CN114912309A - Multi-scale simulation method for vibration fatigue damage of 2.5D woven composite material - Google Patents
Multi-scale simulation method for vibration fatigue damage of 2.5D woven composite material Download PDFInfo
- Publication number
- CN114912309A CN114912309A CN202210370935.3A CN202210370935A CN114912309A CN 114912309 A CN114912309 A CN 114912309A CN 202210370935 A CN202210370935 A CN 202210370935A CN 114912309 A CN114912309 A CN 114912309A
- Authority
- CN
- China
- Prior art keywords
- unit cell
- model
- finite element
- element model
- vibration fatigue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 92
- 238000000034 method Methods 0.000 title claims abstract description 81
- 238000004088 simulation Methods 0.000 title claims abstract description 69
- 239000000463 material Substances 0.000 claims abstract description 83
- 238000011068 loading method Methods 0.000 claims abstract description 57
- 238000009661 fatigue test Methods 0.000 claims abstract description 55
- 238000004364 calculation method Methods 0.000 claims abstract description 36
- 238000004458 analytical method Methods 0.000 claims abstract description 24
- 230000015556 catabolic process Effects 0.000 claims abstract description 16
- 238000006731 degradation reaction Methods 0.000 claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims description 49
- 238000012360 testing method Methods 0.000 claims description 36
- 238000001228 spectrum Methods 0.000 claims description 12
- 238000005452 bending Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 238000010586 diagram Methods 0.000 claims description 6
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 230000003068 static effect Effects 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 4
- 238000009941 weaving Methods 0.000 claims description 4
- 238000012512 characterization method Methods 0.000 claims description 3
- 239000000805 composite resin Substances 0.000 claims description 3
- 238000001721 transfer moulding Methods 0.000 claims description 2
- 230000009191 jumping Effects 0.000 abstract description 2
- 239000000835 fiber Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 3
- 102100021503 ATP-binding cassette sub-family B member 6 Human genes 0.000 description 2
- 101000677883 Homo sapiens ATP-binding cassette sub-family B member 6 Proteins 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000011166 3D woven composite Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009745 resin transfer moulding Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/26—Composites
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/04—Ageing analysis or optimisation against ageing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
技术领域technical field
本发明属于复合材料虚拟仿真技术领域,涉及一种2.5D机织复合材料振动疲劳损伤的多尺度模拟方法。The invention belongs to the technical field of virtual simulation of composite materials, and relates to a multi-scale simulation method for vibration fatigue damage of 2.5D woven composite materials.
背景技术Background technique
以低密度、高比强度、高比刚度和良好的耐久性的树脂基复合材料代替金属材料,是实现发动机减重增效的重要技术途径,已成为新一代航空发动机的主流趋势。2.5D机织复合材料由于独特的层间联锁结构,克服了层板复合材料层间性能薄弱和抗冲击性能差的缺点。此外,2.5D机织复合材料还具备制备成本低、可设计性强等优点,比普通的3D编织复合材料具有更好的工艺性。显著的优点使得2.5D机织复合材料成为制备发动机叶片的理想选择。航空发动机叶片服役在严苛的振动疲劳环境中,典型的一个案例是发动机叶片轴颈处于弯曲振动疲劳加载的工况下。众所周知振动疲劳是比普通疲劳更加恶劣的工况条件,因此在对2.5D机织复合材料叶片进行结构设计、分析时必须充分考虑材料在振动疲劳工况下的安全性,这对工程可用的2.5D机织复合材料振动疲劳损伤预测模型提出了迫切需求。Replacing metal materials with resin-based composites with low density, high specific strength, high specific stiffness and good durability is an important technical way to achieve engine weight reduction and efficiency, and has become the mainstream trend of the new generation of aero-engines. Due to the unique inter-layer interlocking structure, 2.5D woven composite material overcomes the shortcomings of weak interlayer performance and poor impact resistance of laminate composite materials. In addition, 2.5D woven composite materials also have the advantages of low preparation cost and strong designability, and have better manufacturability than ordinary 3D woven composite materials. Significant advantages make 2.5D woven composites ideal for making engine blades. Aero-engine blades are used in severe vibration and fatigue environments. A typical case is that the journals of engine blades are under bending vibration fatigue loading conditions. It is well known that vibration fatigue is a worse working condition than ordinary fatigue. Therefore, the safety of materials under vibration fatigue conditions must be fully considered when structural design and analysis of 2.5D woven composite blades. D woven composite materials vibration fatigue damage prediction model puts forward an urgent need.
2.5D机织复合材料是一种新兴的发动机叶片用材料,其振动疲劳行为方面的研究还非常有限,现存的关于2.5D机织复合材料振动疲劳的数值模拟方法大都采用宏观尺度的有限元模型,即不考虑2.5D机织复合材料内部纱线的微观结构特征,而是将整个结构中的材料当作一种均匀的各向异性材料,并采用力学试验测得的材料9个工程常数定义材料的宏观模量和泊松比。2.5D机织复合材料是一种具有明显纱线三维空间结构的非均质材料,其损伤行为的表征与描述必须聚焦到单胞尺度,因此对2.5D机织复合材料振动疲劳损伤的预测必须基于单胞模型,但如果整个结构的模型都细化到单胞尺度,计算量将非常庞大,为了兼顾高预测精度和工程应用对低计算成本、高计算效率的需求,建立2.5D机织复合材料振动疲劳损伤模拟的多尺度模型是目前唯一可行的技术途径。目前2.5D机织复合材料的多尺度模型大都集中在静态载荷下材料内部损伤演化规律的模拟方面,尚缺少专门用于预测2.5D机织复合材料振动疲劳加载过程中内部微观损伤状态的多尺度模拟方法。此外,现存的2.5D机织复合材料多尺度模拟方法大都基于全局模型-子模型的思想,具体实施方法是在宏观模型和子模型上对应位置定义界面,在宏观模型的数值计算过程中,将该界面处的数据按照指定步长保存,根据需要去掉外部载荷或者保留部分外部载荷,或者对载荷进行放大后,将数据传递到细观尺度的子模型中再进行一次计算,可见采用全局模型-子模型的方法需要进行两次计算分析,操作繁琐。另外,为了保证全局模型和子模型的匹配,还需要对宏观有限元模型计算得到的界面数据进行人为放大,放大因子的选择往往高度依赖工程师的经验,因此这种便捷性差、操作繁琐的方法在实际工程中的应用非常有限。2.5D woven composite material is an emerging material for engine blades, and the research on its vibration fatigue behavior is still very limited. Most of the existing numerical simulation methods for vibration fatigue of 2.5D woven composite material use a macro-scale finite element model. , that is, without considering the microstructural characteristics of the inner yarn of the 2.5D woven composite material, the material in the whole structure is regarded as a uniform anisotropic material, and the 9 engineering constants of the material measured by the mechanical test are used to define Macromodulus and Poisson's ratio of the material. 2.5D woven composite is a heterogeneous material with obvious three-dimensional yarn structure, and the characterization and description of its damage behavior must be focused on the unit cell scale. Therefore, the prediction of vibration fatigue damage of 2.5D woven composite must be Based on the unit cell model, but if the model of the entire structure is refined to the unit cell scale, the amount of calculation will be very large. In order to take into account the requirements of high prediction accuracy and engineering applications for low computational cost and high computational efficiency, a 2.5D woven composite The multi-scale model of material vibration fatigue damage simulation is the only feasible technical approach at present. At present, most of the multi-scale models of 2.5D woven composites focus on the simulation of the internal damage evolution law of the material under static loading, and there is still a lack of multi-scale models specially used to predict the internal micro-damage state of 2.5D woven composites during vibration fatigue loading. mock method. In addition, most of the existing multi-scale simulation methods for 2.5D woven composites are based on the idea of global model-sub-model. The specific implementation method is to define the interface at the corresponding position on the macro model and the sub-model. The data at the interface is saved according to the specified step size, and the external load is removed or part of the external load is retained as needed, or after the load is enlarged, the data is transferred to the sub-model of the meso-scale for calculation again. It can be seen that the global model-sub-model is used. The model method requires two calculations and analysis, and the operation is cumbersome. In addition, in order to ensure the matching of the global model and the sub-model, it is necessary to artificially enlarge the interface data calculated by the macro finite element model. The selection of the amplification factor is often highly dependent on the experience of the engineer. Therefore, this method is inconvenient and cumbersome to operate in practice. Engineering applications are very limited.
2.5D机织复合材料叶片轴颈在振动疲劳工况下的安全性和可靠性设计是目前业界非常关注的一个工程问题,上述工况可简化为一个2.5D机织复合材料悬臂梁弯曲加载条件的共振疲劳试验,工程实际由此对兼顾高预测精度和高计算效率的2.5D机织复合材料振动疲劳损伤的多尺度模拟方法产生迫切需求。。The safety and reliability design of 2.5D woven composite blade journals under vibration fatigue conditions is an engineering issue that the industry is very concerned about. The above working conditions can be simplified as a 2.5D woven composite material cantilever beam bending loading condition Therefore, in engineering practice, there is an urgent need for a multi-scale simulation method for vibration fatigue damage of 2.5D woven composites with high prediction accuracy and high computational efficiency. .
发明内容SUMMARY OF THE INVENTION
本发明的目的是:提出一种2.5D机织复合材料振动疲劳损伤的多尺度模拟方法,对2.5D机织复合材料在任意载荷水平下的一阶弯曲振动疲劳加载过程中材料内部的损伤状态进行快速、准确地预测。The purpose of the present invention is to propose a multi-scale simulation method for vibration fatigue damage of 2.5D woven composite materials, and to analyze the damage state inside the material during the first-order bending vibration fatigue loading process of 2.5D woven composite materials under any load level. Make fast, accurate forecasts.
为解决此技术问题,本发明的技术方案是:In order to solve this technical problem, the technical scheme of the present invention is:
提供一种2.5D机织复合材料振动疲劳损伤的多尺度模拟方法,A multi-scale simulation method for vibration fatigue damage of 2.5D woven composite materials is provided,
通过将单胞有限元模型嵌入2.5D机织复合材料振动疲劳试验件宏观有限元模型工作段最小截面处,将宏观有限元模型上单胞模型嵌入区域的材料设置为一种具有极小弹性模量的各向同性材料,利用“嵌入式”约束将单胞有限元模型的节点约束于宏观有限元模型的单元网格中,组合得到多尺度模型,基于固定周期跳跃的疲劳加载模拟方法设置数值模拟的分析步,结合专门针对2.5D机织复合材料振动疲劳损伤模拟提出的失效准则和材料性能退化规则,在CAE软件中开展有限元模型的数值计算,实现2.5D机织复合材料振动疲劳损伤的多尺度模拟;具体包含步骤如下:By embedding the unit cell finite element model at the minimum section of the working section of the macro finite element model of the 2.5D woven composite vibration fatigue test piece, the material in the embedded area of the unit cell model on the macro finite element model is set as a material with an extremely small elastic modulus. Amount of isotropic material, using "embedded" constraints to constrain the nodes of the unit cell finite element model to the element mesh of the macro finite element model, and combine to obtain a multi-scale model, and set the numerical value based on the fatigue loading simulation method of fixed period jumps The simulation analysis step, combined with the failure criteria and material performance degradation rules specially proposed for the vibration fatigue damage simulation of 2.5D woven composite materials, carry out numerical calculation of the finite element model in the CAE software to realize the vibration fatigue damage of 2.5D woven composite materials. The multi-scale simulation of ; the specific steps are as follows:
步骤一、建立单胞有限元模型:Step 1. Establish a single-cell finite element model:
根据2.5D机织预制体的编织结构,建立2.5D机织复合材料的单胞有限元模型,并分别为单胞有限元模型中的基体和纱线设置材料参数;标记单胞模型的长、宽方向及其尺寸,其中单胞模型的长、宽方向取决于振动疲劳试验件中真实的纱线分布;According to the weaving structure of the 2.5D woven prefab, the unit cell finite element model of the 2.5D woven composite material was established, and the material parameters were set for the matrix and yarn in the unit cell finite element model respectively; The width direction and its dimensions, where the length and width directions of the unit cell model depend on the real yarn distribution in the vibration fatigue test piece;
具体方法如下:若振动疲劳试验件长度方向是经纱延展方向,则单胞模型中的经纱延展方向为单胞模型的长度方向,纬纱延展方向为单胞模型的宽度方向;若振动疲劳试验件长度方向是纬纱延展方向,则单胞模型中的纬纱延展方向为单胞模型的长度方向,经纱延展方向为单胞模型的宽度方向;The specific method is as follows: if the length direction of the vibration fatigue test piece is the warp extension direction, the warp extension direction in the unit cell model is the length direction of the unit cell model, and the weft extension direction is the width direction of the unit cell model; if the vibration fatigue test piece length The direction is the extension direction of the weft yarn, then the extension direction of the weft yarn in the unit cell model is the length direction of the unit cell model, and the extension direction of the warp yarn is the width direction of the unit cell model;
步骤二、建立划分了单胞模型嵌入区域和其它区域的振动疲劳试验件的宏观有限元模型:Step 2: Establish a macroscopic finite element model of the vibration fatigue test piece that divides the embedded area of the unit cell model and other areas:
首先,在软件中建立振动疲劳试验件的宏观有限元模型。然后,根据单胞模型的宽度w和振动疲劳试验件工作段区域的最小宽度W,计算拟嵌入单胞有限元模型的个数n,First, the macroscopic finite element model of the vibration fatigue test piece is established in the software. Then, according to the width w of the unit cell model and the minimum width W of the working section area of the vibration fatigue test piece, calculate the number n of the finite element model to be embedded in the unit cell,
其次,以振动疲劳试验件工作段中心为单胞模型嵌入区域的中心,以单胞模型的长度作为单胞模型嵌入区域的长度,以n个单胞模型的总宽度(n﹡w)作为单胞模型嵌入区域的宽度,由此确定振动疲劳试验件宏观有限元模型上的单胞模型嵌入区域,并从宏观模型中将这部分切割成独立的部分。Secondly, take the center of the working section of the vibration fatigue test piece as the center of the embedded area of the unit cell model, the length of the unit cell model as the length of the embedded area of the unit cell model, and the total width of n unit cell models (n*w) as the unit cell model. The width of the embedded area of the cell model is determined, thereby determining the embedded area of the unit cell model on the macroscopic finite element model of the vibration fatigue test piece, and cutting this part into independent parts from the macroscopic model.
将单胞模型嵌入区域定义为各向同性材料,材料弹性模量设置为极小值(0.001MPa),泊松比设置为0.3。宏观有限元模型上其它区域定义为正交各向异性材料,设置材料局部坐标系,按照试验测得的2.5D机织复合材料宏观尺度的9个材料工程常数(即E1,E2,E3,v12,v13,v23,G12,G13,G23)为其它区域的材料定义不同方向的弹性模量和泊松比。The unit cell model embedding region is defined as an isotropic material, the material elastic modulus is set to a minimum value (0.001MPa), and the Poisson's ratio is set to 0.3. Other areas on the macroscopic finite element model are defined as orthotropic materials, and the local coordinate system of the material is set, according to the 9 material engineering constants (ie E 1 , E 2 , E 1 , E 2 , E ) of the 2.5D woven composite material measured by the test. 3 , v 12 , v 13 , v 23 , G 12 , G 13 , G 23 ) to define elastic moduli and Poisson's ratios in different directions for materials in other regions.
步骤三、多尺度模型的组合:Step 3. Combination of multi-scale models:
将n个单胞有限元模型嵌入2.5D机织复合材料振动疲劳试验件宏观有限元模型上的单胞模型嵌入区域,然后利用嵌入式约束(embedded region),将单胞有限元模型的节点约束到振动疲劳试验件宏观有限元模型的单元网格中;Embed n unit cell finite element models into the unit cell model embedding region on the macroscopic finite element model of the 2.5D woven composite vibration fatigue test piece, and then use the embedded region to constrain the nodes of the unit cell finite element model into the element mesh of the macroscopic finite element model of the vibration fatigue test piece;
步骤四、设置组合后的多尺度有限元模型的约束和载荷条件Step 4. Set the constraints and load conditions of the combined multi-scale finite element model
对组合后的振动疲劳试验件的多尺度有限元模型设置如下约束和载荷条件:多尺度模型无中心孔一侧的端面到中间工作段之间区域的上、下表面设置固支约束(约束节点的平动和转动自由度);多尺度模型有中心孔一侧端面的上方边线施加位移型载荷,位移方向垂直于试验件宏观有限元模型的上表面并朝上,位移的具体数值取决于真实振动疲劳加载时试验件自由端的振幅;The following constraints and load conditions are set for the multi-scale finite element model of the combined vibration fatigue test piece: the upper and lower surfaces of the area between the end face on the side without the central hole and the middle working section of the multi-scale model are set with clamping constraints (constraint nodes). translation and rotation degrees of freedom); the multi-scale model has a displacement-type load applied to the upper edge of the end face on one side of the central hole, and the displacement direction is perpendicular to the upper surface of the macroscopic finite element model of the test piece and upwards. The specific value of the displacement depends on the actual The amplitude of the free end of the test piece under vibration fatigue loading;
步骤五、定义单胞有限元模型中基体和纱线的失效准则以及损伤后的力学性能退化规则Step 5. Define the failure criteria of the matrix and yarn in the unit cell finite element model and the degradation rules of mechanical properties after damage
针对固定周次跳跃的疲劳加载模拟方法,为了模拟每经历固定循环周次N0=106的损伤,专门提出了如下基体和纱线的失效准则。For the fatigue loading simulation method of fixed cycle jumps, in order to simulate the damage of N 0 =10 6 every fixed cycle, the following failure criteria for the matrix and yarn are specially proposed.
基体的失效准则定义为:基体的Von Mises应力(或叫冯米思应力)大于0.8倍的基体拉伸强度;纱线的失效准则定义为:纱线中横向应力或纱线厚度方向应力大于0.8倍的纱线横向拉伸强度;The failure criterion of the matrix is defined as: the Von Mises stress (or Von Mises stress) of the matrix is greater than 0.8 times the tensile strength of the matrix; the failure criterion of the yarn is defined as: the transverse stress in the yarn or the stress in the thickness direction of the yarn is greater than 0.8 times. Yarn transverse tensile strength;
在满足失效准则后,对基体和纱线进行材料力学性能退化,退化规则是:若纱线的应力水平满足失效准则,则将纱线的横向模量降为极小值(0.001MPa);若基体的应力水平满足失效准则,将基体的弹性模量降为极小值(0.001MPa);After the failure criterion is met, the mechanical properties of the matrix and the yarn are degraded. The degradation rule is: if the stress level of the yarn meets the failure criterion, the transverse modulus of the yarn is reduced to a minimum value (0.001MPa); The stress level of the matrix meets the failure criterion, and the elastic modulus of the matrix is reduced to a minimum value (0.001MPa);
步骤六、为有限元模型设置模拟疲劳加载的分析步和数值计算参数Step 6. Set the analysis steps and numerical calculation parameters for simulating fatigue loading for the finite element model
按照固定周期跳跃的疲劳加载模拟方法的思想,在软件中为有限元模型设置模拟疲劳加载的分析步;According to the idea of the fatigue loading simulation method with fixed period jumps, the analysis steps for simulating fatigue loading are set in the software for the finite element model;
步骤七、基于多尺度模型数值计算的振动疲劳损伤模拟
根据步骤五定义的单胞内纱线和基体的失效准则和力学性能退化规则,编写子程序,并在子程序中定义损伤状态变量(statev)作为失效准则的表征量,在软件中进行有限元模型和子程序的关联设置,利用软件对上述建立的多尺度有限元模型进行数值计算。从多尺度模型的数值计算结果中单独调取内嵌的单胞有限元模型的模拟结果,逐增量步地查看单胞有限元模型中的纱线和基体的损伤状态变量(statev)云图,获得每经历固定循环周次N0=106的振动疲劳加载过程中2.5D机织复合材料试验件工作段区域材料内部微观损伤状态的演变规律。According to the failure criteria and mechanical property degradation rules of the yarn and matrix in the unit cell defined in step 5, a subprogram is written, and the damage state variable (statev) is defined in the subprogram as the characterization quantity of the failure criterion, and the finite element method is carried out in the software. The associated settings of the model and the subprograms are used to numerically calculate the multi-scale finite element model established above by using the software. The simulation results of the embedded unit cell finite element model are individually retrieved from the numerical calculation results of the multi-scale model, and the damage state variable (statev) cloud diagrams of the yarn and the matrix in the unit cell finite element model are viewed incrementally. The evolution law of the internal microscopic damage state of the material in the working section of the 2.5D woven composite test piece during the vibration fatigue loading process of each fixed cycle N 0 =10 6 was obtained.
步骤二所述n具体计算方法为:令试验件工作段最小宽度W与单胞模型的宽度w相除,取结果的整数部分作为n。The specific calculation method of n described in step 2 is: dividing the minimum width W of the working section of the test piece by the width w of the unit cell model, and taking the integer part of the result as n.
步骤六具体方法如下:在软件中定义一个“Tabular”类型的载荷谱,定义“加载-卸载”循环模块,其中循环模块的个数n等于拟模拟的疲劳加载循环次数N除以固定循环周次N0;然后,在软件中定义一个时间长度为1的通用静态分析步,将当前分析步的计算增量步设置为固定值1/n,并将当前分析步的加载谱类型设置为上述定义的“Tabular”类型的载荷谱。The specific method of step 6 is as follows: define a "Tabular" type load spectrum in the software, and define a "load-unload" cycle module, where the number of cycle modules n is equal to the number of fatigue loading cycles N divided by the fixed cycle number. N 0 ; then, define a general static analysis step with a time length of 1 in the software, set the calculation increment step of the current analysis step to a fixed value of 1/n, and set the loading spectrum type of the current analysis step to the above definition Loading spectrum of type "Tabular".
该方法适用于模拟发动机叶片轴颈振动工况的,基于悬臂梁弯曲的2.5D机织复合材料一阶共振疲劳加载过程中的材料内部微观损伤状态的预测。The method is suitable for the prediction of the internal micro-damage state of the 2.5D woven composite material during the first-order resonance fatigue loading process based on the cantilever beam bending, which simulates the vibration condition of the journal of the engine blade.
该方法适用于一侧开中心孔(开孔的目的是加配重块用)的2.5D机织复合材料哑铃型试样的振动疲劳损伤模拟。This method is suitable for vibration fatigue damage simulation of 2.5D woven composite dumbbell specimens with a central hole on one side (the purpose of the hole is to add counterweight).
所述振动疲劳加载为应力比为R=-1的周期性正弦疲劳载荷谱。The vibration fatigue load is a periodic sinusoidal fatigue load spectrum with a stress ratio of R=-1.
所述2.5D机织复合材料为采用树脂传递模塑成型工艺(RTM)制备的树脂基复合材料。The 2.5D woven composite material is a resin-based composite material prepared by resin transfer molding (RTM).
该模拟方法适用于室温干态条件下2.5D机织复合材料的振动疲劳损伤行为的预测。The simulation method is suitable for the prediction of vibration fatigue damage behavior of 2.5D woven composites under dry conditions at room temperature.
该方法基于固定周期跳跃的疲劳加载模拟方法,适用于固定跳跃周次N0=106的情形,其它情形也可参照使用,但采用的失效准则需要做调整。This method is based on the fatigue loading simulation method of fixed-cycle jumps, and is suitable for the case of fixed-cycle jumps N 0 =10 6 . It can also be used in other cases, but the adopted failure criterion needs to be adjusted.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明方法通过将2.5D机织复合材料的单胞有限元模型嵌入振动疲劳试验件宏观有限元模型工作段最小截面处,将宏观有限元模型上单胞模型嵌入区域的材料设置为一种具有极小弹性模量的各向同性材料,宏观有限元模型其它区域的材料根据材料力学测试获得的2.5D机织复合材料宏观尺度上的9个材料工程常数进行参数设置,随后利用“嵌入式”约束将单胞有限元模型的节点约束于宏观有限元模型的单元网格中,进一步基于固定周期跳跃的疲劳加载模拟方法,结合专门针对2.5D机织复合材料振动疲劳损伤模拟提出的单胞内纱线和基体的失效准则及其力学性能退化规则,实现对模拟发动机叶片轴颈振动工况的,2.5D机织复合材料悬臂梁一阶弯曲振动疲劳加载过程中材料内部纱线、基体微观损伤状态及其演变规律的多尺度模拟。In the method of the invention, the unit cell finite element model of the 2.5D woven composite material is embedded at the minimum section of the working section of the macroscopic finite element model of the vibration fatigue test piece, and the material in the embedded area of the unit cell model on the macroscopic finite element model is set as a kind of Isotropic materials with extremely small elastic modulus, the materials in other areas of the macroscopic finite element model are set according to the 9 material engineering constants on the macroscopic scale of the 2.5D woven composite obtained by the material mechanics test, and then use the "embedded" Constraints Constrain the nodes of the unit cell finite element model to the element grid of the macro finite element model, and further based on the fatigue loading simulation method of fixed cycle jumping, combined with the intra-unit cell proposed for the vibration fatigue damage simulation of 2.5D woven composite materials. The failure criteria of yarn and matrix and the degradation rules of mechanical properties can realize the micro-damage state of yarn and matrix inside the material during the first-order bending vibration fatigue loading process of the 2.5D woven composite cantilever beam under the vibration condition of the journal of the engine blade. Multiscale simulation of its evolution.
(1)弯曲加载下的振动疲劳是发动机叶片轴颈的典型工况,本发明提出的方法可预测任意应力水平下2.5D机织复合材料在一阶弯曲振动疲劳加载过程中的损伤萌生、损伤演化和最终的损伤状态,可帮助设计师确定发动机用2.5D机织复合材料叶片结构的设计许用值;(1) Vibration fatigue under bending loading is a typical working condition of engine blade journals. The method proposed in the present invention can predict the damage initiation and damage of 2.5D woven composite materials during the first-order bending vibration fatigue loading process under any stress level. Evolution and final damage state to help designers determine design allowables for 2.5D woven composite blade structures for engines;
(2)根据结构特点,对试验件工作段高应力区域采用考虑内部纱线结构的单胞有限元模型进行精细化模拟,其它区域采用基于材料均匀化假设的宏观有限元模型模拟,相比于对整个试验件都采用宏观有限元模型进行模拟的预测方法具有更高的预测精度,并且可以预测材料内部纱线、基体的微观损伤状态;(2) According to the structural characteristics, the high stress area of the working section of the test piece is simulated by the unit cell finite element model considering the internal yarn structure, and other areas are simulated by the macroscopic finite element model based on the assumption of material homogenization. The prediction method that uses the macro finite element model to simulate the entire test piece has higher prediction accuracy, and can predict the micro-damage state of the yarn and matrix inside the material;
(3)较之需要开展两次数值计算的基于全局模型-子模型的多尺度模拟方法,本发明所述方法只需对多尺度模型开展一次数值计算,无需设置全局模型和子模型之间的数据传递,具有简单、快捷、便于工程应用等优点;(3) Compared with the multi-scale simulation method based on the global model-sub-model that needs to carry out two numerical calculations, the method of the present invention only needs to carry out one numerical calculation for the multi-scale model, and does not need to set the data between the global model and the sub-model. It has the advantages of simple, fast and easy engineering application;
(4)在建模策略方面,本方法创新性地在宏观有限元模型上划分出单胞嵌入区域,并将这个区域的材料设置为一种具有极小弹性模量的各向同性材料,然后将单胞有限元模型嵌入该区域,并采用嵌入式约束(embedded region)将单胞有限元模型的节点约束到宏观有限元模型的单元网格中,相比将宏观有限元模型待嵌入单胞区域切除后嵌入单胞有限元模型,然后直接绑定宏观模型和单胞模型接触面的方法,本方法可有效避免降低由于模型在几何上不连续而引起的应力集中,可保证载荷和变形在两个尺度的有限元模型之间有效传递,从而获得高精度的单胞模型内部应力场的模拟结果。(4) In terms of modeling strategy, this method innovatively divides the unit cell embedded region on the macroscopic finite element model, and sets the material in this region as an isotropic material with a very small elastic modulus, and then Embed the unit cell finite element model in this region, and use the embedded region to constrain the nodes of the unit cell finite element model to the element mesh of the macro finite element model, compared to embedding the macro finite element model into the unit cell The method of embedding the unit cell finite element model after the area is removed, and then directly binding the contact surface between the macro model and the unit cell model, this method can effectively avoid reducing the stress concentration caused by the geometric discontinuity of the model, and can ensure that the load and deformation are within the Effective transfer between two scales of finite element models, so as to obtain high-precision simulation results of the internal stress field of the unit cell model.
(5)所述方法具有通用性和拓展性,可拓展到其它更加复杂工况,以及具有更复杂结构形式的2.5D机织复合材料结构振动疲劳行为的模拟。(5) The method is versatile and extensible, and can be extended to other more complex working conditions, as well as the simulation of vibration fatigue behavior of 2.5D woven composite structures with more complex structural forms.
附图说明Description of drawings
图1为振动疲劳试验件构型和尺寸结构图;Figure 1 is the configuration and size structure diagram of the vibration fatigue test piece;
图2为多尺度模型的建模方案示意图;Figure 2 is a schematic diagram of a modeling scheme of a multi-scale model;
图3(a)~(c)为模拟得到的振动疲劳加载次数分别为1×106、5×106、1×107时单胞模型内部损伤状态的云图;Figures 3(a)-(c) are the cloud diagrams of the internal damage state of the unit cell model when the vibration fatigue loading times are 1×10 6 , 5×10 6 and 1×10 7 , respectively;
图4(a)~(c)为振动疲劳加载次数分别为1×106、5×106、1×107时真实试验件工作段内部损伤状态的CT检测结果;Fig. 4(a)~(c) are the CT inspection results of the internal damage state of the working section of the real test piece when the vibration fatigue loading times are 1×10 6 , 5×10 6 and 1×10 7 respectively;
图5为本发明的2.5D机织复合材料振动疲劳损伤的多尺度模拟方法流程图。FIG. 5 is a flow chart of the multi-scale simulation method for vibration fatigue damage of 2.5D woven composite materials of the present invention.
其中,1为2.5D机织复合材料的单胞编织构型;2为拟嵌入的第一个2.5D机织复合材料的单胞有限元模型;3为拟嵌入的第二个2.5D机织复合材料的单胞有限元模型;4为振动疲劳试验件的几何模型;5为宏观有限元模型上单胞有限元模型嵌入区域;6为宏观有限元模型上其它区域;7为组合得到的2.5D机织复合材料振动疲劳试验件的多尺度模型。Among them, 1 is the unit cell weaving configuration of the 2.5D woven composite; 2 is the unit cell finite element model of the first 2.5D woven composite to be embedded; 3 is the second 2.5D woven composite to be embedded The unit cell finite element model of the composite material; 4 is the geometric model of the vibration fatigue test piece; 5 is the embedded area of the unit cell finite element model on the macro finite element model; 6 is other areas on the macro finite element model; 7 is the combined 2.5 D Multiscale model of vibration fatigue test pieces of woven composites.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。下面将详细描述本发明实施例的各个方面的特征。在各个附图和下面的描述中,没有示出公知的结构和技术,以避免对本发明造成不必要的模糊。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be described clearly and completely below with reference to the accompanying drawings in the embodiments of the present invention. The features of various aspects of the embodiments of the present invention will be described in detail below. In the various drawings and the following description, well-known structures and techniques have not been shown in order to avoid unnecessarily obscuring the present invention.
图5为本发明方法的流程图,该方法将2.5D机织复合材料的单胞有限元模型嵌入振动疲劳试验件宏观有限元模型工作段最小截面处,将宏观有限元模型上单胞模型嵌入区域的材料设置为一种具有极小弹性模量的各向同性材料,随后利用“嵌入式”约束将单胞有限元模型的节点约束于宏观有限元模型的单元网格中;进一步基于固定周期跳跃的疲劳加载模拟方法,结合专门针对2.5D机织复合材料振动疲劳损伤模拟提出的失效准则和材料性能退化规则,在CAE软件内进行数值计算,实现对2.5D机织复合材料振动疲劳加载过程中材料内部纱线、基体微观损伤状态的多尺度模拟。Fig. 5 is a flowchart of the method of the present invention. In this method, the unit cell finite element model of the 2.5D woven composite material is embedded in the minimum section of the working section of the macro finite element model of the vibration fatigue test piece, and the unit cell model on the macro finite element model is embedded The material of the region is set to an isotropic material with a very small elastic modulus, and the nodes of the unit cell finite element model are then constrained to the element mesh of the macroscopic finite element model using "embedded" constraints; further based on the fixed period The jump fatigue loading simulation method, combined with the failure criteria and material performance degradation rules specially proposed for the vibration fatigue damage simulation of 2.5D woven composite materials, carry out numerical calculation in CAE software to realize the vibration fatigue loading process of 2.5D woven composite materials. Multi-scale simulation of microscopic damage state of yarn and matrix inside medium material.
为此,首先根据预制体的纱线结构建立2.5D机织复合材料的单胞有限元模型,随后根据试验件尺寸和单胞模型的尺寸确定拟嵌入单胞有限元模型的数量,并由此确定宏观有限元模型上单胞模型嵌入的区域,将该单胞模型嵌入区域划分为一个独立的部分;并将单胞模型嵌入区域的材料设置为一个具有极小弹性模量的宏观各向同性材料,宏观有限元模型其它区域的材料则根据材料力学测试获得的2.5D机织复合材料宏观尺度上的9个材料工程常数进行参数设置,随后将单胞有限元模型移动到宏观有限元模型的单胞模型嵌入区域,并利用软件嵌入式约束(embedded region)功能,将单胞模型的节点约束到宏观有限元模型的单元网格中;To this end, the unit cell finite element model of the 2.5D woven composite material was first established according to the yarn structure of the preform, and then the number of the unit cell finite element models to be embedded was determined according to the size of the test piece and the size of the unit cell model, and thus Determine the embedded area of the unit cell model on the macroscopic finite element model, and divide the embedded area of the unit cell model into an independent part; set the material of the embedded area of the unit cell model to a macroisotropic with a very small elastic modulus Materials, the materials in other areas of the macroscopic finite element model are set according to the 9 material engineering constants on the macroscopic scale of the 2.5D woven composite material obtained by the material mechanics test, and then the unit cell finite element model is moved to the macroscopic finite element model. The unit cell model is embedded in the region, and the nodes of the unit cell model are constrained to the element mesh of the macro finite element model by using the embedded region function of the software;
进一步根据固定周期跳跃的疲劳加载模拟方法,在软件中进行分析步和计算增量步的设置,并对组合得到的多尺度有限元模型设置模拟真实试验加载工况的约束和载荷条件,随后结合基于试验结果分析的、专门针对2.5D机织复合材料振动疲劳损伤模拟提出的单胞内纱线和基体大的失效准则和力学性能退化规则编写子程序。Further, according to the fatigue loading simulation method of fixed cycle jump, the analysis step and calculation increment step are set in the software, and the constraints and load conditions for simulating the real test loading conditions are set for the multi-scale finite element model obtained by the combination. Based on the analysis of the test results, a subprogram is written for the failure criteria and mechanical property degradation rules of the yarn and matrix within a single cell, which are specially proposed for the vibration fatigue damage simulation of 2.5D woven composites.
在子程序中定义损伤状态变量,并且在CAE软件中对有限元模型和子程序进行关联设置在CAE软件中对多尺度模型提交计算,完成数值计算后,从整个多尺度模型的数值计算结果中单独调取单胞有限元模型的结果,逐增量步地查看单胞有限元模型中损伤状态变量的云图,获得振动疲劳试验过程中不同循环次数下试验件工作段材料内部损伤状态的预测结果。The damage state variables are defined in the subroutine, and the finite element model and the subroutine are set in the CAE software. The calculation is submitted for the multiscale model in the CAE software. After the numerical calculation is completed, the numerical calculation results of the entire multiscale model are separately obtained. The results of the unit cell finite element model are retrieved, and the cloud diagram of the damage state variables in the unit cell finite element model is viewed incrementally, and the prediction results of the internal damage state of the material in the working section of the test piece under different cycles during the vibration fatigue test are obtained.
该方法兼具计算成本低和预测精度高的优点,可有效预测2.5D机织复合材料振动疲劳加载过程中材料内部的微观损伤状态以及损伤演化规律。This method has the advantages of low computational cost and high prediction accuracy, and can effectively predict the microscopic damage state and damage evolution law of the 2.5D woven composite material during the vibration fatigue loading process.
下面将结合附图和2.5D机织复合材料试验件悬臂梁一阶弯曲振动疲劳加载过程中损伤行为模拟的实施例对本发明技术方案作进一步地详述:The technical scheme of the present invention will be further described in detail below in conjunction with the accompanying drawings and the examples of damage behavior simulation of the cantilever beam of the 2.5D woven composite material test piece during the first-order bending vibration fatigue loading process:
1、试验件和振动疲劳试验加载的描述1. Description of test piece and vibration fatigue test loading
(a)振动疲劳试验件构型和尺度(a) Configuration and dimensions of vibration fatigue test pieces
2.5D机织复合材料振动疲劳试验件的构型和具体尺寸如图1,其中试验件的长度方向为2.5D机织复合材料的经纱方向。图1中的尺寸参数如下:长度L=110mm,宽度B=20mm,工作段最窄截面处宽度W=20mm,工作段圆弧半径R=20mm,配重块装配用圆孔直径D=6mm。The configuration and specific dimensions of the 2.5D woven composite vibration fatigue test piece are shown in Figure 1, where the length direction of the test piece is the warp direction of the 2.5D woven composite material. The dimensional parameters in Figure 1 are as follows: length L=110mm, width B=20mm, width W=20mm at the narrowest section of the working section, arc radius R=20mm of the working section, and diameter D=6mm of the circular hole for counterweight assembly.
(b)2.5D机织预制体描述(b) 2.5D Woven Preform Description
2.5D机织预制体由经纱、纬纱、衬经纱组成,纱线规格为T800-6k*2。纬纱的密度为6根/cm,层数为6。经纱的密度为4根/cm,层数为5。衬经纱的密度为4根/cm,层数为5。T800碳纤维是一种横观各向同性材料,定义材料力学性能所需的全部6个工程常数为:(纤维纵向的弹性模量)Ef=295GPa,(纤维横向的模量)Et=10GPa,(纤维纵横剪切模量)Gft=5GPa,(纤维横向剪切模量)Gtt=5GPa,(纤维纵横泊松比)vft=0.3,(纤维横向泊松比)vtt=0.4。2.5D woven preform is composed of warp yarn, weft yarn and interlining warp yarn, and the yarn specification is T800-6k*2. The density of the weft yarn is 6 pieces/cm, and the number of layers is 6. The density of warp yarns is 4 pieces/cm, and the number of layers is 5. The density of the interlining warp yarns is 4 pieces/cm, and the number of layers is 5. T800 carbon fiber is a transversely isotropic material, and all 6 engineering constants required to define the mechanical properties of the material are: (modulus of elasticity in the longitudinal direction of the fiber) E f = 295GPa, (modulus in the transverse direction of the fiber) E t = 10GPa , (fiber longitudinal and transverse shear modulus) G ft = 5GPa, (fiber transverse shear modulus) G tt = 5 GPa, (fiber longitudinal and transverse Poisson's ratio) v ft = 0.3, (fiber transverse Poisson's ratio) v tt = 0.4 .
(c)2.5D机织复合材料描述(c) 2.5D woven composite description
用于切割成振动疲劳试验件的2.5D机织复合材料板子通过RTM工艺成型得到,采用的树脂为一种双马树脂(EC230R)。板子名义厚度为4mm,纤维体积含量为56%。利用力学测试获得表征2.5D机织复合材料宏观基本力学性能的9个材料工程常数,分别为:(经纱方向模量)E1=66.1GPa,(纬纱方向模量)E2=59.2GPa,(厚度方向模量)E3=8.11GPa,(面内纵横剪切模量)G12=4.84GPa,(层间剪切模量)G13=2.88GPa,(面内横向剪切模量)G23=3.23GPa,(纵横泊松比)v12=0.085,(纵厚泊松比)v13=0.51,(横厚泊松比)v23=0.42。根据静态拉伸性能的测试结果,2.5D机织复合材料的经向拉伸强度Xt为691MPa。基体EC230R的弹性模量Em=4.5GPa,泊松比vm=0.3,基体拉伸强度σm=119MPa。纱线的纵向拉伸强度Xf=1900MPa,纱线横向是由基体将纤维粘结在一起,因此纱线的横向拉伸强度Yf在数值上等于基体拉伸强度σm,即Yf=119MPa。(补充描述各个模量含义)The 2.5D woven composite board used for cutting into vibration fatigue test pieces is formed by RTM process, and the resin used is a double horse resin (EC230R). The nominal thickness of the board is 4mm, and the fiber volume content is 56%. Nine material engineering constants to characterize the macroscopic basic mechanical properties of 2.5D woven composites are obtained by mechanical testing, which are: (modulus in warp direction) E 1 =66.1GPa, (modulus in weft direction) E 2 =59.2GPa, ( Thickness direction modulus) E 3 =8.11GPa, (in-plane longitudinal and transverse shear modulus) G 12 =4.84 GPa, (interlaminar shear modulus) G 13 =2.88 GPa, (in-plane transverse and transverse shear modulus) G 23 =3.23GPa, (Poisson's ratio of length and width) v 12 =0.085, (Poisson's ratio of length and thickness) v 13 =0.51, (Poisson's ratio of width and thickness) v 23 =0.42. According to the test results of static tensile properties, the warp tensile strength X t of the 2.5D woven composite is 691 MPa. The elastic modulus of the matrix EC230R is Em = 4.5GPa , the Poisson's ratio is vm = 0.3, and the matrix tensile strength σ m =119 MPa. The longitudinal tensile strength of the yarn X f =1900MPa, the yarn is bound together by the matrix in the transverse direction, so the transverse tensile strength Y f of the yarn is numerically equal to the matrix tensile strength σ m , that is, Y f = 119MPa. (Supplementary description of the meaning of each modulus)
(d)2.5D机织复合材料振动疲劳试验描述(d) Description of 2.5D woven composites vibration fatigue test
基于悬臂梁弯曲的加载方案,对2.5D机织复合材料试验件开展一阶弯曲振动疲劳试验,载荷谱为周期性的正弦波,采用的应力比为R=-1。通过控制振动疲劳试验件上表面的应变,结合应力标定结果,控制振动疲劳试验的应力水平,本实施例中振动疲劳试验中的应力水平选为2.5D机织复合材料的经向拉伸强度Xt的0.28倍,此时试验件自由端的振幅为4mm,疲劳加载的循环次数共计107次。Based on the loading scheme of cantilever beam bending, the first-order bending vibration fatigue test was carried out on the 2.5D woven composite specimen. The load spectrum was a periodic sine wave, and the stress ratio used was R=-1. By controlling the strain on the upper surface of the vibration fatigue test piece, combined with the stress calibration results, the stress level of the vibration fatigue test is controlled. In this embodiment, the stress level in the vibration fatigue test is selected as the warp tensile strength X of the 2.5D woven composite material At this time, the amplitude of the free end of the test piece is 4 mm, and the number of cycles of fatigue loading is 10 7 times in total.
2、多尺度模型的建立和数值计算2. Multi-scale model establishment and numerical calculation
根据上一节所述的本实施例中振动疲劳试验件和振动疲劳试验加载方式的描述,按照以下步骤建立2.5D机织复合材料振动疲劳损伤预测的多尺度模型,并开展数值计算,得到在振动疲劳加载过程中材料内部损伤状态的预测结果。According to the description of the vibration fatigue test piece and the vibration fatigue test loading method in this embodiment described in the previous section, the multi-scale model for the prediction of vibration fatigue damage of 2.5D woven composite materials is established according to the following steps, and numerical calculation is carried out to obtain the Prediction results of internal damage states of materials during vibration fatigue loading.
(1)步骤一,根据2.5D机织复合材料的单胞编织构型1、组分材料参数以及振动疲劳试验件的名义厚度,利用软件建立2.5D机织树脂基复合材料的全厚度单胞几何模型,根据前面所述的纱线和基体组分各自的材料基本力学性能参数,在软件中为单胞模型中的纱线设置6个材料工程常数,分别为:Ef=295GPa,Et=10GPa,Gft=5GPa,Gtt=5GPa,vft=0.3,vtt=0.4;同时为单胞模型中的基体设置材料的弹性模量和泊松比,分别为Em=4.5GPa和vm=0.3。设置单胞3个方向的网格尺寸和单元类型。在本实施例中3个方向的网格个数均为50个,单元类型设置为完全积分的8节点六面体单元(C3D8),完成单胞有限元模型的建模后,导出模型的input文件,该input文件中存储着2.5D机织树脂基复合材料单胞有限元模型的全部信息,包括局部坐标系、纱线和基体力学参数、纱线的几何与空间分布等。(1) Step 1, according to the unit cell weaving configuration 1 of the 2.5D woven composite material, the component material parameters and the nominal thickness of the vibration fatigue test piece, use The software establishes a full-thickness unit cell geometric model of 2.5D woven resin matrix composites. According to the basic mechanical properties of the respective materials of the yarn and matrix components described above, the software sets 6 for the yarn in the unit cell model. A material engineering constant is: E f = 295GPa, E t = 10GPa, G ft = 5GPa, G tt = 5GPa, v ft = 0.3, v tt = 0.4; at the same time, set the elasticity of the material for the matrix in the unit cell model Modulus and Poisson's ratio, Em = 4.5 GPa and vm = 0.3, respectively. Sets the grid size and element type for the 3 directions of the unit cell. In this example, the number of meshes in the three directions is 50, and the element type is set to a fully integrated 8-node hexahedron element (C3D8). After the modeling of the unit cell finite element model is completed, the input file of the model is exported, The input file stores all the information of the 2.5D woven resin matrix composite unit cell finite element model, including local coordinate system, mechanical parameters of yarn and matrix, geometry and spatial distribution of yarn, etc.
(2)步骤二,建立划分了单胞模型嵌入区域和其它区域的振动疲劳试验件的宏观有限元模型(2) Step 2, establish a macroscopic finite element model of the vibration fatigue test piece that divides the embedded area of the unit cell model and other areas
首先,按照振动疲劳试验件的几何构型和尺寸,在软件中建立振动疲劳试验件的几何模型4。然后,根据单胞模型的宽度w和振动疲劳试验件工作段区域的最小截面宽度W,计算拟嵌入单胞有限元模型的个数n,具体计算方法为:令试验件工作段最小截面宽度W与单胞模型的宽度w相除,取结果的整数部分作为n。接下来,以振动疲劳试验件工作段中心为单胞模型嵌入区域的中心,以单胞模型的长度作为单胞模型嵌入区域的长度,以n个单胞模型的总宽度(n﹡w)作为单胞模型嵌入区域的宽度,由此确定振动疲劳试验件宏观有限元模型上的单胞模型嵌入区域,并从宏观模型中将这部分切割成独立的部分。在本实例中拟嵌入单胞模型的个数为2个,根据前面所述方法确定了宏观有限元模型上的单胞模型嵌入区域5,由此对宏观有限元模型进行不同区域的分割,使单胞模型嵌入区域5形成一个独立的部分。First, according to the geometric configuration and size of the vibration fatigue test piece, a geometric model of the vibration fatigue test piece is established in the software4. Then, according to the width w of the unit cell model and the minimum section width W of the working section area of the vibration fatigue test piece, calculate the number n of the finite element model to be embedded in the unit cell. The specific calculation method is as follows: let the minimum section width W of the working section of the test piece Divide by the width w of the unit cell model and take the integer part of the result as n. Next, take the center of the working section of the vibration fatigue test piece as the center of the embedded area of the unit cell model, the length of the unit cell model as the length of the embedded area of the unit cell model, and the total width of n unit cell models (n*w) as the The width of the embedded area of the unit cell model, thereby determining the embedded area of the unit cell model on the macroscopic finite element model of the vibration fatigue test piece, and cutting this part into independent parts from the macroscopic model. In this example, the number of unit cell models to be embedded is 2, and the unit cell model embedding area 5 on the macroscopic finite element model is determined according to the method described above, so that the macroscopic finite element model is divided into different areas, so that The unit cell model embedded area 5 forms a separate part.
在软件中为宏观模型上单胞模型嵌入区域5和其它区域6设置不同的材料力学性能参数,其中将单胞模型嵌入区域5的材料定义为各向同性材料,材料弹性模量E设置为极小值(0.001MPa),泊松比v设置为0.3。宏观模型其它区域6的材料定义为正交各向异性材料,设置材料局部坐标系,并按照试验测得的2.5D机织复合材料宏观尺度上的9个材料工程常数(即E1,E2,E3,v12,v13,v23,G12,G13,G23)为其它区域6的材料设置不同方向的材料弹性模量和泊松比。对宏观模型进行网格划分,并定义单元类型为C3D8。exist In the software, different material mechanical properties parameters are set for the unit cell model embedded area 5 and other areas 6 on the macro model. The material in the unit cell model embedded area 5 is defined as an isotropic material, and the material elastic modulus E is set to be extremely small value (0.001 MPa), Poisson's ratio v was set to 0.3. The materials in other areas 6 of the macro model are defined as orthotropic materials, the material local coordinate system is set, and the 9 material engineering constants (ie E 1 , E 2 ) on the macro scale of the 2.5D woven composite material measured by the test are used. , E 3 , v 12 , v 13 , v 23 , G 12 , G 13 , G 23 ) set the material elastic modulus and Poisson’s ratio in different directions for the materials in other regions 6 . Mesh the macro model and define the element type as C3D8.
(3)步骤三,多尺度模型的组合(3) Step 3, the combination of multi-scale models
将步骤一得到的单胞有限元模型的input文件导入软件,得到Import the input file of the single-cell finite element model obtained in step 1 into software, get
在软件界面下显示的2.5D机织复合材料的单胞有限元模型,在软件的装配模块下导入2个单胞有限元模型2,3,以及步骤二得到的划分了单胞模型嵌入区域和其它区域的振动疲劳试验件的宏观有限元模型。将两个单胞模型的长度方向旋转到与试验件宏观模型的长度方向一致,并将2个单胞模型并排到一起,然后将其平移到宏观有限元模型上的单胞嵌入区域5,使2个单胞模型与单胞嵌入区域5完全重合。随后,切换到软件的接触模块下,利用软件的嵌入式约束(embedded region)功能,将2个单胞有限元模型2,3的所有节点约束到振动疲劳试验件的宏观有限元模型的单元网格中,得到组合后的多尺度有限元模型7。exist The unit cell finite element model of the 2.5D woven composite material displayed under the software interface, in Under the assembly module of the software, import two unit cell finite element models 2 and 3, and the macroscopic finite element model of the vibration fatigue test piece obtained in step 2, which divides the embedded area of the unit cell model and other areas. Rotate the length direction of the two unit cell models to be consistent with the length direction of the macroscopic model of the test piece, and place the two unit cell models side by side, and then translate them to the unit cell embedding area 5 on the macroscopic finite element model, so that The 2 unit cell models completely coincide with the unit cell embedded region 5. Then, switch to Under the contact module of the software, the embedded region function of the software is used to constrain all nodes of the two unit cell finite element models 2 and 3 to the element mesh of the macroscopic finite element model of the vibration fatigue test piece, and obtain Combined multiscale finite element model7.
(4)步骤四,设置组合后的多尺度有限元模型的约束和载荷条件(4) Step 4: Set the constraints and load conditions of the combined multi-scale finite element model
切换到软件的加载模块,对组合后的多尺度有限元模型7设置如下约束条件和载荷条件:多尺度模型无中心孔一侧的端面到中间工作段之间区域的上、下表面设置固支约束(约束节点的平动和转动自由度);多尺度模型有中心孔一侧端面的上方边线施加位移型载荷,位移的方向为垂直于试验件多尺度有限元模型的上表面并朝上,对本实施例,由于振动疲劳试验中控制的试验件自由端的振幅为4mm,因此模拟中位移载荷的数值设置为4mm;switch to The loading module of the software sets the following constraints and load conditions for the combined multi-scale finite element model 7: Clamping constraints are set on the upper and lower surfaces of the area between the end face on the side of the multi-scale model without the central hole and the middle working section ( The translational and rotational degrees of freedom of the constraint nodes); the multi-scale model has a displacement-type load applied to the upper edge of the end face on one side of the central hole, and the direction of the displacement is perpendicular to the upper surface of the multi-scale finite element model of the test piece and upwards. For example, since the amplitude of the free end of the test piece controlled in the vibration fatigue test is 4mm, the value of the displacement load in the simulation is set to 4mm;
(5)步骤五,定义单胞有限元模型中基体和纱线的失效准则以及损伤后的力学性能退化规则。(5) Step 5, define the failure criteria of the matrix and yarn in the unit cell finite element model and the degradation rules of mechanical properties after damage.
针对固定周次跳跃的疲劳加载模拟方法,为了模拟每经历固定循环周次N0=106的损伤状态,专门提出了如下单胞模型内基体和纱线的失效准则。基体的失效准则定义为:基体的Von Mises应力(或叫冯米思应力)大于0.8倍的基体拉伸强度σm;纱线的失效准则定义为:纱线中横向应力(在软件界面下显示为S22)或纱线厚度方向应力(在软件界面下显示为S33)大于0.8倍的纱线横向拉伸强度Yf;在满足失效准则后,对基体和纱线进行材料力学性能退化,退化规则是:若纱线的应力水平满足失效准则,则将纱线的横向模量Ett降为极小值(0.001MPa);若基体的应力水平满足失效准则,则将基体的弹性模量Em降为极小值(0.001MPa);之所以采用0.8倍的基体拉伸强度和纱线横向拉伸强度作为失效准则中的强度阈值是考虑106的疲劳循环次数跳跃造成的累积损伤。For the fatigue loading simulation method of fixed cycle jumps, in order to simulate the damage state of N 0 =10 6 for each fixed cycle, the following failure criteria for the matrix and yarn in the unit cell model are specially proposed. The failure criterion of the matrix is defined as: the Von Mises stress (or Von Mises stress) of the matrix is greater than 0.8 times the tensile strength σ m of the matrix; the failure criterion of the yarn is defined as: the transverse stress in the yarn (displayed as S22 in the software interface) ) or the yarn thickness direction stress (displayed as S33 in the software interface) is greater than 0.8 times the yarn transverse tensile strength Y f ; after meeting the failure criterion, the material mechanical properties are degraded for the matrix and yarn, and the degradation rules are: If the stress level of the yarn meets the failure criterion, the transverse modulus E tt of the yarn is reduced to a minimum value (0.001MPa); if the stress level of the matrix meets the failure criterion, the elastic modulus E m of the matrix is reduced to The minimum value (0.001MPa); the reason for using 0.8 times the tensile strength of the matrix and the tensile strength in the transverse direction of the yarn as the strength threshold in the failure criterion is to consider the cumulative damage caused by the jump in the number of fatigue cycles of 10 6 .
(6)步骤六,为有限元模型设置模拟疲劳加载的分析步和数值计算参数(6) Step 6: Set the analysis steps and numerical calculation parameters for simulating fatigue loading for the finite element model
按照固定周期跳跃的疲劳加载模拟方法的思想,在软件中为有限元模型设置模拟疲劳加载的分析步,针对本实施例,具体方法如下:在软件中定义一个“Tabular”类型的载荷谱,设置“加载-卸载”循环模块(加载设置为参数1,卸载设置为参数0),其中循环模块的个数n等于拟模拟的疲劳加载循环次数N(107)除以固定跳跃循环周次N0(106),因此循环模块的个数n=10;然后,在软件中定义一个时间长度为1的通用静态分析步,将当前分析步的计算增量步设置为固定值1/n(即0.1),并将当前分析步的加载谱类型设置为上述定义的“Tabular”类型的载荷谱。According to the idea of the fatigue loading simulation method of fixed cycle jump, in The software sets the analysis step for simulating fatigue loading for the finite element model. For this embodiment, the specific method is as follows: define a "Tabular" type load spectrum in the software, and set the "load-unload" cycle module (the loading is set to parameter 1 , unloading is set to parameter 0), where the number n of cycle modules is equal to the number of fatigue loading cycles N(10 7 ) to be simulated divided by the number of fixed jump cycles N 0 (10 6 ), so the number of cycle modules n = 10; Then, define a general static analysis step with a time length of 1 in the software, set the calculation increment step of the current analysis step to a fixed value of 1/n (ie 0.1), and set the loading spectrum type of the current analysis step. Loading spectrum of type "Tabular" as defined above.
(7)步骤七,基于多尺度模型数值计算的振动疲劳损伤模拟。(7)
根据步骤五定义的失效准则和材料性能退化规则,编写umat子程序,在umat子程序中分别定义2.5D机织复合材料中纱线和基体的本构、失效准则、指示失效准则是否满足的损伤状态变量(statev)、纱线和基体失效后的退化规则等。其中,损伤状态变量(statev)是确保损伤状态在不同分析步之间传递的关键参数,也是表征内部纱线和基体损伤程度的量化指标。在软件中进行多尺度有限元模型和umat子程序的关联设置,利用软件对上述建立的多尺度有限元模型进行数值计算。从整个多尺度模型的计算结果中单独调取内嵌的单胞有限元模型的结果,逐增量步地查看单胞模型中损伤状态变量(statev)的云图,在软件界面下损伤状态变量(statev)显示为符号SDV设置当SDV大于1时云图显示为灰色,单胞模型上显示出的灰色区域的大小、位置和分布即为2.5D机织复合材料振动疲劳试验件工作段区域单胞内基体和纱线的损伤状态,根据步骤六的分析步设置,增量步每增加一步,代表模拟的振动疲劳循环加载次数向前跳跃了固定循环周次N0=106,通过逐增量步地查看单胞内SDV的云图,可以对每累计106次疲劳循环加载的2.5D机织复合材料振动疲劳试验件工作段处材料内部的损伤状态进行模拟仿真;利用配备了12核CPU,内存为8GB的计算机进行多尺度模型的数值计算,计算时间约79min,图3(a)~3(c)分别展示了2.5D机织复合材料振动疲劳试验件分别累计经历了1×106、5×106、1×107次循环后工作段处材料内部损伤状态的模拟结果,其中灰色区域代表已经失效的材料。可见随着循环次数的增加,单胞内部的损伤区域逐渐变大。此外根据SDV指示的损伤因子的数值,可知随着振动疲劳循环次数的增加,单胞内部的损伤程度也越来越严重。图4(a)~4(c)分别展示了2.5D机织复合材料振动疲劳试验件分别累计经历1×106、5×106、1×107次循环后真实试验件工作段处损伤状态的CT检测结果。可见,数值模拟得到的损伤状态和对应的累计循环次数下真实试验件内部损伤的CT检测结果基本吻合,说明了本发明提出的模拟方法具有较高的预测精度。此外,真实的物理试验大约耗时19小时,而基于本发明提出的多尺度模拟方法的数值计算仅耗时约79分钟,数值模拟可以给出与真实试验基本吻合的损伤状态,并且可量化损伤程度,可见本发明提出的一种2.5D机织复合材料振动疲劳损伤的多尺度模拟方法具有高效、快捷的优点,在实际工程设计中具有可观的应用前景。According to the failure criterion and material property degradation rules defined in step 5, write the umat subprogram, in which the constitutive, failure criterion, and damage indicating whether the failure criterion is satisfied or not are defined for the yarn and matrix in the 2.5D woven composite material respectively. State variables (statev), degradation rules after yarn and matrix failure, etc. Among them, the damage state variable (statev) is a key parameter to ensure that the damage state is transmitted between different analysis steps, and it is also a quantitative indicator to characterize the damage degree of the internal yarn and matrix. exist In the software, the multi-scale finite element model and the umat subroutine are associated with the settings, using The software performs numerical calculation on the multi-scale finite element model established above. From the calculation results of the entire multi-scale model, the results of the embedded unit cell finite element model are individually retrieved, and the cloud map of the damage state variable (statev) in the unit cell model is viewed incrementally. In the software interface, the damage state variable ( statev) is displayed as the symbol SDV setting. When the SDV is greater than 1, the cloud image is displayed in gray, and the size, location and distribution of the gray area displayed on the unit cell model is the unit cell in the working section of the 2.5D woven composite material vibration fatigue test piece. The damage state of the matrix and yarn, according to the analysis step setting in step 6, each increment of incremental step means that the number of simulated vibration fatigue cyclic loading jumps forward by the fixed cycle number N 0 =10 6 . By viewing the cloud map of SDV in a unit cell, the damage state inside the material at the working section of the 2.5D woven composite material vibration fatigue test piece loaded every 10 6 fatigue cycles can be simulated; using a 12-core CPU, memory The numerical calculation of the multi - scale model is carried out for an 8GB computer, and the calculation time is about 79 minutes. The simulation results of the internal damage state of the material at the working section after ×10 6 and 1×10 7 cycles, where the gray area represents the failed material. It can be seen that with the increase of the number of cycles, the damaged area inside the unit cell gradually becomes larger. In addition, according to the value of the damage factor indicated by SDV, it can be seen that with the increase of the number of vibration fatigue cycles, the damage degree inside the unit cell becomes more and more serious. Figures 4(a) to 4(c) show the damage of the real test piece at the working section of the 2.5D woven composite material vibration fatigue test piece after accumulative cycles of 1×10 6 , 5×10 6 , and 1×10 7 , respectively. Status of CT test results. It can be seen that the damage state obtained by the numerical simulation is basically consistent with the CT detection result of the internal damage of the real test piece under the corresponding cumulative cycle times, which shows that the simulation method proposed in the present invention has high prediction accuracy. In addition, the real physical test takes about 19 hours, while the numerical calculation based on the multi-scale simulation method proposed in the present invention only takes about 79 minutes. The numerical simulation can give the damage state basically consistent with the real test, and the damage can be quantified It can be seen that a multi-scale simulation method for vibration fatigue damage of 2.5D woven composite materials proposed by the present invention has the advantages of high efficiency and speed, and has considerable application prospects in practical engineering design.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210370935.3A CN114912309B (en) | 2022-04-08 | 2022-04-08 | Multi-scale simulation method for vibration fatigue damage of 2.5D woven composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210370935.3A CN114912309B (en) | 2022-04-08 | 2022-04-08 | Multi-scale simulation method for vibration fatigue damage of 2.5D woven composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114912309A true CN114912309A (en) | 2022-08-16 |
CN114912309B CN114912309B (en) | 2024-09-13 |
Family
ID=82762891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210370935.3A Active CN114912309B (en) | 2022-04-08 | 2022-04-08 | Multi-scale simulation method for vibration fatigue damage of 2.5D woven composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114912309B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115508160A (en) * | 2022-09-14 | 2022-12-23 | 华东理工大学 | A Vibration Fatigue Test Specimen with Gradient Cross-section and Its Design Method |
CN116822282A (en) * | 2023-06-16 | 2023-09-29 | 南京航空航天大学 | Method for realizing dynamic model of 2.5-dimensional composite material in damp-heat environment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013043320A1 (en) * | 2011-09-21 | 2013-03-28 | University Of South Florida | Multistable shape-shifting surfaces |
CN105701312A (en) * | 2015-12-17 | 2016-06-22 | 南京航空航天大学 | Complex braided structure ceramic matrix composite fatigue retardation behavior prediction method |
CN108304657A (en) * | 2018-02-02 | 2018-07-20 | 重庆大学 | The continuous modeling and simulating method of lathe important Parts residual stress multi-process based on finite element |
CN109241562A (en) * | 2018-08-02 | 2019-01-18 | 上海交通大学 | Fine structure material elastic property measuring method based on multi-level finite element modeling method |
CN113486552A (en) * | 2021-07-01 | 2021-10-08 | 江苏科技大学 | A Bending Stiffness Prediction Method for Unidirectional Composites |
-
2022
- 2022-04-08 CN CN202210370935.3A patent/CN114912309B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013043320A1 (en) * | 2011-09-21 | 2013-03-28 | University Of South Florida | Multistable shape-shifting surfaces |
CN105701312A (en) * | 2015-12-17 | 2016-06-22 | 南京航空航天大学 | Complex braided structure ceramic matrix composite fatigue retardation behavior prediction method |
CN108304657A (en) * | 2018-02-02 | 2018-07-20 | 重庆大学 | The continuous modeling and simulating method of lathe important Parts residual stress multi-process based on finite element |
CN109241562A (en) * | 2018-08-02 | 2019-01-18 | 上海交通大学 | Fine structure material elastic property measuring method based on multi-level finite element modeling method |
CN113486552A (en) * | 2021-07-01 | 2021-10-08 | 江苏科技大学 | A Bending Stiffness Prediction Method for Unidirectional Composites |
Non-Patent Citations (1)
Title |
---|
冯继强;王新峰;刘海;于健;: "三维四向编织复合材料疲劳性能分析", 南京航空航天大学学报, no. 01, 15 February 2018 (2018-02-15) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115508160A (en) * | 2022-09-14 | 2022-12-23 | 华东理工大学 | A Vibration Fatigue Test Specimen with Gradient Cross-section and Its Design Method |
CN116822282A (en) * | 2023-06-16 | 2023-09-29 | 南京航空航天大学 | Method for realizing dynamic model of 2.5-dimensional composite material in damp-heat environment |
Also Published As
Publication number | Publication date |
---|---|
CN114912309B (en) | 2024-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gu et al. | Structural modeling and mechanical characterizing of three-dimensional four-step braided composites: A review | |
Otero et al. | Multiscale computational homogenization: review and proposal of a new enhanced-first-order method | |
CN112632819B (en) | Continuous fiber reinforced composite material basic mechanical property parameter prediction method | |
CN114912309A (en) | Multi-scale simulation method for vibration fatigue damage of 2.5D woven composite material | |
EP1931507A2 (en) | Parametrized material and performance properties based on virtual testing | |
Li et al. | Designable mechanical properties of modified body-centered cubic lattice materials | |
Goyat et al. | Reduction in stress concentration around a pair of circular holes with functionally graded material layer | |
Zhao et al. | Understanding the critical role of boundary conditions in meso-scale finite element simulation of braided composites | |
Yvonnet et al. | Topology optimization to fracture resistance: a review and recent developments | |
CN112528415B (en) | Method for analyzing macro-micro failure mode of composite material shaft structure | |
Hu et al. | Free vibration analysis of functionally graded plates with different porosity distributions and grading patterns | |
Breiman et al. | Finite strain PHFGMC micromechanics with damage and failure | |
Qvale et al. | A simplified method for weakest-link fatigue assessment based on finite element analysis | |
US9977841B1 (en) | System and method of virtual determination design allowables for composite materials | |
CN116246735A (en) | Neural network-based composite material multi-scale modeling method, equipment and medium | |
Huang et al. | Buckling optimization of variable stiffness composite wing boxes with manufacturing defects | |
Tian et al. | An explicit finite element discrete crack analysis of open hole tension failure in composites | |
Meyer et al. | Tensile specimen design proposal for truss-based lattice structures | |
Rolfes et al. | Material and failure models for textile composites | |
CN112926244A (en) | Method for determining ultimate load of perforated part of composite laminated plate | |
Liu et al. | Mesh size optimization of unidirectional fiber-reinforced composite model for precisely characterizing the effective elastic property | |
Rajad et al. | The stiffness assessment of the blade composite structure using a proposed sub-model arbitrary rectangular with delamination effect | |
Altabey et al. | Using ANSYS for finite element analysis, Volume II: dynamic, probabilistic design and heat transfer analysis | |
CN114912306A (en) | Modeling method of 2.5D woven composite material flat plate structure multi-scale model | |
Vassilopoulos et al. | Computational tools for the fatigue life modeling and prediction of composite materials and structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |