~5mm;内圆半径e2为0.5~2.5mm,开口矩形长n2为2~6mm,开口矩形宽m2为2~6mm,圆心到开口矩形较远边长的垂直距离f2为3~6mm;开口谐振环形结构的厚度d2为1.3~1.5mm;所述第一高分子弹性体介质层的长度l1为13~23mm;所述第一高分子弹性体介质层的宽度w1为13~23mm;所述第二高分子弹性体介质层的厚度h2为1.5~2mm。The electrical conductivity σ 2 of each second metal nanowire aerogel microstructure is 0.1-10 S/m; the outer radius e 1 of the open resonant annular structure is 3-5 mm; the inner radius e 2 is 0.5-2.5 mm , the length n 2 of the opening rectangle is 2~6mm, the width m 2 of the opening rectangle is 2~6mm, the vertical distance f 2 from the center to the far side of the opening rectangle is 3~6mm; the thickness d 2 of the opening resonant ring structure is 1.3~6mm 1.5 mm; the length l 1 of the first polymer elastomer medium layer is 13-23 mm; the width w 1 of the first polymer elastomer medium layer is 13-23 mm; the second polymer elastomer medium The thickness h 2 of the layer is 1.5 to 2 mm.

所述开口谐振环形结构的间隔参数x1'表示第一金属纳米线气凝胶微结构中外圆左侧边缘与所述第一高分子弹性体介质层对应矩形中左侧边的最小水平距离;间隔参数x2’表示第一金属纳米线气凝胶微结构中外圆右侧边缘与所述第一高分子弹性体介质层对应矩形中右侧边的最小水平距离;间隔参数y1‘表示第一金属纳米线气凝胶微结构中外圆上侧边缘与所述第一高分子弹性体介质层对应矩形中上侧边的最小垂直距离;间隔参数y2‘表示第一金属纳米线气凝胶微结构中外圆下侧边缘与所述第一高分子弹性体介质层对应矩形中下侧边的最小垂直距离。x1'、x2'、y1'、y2'的范围相等,均为5-8mm,为了简化,上述间隔参数不再进行图示说明,请结合图7理解。The interval parameter x 1 ′ of the open resonant ring structure represents the minimum horizontal distance between the left edge of the outer circle in the first metal nanowire aerogel microstructure and the left side of the rectangle corresponding to the first polymer elastomer dielectric layer; The interval parameter x 2 ' represents the minimum horizontal distance between the right edge of the outer circle in the first metal nanowire aerogel microstructure and the right side of the rectangle corresponding to the first polymer elastomer dielectric layer; the interval parameter y 1 ' represents the first A minimum vertical distance between the upper edge of the outer circle in the metal nanowire aerogel microstructure and the upper side of the rectangle corresponding to the first polymer elastomer dielectric layer; the interval parameter y 2 ' represents the first metal nanowire aerogel The minimum vertical distance between the lower side edge of the outer circle in the microstructure and the lower side edge of the rectangle corresponding to the first polymer elastomer medium layer. The ranges of x 1 ', x 2 ', y 1 ', and y 2 ' are equal, and they are all 5-8 mm. For simplicity, the above-mentioned interval parameters are no longer illustrated, please understand with reference to FIG. 7 .

优选的实施方式中,σ1=σ2=0.5S/m;σ3=10000S/m;c1=7.5mm;c2=4.5mm;e1=4.5mm;e2=2mm;d1=d2=1.3mm;l1=l2=18mm;w1=w2=18mm;h1=h2=1.5mm;n1=8mm;m1=3.8mm;f1=7.6mm;n2=5mm;m2=3.7mm;f2=4.5mm;间隔参数x1'=y1'=x2'=y2'=5mm。In a preferred embodiment, σ 12 =0.5S/m;σ 3 =10000S/m; c 1 =7.5mm;c 2 =4.5mm;e 1 =4.5mm;e 2 =2mm;d 1 = d 2 =1.3mm; l 1 =l 2 =18mm; w 1 =w 2 =18mm;h 1 =h 2 =1.5mm;n 1 =8mm;m 1 =3.8mm;f 1 =7.6mm;n 2 =5mm; m2 =3.7mm; f2=4.5mm ; interval parameter x1'= y1 '= x2 '= y2 ' = 5mm.

针对上述两种图形化结构,可选的一种实施方式中,所述金属纳米线背板的电导率σ3为10000~20000S/m;厚度d3为0.1~0.3mm;涂布的金属纳米线分散液的浓度范围为45mg/ml~60mg/ml。可以理解的是,该浓度范围已经是一个相对较高的浓度范围。For the above two patterned structures, in an optional embodiment, the electrical conductivity σ3 of the metal nanowire backplane is 10000-20000 S/m; the thickness d3 is 0.1-0.3 mm; the coated metal nanowires The concentration range of the thread dispersion liquid is 45 mg/ml to 60 mg/ml. It is understood that this concentration range is already a relatively high concentration range.

可选的实施方式中,所述基于金属纳米线气凝胶的可重构弹性吸波体的应用频段包括:In an optional embodiment, the application frequency band of the metal nanowire aerogel-based reconfigurable elastic wave absorber includes:

X波段和Ku波段。X-band and Ku-band.

其中已知的是,X波段为8-12GHz,Ku波段为12-18GHz。Among them, it is known that the X-band is 8-12GHz and the Ku-band is 12-18GHz.

本发明实施例通过实验,调整基于金属纳米线气凝胶的可重构弹性吸波体中相关结构的厚度,比如将将原有厚度值变化1um~10mm,可以覆盖GHz以及部分太赫兹频段,比如0.2-2.0THz,能够满足更宽频段需求。In the embodiment of the present invention, through experiments, the thickness of the relevant structures in the reconfigurable elastic wave absorber based on the metal nanowire aerogel is adjusted, for example, the original thickness value is changed by 1um to 10mm, which can cover GHz and part of the terahertz frequency band. For example, 0.2-2.0THz can meet the needs of wider frequency bands.

以下结合具体材料和参数,对本发明实施例的基于金属纳米线气凝胶的可重构弹性吸波体的性能效果进行说明。The performance effect of the reconfigurable elastic wave absorber based on the metal nanowire aerogel according to the embodiment of the present invention will be described below with reference to specific materials and parameters.

