CN114910362A - Testing method of electric pulse creep testing machine capable of detecting and repairing damage - Google Patents
Testing method of electric pulse creep testing machine capable of detecting and repairing damage Download PDFInfo
- Publication number
- CN114910362A CN114910362A CN202210470423.4A CN202210470423A CN114910362A CN 114910362 A CN114910362 A CN 114910362A CN 202210470423 A CN202210470423 A CN 202210470423A CN 114910362 A CN114910362 A CN 114910362A
- Authority
- CN
- China
- Prior art keywords
- sample
- repair
- creep
- tension
- testing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 69
- 230000008439 repair process Effects 0.000 claims abstract description 51
- 238000001514 detection method Methods 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000000694 effects Effects 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 8
- 238000007789 sealing Methods 0.000 claims description 43
- 238000007906 compression Methods 0.000 claims description 41
- 230000006835 compression Effects 0.000 claims description 39
- 238000009659 non-destructive testing Methods 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 12
- 238000003825 pressing Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 6
- 238000010998 test method Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims 1
- 239000002184 metal Substances 0.000 abstract description 14
- 229910052751 metal Inorganic materials 0.000 abstract description 14
- 238000011156 evaluation Methods 0.000 abstract description 3
- 238000011065 in-situ storage Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 239000000523 sample Substances 0.000 description 100
- 230000035882 stress Effects 0.000 description 20
- 230000007547 defect Effects 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
- G01N3/10—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
- G01N3/12—Pressure testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0001—Type of application of the stress
- G01N2203/0003—Steady
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0019—Compressive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/003—Generation of the force
- G01N2203/0042—Pneumatic or hydraulic means
- G01N2203/0048—Hydraulic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0069—Fatigue, creep, strain-stress relations or elastic constants
- G01N2203/0075—Strain-stress relations or elastic constants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0617—Electrical or magnetic indicating, recording or sensing means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0641—Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
- G01N2203/0647—Image analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/067—Parameter measured for estimating the property
- G01N2203/0676—Force, weight, load, energy, speed or acceleration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/067—Parameter measured for estimating the property
- G01N2203/0682—Spatial dimension, e.g. length, area, angle
Landscapes
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
技术领域technical field
本发明属于金属材料试验和测试分析领域,特别涉及一种可进行损伤检测和修复的脉冲电流辅助蠕变试验的装置的测试方法。The invention belongs to the field of metal material testing and testing and analysis, and particularly relates to a testing method of a device for pulse current-assisted creep testing capable of performing damage detection and repair.
背景技术Background technique
随着现代工业的迅猛发展,对材料服役性能的要求越来越高。金属结构材料在高温、载荷等复杂工况条件下服役过程中内部可能出现孔洞、微裂纹等缺陷,严重影响结构的服役安全和寿命。近年来国内外已有许多学者将电脉冲引入到金属材料内部裂纹的修复中,通过脉冲电流处理可以使金属的裂纹在固态状态下出现愈合其原理是在电流通过裂纹时产生的较高温度使其有比较大的膨胀量,周围温度较低基体的约束导致向着裂纹内的压缩,从而使裂纹面上的原子重新成键接合。目前已有的脉冲修复裂纹实验装置中试样的两端还分别固定有导电电极和脉冲电流发射器,电极的一端与所述试样直接连接,另一端与耐高温的导电线连接,使得脉冲电流发射器、试样、导电线与导电电极之间构成电流回路;同时试验机上还固定有用于提供试验所需温度的高温炉;试样上还设置有测温装置和引伸杆,用于实时监测试验温度和监测试样的变形。虽然初步解决了电流脉冲密度问题,但是实验装置过于繁琐,容易损坏。With the rapid development of modern industry, the requirements for the service performance of materials are getting higher and higher. Defects such as holes and micro-cracks may appear inside metal structural materials during service under complex working conditions such as high temperature and load, which seriously affect the service safety and life of the structure. In recent years, many scholars at home and abroad have introduced electrical pulses into the repair of internal cracks in metal materials. Through pulse current treatment, metal cracks can be healed in a solid state. The principle is that the higher temperature generated when the current passes through the cracks makes It has a relatively large amount of expansion, and the confinement of the surrounding lower temperature matrix leads to compression into the crack, so that the atoms on the crack face re-bond. In the existing pulse repairing crack experimental device, conductive electrodes and pulse current transmitters are respectively fixed at both ends of the sample. A current loop is formed between the current transmitter, the sample, the conductive wire and the conductive electrode; at the same time, a high-temperature furnace for providing the temperature required for the test is fixed on the testing machine; the sample is also provided with a temperature measuring device and an extension rod for real-time Monitor the test temperature and monitor the deformation of the specimen. Although the problem of current pulse density has been initially solved, the experimental device is too cumbersome and easily damaged.
电脉冲在蠕变损伤修复的实际应用不多,且大多数脉冲电流装置是与蠕变装置相独立的。如申请号202110465132 .1公开了一种提高Al-Mg-Si合金耐磨耐蚀性能的处理方法,其通过对合金进行电脉冲处理,能够改善合金的组织结构,降低合金凝固组织中的枝晶偏析,进而提高合金的耐磨耐蚀性能。申请号202010095608 .2公开了一种超细晶金属箔材电脉冲辅助微拉伸工艺,其利用脉冲电流作用,使所得产品具有超细晶晶粒,使得超细晶金属的韧性得到大幅提升。以上专利均是利用电脉冲改善金属组织结构,但对于金属在使用或服役过程中内部组织结构缺陷的检测和修复并未涉及。在蠕变试验机方面,申请号201910186273 .2公开了一种多试样拉压蠕变试验装置,其通过调整装置中两个分腔体中的油压差,即可对试样进行拉伸或压缩蠕变试验,使得各件试样的所受的应力大小与受力时间可保持相对独立,大幅的提高了蠕变试验的效率。但其多试样固定装置中试样的水平排列方式,会导致因各试样力矩的差异造成在较大载荷条件下各试样受力的差异,影响测试的精度和准确性。因此,现有技术仍然需要一种可对各试样进行电脉冲检测和修复,精确控制各试样加载的方案,从而来对比验证经电脉冲修复后材料性能恢复的效果。There are few practical applications of electrical pulses in creep damage repair, and most pulse current devices are independent of creep devices. For example, Application No. 202110465132.1 discloses a treatment method for improving the wear and corrosion resistance of Al-Mg-Si alloy, which can improve the structure of the alloy and reduce the dendrite in the solidification structure of the alloy by performing electric pulse treatment on the alloy. segregation, thereby improving the wear and corrosion resistance of the alloy. Application No. 202010095608.2 discloses an electric pulse-assisted micro-stretching process for ultra-fine-grained metal foils, which utilizes the action of pulsed current to make the obtained product have ultra-fine grains, which greatly improves the toughness of ultra-fine-grained metals. The above patents all use electric pulses to improve the metal structure, but they do not involve the detection and repair of the internal structure defects of the metal during use or service. In terms of creep testing machine, application No. 201910186273.2 discloses a multi-sample tensile-compression creep testing device, which can stretch the sample by adjusting the oil pressure difference in the two sub-cavities in the device Or compression creep test, so that the stress magnitude and stress time of each sample can be kept relatively independent, which greatly improves the efficiency of the creep test. However, the horizontal arrangement of the samples in the multi-sample fixing device will lead to differences in the force of each sample under large load conditions due to the difference in the moment of each sample, which affects the accuracy and accuracy of the test. Therefore, in the prior art, there is still a need for a solution that can perform electrical pulse detection and repair on each sample and accurately control the loading of each sample, so as to compare and verify the effect of material performance recovery after electrical pulse repair.
发明内容SUMMARY OF THE INVENTION
1.所要解决的技术问题:1. Technical problems to be solved:
电脉冲在蠕变损伤检测和修复的应用不多,且大多数脉冲电流装置是与蠕变装置相独立的。Electric pulses are rarely used in creep damage detection and repair, and most pulsed current devices are independent of creep devices.
2.技术方案:2. Technical solution:
为了解决以上问题,本发明提供了一种无损检测后进行损伤修复蠕变测试方法,使用可进行损伤检测和修复的电脉冲蠕变试验机进行试验,所述可进行损伤检测和修复的电脉冲蠕变试验机中多个所述试样位于高温箱中,所述试样通过导线和脉冲电流发射器电连接,其特征在于:所述高温箱内设有多试样固定系统,所述多试样固定系统包括平行设置的第一支撑梁和第二支撑梁,所述第一支撑梁通过第一立柱和高温箱上部的下表面连接,所述第二支撑梁通过第二立柱和高温箱下部的上表面连接,所述第一支撑梁和第二支撑梁之间设置多个均匀分布的试样固定装置,每个试样固定装置,包括设置在第一支撑梁的第一密封腔和设置在第二支撑梁的第二密封腔,第一密封腔和第二密封腔之间的连线和底面垂直,所述第一密封腔被活塞分割成两个分腔体,两个所述分腔体分别通过管路连接到液压系统的两个工作油口,所述第一拉压杆一端和所述活塞连接,另一端和试样连接,所述试样的另一端和第二拉压杆连接,所述第二拉压杆的另一端设置在第二密封腔内。测试方法的具体步骤为:第一步:将试样安装连接在第一拉压杆与第二拉压杆之间;第二步:密闭高温炉,连接并启动加热装置,使试样升温至目标温度后开始保温;第三步:启动液压系统与应变测量装置,根据需要控制每一件试样所对应的两个分腔体中的油压差,对试样进行拉伸或压缩蠕变试验,同时应变测量装置实时测试样的应变量;第四步:蠕变试验结束,通过脉冲电流发射器对试样进行无损检测,评估材料内部损伤情况;第五步:通过脉冲电流发射器对试样进行电脉冲损伤修复,其中保留未修复试样组用作对比,修复结束后进行无损检测,未达到修复目的再次进行修复;第六步:将修复好的试样与对比试样组进行蠕变对比试验,用以检验电脉冲修复情况并对比分析修复效果。In order to solve the above problems, the present invention provides a creep test method for damage and repair after non-destructive testing, using an electric pulse creep testing machine that can perform damage detection and repair. In the creep testing machine, a plurality of the samples are located in a high temperature box, and the samples are electrically connected to the pulse current transmitter through wires. The sample fixing system includes a first support beam and a second support beam arranged in parallel, the first support beam is connected by the first column and the lower surface of the upper part of the high temperature box, and the second support beam is connected by the second column and the high temperature box The upper surface of the lower part is connected, and a plurality of evenly distributed sample fixing devices are arranged between the first support beam and the second support beam. Each sample fixing device includes a first sealing cavity arranged on the first support beam and a The second sealing chamber is arranged in the second supporting beam, the connecting line between the first sealing chamber and the second sealing chamber is perpendicular to the bottom surface, the first sealing chamber is divided into two sub-chambers by the piston, and the two The sub-chambers are respectively connected to the two working oil ports of the hydraulic system through pipelines. One end of the first tension and compression rod is connected to the piston, the other end is connected to the sample, and the other end of the sample is connected to the second tension rod. The pressing rod is connected, and the other end of the second pulling and pressing rod is arranged in the second sealing cavity. The specific steps of the test method are: the first step: install and connect the sample between the first tension and compression rod and the second tension and compression rod; the second step: seal the high temperature furnace, connect and start the heating device, and make the sample heat up to After the target temperature, start the heat preservation; the third step: start the hydraulic system and the strain measurement device, control the oil pressure difference in the two sub-cavities corresponding to each sample as needed, and perform tensile or compressive creep on the sample At the same time, the strain measurement device measures the strain amount of the sample in real time; Step 4: After the creep test is completed, the sample is subjected to non-destructive testing by the pulse current transmitter to evaluate the internal damage of the material; Step 5: The pulse current transmitter The sample is repaired by electrical impulse damage, and the unrepaired sample group is reserved for comparison. After the repair is completed, non-destructive testing is carried out, and the repair is not achieved. The creep comparison test is used to check the electric pulse repair and compare and analyze the repair effect.
所述第一拉压杆与第二拉压杆上均设置有用于连接脉冲电流发射器的正极或负极的接线端子,第一拉压杆与第二拉压杆通过所述接线端子分别电性连接到脉冲电流发射器的正负两极。The first pulling and pressing rod and the second pulling and pressing rod are both provided with a connection terminal for connecting the positive or negative pole of the pulse current transmitter, and the first pulling and pressing rod and the second pulling and pressing rod are electrically connected to each other through the connection terminal. Connect to the positive and negative poles of the pulsed current transmitter.
所述第一密封腔和第二密封腔对应远离试样的一端设置有开口,开口通过密封螺塞进行封闭。The first sealing cavity and the second sealing cavity are provided with openings corresponding to one end away from the sample, and the openings are closed by sealing screw plugs.
所述试验机还包括第一应力感应元件和第二应力感应元件,所述第一应力感应元件设置在第二拉压杆与第二密封腔的孔肩之间,所述第二应力感应元件设置在第二拉压杆与螺帽之间。The testing machine also includes a first stress-sensing element and a second stress-sensing element, the first stress-sensing element is arranged between the second tension and compression rod and the shoulder of the second sealing cavity, the second stress-sensing element It is arranged between the second pulling and pressing rod and the nut.
所述第一拉压杆和第二拉压杆用于连接试样的一端各连接有绝缘圈。One end of the first tension and compression rod and the second tension and compression rod for connecting the sample is connected with an insulating ring.
各个第一密封腔所包括的两个分腔体连接到同一液压系统的工作油路上,每一个第一密封腔所包括的两个分腔体之间的压差通过一组液压控制阀来调节与控制。The two sub-chambers included in each first sealing chamber are connected to the working oil circuit of the same hydraulic system, and the pressure difference between the two sub-chambers included in each first sealing chamber is adjusted by a set of hydraulic control valves with control.
所述试验机还包括应变测量装置,所述应变测量装置包括安装架、光源、DIC摄像机、以及与所述DIC摄像机连接的计算机,所述安装架固定在机架上且位于所述高温箱外部,所述DIC摄像机与所述光源均设置在所述安装架上,所述DIC摄像机的镜头及所述光源的照射方向均朝向准所述高温箱中的试样。The testing machine further includes a strain measurement device including a mounting frame, a light source, a DIC camera, and a computer connected to the DIC camera, the mounting frame being fixed on the frame and located outside the high temperature box , the DIC camera and the light source are both arranged on the mounting frame, and the lens of the DIC camera and the illumination direction of the light source are both directed toward the sample in the high temperature box.
所述计算机与试验机本身自带的PC控制机集成在一起。The computer is integrated with the PC control machine that comes with the testing machine itself.
所述高温箱对应所述DIC摄像机的一侧设置有透明视窗。A transparent window is provided on one side of the high temperature box corresponding to the DIC camera.
一种无损检测后进行损伤修复蠕变测试方法,使用以上所述的可进行损伤检测和修复的电脉冲蠕变试验机进行试验,包括以下步骤:第一步:将试样安装连接在第一拉压杆与第二拉压杆之间;第二步:密闭高温炉,连接并启动加热装置,使试样升温至目标温度后开始保温;第三步:启动液压系统与应变测量装置,根据需要控制每一件试样所对应的两个分腔体中的油压差,对试样进行拉伸或压缩蠕变试验,同时应变测量装置实时测试样的应变量;第四步:蠕变试验结束,利用脉冲电流发射器施加脉冲电流进行无损检测,判断试样损伤情况;第五步:通过脉冲电流发射器对试样进行电脉冲损伤修复,其中保留未修复试样组用作对比,修复结束后进行无损检测,未达到修复目的再次进行修复;第六步:将修复好的试样与对比试样组进行蠕变对比试验,用以检验电脉冲修复情况并对比分析修复效果。A creep test method for damage repair after non-destructive testing, using the above-mentioned electric pulse creep testing machine capable of damage detection and repair to conduct the test, including the following steps: Step 1: Install and connect the sample on the first Between the tension and compression rod and the second tension and compression rod; the second step: seal the high temperature furnace, connect and start the heating device, and make the sample warm to the target temperature and then start to keep warm; the third step: start the hydraulic system and the strain measurement device, according to the It is necessary to control the oil pressure difference in the two sub-cavities corresponding to each sample, conduct tensile or compressive creep tests on the samples, and at the same time, the strain measuring device measures the strain of the samples in real time; the fourth step: creep At the end of the test, use the pulse current transmitter to apply pulse current for non-destructive testing to judge the damage of the sample; the fifth step: use the pulse current transmitter to repair the damage of the sample by electric pulse, and keep the unrepaired sample group for comparison. After the repair is completed, carry out non-destructive testing, and repair again if the repair purpose is not achieved; the sixth step: carry out a creep comparison test between the repaired sample and the comparison sample group to check the electric pulse repair and compare and analyze the repair effect.
3.有益效果:3. Beneficial effects:
本发明提供的进行损伤检测和修复的电脉冲蠕变试验机的测试方法可以更好地监测金属在蠕变高温蠕变过程中的内部损伤情况,针对损伤等级进行原位修复并对比分析修复效果。该发明装置结构紧凑,可实现蠕变测试、损伤检测、损伤修复和效果评估多功能一体化测试。The test method of the electric pulse creep testing machine for damage detection and repair provided by the present invention can better monitor the internal damage of the metal in the high-temperature creep process of creep, perform in-situ repair according to the damage level, and compare and analyze the repair effect . The device of the invention has a compact structure and can realize multifunctional integrated testing of creep testing, damage detection, damage repair and effect evaluation.
附图说明Description of drawings
图1是本发明的方法流程图。FIG. 1 is a flow chart of the method of the present invention.
图2是本发明试验机整体外形,电脉冲装置和脉冲电流发射器之间通过导线(24)连接。Fig. 2 is the overall shape of the testing machine of the present invention, and the electrical pulse device and the pulse current transmitter are connected by wires (24).
图3是本发明去除高温箱的试验机内部结果。Fig. 3 is the internal result of the test machine in which the high temperature box is removed according to the present invention.
图4是本发明多试样固定系统示意图图。FIG. 4 is a schematic diagram of the multi-sample fixing system of the present invention.
图5是本发明试样固定装置示意图。FIG. 5 is a schematic diagram of the sample fixing device of the present invention.
附图标记说明:1-机架,2-高温箱,3-透明视窗,4-安装架,5-DIC摄像机,6-光源,7-试样,8-第一立柱,9-第一支撑梁,10-第二支撑梁,11-第二立柱,12-接线端子,13-密封螺塞,14-活塞,15-绝缘圈,16-第一拉压杆,17-第二拉压杆,18-第一密封腔,19-温度检测元件,20-第一应力感应元件,21-第二应力感应元件,22-螺帽,23-第二密封腔,24-导线,25-脉冲电流发射器。Description of reference numerals: 1-frame, 2-high temperature box, 3-transparent window, 4-mounting frame, 5-DIC camera, 6-light source, 7-sample, 8-first column, 9-first support Beam, 10-Second support beam, 11-Second column, 12-Terminal, 13-Sealing plug, 14-Piston, 15-Insulation ring, 16-First tension rod, 17-Second tension rod , 18-first sealed cavity, 19-temperature detection element, 20-first stress sensing element, 21-second stress sensing element, 22-nut, 23-second sealed cavity, 24-wire, 25-pulse current launcher.
具体实施方式Detailed ways
下面结合附图和实施例来对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and embodiments.
如图1所示,一种无损检测后进行损伤修复蠕变测试方法,具体步骤为:第一步:将试样安装连接在第一拉压杆16与第二拉压杆17之间;第二步:密闭高温炉2,连接并启动加热装置,使试样7升温至目标温度后开始保温;第三步:启动液压系统与应变测量装置,根据需要控制每一件试样7所对应的两个分腔体中的油压差,对试样7进行拉伸或压缩蠕变试验,同时应变测量装置实时测试样的应变量;第四步:蠕变试验结束,通过脉冲电流发射器25对试样进行无损检测,评估材料内部损伤情况;第五步:通过脉冲电流发射器25对试样进行电脉冲损伤修复,其中保留未修复试样组用作对比,修复结束后进行无损检测,未达到修复目的再次进行修复;第六步:将修复好的试样与对比试样组进行蠕变对比试验,用以检验电脉冲修复情况并对比分析修复效果。As shown in Figure 1, a method for performing damage repair and creep testing after non-destructive testing, the specific steps are as follows: Step 1: install and connect the sample between the first tension and
如图2所示,本发明的方法使用的是一种可进行损伤检测和修复的电脉冲蠕变试验机,包括多个试样7,多个试样7位于高温箱2中,试样7通过导线24和脉冲电流发射器25电连接,其中高温箱2设置在机架1上。如图3和图4所示,高温箱2内设有多试样固定系统,多试样固定系统包括平行设置的第一支撑梁9和第二支撑梁10,第一支撑梁9通过第一立柱8和高温箱2上部的下表面连接,所述第二支撑梁10通过第二立柱9和高温箱2下部的上表面连接,第一支撑梁9和第二支撑梁10之间设置多个均匀分布的试样固定装置。在本发明中,设置6个试样固定装置,可以同时固定6个试样。As shown in FIG. 2 , the method of the present invention uses an electric pulse creep testing machine that can perform damage detection and repair, including a plurality of
如图5所示,每个试样固定装置,包括设置在第一支撑梁9的第一密封腔18和设置在第二支撑梁10的第二密封腔,第一密封腔18和第二密封腔23之间的连线和底面垂直,所述第一密封腔18被活塞14分割成两个分腔体,两个所述分腔体分别通过管路连接到液压系统的两个工作油口,所述第一拉压杆16一端和所述活塞14连接,另一端和试样7连接,所述试样7的另一端和第二拉压杆17连接,所述第二拉压杆17的另一端设置在第二密封腔内。通过调整两个分腔体中的油压差,改变第一拉压杆16的移动趋势或方向而对试样7进行拉伸或压缩蠕变试验。As shown in FIG. 5 , each sample fixing device includes a first sealing
根据需要控制每一件试样7所对应的两个分腔体中的油压差,对试样7进行拉伸或压缩蠕变试验,靠近试样7的分腔体中的油压大于远离试样7的分腔体中的油压,靠近试样7的分腔体进油,远离试样7的分腔体回油;试样7需要受压应力时,靠近试样7的分腔体中的油压小于远离试样7的分腔体中的油压,远离试样的分腔体进油,靠近试样的分腔体回油。各个第一密封腔18所包括的各组分腔体连接到同一液压系统的工作油路上,每一个密封腔所包括的两个分腔体之间的压差通过一组液压控制阀来调节与控制。Control the oil pressure difference in the two sub-cavities corresponding to each
还包括第一应力感应元件20和第二应力感应元件21,所述第一应力感应元件20设置在第二拉压杆17与第二密封腔的孔肩之间,所述第二应力感应元件21设置在第二拉压杆17与螺帽22之间。在进行压缩蠕变试验时,即试样受压应力时,本发明中所述压应力传感器的第二应力感应元件21是受压的,拉应力传感器的第一应力感应元件20不工作;在进行拉伸蠕变试验时,即试样受拉应力时,本发明中所述拉应力传感器的应力感应元件20是受压的,压应力传感器的应力感应元件21不工作。Also includes a first stress-
本发明中所述拉应力传感器与压应力传感器中的“拉”与“压”均为相对试样而言,“拉”与“压”分别指试样受拉应力与受压应力。"Tension" and "compression" in the tensile stress sensor and compressive stress sensor described in the present invention are relative to the sample, and "tension" and "compression" refer to the tensile stress and the compressive stress of the sample respectively.
在一个实施例中,所述第一密封腔18和第二密封腔对应远离试样的一端设置有开口,开口通过密封螺塞13进行封闭。In one embodiment, the first sealing
所述第一拉压杆16和第二拉压杆17用于连接试样的一端各连接有绝缘圈15,起到绝缘作用,活塞14为导电体。An insulating
在一个实施例中,所述第一拉压杆16与第二拉压杆17上均设置有用于连接脉冲电流发射器23的正极或负极的接线端子12,第一拉压杆16与第二拉压杆17通过所述接线端子12分别电性连接到脉冲电流发射器25的正负两极。所述活塞14和脉冲电流发射器25通过外部包裹有耐高温云母材料的导电线与接线端子12连接。In one embodiment, the first tension and
将脉冲电流由激励电极注入金属或构件,若金属内部存在缺陷,则电流密度的大小、相位和分布都会受到缺陷的影响,进而引起测量电极间的电压发生变化,通过分析测得电压的变化情况可以实现对缺陷的检测,蠕变实验进行的同时能够进行原位电脉冲检测和修复实验,提高实验的高效。The pulse current is injected into the metal or component from the excitation electrode. If there is a defect in the metal, the size, phase and distribution of the current density will be affected by the defect, which will cause the voltage between the measurement electrodes to change. The detection of defects can be realized, and the in-situ electric pulse detection and repair experiments can be carried out while the creep experiment is carried out, so as to improve the efficiency of the experiment.
本发明还包括应变测量装置,所述应变测量装置包括安装架4、光源6、DIC摄像机5、以及与所述DIC摄像机5连接的计算机,所述计算机用于对DIC摄像机采集的试样图像进行实时在线分析,并生成试样的应变结果,该计算机可以与蠕变试验机本身自带的PC控制机集成到一起,安装架固定在机架上且位于高温箱外部,所述DIC摄像机与光源均设置在安装架上,DIC摄像机的镜头及光源的照射方向均朝向准高温箱中的试样,所述高温箱对应DIC摄像机的一侧设置为透明视窗。所述安装架4固定在机架1上且位于所述高温箱2外部,所述DIC摄像机5与所述光源6均设置在所述安装架4上,所述DIC摄像机5的镜头及所述光源6的照射方向均朝向准所述高温箱2中的试样7。The present invention also includes a strain measurement device, which includes a mounting frame 4, a light source 6, a
实施例Example
其具体测试方法为:The specific test method is:
第一步.选取金属圆棒试样尽量保持试样表面的光滑度和清洁度,否则将会影响后续无损检测的效果。The first step. Select the metal round bar sample to keep the smoothness and cleanliness of the surface of the sample as much as possible, otherwise it will affect the effect of subsequent non-destructive testing.
第二步. 进行多组平行蠕变试验,具体的,启动液压系统与应变测量装置,通过调整两个分腔体中的油压差,改变第一拉压杆16的移动趋势或方向而对试样7进行拉伸或压缩蠕变试验。同时应变测量装置实时测量试样的应变量,温度检测元件19实时检测温度变化。The second step. Carry out multiple sets of parallel creep tests. Specifically, start the hydraulic system and the strain measurement device, and adjust the oil pressure difference in the two sub-chambers to change the moving trend or direction of the first tension and
根据需要控制每一件试样7所对应的两个分腔体中的油压差,对试样7进行拉伸或压缩蠕变试验,靠近试样7的分腔体中的油压大于远离试样7的分腔体中的油压,靠近试样7的分腔体进油,远离试样7的分腔体回油;试样7需要受压应力时,靠近试样7的分腔体中的油压小于远离试样7的分腔体中的油压,远离试样的分腔体进油,靠近试样的分腔体回油。各试样的第一密封腔18所包括的各组分腔体连接到同一液压系统的工作油路上,每一个密封腔所包括的两个分腔体之间的压差通过一组液压控制阀来调节与控制。Control the oil pressure difference in the two sub-cavities corresponding to each
在实施例中,第一密封腔18和第二密封腔23对应远离试样的一端设置有开口,开口通过密封螺塞13进行封闭。In the embodiment, the first sealing
第三步. 利用电脉冲无损检测分析测得电压的变化情况对金属内部受损程度进行评估,判断损伤的级别;对于检测结果为无损的试样再次进行蠕变以达到有损条件;The third step. Use the electric pulse nondestructive testing analysis to measure the change of voltage to evaluate the degree of damage inside the metal to judge the level of damage; for the sample whose test result is nondestructive, creep again to achieve the damage condition;
第四步. 判断损伤类别并进行损伤修复,特别的,需保留对照组试样,以进行后续蠕变对比试验;Step 4. Determine the damage category and carry out damage repair. In particular, it is necessary to retain the control group samples for subsequent creep comparison tests;
第五步. 修复效果无损检测,主要目的是为了检查修复处理是否全面完成,若金属修复仍存在问题,则根据电压的变化情况再次分析判断损伤类别,采取相应的修复措施。
第六步. 蠕变对比试验,将修复后的金属试样与对照组试样进行蠕变试验,对比分析修复效果。Step 6. Creep comparison test, carry out the creep test on the repaired metal sample and the control sample to compare and analyze the repair effect.
本发明还包括应变测量装置,应变测量装置包括安装架4、光源6、DIC摄像机5、以及与所述DIC摄像机5连接的计算机,计算机用于对DIC摄像机采集的试样图像进行实时在线分析,并生成试样的应变结果,该计算机可以与蠕变试验机本身自带的PC控制机集成到一起,安装架固定在机架上且位于高温箱外部,DIC摄像机与光源均设置在安装架上,DIC摄像机的镜头及光源的照射方向均朝向准高温箱中的试样,高温箱对应DIC摄像机的一侧设置为透明视窗3。安装架4固定在机架1上且位于高温箱2外部,DIC摄像机5与光源6均设置在安装架4上,DIC摄像机5的镜头及光源6的照射方向均朝向准高温箱2中的试样7。The present invention also includes a strain measurement device, the strain measurement device includes a mounting frame 4, a light source 6, a
本发明的方法可以用于拉伸与压缩松弛时效试验。而且本发明装置结构紧凑,可实现蠕变测试、损伤检测、损伤修复和效果评估多功能一体化测试。The method of the present invention can be used for tensile and compression relaxation aging tests. Moreover, the device of the invention has a compact structure, and can realize multi-functional integrated testing of creep testing, damage detection, damage repair and effect evaluation.
以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术内容作任何形式上的限制。凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明的技术方案的范围内。The above descriptions are only preferred embodiments of the present invention, and do not limit the technical content of the present invention in any form. Any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention still fall within the scope of the technical solutions of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210470423.4A CN114910362A (en) | 2022-04-28 | 2022-04-28 | Testing method of electric pulse creep testing machine capable of detecting and repairing damage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210470423.4A CN114910362A (en) | 2022-04-28 | 2022-04-28 | Testing method of electric pulse creep testing machine capable of detecting and repairing damage |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114910362A true CN114910362A (en) | 2022-08-16 |
Family
ID=82765722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210470423.4A Pending CN114910362A (en) | 2022-04-28 | 2022-04-28 | Testing method of electric pulse creep testing machine capable of detecting and repairing damage |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114910362A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070050296A (en) * | 2005-11-10 | 2007-05-15 | 엘지전자 주식회사 | Device of plasma display panel |
CN108555526A (en) * | 2018-04-28 | 2018-09-21 | 南京航空航天大学 | A kind of hot-work die crack forming mechanism device and restorative procedure |
CN108593537A (en) * | 2018-04-24 | 2018-09-28 | 南京工程学院 | A kind of portable metallic material tensile stress electrochemical corrosion device |
CN108845000A (en) * | 2018-08-20 | 2018-11-20 | 四川大学 | A kind of method of pulsed field fingerprint technique measurement defect of pipeline |
CN109520857A (en) * | 2018-12-07 | 2019-03-26 | 华东理工大学 | High-throughput small sample creep and On Creep Crack Growth experimental rig and its application method |
CN109738307A (en) * | 2019-03-12 | 2019-05-10 | 中南大学 | A kind of more sample tension and compression creep test methods |
-
2022
- 2022-04-28 CN CN202210470423.4A patent/CN114910362A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070050296A (en) * | 2005-11-10 | 2007-05-15 | 엘지전자 주식회사 | Device of plasma display panel |
CN108593537A (en) * | 2018-04-24 | 2018-09-28 | 南京工程学院 | A kind of portable metallic material tensile stress electrochemical corrosion device |
CN108555526A (en) * | 2018-04-28 | 2018-09-21 | 南京航空航天大学 | A kind of hot-work die crack forming mechanism device and restorative procedure |
CN108845000A (en) * | 2018-08-20 | 2018-11-20 | 四川大学 | A kind of method of pulsed field fingerprint technique measurement defect of pipeline |
CN109520857A (en) * | 2018-12-07 | 2019-03-26 | 华东理工大学 | High-throughput small sample creep and On Creep Crack Growth experimental rig and its application method |
CN109738307A (en) * | 2019-03-12 | 2019-05-10 | 中南大学 | A kind of more sample tension and compression creep test methods |
Non-Patent Citations (2)
Title |
---|
ZHANG Z 等: "Nanoindentation creep behaviour and microstructural evolution of long-term crept HR3C austenitic steel", MATERIALS AT HIGH TEMPERATURES, vol. 38, no. 6, 2 November 2021 (2021-11-02), pages 403 - 416 * |
马颖涵 等: "F690超高强钢的腐蚀疲劳裂纹扩展行为及其有限元模拟", 机械工程材料, vol. 45, no. 4, 20 April 2021 (2021-04-20), pages 65 - 71 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108107291B (en) | Transformer oil paper insulation multi-factor combined aging test device and service life prediction method thereof | |
CN110044806A (en) | Image, sound emission, electrochemistry integrated stress corrosion cracking in-situ testing device | |
CN109738307B (en) | Multi-sample tension-compression creep test method | |
CN108232248A (en) | A kind of fuel cell pile assembling test platform and its test method | |
CN101498648A (en) | Multifunctional in-situ electro-chemical measuring apparatus for tensile test | |
CN103226091A (en) | High temperature high pressure acoustic emission electrochemistry simulation experiment apparatus capable of loading stress | |
CN102650582A (en) | Leaf spring normal-temperature and high-temperature stress relaxation life predicting method | |
CN101994001A (en) | Support vector machine algorithm based method for predicting vibration aging effect | |
CN113281165B (en) | Limit test fixture and method for high-strength steel plate fracture in complex tension-compression path | |
CN112665961A (en) | Test device and method for monitoring SCC crack initiation signal based on DCPD method | |
CN117433921A (en) | A device and method for detecting fatigue creep performance of metal materials under alternating temperatures | |
CN117471251A (en) | Transformer oil continuous discharge gas production and pressure characteristic research test system and method | |
CN111855432A (en) | Test device and method for stress-strain curve of titanium alloy material under high temperature and high strain rate | |
CN108613890B (en) | Method for measuring stress intensity factor threshold value of II-type crack of metal material | |
CN114910362A (en) | Testing method of electric pulse creep testing machine capable of detecting and repairing damage | |
CN107505213B (en) | Novel small punch test device and test method thereof | |
CN203287249U (en) | High temperature and high pressure sound emission electrochemical simulation experiment set capable of loading stress | |
CN109556954A (en) | Test the fatigue tester of components fracture characteristic under the effect of different alternate stresses | |
CN209727655U (en) | A high-efficiency and high-precision creep test device | |
CN111929158A (en) | A device and method for monitoring local stress and non-uniform corrosion of welds | |
CN210108861U (en) | Constant load stress corrosion crack propagation multi-scale in-situ monitoring device | |
CN110595742A (en) | A method for detecting the potential long-term effects of mechanical loading on photovoltaic module performance | |
CN117168966A (en) | Material welding spot tensile strength test fixture and test method | |
CN116380775A (en) | Displacement testing device for slow strain stress corrosion test and application method thereof | |
CN209606249U (en) | A multi-specimen tension-compression creep test device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |