CN114906877A - Preparation method of cobalt ferrite capable of being compounded with LDPE (Low-Density polyethylene) to prepare magnetic nano dielectric medium - Google Patents
Preparation method of cobalt ferrite capable of being compounded with LDPE (Low-Density polyethylene) to prepare magnetic nano dielectric medium Download PDFInfo
- Publication number
- CN114906877A CN114906877A CN202210349259.1A CN202210349259A CN114906877A CN 114906877 A CN114906877 A CN 114906877A CN 202210349259 A CN202210349259 A CN 202210349259A CN 114906877 A CN114906877 A CN 114906877A
- Authority
- CN
- China
- Prior art keywords
- ldpe
- solution
- compounded
- cofe
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920001684 low density polyethylene Polymers 0.000 title claims abstract description 54
- 239000004702 low-density polyethylene Substances 0.000 title claims abstract description 54
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 29
- 239000010941 cobalt Substances 0.000 title claims abstract description 27
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 229910003321 CoFe Inorganic materials 0.000 claims abstract description 49
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000004094 surface-active agent Substances 0.000 claims abstract description 16
- 239000000725 suspension Substances 0.000 claims abstract description 14
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 239000007787 solid Substances 0.000 claims abstract description 7
- 238000003756 stirring Methods 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 239000008367 deionised water Substances 0.000 claims abstract description 4
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 4
- 239000012153 distilled water Substances 0.000 claims abstract description 4
- 239000000155 melt Substances 0.000 claims abstract description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract 17
- 238000001035 drying Methods 0.000 claims abstract 2
- 239000008187 granular material Substances 0.000 claims abstract 2
- 238000005406 washing Methods 0.000 claims abstract 2
- 239000002245 particle Substances 0.000 claims description 21
- 239000002131 composite material Substances 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 6
- -1 sorbitan fatty acid ester Chemical class 0.000 claims description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 3
- LPMBTLLQQJBUOO-KTKRTIGZSA-N (z)-n,n-bis(2-hydroxyethyl)octadec-9-enamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)N(CCO)CCO LPMBTLLQQJBUOO-KTKRTIGZSA-N 0.000 claims description 3
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000005642 Oleic acid Substances 0.000 claims description 3
- 239000004359 castor oil Substances 0.000 claims description 3
- 235000019438 castor oil Nutrition 0.000 claims description 3
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 3
- 239000000194 fatty acid Substances 0.000 claims description 3
- 229930195729 fatty acid Natural products 0.000 claims description 3
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 3
- 229940051841 polyoxyethylene ether Drugs 0.000 claims description 3
- 229920000056 polyoxyethylene ether Polymers 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 239000012295 chemical reaction liquid Substances 0.000 claims 2
- 239000011159 matrix material Substances 0.000 abstract description 11
- 238000010292 electrical insulation Methods 0.000 abstract description 6
- 238000013329 compounding Methods 0.000 abstract description 3
- 239000000843 powder Substances 0.000 abstract description 2
- 239000013543 active substance Substances 0.000 abstract 1
- 239000002105 nanoparticle Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 6
- 229910001313 Cobalt-iron alloy Inorganic materials 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000004813 Moessbauer spectroscopy Methods 0.000 description 3
- 150000001868 cobalt Chemical class 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 150000002505 iron Chemical class 0.000 description 3
- 239000002122 magnetic nanoparticle Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000003837 high-temperature calcination Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052901 montmorillonite Inorganic materials 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000000713 high-energy ball milling Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/42—Magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/066—LDPE (radical process)
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域technical field
本发明属于电气绝缘技术领域,具体涉及一种能与LDPE复合制备磁性纳米电介质的钴铁氧体的制备方法。The invention belongs to the technical field of electrical insulation, and in particular relates to a preparation method of cobalt ferrite which can be compounded with LDPE to prepare a magnetic nanometer dielectric.
背景技术Background technique
低密度聚乙烯(LDPE)是工业中主要使用的材料之一,由于其具有优异的介电和机械特性,在电气绝缘领域中得到了广泛的应用。空间电荷是影响LDPE绝缘电缆的重要影响因素,通过扭曲局部电场并影响高场传导和击穿现象损伤LDPE基体。空间电荷积累通常被认为是加速高压直流输电聚合物绝缘退化的主要因素。研究发现少量的极性基团的加入就能大大降低聚烯烃化合物中空间电荷的形成,从而提高LDPE基绝缘材料的性能。目前,用于绝缘电力电缆中的LDPE基复合电介质中常用的无机填料有蒙脱土(MMT)、TiO2、MgO、ZnO、SiO2、BaTiO3、纳米管、石墨烯等。但对LDPE和磁性纳米颗粒复合制备的磁性纳米电介质的研究较少。磁性纳米复合介质具有纳米磁性颗粒本身特有的小尺寸效应和原始聚合物的固有特性。通常,除了电,磁和光学性质外,磁性纳米复合介质还会表现出一些新的性能,例如良好的成膜和加工性能,因此可以在细胞分离,医学诊断,高密度信息存储介质,电磁波吸附材料,电磁装置和电磁干扰抑制等方面获得潜在的应用。另外,由于引入的磁性纳米颗粒可以降低材料的导电性和极化效应,从而可以影响材料的介电性能。在上述考虑的基础上,磁性纳米粒子在LDPE中的分散可能会降低LDPE中空间电荷的形成,同时给LDPE基复合电介质带来磁性,从而抑制高压直流电场引起的磁场对其的影响,甚至可能拓宽其在电磁波吸收、电磁装置和电磁干扰抑制等领域的应用。Low-density polyethylene (LDPE) is one of the main materials used in the industry and has been widely used in the field of electrical insulation due to its excellent dielectric and mechanical properties. Space charge is an important factor affecting LDPE insulated cables, damaging the LDPE matrix by distorting the local electric field and affecting high-field conduction and breakdown phenomena. Space charge accumulation is generally considered to be the main factor that accelerates the degradation of HVDC polymer insulation. It is found that the addition of a small amount of polar groups can greatly reduce the formation of space charges in polyolefin compounds, thereby improving the performance of LDPE-based insulating materials. Currently, inorganic fillers commonly used in LDPE-based composite dielectrics used in insulated power cables include montmorillonite (MMT), TiO 2 , MgO, ZnO, SiO 2 , BaTiO 3 , nanotubes, and graphene. However, there are few studies on magnetic nanodielectrics prepared by composites of LDPE and magnetic nanoparticles. The magnetic nanocomposite medium possesses the small size effect peculiar to the nanomagnetic particles themselves and the inherent properties of the original polymer. Generally, in addition to electrical, magnetic and optical properties, magnetic nanocomposite media also exhibit some new properties, such as good film-forming and processing properties, so they can be used in cell separation, medical diagnosis, high-density information storage media, electromagnetic wave adsorption Potential applications in materials, electromagnetic devices and electromagnetic interference suppression. In addition, since the introduced magnetic nanoparticles can reduce the electrical conductivity and polarization effect of the material, the dielectric properties of the material can be affected. On the basis of the above considerations, the dispersion of magnetic nanoparticles in LDPE may reduce the formation of space charges in LDPE, and at the same time bring magnetism to the LDPE-based composite dielectric, thereby suppressing the influence of the magnetic field caused by the high-voltage DC electric field, and even possibly Broaden its applications in the fields of electromagnetic wave absorption, electromagnetic devices and electromagnetic interference suppression.
尖晶石型钴铁氧体(CoFe2O4)具有高的饱和磁化强度、高的磁晶各向异性以及良好的化学稳定性和耐磨性,在磁记录介质、磁致伸缩材料领域具有广阔的应用前景而倍受人们的关注。钴铁氧体的合成,其关键在于控制粒径的大小。目前铁氧体的合成方法有物理和化学两种方法。物理上有低温粉碎法、超声波粉碎法、高能球磨法、冲击波破碎法以及蒸汽快速冷却法、热等离子法等。物理合成制得的产物里杂质较多。因此目前合成铁氧体往往采用化学法。化学法有凝胶法、水热法、化学共沉淀法、气相沉积法等。如吴娟用水热法制备了纳米钴铁氧体与体心立方钴铁合金的复合介质。对试样进行了X射线衍射分析、观察了其形貌结构。结果表明,所得纳米颗粒具有均匀粒度分布和立方晶系的球形。穆斯堡尔谱(MS)表明合成产物由纳米钴铁氧体与体心立方钴铁合金构成。利用VSM测量复合介质的磁滞回线,表明纳米钴铁氧体与体心立方钴铁合金的复合介质具有较高的饱和磁化强度。添加了体心立方钴铁合金在钴铁氧体中有效改善了其磁性能。陈晓芸采用水热法制备纳米钴铁氧体颗粒。通过改变反应温度和钴的含量,改变钴铁氧体粒子的磁性能。XRD结果表明,温度越高,钴铁氧体晶粒尺寸越大。SEM与TEM分析结果表明纳米钴铁氧体为球形结构。M D JOSEPHSEBASTIAN等通过热分解法制备了钴铁氧体(CoxFe3-xO4),并利用X射线衍射和Mossbauer光谱技术研究了由Fe/Co变化引起的产物的Mossbauer参数、晶格参数和微晶尺寸的变化。验证了其为具有缺陷结构的纳米钴铁氧体颗粒,且发现初始前驱体氧化物中Fe/Co=3:2为最优。中国专利《一种尖晶石型铁氧体CoFe2O4纳米粉体的水热制备方法》(公开号:CN112408498A)用钴盐、铁盐和乙醇胺为原材料利用水热法制备了CoFe2O4材料;中国专利《一种CoFe2O4/g-C3N4磁性纳米材料及其制备方法》(公开号:CN106582772A)用钴盐、铁盐和乙酸钠为原材料利用高温煅烧法制备了CoFe2O4材料;《一种CoFe2O4纳米粒子的制备方法》(公开号:CN109264792A)用钴盐、铁盐和草酸盐为原材料利用高温煅烧法制备了CoFe2O4材料等;但是由于这些方法在制备CoFe2O4时均未涉及与LDPE的复合相容性问题,因而未对其进行合适的表面活性剂包覆,很难在LDPE基体中均匀分散。而目前针对能与LDPE良好复合制备磁性纳米电介质的CoFe2O4的制备与改性方法的研究还没有人进行,因此针对该方面应用需要一种能与LDPE良好复合制备磁性纳米电介质的纳米CoFe2O4的制备方法。Spinel-type cobalt ferrite (CoFe 2 O 4 ) has high saturation magnetization, high magnetocrystalline anisotropy, good chemical stability and wear resistance, and is widely used in the fields of magnetic recording media and magnetostrictive materials. It has attracted much attention due to its broad application prospects. The key to the synthesis of cobalt ferrite is to control the particle size. At present, the synthesis methods of ferrites include physical and chemical methods. Physically, there are low temperature pulverization method, ultrasonic pulverization method, high-energy ball milling method, shock wave crushing method, steam rapid cooling method, thermal plasma method, etc. There are many impurities in the products obtained by physical synthesis. Therefore, chemical methods are often used to synthesize ferrites at present. Chemical methods include gel method, hydrothermal method, chemical co-precipitation method, vapor deposition method, etc. For example, Wu Juan prepared a composite medium of nano-cobalt ferrite and body-centered cubic cobalt-iron alloy by hydrothermal method. The samples were analyzed by X-ray diffraction and their morphology and structure were observed. The results show that the obtained nanoparticles have uniform particle size distribution and spherical shape of cubic crystal system. Mössbauer spectroscopy (MS) showed that the synthesized product was composed of nano-cobalt ferrite and body-centered cubic cobalt-iron alloy. Using VSM to measure the hysteresis loop of the composite medium, it is shown that the composite medium of nano-cobalt ferrite and body-centered cubic cobalt-iron alloy has a higher saturation magnetization. The addition of body-centered cubic cobalt-iron alloy in cobalt ferrite effectively improves its magnetic properties. Chen Xiaoyun prepared nano-cobalt ferrite particles by hydrothermal method. By changing the reaction temperature and the cobalt content, the magnetic properties of the cobalt ferrite particles were changed. XRD results show that the higher the temperature, the larger the cobalt ferrite grain size. SEM and TEM analysis results show that the nano-cobalt ferrite has a spherical structure. MD JOSEPHSEBASTIAN et al. prepared cobalt ferrite (CoxFe 3 -xO 4 ) by thermal decomposition, and used X-ray diffraction and Mossbauer spectroscopy to study the Mossbauer parameters, lattice parameters and crystallites of the products caused by Fe/Co changes Variation in size. It is verified that it is nano-cobalt ferrite particles with defect structure, and it is found that Fe/Co=3:2 in the initial precursor oxide is optimal. Chinese patent "A hydrothermal preparation method of spinel-type ferrite CoFe 2 O 4 nano-powder" (publication number: CN112408498A) uses cobalt salt, iron salt and ethanolamine as raw materials to prepare CoFe 2 O by hydrothermal method 4 Materials; Chinese patent "A CoFe 2 O 4 /gC 3 N 4 Magnetic Nanomaterial and Its Preparation Method" (Publication No.: CN106582772A) used cobalt salt, iron salt and sodium acetate as raw materials to prepare CoFe 2 by high temperature calcination O 4 material; "A preparation method of CoFe 2 O 4 nanoparticles" (Publication number: CN109264792A) CoFe 2 O 4 materials etc. were prepared by high temperature calcination with cobalt salt, iron salt and oxalate as raw materials; These methods do not involve the problem of compound compatibility with LDPE when preparing CoFe 2 O 4 , so they are not coated with appropriate surfactants, and it is difficult to disperse them uniformly in the LDPE matrix. At present, there is no research on the preparation and modification method of CoFe 2 O 4 that can be well compounded with LDPE to prepare magnetic nano-dielectrics. Therefore, for this application, a nano-CoFe that can be well compounded with LDPE to prepare magnetic nano-dielectrics is needed. Preparation method of 2O4 .
发明内容SUMMARY OF THE INVENTION
本发明的目的是要解决现有CoFe2O4粉末制备工艺很难与LDPE基体具有良好相容性的问题,提供一种能与LDPE复合制备磁性纳米电介质的钴铁氧体的制备方法。本发明以硫酸钴、氯化铁和氢氧化钠为原材料,液水为反应溶液,通过水热法制备了纳米CoFe2O4颗粒,再利用不同表面活性剂对其进行表面修饰,以选择合适的表面活性剂来提高其与LDPE基体的相容性,有利于其在纳米电介质方面的应用。The purpose of the present invention is to solve the problem that the existing CoFe 2 O 4 powder preparation process is difficult to have good compatibility with LDPE matrix, and to provide a preparation method of cobalt ferrite that can be compounded with LDPE to prepare magnetic nano-dielectric. In the present invention, cobalt sulfate, ferric chloride and sodium hydroxide are used as raw materials, and liquid water is used as a reaction solution, and nano-sized CoFe 2 O 4 particles are prepared by a hydrothermal method, and then surface-modified with different surfactants to select suitable surfactant to improve its compatibility with LDPE matrix, which is beneficial to its application in nanodielectrics.
为实现上述目的,本发明采取的技术方案如下:To achieve the above object, the technical scheme adopted by the present invention is as follows:
一种能与LDPE复合制备磁性纳米电介质的钴铁氧体的制备方法,所述方法具体为:A preparation method of cobalt ferrite that can be compounded with LDPE to prepare magnetic nano-dielectric, the method is specifically:
步骤一、将CoSO4·7H2O、FeCl3·6H2O和NaOH分别溶解到去离子水中,得到溶液A、B、C;Step 1: Dissolving CoSO 4 ·7H 2 O, FeCl 3 ·6H 2 O and NaOH into deionized water respectively to obtain solutions A, B and C;
步骤二、将溶液A与B混合,在不断搅拌下滴加溶液C,直至其变成悬浮液,得到悬浮溶液D;Step 2, mix solution A and B, drip solution C under constant stirring, until it becomes a suspension, obtain suspension solution D;
步骤三、将悬浮溶液D转移至水热反应釜中,加入表面活性剂,在100~160℃条件下反应10-20h,得到反应液E;Step 3: Transfer the suspension solution D to a hydrothermal reaction kettle, add a surfactant, and react at 100-160° C. for 10-20 hours to obtain a reaction solution E;
步骤四、将反应液E冷却至室温,离心收集反应液E下层固体物质;使用蒸馏水、庚烷依次对下层固体物质清洗2次~5次,得到纳米CoFe2O4颗粒,真空烘干;所述纳米CoFe2O4颗粒的尺寸为8~20nm。Step 4: Cooling the reaction solution E to room temperature, and collecting the lower layer solid matter of the reaction solution E by centrifugation; using distilled water and heptane to clean the lower layer solid matter 2 to 5 times in turn to obtain nano-CoFe 2 O 4 particles, which are vacuum-dried; The size of the nano CoFe 2 O 4 particles is 8-20 nm.
步骤五、利用转矩流变仪,采用熔融共混法将LDPE和纳米CoFe2O4粒子复合,得到CoFe2O4/LDPE复合材料。Step 5. Using a torque rheometer, the LDPE and nano-CoFe 2 O 4 particles are compounded by a melt blending method to obtain a CoFe 2 O 4 /LDPE composite material.
本发明中,LDPE为非极性高聚物,其与纳米粒子的相容性差,在复合过程中纳米粒子极易团聚成大团簇,使得制得的复合介质中纳米粒子不是以小尺寸均匀分散,我们在制备纳米粒子的过程中加入的表面活性剂包覆在纳米粒子表面后,能够同时起到纳米粒子降低表面能和增加其与LDPE相容性的双重效果,从而使共混过程中既能使纳米粒子均匀分散、又无大规模团聚的情况,更易于实际工业化生产。In the present invention, LDPE is a non-polar high polymer, which has poor compatibility with nanoparticles, and the nanoparticles are easily agglomerated into large clusters during the compounding process, so that the nanoparticles in the prepared compound medium are not uniform in small sizes. Dispersion, after the surfactant we added during the preparation of nanoparticles is coated on the surface of the nanoparticles, it can simultaneously play the dual effect of reducing the surface energy of the nanoparticles and increasing its compatibility with LDPE, so that the blending process can be achieved. Not only can the nanoparticles be uniformly dispersed without large-scale agglomeration, it is easier for practical industrial production.
进一步地,步骤一中,所述溶液A中CoSO4、溶液B中FeCl3和溶液C中NaOH的质量分数均为1%~20%。Further, in step 1, the mass fractions of CoSO 4 in solution A, FeCl 3 in solution B and NaOH in solution C are all 1% to 20%.
进一步地,步骤二中,所述溶液A、B、C的质量比为1:2~2.5:6~10。Further, in step 2, the mass ratio of the solutions A, B, and C is 1:2-2.5:6-10.
进一步地,步骤三中,所述表面活性剂的质量分数为0.1%~3%。Further, in step 3, the mass fraction of the surfactant is 0.1% to 3%.
进一步地,步骤三中,所述表面活性剂为油酸二乙醇酰胺、油胺、蓖麻油聚氧乙烯醚、失水山梨醇脂肪酸酯、聚乙烯醇、油酸中的一种或两种。Further, in step 3, the surfactant is one or both of oleic acid diethanolamide, oleylamine, castor oil polyoxyethylene ether, sorbitan fatty acid ester, polyvinyl alcohol, and oleic acid. .
进一步地,步骤四中,所述离心转速为5000r/min~10000r/min,时间为5min~20min。Further, in step 4, the centrifugal rotation speed is 5000r/min~10000r/min, and the time is 5min~20min.
进一步地,步骤五中,所述真空烘干的温度为室温,时间为5~20min。Further, in step 5, the temperature of the vacuum drying is room temperature, and the time is 5~20min.
进一步地,步骤五中,所述CoFe2O4/LDPE复合材料中CoFe2O4的质量百分比为1%~5%。Further, in step 5, the mass percentage of CoFe 2 O 4 in the CoFe 2 O 4 /LDPE composite material is 1% to 5%.
进一步地,步骤五中,所述转矩流变仪的复合温度为100~150℃,转速设定为20~200r/min。Further, in step 5, the composite temperature of the torque rheometer is 100-150° C., and the rotational speed is set at 20-200 r/min.
本发明相对于现有技术的有益效果为:The beneficial effects of the present invention relative to the prior art are:
一、本发明中制得的CoFe2O4在包覆的表面活性剂的作用下能与LDPE基体良好相容,应用于电气绝缘领域,其分散粒径在100nm~150nm之间。1. The CoFe 2 O 4 prepared in the present invention has good compatibility with the LDPE matrix under the action of the coated surfactant, and is used in the field of electrical insulation, and its dispersed particle size is between 100nm and 150nm.
二、本发明方法简单,容易控制其生成的颗粒尺寸和结晶度,且原料易得,操作简单,成本低廉,适合大规模生产;2. The method of the invention is simple, the particle size and crystallinity of the generated particles are easy to control, the raw materials are easily obtained, the operation is simple, the cost is low, and it is suitable for large-scale production;
三、本发明制备的CoFe2O4粒径均一,可根据使用需要控制其粒径大小。3. The particle size of CoFe 2 O 4 prepared by the present invention is uniform, and its particle size can be controlled according to the needs of use.
四、本发明制备的CoFe2O4的尺寸在8nm~20nm,有良好的结晶性和分散性。4. The size of CoFe 2 O 4 prepared by the present invention is 8nm-20nm, and has good crystallinity and dispersibility.
五、用CoSO4·7H2O、FeCl3·6H2O和NaOH为原材料,利用水热法得到能与LDPE基体相容性良好的纳米CoFe2O4颗粒;5. Using CoSO 4 ·7H 2 O, FeCl 3 ·6H 2 O and NaOH as raw materials, using hydrothermal method to obtain nano CoFe 2 O 4 particles with good compatibility with LDPE matrix;
六、在水热反应时利用添加合适的表面活性剂来同时达到控制CoFe2O4纳米颗粒尺寸和提高其与LDPE基体相容性的双重效果,扩大了其在电气绝缘领域的应用。6. In the hydrothermal reaction, adding suitable surfactants can simultaneously achieve the dual effect of controlling the size of CoFe 2 O 4 nanoparticles and improving its compatibility with the LDPE matrix, expanding its application in the field of electrical insulation.
附图说明Description of drawings
图1为实施例1制备的CoFe2O4纳米颗粒透射电镜图;1 is a transmission electron microscope image of CoFe 2 O 4 nanoparticles prepared in Example 1;
图2为实施例1制备的CoFe2O4纳米颗粒XRD图;Fig. 2 is the XRD pattern of CoFe 2 O 4 nanoparticles prepared in Example 1;
图3为实施例1制备的CoFe2O4/LDPE复合电介质的SEM图;3 is a SEM image of the CoFe 2 O 4 /LDPE composite dielectric prepared in Example 1;
图4为对比例2制备的CoFe2O4纳米颗粒透射电镜图。FIG. 4 is a transmission electron microscope image of CoFe 2 O 4 nanoparticles prepared in Comparative Example 2. FIG.
具体实施方式Detailed ways
下面结合实施例和附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修正或等同替换,而不脱离本发明技术方案的精神范围,均应涵盖在本发明的保护范围之中。The technical solutions of the present invention will be further described below in conjunction with the embodiments and the accompanying drawings, but are not limited thereto. Any modification or equivalent replacement of the technical solutions of the present invention without departing from the spirit and scope of the technical solutions of the present invention should be included in the within the protection scope of the present invention.
实施例1:Example 1:
一种能与LDPE基体相容性良好的CoFe2O4的制备方法,具体是按以下步骤完成的:A preparation method of CoFe 2 O 4 with good compatibility with LDPE matrix, which is specifically completed according to the following steps:
一、将CoSO4·7H2O、FeCl3·6H2O和NaOH分别溶解到去离子水中,得到溶液CoSO4、FeCl3和NaOH溶液;所述的CoSO4溶液中CoSO4、FeCl3溶液中FeCl3和NaOH溶液中NaOH的质量分数均为5%~20%;1. Dissolve CoSO 4 ·7H 2 O, FeCl 3 ·6H 2 O and NaOH into deionized water respectively to obtain solutions CoSO 4 , FeCl 3 and NaOH solutions; in the CoSO 4 solution, CoSO 4 and FeCl 3 solutions The mass fraction of NaOH in FeCl 3 and NaOH solution is 5%~20%;
二、将溶液CoSO4和FeCl3溶液混合后,在不断搅拌下滴加NaOH溶液,直至其变成悬浮液,得到Co(OH)2和Fe(OH)3混合悬浮溶液;CoSO4溶液、FeCl3溶液和NaOH溶液的质量比为1:2~2.5:6~102. After mixing the solution CoSO 4 and FeCl 3 solution, add NaOH solution dropwise under constant stirring until it becomes a suspension to obtain Co(OH) 2 and Fe(OH) 3 mixed suspension solution; CoSO 4 solution, FeCl 3 The mass ratio of the solution and the NaOH solution is 1:2~2.5:6~10
三、将Co(OH)2和Fe(OH)3混合悬浮溶液转移至水热反应釜中,加入表面活性剂,在100~160℃条件下反应10~20h,得到CoFe2O4悬浊液;所述的表面活性剂的质量分数为0.5%~3%;所述的表面活性剂为油酸二乙醇酰胺、油胺、蓖麻油聚氧乙烯醚、失水山梨醇脂肪酸酯、聚乙烯醇、油酸中的一种或两种;随反应时间延长晶粒形状越均一、但尺寸越大。3. Transfer the mixed suspension solution of Co(OH) 2 and Fe(OH) 3 to the hydrothermal reactor, add surfactant, and react at 100~160℃ for 10~20h to obtain CoFe 2 O 4 suspension The mass fraction of the surfactant is 0.5% to 3%; the surfactant is oleic acid diethanolamide, oleylamine, castor oil polyoxyethylene ether, sorbitan fatty acid ester, polyethylene One or both of alcohol and oleic acid; with the prolongation of reaction time, the grain shape is more uniform, but the size is larger.
四、将CoFe2O4悬浊液冷却至室温,在离心速度为5000r/min~10000r/min条件下离心5min~20min,将上层清液倒出,弃除,收集下层固体物质;使用蒸馏水、庚烷依次对收集的下层固体物质清洗3次~5次,得到纳米CoFe2O4颗粒,放入真空烘箱室温真空烘干8~20h;4. Cool the CoFe 2 O 4 suspension to room temperature, centrifuge for 5 min to 20 min at a centrifugal speed of 5000 r/min to 10000 r/min, pour out the supernatant, discard it, and collect the lower solid matter; use distilled water, Heptane sequentially washes the collected lower layer solid matter for 3 to 5 times to obtain nano CoFe 2 O 4 particles, which are placed in a vacuum oven for vacuum drying at room temperature for 8 to 20 hours;
五、利用转矩流变仪,采用熔融共混法将低密度聚乙烯(LDPE)和纳米CoFe2O4粒子在110~130℃条件下复合,得到相容性良好的CoFe2O4/LDPE复合材料。所述CoFe2O4/LDPE复合材料中CoFe2O4的质量百分比为1%~5%。所述的转矩流变仪的转速设定为100~200r/min。5. Using a torque rheometer, the low-density polyethylene (LDPE) and nano-CoFe 2 O 4 particles were compounded at 110-130 ℃ by melt blending method to obtain CoFe 2 O 4 /LDPE with good compatibility composite material. The mass percentage of CoFe 2 O 4 in the CoFe 2 O 4 /LDPE composite material is 1% to 5%. The rotational speed of the torque rheometer is set at 100-200 r/min.
如图1所示,制备的CoFe2O4纳米颗粒为类球形,尺寸基本在10nm左右。如图2所示,为XRD图,可以看出,17.51°、30.03°、35.57°、43.75°、53.54°57.48°和62.06°处分别对应(111)、(220)、(311)、(400)、(433)、(511)和(440)峰,这与CoFe2O4(JCPDS-22-1086)标准卡片吻合,证明制备的材料是CoFe2O4。从半峰宽可以看出制备的材料是8~12nm左右。将实施例1制备的CoFe2O4纳米颗粒与LDPE按1wt%复合后,压片脆断测SEM得到图3,由图3可知,CoFe2O4粒子在LDPE基体中以100nm左右均匀分散。As shown in Fig. 1, the prepared CoFe 2 O 4 nanoparticles are quasi-spherical, and the size is basically around 10 nm. As shown in Figure 2, which is the XRD pattern, it can be seen that 17.51°, 30.03°, 35.57°, 43.75°, 53.54°, 57.48° and 62.06° correspond to (111), (220), (311), (400 ), (433), (511) and (440) peaks, which are in agreement with the CoFe 2 O 4 (JCPDS-22-1086) standard card, which proves that the prepared material is CoFe 2 O 4 . It can be seen from the half-peak width that the prepared material is about 8-12 nm. After compounding the CoFe 2 O 4 nanoparticles prepared in Example 1 with LDPE at 1 wt%, the SEM of the tablet embrittlement test shows Figure 3. It can be seen from Figure 3 that the CoFe 2 O 4 particles are uniformly dispersed in the LDPE matrix at about 100 nm.
对比例1:Comparative Example 1:
本对比例与实施例1的不同点是:步骤一中,NaOH溶液中替换为等质量分数的NH3·H2O;步骤二中,所述的将溶液CoSO4和FeCl3溶液混合后,在不断搅拌下滴加NH3·H2O;如图4所示,得到的CoFe2O4粒径约为50nm,且形貌不太均匀。其它步骤及参数与实施例1均相同。The difference between this comparative example and Example 1 is: in step 1, the NaOH solution is replaced with NH 3 ·H 2 O of equal mass fraction; in step 2, after mixing the solution CoSO 4 and FeCl 3 solution, NH 3 ·H 2 O was added dropwise under constant stirring; as shown in FIG. 4 , the particle size of the obtained CoFe 2 O 4 was about 50 nm, and the morphology was not uniform. Other steps and parameters are the same as in Example 1.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210349259.1A CN114906877A (en) | 2022-04-01 | 2022-04-01 | Preparation method of cobalt ferrite capable of being compounded with LDPE (Low-Density polyethylene) to prepare magnetic nano dielectric medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210349259.1A CN114906877A (en) | 2022-04-01 | 2022-04-01 | Preparation method of cobalt ferrite capable of being compounded with LDPE (Low-Density polyethylene) to prepare magnetic nano dielectric medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114906877A true CN114906877A (en) | 2022-08-16 |
Family
ID=82763027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210349259.1A Pending CN114906877A (en) | 2022-04-01 | 2022-04-01 | Preparation method of cobalt ferrite capable of being compounded with LDPE (Low-Density polyethylene) to prepare magnetic nano dielectric medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114906877A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2841269C2 (en) * | 2023-10-03 | 2025-06-05 | Общество с ограниченной ответственностью "КАТАЛИЗАТОР" | Method of producing cobalt ferrite |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101186342A (en) * | 2007-12-12 | 2008-05-28 | 中国科学院长春应用化学研究所 | Synthetic method of ferric oxide and its composite oxide nanocrystals coated with organic ligands |
CN101693616A (en) * | 2009-10-29 | 2010-04-14 | 北京理工大学 | Method for preparing magnetic spinel ferrite hollow ball in one-step method |
CN103112904A (en) * | 2013-02-25 | 2013-05-22 | 哈尔滨理工大学 | A kind of preparation method of nano-Fe3O4 powder that can be combined with polyethylene to prepare nano-dielectric |
CN103172925A (en) * | 2013-04-19 | 2013-06-26 | 哈尔滨理工大学 | Method for modifying polyethylene composite material by use of multiferroic nano bismuth ferrite particles |
CN103435893A (en) * | 2013-08-28 | 2013-12-11 | 国家电网公司 | Transmission line lead anti-icing compound coil based on ferrite and preparation method thereof |
FR3020766A1 (en) * | 2014-05-07 | 2015-11-13 | Pylote | INDIVIDUALIZED INORGANIC PARTICLES |
CN106277071A (en) * | 2015-06-11 | 2017-01-04 | 哈尔滨理工大学 | A kind of preparation method of nanometer CoFe2O4 powder that can be combined with polyethylene to prepare nanometer dielectric |
CN109054086A (en) * | 2018-09-05 | 2018-12-21 | 四川力智久创知识产权运营有限公司 | A kind of method of modifying improving graphene oxide and polyolefine material compatibility |
-
2022
- 2022-04-01 CN CN202210349259.1A patent/CN114906877A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101186342A (en) * | 2007-12-12 | 2008-05-28 | 中国科学院长春应用化学研究所 | Synthetic method of ferric oxide and its composite oxide nanocrystals coated with organic ligands |
CN101693616A (en) * | 2009-10-29 | 2010-04-14 | 北京理工大学 | Method for preparing magnetic spinel ferrite hollow ball in one-step method |
CN103112904A (en) * | 2013-02-25 | 2013-05-22 | 哈尔滨理工大学 | A kind of preparation method of nano-Fe3O4 powder that can be combined with polyethylene to prepare nano-dielectric |
CN103172925A (en) * | 2013-04-19 | 2013-06-26 | 哈尔滨理工大学 | Method for modifying polyethylene composite material by use of multiferroic nano bismuth ferrite particles |
CN103435893A (en) * | 2013-08-28 | 2013-12-11 | 国家电网公司 | Transmission line lead anti-icing compound coil based on ferrite and preparation method thereof |
FR3020766A1 (en) * | 2014-05-07 | 2015-11-13 | Pylote | INDIVIDUALIZED INORGANIC PARTICLES |
CN106277071A (en) * | 2015-06-11 | 2017-01-04 | 哈尔滨理工大学 | A kind of preparation method of nanometer CoFe2O4 powder that can be combined with polyethylene to prepare nanometer dielectric |
CN109054086A (en) * | 2018-09-05 | 2018-12-21 | 四川力智久创知识产权运营有限公司 | A kind of method of modifying improving graphene oxide and polyolefine material compatibility |
Non-Patent Citations (2)
Title |
---|
M. JALALIAN ET AL.: ""The effect of poly vinyl alcohol (PVA) surfactant on phase formation and magnetic properties of hydrothermally synthesized CoFe2O4 nanoparticles"", 《JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS》 * |
张涛 等: "《典型尾矿高附加值利用关键技术研究与示范》", 31 December 2015, 天津大学出版社 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2841269C2 (en) * | 2023-10-03 | 2025-06-05 | Общество с ограниченной ответственностью "КАТАЛИЗАТОР" | Method of producing cobalt ferrite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gao et al. | Controlled reduction synthesis of yolk-shell magnetic@ void@ C for electromagnetic wave absorption | |
Li et al. | Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures | |
Wang et al. | Controlled synthesis of Fe3O4@ SnO2/RGO nanocomposite for microwave absorption enhancement | |
Zhao et al. | A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber | |
Gholampoor et al. | Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method | |
Liu et al. | Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance | |
Xing et al. | The similar Cole-Cole semicircles and microwave absorption of Hexagonal Co/C composites | |
Liu et al. | Controllable synthesis and enhanced microwave absorption properties of silane-modified Ni 0.4 Zn 0.4 Co 0.2 Fe 2 O 4 nanocomposites covered with reduced graphene oxide | |
Zhao et al. | Green synthesis and enhanced microwave absorption property of reduced graphene oxide-SrFe12O19 nanocomposites | |
Liu et al. | Fabrication and microwave absorption of reduced graphene oxide/Ni0. 4Zn0. 4Co0. 2Fe2O4 nanocomposites | |
Wang et al. | Synthesis of Fe3O4@ SiO2@ ZnO core–shell structured microspheres and microwave absorption properties | |
Sivakumar et al. | Structural characterization and dielectric studies of superparamagnetic iron oxide nanoparticles | |
Wang et al. | Synthesis and growth mechanism of 3D α-MnO 2 clusters and their application in polymer composites with enhanced microwave absorption properties | |
Mohammed et al. | Recent progress in hexagonal ferrites based composites for microwave absorption | |
Selvi et al. | Enhanced electrical and magnetic properties of CuO/MgO nanocomposites | |
Zhao et al. | Preparation and enhanced microwave absorption properties of Ni microspheres coated with Sn6O4 (OH) 4 nanoshells | |
Wang et al. | Synthesis of flower-like BaTiO 3/Fe 3 O 4 hierarchically structured particles and their electrorheological and magnetic properties | |
Peibo et al. | The influence of MWCNTs on microwave absorption properties of Co/C and Ba-Hexaferrite hybrid nanocomposites | |
Li et al. | Hollow CoFe2O4–Co3Fe7 microspheres applied in electromagnetic absorption | |
WO2015194647A1 (en) | Magnetic iron oxide nanopowder and process for producing same | |
CN106047290A (en) | Method for uniformly coating carbon nano tube with nano ferroferric oxide magnetic particles | |
He et al. | Preparation of reduced graphene oxide coated flaky carbonyl iron composites and their excellent microwave absorption properties | |
Peng et al. | Synthesis and microwave absorption properties of Fe3O4@ BaTiO3/reduced graphene oxide nanocomposites | |
Dai et al. | Nickel iron layered double hydroxide nanostructures composited with carbonyl iron powder for microwave absorption | |
Ge et al. | Synthesis and electromagnetic absorption properties of CeO2@ Fe composites with core-shell structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220816 |