(1)回字形结构,金属为银,高分子弹性体为Ecoflex,频段范围8~12GHz:(1) Back-shaped structure, the metal is silver, the polymer elastomer is Ecoflex, and the frequency range is 8 to 12 GHz:

首先,参考图3和图4,采用雕刻机将两块2mm厚的银板加工成回字形结构,将两者分别浸泡在高分子弹性体Ecoflex的溶液中,加热固化得到两个吸波层,并在0.5mm厚的银板上从下到上组装得到具有图形化结构的传统超材料吸波体,即实心结构吸波体。First, referring to Figure 3 and Figure 4, two silver plates with a thickness of 2 mm were processed into a back-shaped structure by an engraving machine, and the two were immersed in the solution of the polymer elastomer Ecoflex, and heated and cured to obtain two absorbing layers. And 0.5mm thick silver plate was assembled from bottom to top to obtain a traditional metamaterial absorber with a patterned structure, that is, a solid structure absorber.

按照本发明实施例方法,利用银纳米线和Ecoflex,按照3和图4制备与上述实心结构吸波体相同尺寸的基于金属纳米线气凝胶的可重构弹性吸波体。将这两种吸波体的吸收效率进行对比,结果如图8所示。图8为具有图形化结构的传统超材料吸波体与本发明实施例基于金属纳米线气凝胶的可重构弹性吸波体的吸收效率对比图。图8中,横轴表示频率;纵轴表示反射损耗;虚线conventional structure表示具有图形化结构的传统超材料吸波体;实线aerogel structure表示气凝胶结构,即本发明实施例基于金属纳米线气凝胶的可重构弹性吸波体。According to the method of the embodiment of the present invention, using silver nanowires and Ecoflex, a reconfigurable elastic wave absorber based on metal nanowire aerogel with the same size as the above solid structure wave absorber was prepared according to 3 and FIG. 4 . The absorption efficiencies of the two absorbers are compared, and the results are shown in Figure 8. FIG. 8 is a comparison diagram of the absorption efficiency of a traditional metamaterial wave absorber with a patterned structure and a reconfigurable elastic wave absorber based on a metal nanowire aerogel according to an embodiment of the present invention. In Fig. 8, the horizontal axis represents the frequency; the vertical axis represents the reflection loss; the dotted line conventional structure represents the traditional metamaterial absorber with a patterned structure; the solid line aerogel structure represents the aerogel structure, that is, the embodiment of the present invention is based on metal nanowires Reconfigurable elastic absorbers of aerogels.

对比可见,具有图形化结构的传统超材料吸波体在8GHz左右发生谐振,但最大反射损耗为-10dB,基本没有满足吸波需求的频段。而本发明实施例制备的基于金属纳米线气凝胶的可重构弹性吸波体具有丰富的孔隙结构,通过对吸波体孔隙率的调整,使其具有优异的电磁吸波能力,最大反射损耗为-39.8dB(即吸收约99.99%的电磁波),吸波频段(即反射损耗小于-10dB的波段)为6.7GHz,频率在7.1GHz~13.8GHz,基本涵盖X波段(约8~12GHz)。这证实了多孔结构气凝胶具有较好的阻抗匹配特性,相比于传统结构,能最大程度增加吸波体吸波性能。It can be seen from the comparison that the traditional metamaterial absorber with a patterned structure resonates at around 8 GHz, but the maximum reflection loss is -10 dB, which basically does not meet the wave absorption requirements. However, the reconfigurable elastic wave absorber based on metal nanowire aerogel prepared in the embodiment of the present invention has rich pore structure. By adjusting the porosity of the wave absorber, it has excellent electromagnetic wave absorption ability and maximum reflection. The loss is -39.8dB (that is, absorbing about 99.99% of electromagnetic waves), the absorbing frequency band (that is, the band where the reflection loss is less than -10dB) is 6.7GHz, and the frequency is 7.1GHz-13.8GHz, basically covering the X-band (about 8-12GHz) . This confirms that the porous structure aerogel has better impedance matching characteristics, which can maximize the absorption performance of the absorber compared with the traditional structure.

(2)回字形结构,金属纳米线为银纳米线,高分子弹性体为Ecoflex,频段范围8~12GHz:(2) Back-shaped structure, the metal nanowires are silver nanowires, the polymer elastomer is Ecoflex, and the frequency range is 8-12GHz:

参照图3和图9,图9为银纳米线气凝胶的SEM图(电子扫描显像图)。采用银纳米线铸造气凝胶,高分子弹性体采用拉伸性能优异的Ecoflex,气凝胶结构采用回字形结构。3 and 9, FIG. 9 is a SEM image (scanning electron image) of the silver nanowire aerogel. The aerogel is cast with silver nanowires, the polymer elastomer is Ecoflex with excellent tensile properties, and the aerogel structure adopts a back-shaped structure.

依据上述步骤制备基于金属纳米线气凝胶的可重构弹性吸波体后,对制得的吸波体进行不同程度机械性变,测试其不同状态吸波体性能。由于功能微表面结构、内部空隙形态以及功能微结构厚度的变化,吸波幅值跟随改变,吸波峰值频率产生蓝移或红移。对相关性能进行仿真测试,结果见图10。图10为本发明实施例采用有限元法计算得到的基于回字形结构的基于金属纳米线气凝胶的可重构弹性吸波体的频率可重构的吸收效率图。After preparing the reconfigurable elastic wave absorber based on the metal nanowire aerogel according to the above steps, the prepared wave absorber is subjected to different degrees of mechanical transformation, and the performance of the wave absorber in different states is tested. Due to the changes of the functional microsurface structure, internal void morphology and thickness of the functional microstructure, the absorbing amplitude changes accordingly, and the absorbing peak frequency produces a blue-shift or a red-shift. The relevant performance is simulated and tested, and the results are shown in Figure 10. FIG. 10 is a diagram of the frequency-reconfigurable absorption efficiency of the metal nanowire aerogel-based reconfigurable elastic wave absorber based on the zigzag structure calculated by the finite element method according to an embodiment of the present invention.

参照图10,本发明实施例给出基于金属纳米线气凝胶的可重构弹性吸波体提供三种在常用工作模式下的电磁参数曲线,通过对吸波体结构不同程度机械拉伸,将中心吸波峰值频率在9GHz、10GHz、11GHz附近变化,这样可控制三种不同工作状态的切换,始终保持最佳电磁波吸收,使得吸波器最大程度满足吸收需求。图9中,stretch 0%、stretch 50%、stretch100%分别表示未形变、拉伸50%和拉伸100%。Referring to FIG. 10 , an embodiment of the present invention provides a reconfigurable elastic wave absorber based on metal nanowire aerogel to provide three electromagnetic parameter curves in common working modes. By mechanically stretching the absorber structure to different degrees, The peak frequency of the central absorption wave is changed around 9GHz, 10GHz, and 11GHz, which can control the switching of three different working states, and always maintain the best electromagnetic wave absorption, so that the absorber can meet the absorption requirements to the greatest extent. In Fig. 9, stretch 0%, stretch 50%, and stretch 100% represent no deformation, stretch 50%, and stretch 100%, respectively.

1)当未形变时,吸波体保持原来状态,吸波中心峰值频率在9GHz左右,最大反射损耗为-39.8dB(即吸收约99.99%的电磁波),且吸波频段(即反射损耗小于-10dB的波段)为3.7GHz,频率在7.3GHz~11GHz;1) When it is not deformed, the absorbing body maintains its original state, the peak frequency of the absorbing center is about 9GHz, the maximum reflection loss is -39.8dB (that is, absorbing about 99.99% of electromagnetic waves), and the absorbing frequency band (that is, the reflection loss is less than - 10dB band) is 3.7GHz, and the frequency is between 7.3GHz and 11GHz;

2)当吸波体拉伸50%时,吸波中心峰值频率在10GHz左右,最大反射损耗为-20.6dB(即吸收99.13%的电磁波),且吸波频段为3.9GHz,频率在8.3GHz~12.2GHz;2) When the absorber is stretched by 50%, the peak frequency of the center of the absorber is about 10GHz, the maximum reflection loss is -20.6dB (that is, absorbing 99.13% of electromagnetic waves), and the frequency of the absorber is 3.9GHz, and the frequency is 8.3GHz~ 12.2GHz;

3)当吸波体拉伸100%时,吸波中心峰值频率在11GHz左右,最大反射损耗为-15.6dB(即吸收97.23%电磁波),且吸波频段为4.5GHz,频率在9.2GHz~13.8GHz。3) When the absorber is stretched by 100%, the peak frequency of the center of the absorber is about 11GHz, the maximum reflection loss is -15.6dB (that is, 97.23% of electromagnetic waves are absorbed), and the frequency of the absorber is 4.5GHz, and the frequency is 9.2GHz~13.8 GHz.

(3)开口谐振环结构,金属纳米线为铜纳米线,高分子弹性体为PDMS,频段范围12~18GHz:(3) Open resonant ring structure, the metal nanowires are copper nanowires, the polymer elastomer is PDMS, and the frequency range is 12-18GHz:

参照图7,金属纳米线采用铜纳米线铸造气凝胶,高分子弹性体采用PDMS,气凝胶结构采用开口谐振环结构,制备基于金属纳米线气凝胶的可重构弹性吸波体,吸波体最大反射损耗为-42.91dB(即吸收约99.99%的电磁波),吸波频段(即反射损耗小于-10dB的波段)为9.7GHz,频率在11.6GHz~21.3GHz,完全覆盖Ku波段(约12~18GHz)。Referring to FIG. 7 , copper nanowires are used to cast aerogels for metal nanowires, PDMS is used for polymer elastomers, and an open resonant ring structure is used for aerogel structures to prepare a reconfigurable elastic wave absorber based on metal nanowire aerogels, The maximum reflection loss of the absorber is -42.91dB (that is, absorbing about 99.99% of electromagnetic waves), the absorbing frequency band (that is, the band with the reflection loss less than -10dB) is 9.7GHz, and the frequency is 11.6GHz ~ 21.3GHz, completely covering the Ku band ( about 12 to 18 GHz).

制备基于金属纳米线气凝胶的可重构弹性吸波体后,对制得的吸波体进行不同程度机械性变,测试其不同状态吸波体性能。由于功能微表面结构、内部空隙形态以及功能微结构厚度的变化,吸波幅值跟随改变,吸波峰值频率产生蓝移或红移。对相关性能进行仿真测试,结果见图11。图11为本发明实施例采用有限元法计算得到的基于开口谐振环结构的基于金属纳米线气凝胶的可重构弹性吸波体的频率可重构的吸收效率图。After preparing the reconfigurable elastic wave absorber based on the metal nanowire aerogel, the prepared wave absorber was subjected to different degrees of mechanical transformation, and the performance of the wave absorber in different states was tested. Due to the changes of the functional microsurface structure, internal void morphology and thickness of the functional microstructure, the absorbing amplitude changes accordingly, and the absorbing peak frequency produces a blue-shift or a red-shift. The relevant performance is simulated and tested, and the results are shown in Figure 11. 11 is a diagram of the frequency-reconfigurable absorption efficiency of the metal nanowire aerogel-based reconfigurable elastic wave absorber based on the split resonant ring structure calculated by the finite element method according to an embodiment of the present invention.

参照图11,本发明实施例给出基于金属纳米线气凝胶的可重构弹性吸波体提供三种在常用工作模式下的电磁参数曲线,通过对吸波体结构不同程度机械拉伸,将中心吸波峰值频率在14GHz、14.5GHz、16GHz附近变化,这样可控制三种不同工作状态的切换,始终保持最佳电磁波吸收,使得吸波器最大程度满足吸收需求。图11中,stretch 0%、stretch10%、stretch30%分别表示未形变、拉伸10%和拉伸30%。Referring to FIG. 11, the embodiment of the present invention provides a reconfigurable elastic wave absorber based on metal nanowire aerogel to provide three electromagnetic parameter curves in common working modes. By mechanically stretching the absorber structure to different degrees, The peak frequency of the central absorption wave is changed around 14GHz, 14.5GHz, and 16GHz, which can control the switching of three different working states, and always maintain the best electromagnetic wave absorption, so that the absorber can meet the absorption requirements to the greatest extent. In Fig. 11, stretch 0%, stretch 10%, and stretch 30% represent no deformation, stretch 10%, and stretch 30%, respectively.

1)当未形变时,吸波体保持原来状态,吸波中心峰值频率在14GHz左右,最大反射损耗为-31.3dB(即吸收约99.93%的电磁波),且吸波频段(即反射损耗小于-10dB的波段)为9.7GHz,频率在11.6GHz~21.3GHz;1) When it is not deformed, the absorbing body remains in its original state, the peak frequency of the absorbing center is about 14GHz, the maximum reflection loss is -31.3dB (that is, absorbing about 99.93% of electromagnetic waves), and the absorbing frequency band (that is, the reflection loss is less than - 10dB band) is 9.7GHz, and the frequency is 11.6GHz ~ 21.3GHz;

2)当吸波体拉伸10%时,吸波中心峰值频率在14.5GHz左右,最大反射损耗为-28.4dB(即吸收99.86%的电磁波),且吸波频段为9.3GHz,频率在11.9GHz~21.2GHz;2) When the absorber is stretched by 10%, the peak frequency of the center of the absorber is about 14.5GHz, the maximum reflection loss is -28.4dB (that is, 99.86% of the electromagnetic wave is absorbed), and the frequency of the absorber is 9.3GHz and the frequency is 11.9GHz ~21.2GHz;

3)当吸波体拉伸30%时,吸波中心峰值频率在16GHz左右,最大反射损耗为-42.9dB(即吸收99.99%电磁波),且吸波频段为8.8GHz,频率在12.3GHz~21.1GHz。3) When the absorber is stretched by 30%, the peak frequency of the center of the absorber is about 16GHz, the maximum reflection loss is -42.9dB (that is, absorbing 99.99% of electromagnetic waves), and the frequency of the absorber is 8.8GHz, and the frequency is 12.3GHz~21.1 GHz.

综上,本发明实施例采用金属纳米线气凝胶制备周期性微结构的超材料,提出了一种简单的通过机械拉伸可重构的高效吸波体,具体利用气凝胶多孔结构制备超材料单元,能够较大地提升吸波性能;同时使用高分子弹性体封装气凝胶,能够提高拉伸性能和稳定性。本发明实施例能够实现弹性可重构(即整体可拉伸、压缩),可用于实现在X波段和Ku波段等较宽频段实时独立可调谐的宽频吸收。通过拉伸形变,改变吸波体微结构形状以及厚度,能够灵活实现谐振频率动态调整,进而以高吸波率覆盖相应波段;To sum up, the embodiments of the present invention use metal nanowire aerogels to prepare metamaterials with periodic microstructures, and propose a simple high-efficiency wave absorber that can be reconfigured by mechanical stretching. Specifically, the porous structure of aerogels is used to prepare The metamaterial unit can greatly improve the wave absorbing performance; meanwhile, the use of polymer elastomers to encapsulate the aerogel can improve the tensile performance and stability. The embodiment of the present invention can realize elastic reconfigurability (ie, the whole can be stretched and compressed), and can be used to realize real-time independent tunable broadband absorption in a wide frequency band such as X-band and Ku-band. By stretching and deforming, changing the shape and thickness of the microstructure of the absorber can flexibly realize the dynamic adjustment of the resonance frequency, and then cover the corresponding frequency band with a high absorption rate;

第二方面,相应于第一方面提供的基于金属纳米线气凝胶的可重构弹性吸波体,本发明实施例还提供了一种基于金属纳米线气凝胶的可重构弹性吸波体的制备方法,该方法包括以下步骤:In the second aspect, corresponding to the reconfigurable elastic wave absorber based on the metal nanowire aerogel provided in the first aspect, an embodiment of the present invention further provides a reconfigurable elastic wave absorber based on the metal nanowire aerogel The preparation method of the body, the method comprises the following steps:

步骤1,针对目标波段,在预设浓度范围内以预设采样间隔获取不同浓度的金属纳米线分散液所铸造的气凝胶材料的电磁参数,确定各电磁参数范围;其中,所述电磁参数包括电导率和介电常数;Step 1, for the target wavelength band, obtain electromagnetic parameters of aerogel materials cast by metal nanowire dispersions of different concentrations at preset sampling intervals within a preset concentration range, and determine the range of each electromagnetic parameter; wherein, the electromagnetic parameters Including conductivity and dielectric constant;

具体的,目标波段可以为X波段、Ku波段等。预设浓度范围可以为5mg/ml~20mg/ml等。预设采样间隔可以为5mg/ml等。金属纳米线可以为金纳米线、银纳米线和铜纳米线等。利用金属纳米线分散液铸造气凝胶材料的具体工艺请见现有技术,在此不做说明。Specifically, the target band may be an X-band, a Ku-band, or the like. The preset concentration range can be 5mg/ml~20mg/ml and so on. The preset sampling interval can be 5 mg/ml or the like. The metal nanowires may be gold nanowires, silver nanowires, copper nanowires, and the like. Please refer to the prior art for the specific process of casting the aerogel material by using the metal nanowire dispersion, which will not be described here.

可以通过四探针法以及Nicolson-Ross-Weir(NRW)法测出所铸造的各种气凝胶材料的电磁参数,从而确定各种情况下电导率和介电常数分别对应的参数范围,以作为后续仿真中电磁参数的扫描范围。The electromagnetic parameters of various cast aerogel materials can be measured by the four-probe method and the Nicolson-Ross-Weir (NRW) method, so as to determine the parameter ranges corresponding to the conductivity and permittivity in each case, as Sweep range of electromagnetic parameters in subsequent simulations.

步骤2,对基于金属纳米线气凝胶的可重构弹性吸波体进行仿真建模,其结构由上至下包括:第一吸波层、第二吸波层和高分子弹性体薄膜;所述第一吸波层包括第一高分子弹性体介质层和包裹在所述第一高分子弹性体介质层内的第一金属纳米线气凝胶微结构阵列;所述第二吸波层包括第二高分子弹性体介质层和包裹在所述第二高分子弹性体介质层内的第二金属纳米线气凝胶微结构阵列;所述第一金属纳米线气凝胶微结构阵列包括等间距周期性排列的多个第一金属纳米线气凝胶微结构;所述第二金属纳米线气凝胶微结构阵列包括等间距周期性排列的多个第二金属纳米线气凝胶微结构;并对仿真建模得到的所述基于金属纳米线气凝胶的可重构弹性吸波体进行几何参数扫描和优化,得到模型初始几何参数;Step 2, simulate and model the reconfigurable elastic wave absorber based on the metal nanowire aerogel, the structure of which includes from top to bottom: a first wave absorbing layer, a second wave absorbing layer and a polymer elastomer film; The first wave-absorbing layer includes a first high-molecular elastomer medium layer and a first metal nanowire aerogel microstructure array wrapped in the first high-molecular elastomer medium layer; the second wave-absorbing layer It includes a second polymer elastomer medium layer and a second metal nanowire aerogel microstructure array wrapped in the second polymer elastomer medium layer; the first metal nanowire aerogel microstructure array includes A plurality of first metal nanowire aerogel microstructures arranged periodically at equal intervals; the second metal nanowire aerogel microstructure array includes a plurality of second metal nanowire aerogel microstructures periodically arranged at equal intervals structure; and perform geometric parameter scanning and optimization on the reconfigurable elastic wave absorber based on metal nanowire aerogel obtained by simulation modeling to obtain the initial geometric parameters of the model;

具体的,仿真建模可以采用有限元法FEM、时域有限积分CST或者时域有限差分FDTD等。第一金属纳米线微结构和第二金属纳米线微结构可以采用回字形结构或者开口谐振环结构等图形化结构。设置第一金属纳米线微结构的尺寸、第二金属纳米线微结构尺寸、金属纳米线微结构间隔、第一高分子弹性体介质层厚度、第二高分子弹性体介质层厚度以及高分子弹性体薄膜尺寸等各种几何参数的扫描范围,然后进行参数优化,得到最优几何参数,比如针对回字形结构,得到a1、a2、b1、b2、d1、d2、d3、l1、l2、w1、w2、h1、h2,间隔参数x1,y1,x2,y2等参数的具体数值,从而确定吸波体的几何参数。Specifically, the simulation modeling may adopt the finite element method FEM, the finite integral time domain CST, or the finite difference time domain FDTD, or the like. The first metal nanowire microstructure and the second metal nanowire microstructure may adopt a patterned structure such as a zigzag structure or a split resonant ring structure. Set the size of the first metal nanowire microstructure, the size of the second metal nanowire microstructure, the spacing of the metal nanowire microstructure, the thickness of the first polymer elastomer medium layer, the thickness of the second polymer elastomer medium layer, and the polymer elasticity The scanning range of various geometric parameters such as the size of the bulk film, and then optimize the parameters to obtain the optimal geometric parameters . , l 1 , l 2 , w 1 , w 2 , h 1 , h 2 , interval parameters x 1 , y 1 , x 2 , y 2 and other parameters to determine the geometric parameters of the absorber.

仿真建模时,吸波体边界采用Floquet周期性边界条件模拟吸波体阵列结构,第一、第二金属纳米线气凝胶的电导率σ1、σ2在1S/m~10S/m间按照1S/m的步进等间隔取样,金属纳米线背板采用理想电导体边界条件进行替代,仿真计算得到吸波体最优参数,为下一步制备提供理论指导。During the simulation modeling, the Floquet periodic boundary condition is used to simulate the structure of the absorber array. According to the step of 1S/m, the samples are taken at equal intervals, and the metal nanowire backplane is replaced by the ideal electrical conductor boundary conditions. The optimal parameters of the absorber are obtained by simulation calculation, which provides theoretical guidance for the next preparation.

步骤3,在所述模型初始几何参数基础上,基于对应的电磁参数范围,对所述基于金属纳米线气凝胶的可重构弹性吸波体进行电学参数扫描,确定各电磁参数的优选值;Step 3: On the basis of the initial geometric parameters of the model, and based on the corresponding electromagnetic parameter range, scan the electrical parameters of the reconfigurable elastic wave absorber based on the metal nanowire aerogel, and determine the preferred value of each electromagnetic parameter ;

再步骤2的几何结构基础上,根据步骤1确定的电导率和介电常数分别对应的参数范围,进行参数扫描优化,确定σ1、σ2、σ3的优选值。On the basis of the geometric structure in step 2, according to the parameter ranges corresponding to the electrical conductivity and the dielectric constant determined in step 1, parameter sweep optimization is performed to determine the preferred values of σ 1 , σ 2 , and σ 3 .

步骤4,根据所述模型初始几何参数和所述各电磁参数的优选值,采用冷冻干燥的工艺制备对应的图形化金属纳米线气凝胶,得到所述第一金属纳米线气凝胶微结构;利用等间距周期性排列的多个第一金属纳米线气凝胶微结构形成所述第一金属纳米线微结构阵列,将所述第一金属纳米线微结构阵列四周包裹所述第一高分子弹性体介质层形成所述第一吸波层;Step 4, according to the initial geometric parameters of the model and the preferred values of the electromagnetic parameters, use a freeze-drying process to prepare a corresponding patterned metal nanowire aerogel to obtain the first metal nanowire aerogel microstructure ; Use a plurality of first metal nanowire aerogel microstructures arranged periodically at equal intervals to form the first metal nanowire microstructure array, and wrap the first metal nanowire microstructure array around the first high The molecular elastomer dielectric layer forms the first wave absorbing layer;

具体的,比如针对回字形结构,先根据步骤2和3确定的针对第一吸波层中各结构的参数数值,采用冷冻干燥的工艺制备回字形结构的多个金属纳米线气凝胶,然后真空抽滤灌注高分子弹性体,再加热烘干,形成第一金属纳米线微结构以及相应的阵列,之后外包裹高分子弹性体介质层得到第一吸波层。Specifically, for example, for the zigzag structure, according to the parameter values determined in steps 2 and 3 for each structure in the first wave absorbing layer, a freeze-drying process is used to prepare a plurality of metal nanowire aerogels with zigzag structure, and then The macromolecular elastomer is infused with vacuum filtration, heated and dried to form a first metal nanowire microstructure and a corresponding array, and then a first wave absorbing layer is obtained by wrapping a macromolecular elastomer medium layer.

步骤5,调整工艺参数,重复步骤4形成所述第二吸波层;Step 5, adjusting process parameters, repeating Step 4 to form the second wave absorbing layer;

该步骤和步骤4类似,但根据步骤2和3确定的针对第二吸波层中各结构的参数数值调整工艺参数实现。This step is similar to step 4, but is realized by adjusting process parameters according to the parameter values determined in steps 2 and 3 for each structure in the second wave absorbing layer.

步骤6,在固化的所述高分子弹性体薄膜上悬涂预设浓度的金属纳米线分散液,加热烘干形成金属纳米线背板;Step 6: Suspend a metal nanowire dispersion with a predetermined concentration on the cured polymer elastomer film, and heat and dry to form a metal nanowire backplane;

其中,预设浓度可以为45mg/ml~60mg/ml、50~100mg/ml等,具体根据需要选择。金属纳米线分散液中的金属和第一金属纳米线微结构以及第二金属纳米线微结构中的金属相同。Wherein, the preset concentration can be 45mg/ml~60mg/ml, 50~100mg/ml, etc., which is selected according to needs. The metal in the metal nanowire dispersion is the same as the metal in the first metal nanowire microstructure and the second metal nanowire microstructure.

步骤7,将制备得到的所述第一吸波层、所述第二吸波层和所述金属纳米线背板自上而下依次贴合,组成所述基于金属纳米线气凝胶的可重构弹性吸波体。Step 7: Laminate the prepared first wave absorbing layer, the second wave absorbing layer and the metal nanowire backplane in sequence from top to bottom to form the metal nanowire-based aerogel. Reconstructed elastic absorber.

本发明实施例所提供的基于金属纳米线气凝胶的可重构弹性吸波体的制备方法,首先对不同浓度的金属纳米线分散液所铸造的气凝胶材料进行电磁参数测试,为后续仿真提供多样化且较为准确的扫描范围;其次建立基于金属纳米线气凝胶的可重构弹性吸波体的仿真模型,并利用几何参数扫描确定模型初始几何参数,实现结构初始化;之后进行电磁参数扫描优化,提供可工艺化的样本参考;之后在确定的几何参数和电磁参数基础上,利用工艺手段按序制备出基于金属纳米线气凝胶的可重构弹性吸波体。In the preparation method of the reconfigurable elastic wave absorber based on metal nanowire aerogel provided by the embodiment of the present invention, the electromagnetic parameter test is firstly performed on the aerogel material cast by the dispersion liquid of metal nanowires of different concentrations, which is a follow-up The simulation provides a diverse and accurate scanning range; secondly, a simulation model of a reconfigurable elastic wave absorber based on metal nanowire aerogel is established, and the initial geometric parameters of the model are determined by geometric parameter scanning to realize structure initialization; then electromagnetic The parameter scanning optimization provides a processable sample reference; then, on the basis of the determined geometric parameters and electromagnetic parameters, a reconfigurable elastic wave absorber based on metal nanowire aerogels is sequentially prepared by process means.

所制备出的基于金属纳米线气凝胶的可重构弹性吸波体,通过机械拉伸简便实现可重构吸波体。该吸波体三层导电功能层均采用金属纳米线制备,具有优异的可拉伸性能,能够使得该吸波体整体可保持大尺度拉伸,能够最大程度保证机械形变的稳定性,使吸波器具有稳定可重构性能。The prepared reconfigurable elastic wave absorber based on metal nanowire aerogel can be easily realized by mechanical stretching. The three-layer conductive functional layers of the absorber are all made of metal nanowires, which have excellent stretchability, so that the absorber can maintain large-scale stretching as a whole, and can ensure the stability of mechanical deformation to the greatest extent. The wave filter has stable and reconfigurable performance.

并且,本发明实施例利用气凝胶多孔结构制备超材料结构单元。由于采用金属纳米线多孔气凝胶,当电磁波入射该气凝胶表面时,会与该气凝胶表面空隙形成较好的阻抗匹配,能够极大程度增强电磁波入射进入超材料内部的几率。同时该气凝胶也作为电磁波吸收剂,使得电磁波在通过该气凝胶内部时,其内部丰富的胞壁表面CWS可以对电磁波进行多次反射损耗,从而大大增强材料的吸波性能。此外,该气凝胶内部丰富的孔隙也为高分子弹性体灌装提供了空间,能够形成多相复合材料。Moreover, the embodiment of the present invention utilizes the aerogel porous structure to prepare the metamaterial structural unit. Since the metal nanowire porous aerogel is used, when the electromagnetic wave is incident on the surface of the aerogel, it will form a good impedance match with the voids on the surface of the aerogel, which can greatly enhance the probability of the electromagnetic wave entering the interior of the metamaterial. At the same time, the aerogel also acts as an electromagnetic wave absorber, so that when the electromagnetic wave passes through the inside of the aerogel, the abundant cell wall surface CWS in the aerogel can perform multiple reflection losses on the electromagnetic wave, thereby greatly enhancing the wave absorbing performance of the material. In addition, the abundant pores inside the aerogel also provide space for polymer elastomer filling, enabling the formation of multiphase composites.

另外,本发明实施例采用高分子弹性体对金属纳米线气凝胶进行封装,能够极大减少环境中特定等化学物质的侵蚀,有效防止金属纳米线发生不良化学反应,能够大幅度提升金属纳米线气凝胶的导电网络的稳定性。同时,由于金属纳米线气凝胶内部微孔结构浸润在高分子弹性体中,也能够增强气凝胶结构的稳定性,提升其拉伸性能。此外,采用高分子弹性体能够赋予吸波体弹性形变能力,使该吸波体具有良好的共形能力,可以简单方便地贴附于需要电磁防护的设备表面;同时在形变过程中,本发明实施例的吸波器机械稳定度高、柔性好,可任意弯折、扭曲甚至拉伸,能够针对不同电磁波吸收防护要求以及在较宽频段实现重复使用的需求。In addition, the embodiment of the present invention uses a polymer elastomer to encapsulate the metal nanowire aerogel, which can greatly reduce the erosion of specific chemical substances in the environment, effectively prevent adverse chemical reactions of the metal nanowires, and greatly improve the metal nanowires. Stability of the conductive network of wire aerogels. At the same time, since the internal microporous structure of the metal nanowire aerogel is infiltrated in the polymer elastomer, the stability of the aerogel structure can also be enhanced and its tensile properties can be improved. In addition, the use of polymer elastomers can endow the wave absorber with elastic deformation ability, so that the wave absorber has good conformal ability, and can be easily and conveniently attached to the surface of the equipment requiring electromagnetic protection; at the same time, during the deformation process, the present invention The wave absorber of the embodiment has high mechanical stability and good flexibility, and can be bent, twisted or even stretched arbitrarily, and can meet the requirements of different electromagnetic wave absorption and protection requirements and the requirements of repeated use in a wide frequency band.

需要说明的是,在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。It should be noted that, in the description of the present invention, it should be understood that the terms "center", "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "Front", "Back", "Left", "Right", "Vertical", "Horizontal", "Top", "Bottom", "Inside", "Outside", "Clockwise", "Counterclockwise" The orientation or positional relationship indicated by etc. is based on the orientation or positional relationship shown in the accompanying drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, with a specific orientation. The orientation configuration and operation are therefore not to be construed as limitations of the present invention.

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first" or "second" may expressly or implicitly include one or more of that feature. In the description of the present invention, "plurality" means two or more, unless otherwise expressly and specifically defined.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification.

以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention are included in the protection scope of the present invention.

Claims (10)

1. The utility model provides a restructural elasticity wave absorber based on metal nano wire aerogel which characterized in that includes from top to bottom:
the metal nanowire back plate comprises a first wave absorbing layer, a second wave absorbing layer and a metal nanowire back plate;
the first wave absorbing layer comprises a first high polymer elastomer medium layer and a first metal nanowire aerogel microstructure array wrapped in the first high polymer elastomer medium layer; the second wave absorbing layer comprises a second high molecular elastomer medium layer and a second metal nanowire aerogel microstructure array wrapped in the second high molecular elastomer medium layer; the first metal nanowire aerogel microstructure array comprises a plurality of first metal nanowire aerogel microstructures which are periodically arranged at equal intervals; the second metal nanowire aerogel microstructure array comprises a plurality of second metal nanowire aerogel microstructures which are periodically arranged at equal intervals; the metal nanowire backboard is obtained by coating a metal nanowire dispersion liquid on the surface of a high-molecular elastomer film.
2. The metal nanowire aerogel-based reconfigurable elastic wave absorber of claim 1, wherein the first polymer elastomer dielectric layer, the second polymer elastomer dielectric layer and the polymer elastomer in the polymer elastomer thin film comprise:
polydimethylsiloxane PDMS, aliphatic aromatic random copolyester Ecoflex, waterborne polyurethane WPU, thermoplastic polyurethane rubber TPU and natural rubber NR.
3. The metal nanowire aerogel-based reconfigurable elastic wave absorber of claim 1, wherein the first metal nanowire aerogel microstructure, the second metal nanowire aerogel microstructure, and the metal nanowires in the metal nanowire dispersion comprise:
gold nanowires, silver nanowires, and copper nanowires.
4. The metallic nanowire aerogel-based reconfigurable elastic wave absorber of claim 1, wherein the first and second metallic nanowire aerogel microstructures are patterned structures of metallic nanowire aerogel.
5. The metal nanowire aerogel-based reconfigurable elastic wave absorber of claim 4, wherein the patterned structure comprises a zigzag structure, an open resonant ring structure and a cross structure.
6. The metal nanowire aerogel-based reconfigurable elastic wave absorber of claim 1 or 2, wherein for the zigzag structure:
the conductivity of each first metal nanowire aerogel microstructure is 0.1-10S/m; wherein the side length of the square on the outer layer of the square-shaped structure is 12-16 mm; the side length of the inner layer square is 6-10 mm; the thickness of the square-shaped structure is 1.6-2.0 mm; the length of the first high-molecular elastomer medium layer is 13-23 mm; the width of the first high-molecular elastomer medium layer is 13-23 mm; the thickness of the first polymer elastomer dielectric layer is 1.5-2 mm;
the conductivity of each second metal nanowire aerogel microstructure is 0.1-10S/m; wherein the side length of the square on the outer layer of the square-shaped structure is 6-10 mm; the side length of the inner layer square is 1-5 mm; the thickness of the square-shaped structure is 1.6-2.0 mm; the length of the second polymer elastomer dielectric layer is 13-23 mm; the width of the second polymer elastomer dielectric layer is 13-23 mm; the thickness of the second polymer elastomer dielectric layer is 1.5-2 mm.
7. The metal nanowire aerogel-based reconfigurable elastic wave absorber of claim 1 or 2, wherein for the open resonant ring structure:
the conductivity of each first metal nanowire aerogel microstructure is 0.1-10S/m; wherein the excircle radius of the open resonant annular structure is 6-8 mm; the radius of the inner circle is 3-5 mm; the length of the opening rectangle is 6-10 mm; the width of the opening rectangle is 2-6 mm; the vertical distance from the center of the circle to the longer side length of the opening rectangle is 5-8 mm; the thickness of the open resonant annular structure is 1.3-1.5 mm; the length of the first polymer elastomer dielectric layer is 13-23 mm; the width of the first polymer elastomer dielectric layer is 13-23 mm; the thickness of the first polymer elastomer dielectric layer is 1.5-2 mm;
the conductivity of each second metal nanowire aerogel microstructure is 0.1-10S/m; wherein the excircle radius of the open resonant annular structure is 3-5 mm; the radius of the inner circle is 0.5-2.5 mm; the length of the opening rectangle is 2-6 mm, the width of the opening rectangle is 2-6 mm, and the vertical distance from the circle center to the longer side length of the opening rectangle is 3-6 mm; the thickness of the open resonant annular structure is 1.3-1.5 mm; the length of the second polymer elastomer dielectric layer is 13-23 mm; the width of the second polymer elastomer dielectric layer is 13-23 mm; the thickness of the second polymer elastomer dielectric layer is 1.5-2 mm.
8. The reconfigurable elastic wave absorber based on the metal nanowire aerogel as claimed in claim 1, wherein the electrical conductivity of the metal nanowire back plate is 10000-20000S/m; the thickness is 0.1-0.3 mm; the concentration range of the coated metal nanowire dispersion liquid is 45mg/ml to 60 mg/ml.
9. The reconfigurable elastic wave absorber based on metal nanowire aerogel according to claim 1 or 2, wherein the application frequency band of the reconfigurable elastic wave absorber based on metal nanowire aerogel comprises:
the X band and the Ku band.
10. A preparation method of a reconfigurable elastic wave absorber based on metal nanowire aerogel is characterized by comprising the following steps:
step 1, acquiring electromagnetic parameters of aerogel materials cast by metal nanowire dispersion liquid with different concentrations within a preset concentration range at preset sampling intervals according to a target waveband, and determining each electromagnetic parameter range; wherein the electromagnetic parameters include conductivity and permittivity;
step 2, carrying out simulation modeling on the reconfigurable elastic wave absorber based on the metal nanowire aerogel, wherein the structure of the reconfigurable elastic wave absorber comprises from top to bottom: the wave absorbing material comprises a first wave absorbing layer, a second wave absorbing layer and a high polymer elastomer film; the first wave absorption layer comprises a first high molecular elastomer medium layer and a first metal nanowire aerogel microstructure array wrapped in the first high molecular elastomer medium layer; the second wave absorbing layer comprises a second high molecular elastomer medium layer and a second metal nanowire aerogel microstructure array wrapped in the second high molecular elastomer medium layer; the first metal nanowire aerogel microstructure array comprises a plurality of first metal nanowire aerogel microstructures which are periodically arranged at equal intervals; the second metal nanowire aerogel microstructure array comprises a plurality of second metal nanowire aerogel microstructures which are periodically arranged at equal intervals; geometric parameter scanning and optimization are carried out on the reconfigurable elastic wave absorber based on the metal nanowire aerogel obtained through simulation modeling, and initial geometric parameters of a model are obtained;
step 3, on the basis of the initial geometric parameters of the model, based on the corresponding electromagnetic parameter range, scanning the electrical parameters of the reconfigurable elastic wave absorber based on the metal nanowire aerogel, and determining the optimal values of all the electromagnetic parameters;
step 4, preparing the corresponding graphical metal nanowire aerogel by adopting a freeze drying process according to the initial geometric parameters of the model and the optimal values of the electromagnetic parameters to obtain a first metal nanowire aerogel microstructure; forming the first metal nanowire microstructure array by using a plurality of first metal nanowire aerogel microstructures which are periodically arranged at equal intervals, and wrapping the first polymer elastomer dielectric layer around the first metal nanowire microstructure array to form the first wave absorption layer;
step 5, adjusting process parameters, and repeating the step 4 to form the second wave-absorbing layer;
step 6, coating a metal nanowire dispersion liquid with a preset concentration on the cured high polymer elastomer film in a suspension manner, and heating and drying to form a metal nanowire backboard;
and 7, sequentially attaching the prepared first wave absorbing layer, the second wave absorbing layer and the metal nanowire back plate from top to bottom to form the reconfigurable elastic wave absorber based on the metal nanowire aerogel.
CN202210680950.8A 2022-06-16 2022-06-16 Reconfigurable elastic wave absorber based on metal nanowire aerogel and preparation method thereof Active CN114914712B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210680950.8A CN114914712B (en) 2022-06-16 2022-06-16 Reconfigurable elastic wave absorber based on metal nanowire aerogel and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210680950.8A CN114914712B (en) 2022-06-16 2022-06-16 Reconfigurable elastic wave absorber based on metal nanowire aerogel and preparation method thereof

Publications (2)

Publication Number Publication Date
CN114914712A true CN114914712A (en) 2022-08-16
CN114914712B CN114914712B (en) 2024-07-12

Family

ID=82770320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210680950.8A Active CN114914712B (en) 2022-06-16 2022-06-16 Reconfigurable elastic wave absorber based on metal nanowire aerogel and preparation method thereof

Country Status (1)

Country Link
CN (1) CN114914712B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117906486A (en) * 2023-12-25 2024-04-19 东南大学 Strain sensor based on reconfigurable metamaterial array

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381149A (en) * 1992-04-17 1995-01-10 Hughes Aircraft Company Broadband absorbers of electromagnetic radiation based on aerogel materials, and method of making the same
CN106340726A (en) * 2016-10-31 2017-01-18 中国工程物理研究院激光聚变研究中心 Magnetic conductive nano-metal/carbon airgel absorbing material and the preparation method thereof
KR20170047429A (en) * 2015-10-22 2017-05-08 민송기 Electromagnetic wave absorber for transmitter of wireless charger
CN109720027A (en) * 2019-03-05 2019-05-07 中南大学 A kind of high-temperature-resistant structure absorbing material and preparation method thereof based on metal coating
CN112615165A (en) * 2020-12-06 2021-04-06 中国人民解放军空军工程大学 Multi-mode resistance-based multi-layer broadband metamaterial wave absorber and design method thereof
CN114144053A (en) * 2021-12-20 2022-03-04 重庆邮电大学 A composite wave absorber with dual dynamic regulation and its preparation method and application

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381149A (en) * 1992-04-17 1995-01-10 Hughes Aircraft Company Broadband absorbers of electromagnetic radiation based on aerogel materials, and method of making the same
KR20170047429A (en) * 2015-10-22 2017-05-08 민송기 Electromagnetic wave absorber for transmitter of wireless charger
CN106340726A (en) * 2016-10-31 2017-01-18 中国工程物理研究院激光聚变研究中心 Magnetic conductive nano-metal/carbon airgel absorbing material and the preparation method thereof
CN109720027A (en) * 2019-03-05 2019-05-07 中南大学 A kind of high-temperature-resistant structure absorbing material and preparation method thereof based on metal coating
CN112615165A (en) * 2020-12-06 2021-04-06 中国人民解放军空军工程大学 Multi-mode resistance-based multi-layer broadband metamaterial wave absorber and design method thereof
CN114144053A (en) * 2021-12-20 2022-03-04 重庆邮电大学 A composite wave absorber with dual dynamic regulation and its preparation method and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZE NAN ET AL.: "Flexible Nanocomposite Conductors for Electromagnetic Interference Shielding", 《NANO-MICRO LETTERS 》, vol. 15, 7 July 2023 (2023-07-07) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117906486A (en) * 2023-12-25 2024-04-19 东南大学 Strain sensor based on reconfigurable metamaterial array

Also Published As

Publication number Publication date
CN114914712B (en) 2024-07-12

Similar Documents

Publication Publication Date Title
CN107275788B (en) Millimeter wave fan-shaped beam cylindrical luneberg lens antenna based on metal perturbation structure
CN207098066U (en) Lens antenna based on Novel meta-material cellular construction
CN111276803A (en) A metasurface-based high-gain low-scattering reconfigurable dual-frequency Fabry-Perot antenna and its frequency modulation method
Krzysztofik et al. Fractals in antennas and metamaterials applications
CN107453050A (en) Surpass the broadband lens on surface based on phase gradient
Lu et al. Review of dielectric carbide, oxide, and sulfide nanostructures for electromagnetic wave absorption
Zhou et al. A planar zero-index metamaterial for directive emission
CN206098624U (en) A Y-like double-layer rotating complementary metamaterial microcell structure
WO2017114131A1 (en) Metamaterial structure, radome and antenna system
CN112838374A (en) A flexible active frequency selective surface and its control method
CN112909571A (en) Combined wave-absorbing composite material with advantages of various types of metamaterials
CN108767488B (en) Frequency selective surface, frequency selective surface structure and antenna housing
CN111697349A (en) Quasi-angle-preserving transformation optics-based all-metal multi-beam lens antenna
Zhou et al. A novel lightweight metamaterial with ultra broadband electromagnetic wave absorption induced by three-dimensional CNTs conductive-coated arrays
CN114914712A (en) Reconfigurable elastic wave absorber based on metal nanowire aerogel and preparation method thereof
Bray et al. A broadband open-sleeve dipole antenna mounted above a tunable EBG AMC ground plane
Dawar et al. Bandwidth enhancement of RMPA using ENG metamaterials at THz
CN113922093A (en) Broadband wave-absorbing metamaterial flexible sheet based on carbon-based material and preparation method thereof
Bhavarthe et al. Mutual coupling reduction in patch antenna using Electromagnetic Band Gap (EBG) structure for IoT application
CN113036426A (en) Antenna housing and frequency selective surface thereof
Huang et al. A novel frequency selective surface for ultra wideband antenna performance improvement
CN216529345U (en) A circularly polarized multi-layer microstrip antenna unit and its three-dimensional array
CN113794056B (en) Frequency selection wave-absorbing super surface for realizing high-low frequency integrated test environment
CN216214140U (en) Low-scattering reconfigurable slot antenna based on water
CN116315719A (en) A Low RCS Microstrip Antenna Based on Metamaterial Absorbing Unit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant