CN114895094A - Three-stage double isolation voltage sampling method and energy storage BMS device - Google Patents
Three-stage double isolation voltage sampling method and energy storage BMS device Download PDFInfo
- Publication number
- CN114895094A CN114895094A CN202210493906.6A CN202210493906A CN114895094A CN 114895094 A CN114895094 A CN 114895094A CN 202210493906 A CN202210493906 A CN 202210493906A CN 114895094 A CN114895094 A CN 114895094A
- Authority
- CN
- China
- Prior art keywords
- voltage
- isolation
- chip
- dividing resistor
- sampling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
- G01R31/387—Determining ampere-hour charge capacity or SoC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/005—Detection of state of health [SOH]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Secondary Cells (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
技术领域technical field
本公开涉及储能BMS技术领域,尤其涉及一种三段式双隔离电压采样方法及储能BMS装置。The present disclosure relates to the technical field of energy storage BMS, and in particular, to a three-stage double isolation voltage sampling method and an energy storage BMS device.
背景技术Background technique
当前储能系统由多个电池簇组成,单个电池簇由多个电池串联组成,电池簇中配置有储能BMS(BATTERY MANAGEMENT SYSTEM)装置,储能BMS装置用以检测单体电芯和整簇电池的总电压、电流、温度等数据,同时进行SOC(State Of Charge,电池剩余电量百分比)、SOH(State Of Health,电池健康度)、充放电量等关键参数的计算,并根据检测和计算结果进行电池簇的充放电控制、保护、告警等工作。随着储能系统的发展,为了进一步提高储能系统的转换效率,电池簇的电池串联数量越来多,整个电池簇的总电压等级也越来越高,目前已由1000V提高到1500V等级。The current energy storage system consists of multiple battery clusters. A single battery cluster consists of multiple batteries connected in series. The battery cluster is equipped with an energy storage BMS (BATTERY MANAGEMENT SYSTEM) device. The energy storage BMS device is used to detect the single cell and the whole cluster. The total voltage, current, temperature and other data of the battery, and the calculation of key parameters such as SOC (State Of Charge, percentage of remaining battery power), SOH (State Of Health, battery health), charge and discharge capacity, etc., and based on detection and calculation As a result, the charge and discharge control, protection and alarm of the battery cluster are carried out. With the development of the energy storage system, in order to further improve the conversion efficiency of the energy storage system, the number of batteries connected in series in the battery cluster is increasing, and the total voltage level of the entire battery cluster is also getting higher and higher, which has been raised from 1000V to 1500V at present.
当前储能BMS装置中配置有电池簇总电压检测电路,储能BMS装置检测总电压后用以估算电池簇SOC、SOH、充放电量,并根据检测和计算结果进行充放电管理、保护、告警等。当前储能BMS装置的电池簇总电压检测电路主要采用一级电阻分压形式,通过分压电阻将电池簇直流高电压转换成储能BMS装置中处理芯片例如MCU(Microcontroller Unit,微控制单元)可接受的直流低电压模拟信号接入到处理芯片的ADC引脚,处理芯片通过内部ADC对直流电压模拟进行数字信号转换。The current energy storage BMS device is equipped with a battery cluster total voltage detection circuit. After the energy storage BMS device detects the total voltage, it is used to estimate the battery cluster SOC, SOH, charge and discharge capacity, and perform charge and discharge management, protection, and alarm according to the detection and calculation results. Wait. At present, the total voltage detection circuit of the battery cluster in the energy storage BMS device mainly adopts the form of a first-level resistor divider, and the DC high voltage of the battery cluster is converted into the processing chip in the energy storage BMS device through the voltage dividing resistor, such as MCU (Microcontroller Unit, micro control unit) Acceptable DC low voltage analog signal is connected to the ADC pin of the processing chip, and the processing chip performs digital signal conversion on the DC voltage analog through the internal ADC.
然而随着电池簇总电压由1000V等级提高到1500V等级,对于MCU的ADC增加了500V的采样量程,电池簇总电压的采样精度则对应的降低,采样精度的降低对于电池簇SOC、SOH、充放电量等关键参数的估算造成了很大的误差,以至于造成充放电管理策略运行不准确、故障保护及告警误动作或不动作等问题发生。However, as the total voltage of the battery cluster increases from 1000V to 1500V, the ADC of the MCU increases the sampling range of 500V, and the sampling accuracy of the total voltage of the battery cluster decreases correspondingly. The estimation of key parameters such as the discharge volume has caused a large error, so that problems such as inaccurate operation of the charge and discharge management strategy, fault protection and alarm malfunction or no action occur.
同时,当前储能BMS装置对于电池簇总电压的检测电路中,通过电阻对电池簇总电压进行分压后直接将分压后的低电压信号接入到储能BMS装置的处理芯片的引脚,当电池簇被其他设备干扰或有冲击信号产生时,干扰信号和冲击信号则会直接施加到处理芯片的引脚,以至于造成处理芯片的损坏。At the same time, in the current energy storage BMS device's detection circuit for the total voltage of the battery cluster, the total voltage of the battery cluster is divided by a resistor, and the divided low-voltage signal is directly connected to the pins of the processing chip of the energy storage BMS device. , when the battery cluster is interfered by other devices or a shock signal is generated, the interference signal and shock signal will be directly applied to the pins of the processing chip, so as to cause damage to the processing chip.
发明内容SUMMARY OF THE INVENTION
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的第一个目的在于提出一种三段式双隔离电压采样储能BMS装置,以解决现有技术中电池簇总电压的采样精度不高以及装置安全性不高的问题。The present disclosure aims to solve one of the technical problems in the related art at least to a certain extent. Therefore, the first purpose of the present disclosure is to propose a three-stage double-isolated voltage sampling energy storage BMS device to solve the problems of low sampling accuracy of the total voltage of the battery cluster and low device safety in the prior art.
本公开的第二个目的在于提出一种三段式双隔离电压采样方法。The second objective of the present disclosure is to propose a three-stage dual isolation voltage sampling method.
为了实现上述目的,本公开第一方面实施例提供了一种三段式双隔离电压采样储能BMS装置,包括:依次连接的一级分压电路、二级分压电路、模拟信号隔离电路、ADC采样芯片、磁隔离芯片和处理芯片,其中,In order to achieve the above purpose, the embodiment of the first aspect of the present disclosure provides a three-stage dual-isolation voltage sampling energy storage BMS device, including: a first-stage voltage divider circuit, a second-stage voltage divider circuit, an analog signal isolation circuit, ADC sampling chip, magnetic isolation chip and processing chip, among which,
所述一级分压电路与电池簇连接,所述一级分压电路,用于对电池簇总电压进行分压获得第一中间电压;The first-level voltage divider circuit is connected to the battery cluster, and the first-level voltage divider circuit is used to divide the total voltage of the battery cluster to obtain a first intermediate voltage;
所述二级分压电路,用于对所述第一中间电压进行分压获得第二中间电压;the two-stage voltage divider circuit, configured to divide the first intermediate voltage to obtain a second intermediate voltage;
所述模拟信号隔离电路,用于对所述第二中间电压进行隔离处理获得第一隔离电压;The analog signal isolation circuit is used for isolating the second intermediate voltage to obtain a first isolation voltage;
所述ADC采样芯片,用于基于所述第一隔离电压获得采样电压;the ADC sampling chip for obtaining a sampling voltage based on the first isolation voltage;
所述磁隔离芯片,用于对所述采样电压进行隔离处理获得第二隔离电压;The magnetic isolation chip is used for isolating the sampling voltage to obtain a second isolation voltage;
所述处理芯片,用于基于所述第二隔离电压计算得到所述电池簇总电压。The processing chip is configured to calculate and obtain the total voltage of the battery cluster based on the second isolation voltage.
在本公开的一个实施例中,所述一级分压电路与所述电池簇并联,所述一级分压电路由第一分压电阻、第二分压电阻和第三分压电阻串联形成。In an embodiment of the present disclosure, the first-stage voltage divider circuit is connected in parallel with the battery cluster, and the first-stage voltage divider is formed by connecting a first voltage dividing resistor, a second voltage dividing resistor and a third voltage dividing resistor in series .
在本公开的一个实施例中,所述二级分压电路包括依次串联的第四分压电阻、第五分压电阻、第六分压电阻、第七分压电阻、第八分压电阻和第九分压电阻,所述第四分压电阻和所述第五分压电阻与所述第一分压电阻并联,所述第六分压电阻和所述第七分压电阻与所述第二分压电阻并联,所述第八分压电阻和所述第九分压电阻与所述第三分压电阻并联。In an embodiment of the present disclosure, the two-stage voltage dividing circuit includes a fourth voltage dividing resistor, a fifth voltage dividing resistor, a sixth voltage dividing resistor, a seventh voltage dividing resistor, an eighth voltage dividing resistor and The ninth voltage dividing resistor, the fourth voltage dividing resistor and the fifth voltage dividing resistor are connected in parallel with the first voltage dividing resistor, and the sixth voltage dividing resistor and the seventh voltage dividing resistor are connected with the first voltage dividing resistor. Two voltage dividing resistors are connected in parallel, and the eighth voltage dividing resistor and the ninth voltage dividing resistor are connected in parallel with the third voltage dividing resistor.
在本公开的一个实施例中,所述模拟信号隔离电路包括第一模拟隔离器、第二模拟隔离器、第三模拟隔离器,所述第四分压电阻两端连接所述第一模拟隔离器,所述第六分压电阻两端连接所述第二模拟隔离器,所述第八分压电阻两端连接所述第三模拟隔离器。In an embodiment of the present disclosure, the analog signal isolation circuit includes a first analog isolator, a second analog isolator, and a third analog isolator, and both ends of the fourth voltage dividing resistor are connected to the first analog isolator Two ends of the sixth voltage dividing resistor are connected to the second analog isolator, and both ends of the eighth voltage dividing resistor are connected to the third analog isolator.
在本公开的一个实施例中,所述处理芯片,用于:基于所述第二隔离电压计算得到所述第二中间电压,基于所述第二中间电压计算得到所述第一中间电压,基于所述第一中间电压计算得到所述电池簇总电压。In an embodiment of the present disclosure, the processing chip is configured to: calculate and obtain the second intermediate voltage based on the second isolation voltage, calculate and obtain the first intermediate voltage based on the second intermediate voltage, and calculate the first intermediate voltage based on the second isolation voltage. The first intermediate voltage is calculated to obtain the total voltage of the battery cluster.
在本公开的一个实施例中,所述第一模拟隔离器、所述第二模拟隔离器、所述第三模拟隔离器的型号均为TE6664N。In an embodiment of the present disclosure, the models of the first analog isolator, the second analog isolator, and the third analog isolator are all TE6664N.
在本公开的一个实施例中,所述ADC采样芯片的型号为ADCS8162、所述磁隔离芯片的型号为BLD7741。In an embodiment of the present disclosure, the model of the ADC sampling chip is ADCS8162, and the model of the magnetic isolation chip is BLD7741.
在本公开的一个实施例中,所述处理芯片采用型号为GD32F407的MCU芯片。In an embodiment of the present disclosure, the processing chip adopts an MCU chip whose model is GD32F407.
为了实现上述目的,本公开第二方面实施例提供了一种三段式双隔离电压采样方法,三段式双隔离电压采样方法利用上述任意实施例中的三段式双隔离电压采样储能BMS装置实现,包括:In order to achieve the above purpose, a second aspect of the present disclosure provides a three-stage double-isolation voltage sampling method, which utilizes the three-stage double-isolation voltage sampling energy storage BMS in any of the above embodiments Device implementation, including:
对电池簇总电压进行分压获得第一中间电压;Divide the total voltage of the battery cluster to obtain a first intermediate voltage;
对所述第一中间电压进行分压获得第二中间电压;Dividing the first intermediate voltage to obtain a second intermediate voltage;
将所述第二中间电压输入模拟信号隔离电路进行隔离获得第一隔离电压;inputting the second intermediate voltage into an analog signal isolation circuit for isolation to obtain a first isolation voltage;
对所述第一隔离电压进行ADC采样获得采样电压;performing ADC sampling on the first isolation voltage to obtain a sampling voltage;
将所述采样电压输入磁隔离芯片进行隔离获得第二隔离电压;inputting the sampling voltage into the magnetic isolation chip for isolation to obtain a second isolation voltage;
基于所述第二隔离电压计算得到所述电池簇总电压。The total voltage of the battery cluster is calculated based on the second isolation voltage.
在本公开的一个实施例中,所述基于所述第二隔离电压计算得到所述电池簇总电压,包括:基于第二隔离电压计算得到所述第二中间电压,基于所述第二中间电压计算得到所述第一中间电压,基于所述第一中间电压计算得到所述电池簇总电压。In an embodiment of the present disclosure, the calculating and obtaining the total voltage of the battery cluster based on the second isolation voltage includes: calculating and obtaining the second intermediate voltage based on the second isolation voltage, based on the second intermediate voltage The first intermediate voltage is obtained by calculation, and the total voltage of the battery cluster is calculated and obtained based on the first intermediate voltage.
在本公开一个或多个实施例中,利用依次连接的一级分压电路、二级分压电路、模拟信号隔离电路、ADC采样芯片、磁隔离芯片和处理芯片,一级分压电路对电池簇总电压进行分压获得第一中间电压;二级分压电路对第一中间电压进行分压获得第二中间电压;模拟信号隔离电路对第二中间电压进行隔离处理获得第一隔离电压;ADC采样芯片基于第一隔离电压获得采样电压;磁隔离芯片对采样电压进行隔离处理获得第二隔离电压;处理芯片基于第二隔离电压计算得到电池簇总电压,在这种情况下,利用一级分压电路、二级分压电路对电池簇总电压进行分段采样提高了电池簇总电压的采样精度,另外通过模拟信号隔离电路、磁隔离芯片进行两级隔离处理,提高了储能BMS装置的安全性。In one or more embodiments of the present disclosure, using a first-stage voltage divider circuit, a second-stage voltage divider circuit, an analog signal isolation circuit, an ADC sampling chip, a magnetic isolation chip, and a processing chip, which are connected in sequence, the first-stage voltage divider circuit is used for the battery. The total cluster voltage is divided to obtain a first intermediate voltage; the secondary voltage divider circuit divides the first intermediate voltage to obtain a second intermediate voltage; the analog signal isolation circuit performs isolation processing on the second intermediate voltage to obtain a first isolation voltage; ADC The sampling chip obtains the sampling voltage based on the first isolation voltage; the magnetic isolation chip performs isolation processing on the sampling voltage to obtain the second isolation voltage; and the processing chip calculates the total voltage of the battery cluster based on the second isolation voltage. The total voltage of the battery cluster is sampled by the voltage circuit and the two-stage voltage divider circuit, which improves the sampling accuracy of the total voltage of the battery cluster. In addition, the analog signal isolation circuit and the magnetic isolation chip are used for two-stage isolation processing, which improves the performance of the energy storage BMS device. safety.
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。Additional aspects and advantages of the present disclosure will be set forth, in part, from the following description, and in part will be apparent from the following description, or may be learned by practice of the present disclosure.
附图说明Description of drawings
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present disclosure will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1为现有技术的电路示意图;1 is a schematic circuit diagram of the prior art;
图2为本公开实施例所提供的一种三段式双隔离电压采样储能BMS装置的框图;FIG. 2 is a block diagram of a three-stage dual-isolation voltage sampling energy storage BMS device according to an embodiment of the present disclosure;
图3为本公开实施例所提供的一种三段式双隔离电压采样储能BMS装置的电路图;3 is a circuit diagram of a three-stage dual-isolation voltage sampling energy storage BMS device according to an embodiment of the present disclosure;
图4为本公开实施例所提供的一种三段式双隔离电压采样方法的流程示意图。FIG. 4 is a schematic flowchart of a three-stage dual isolation voltage sampling method according to an embodiment of the present disclosure.
具体实施方式Detailed ways
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。Exemplary embodiments will be described in detail herein, examples of which are illustrated in the accompanying drawings. Where the following description refers to the drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the following exemplary embodiments are not intended to represent all implementations consistent with embodiments of the present disclosure. Rather, they are merely examples of apparatus and methods consistent with some aspects of embodiments of the present disclosure, as recited in the appended claims.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structures, materials, or features are included in at least one embodiment or example of the present disclosure. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。还应当理解,本公开中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. In the description of the present disclosure, "plurality" means at least two, such as two, three, etc., unless expressly and specifically defined otherwise. It will also be understood that, as used in this disclosure, the term "and/or" refers to and includes any and all possible combinations of one or more of the associated listed items.
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。Embodiments of the present disclosure are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, and are intended to explain the present disclosure and should not be construed as a limitation of the present disclosure.
图1为现有技术的电路示意图。当前储能系统由多个电池簇组成,单个电池簇由多个电池串联组成(参见图1),电池簇中还配置有储能BMS装置,储能BMS装置用以检测单体电芯和整簇电池的总电压、电流、温度等数据,同时进行SOC、SOH、充放电量等关键参数的计算,并根据检测和计算结果进行电池簇的充放电控制、保护、告警等工作。如图1所示,现有的储能BMS装置包括由分压电阻Ra和分压电阻Rb构成的一级电阻分压结构,利用分压电阻Ra和分压电阻Rb将电池簇直流高电压转换成储能BMS装置中处理芯片可接受的直流低电压模拟信号接入到处理芯片的ADC引脚,处理芯片通过内部ADC对直流电压模拟进行数字信号转换。然而随着储能系统的发展,为了进一步提高储能系统的转换效率,电池簇的电池串联数量越来多,整个电池簇的总电压等级也越来越高,例如目前大多已由1000V提高到1500V等级。随着电池簇总电压由1000V等级提高到1500V等级,对于处理芯片的ADC增加了500V的采样量程,电池簇总电压的采样精度则对应的降低,从而对于电池簇SOC、SOH、充放电量等关键参数的估算造成了很大的误差,以至于造成充放电管理策略运行不准确、故障保护及告警误动作或不动作等问题发生。另外,由于现有技术直接将分压后的低电压信号接入到储能BMS装置的处理芯片的引脚,当电池簇被其他设备干扰或有冲击信号产生时,干扰信号和冲击信号则会直接施加到处理芯片的引脚,以至于造成处理芯片的损坏,从而使得储能BMS装置的安全性不够高。因此,提高电池簇总电压的采样精度以及装置安全性十分重要。FIG. 1 is a schematic circuit diagram of the prior art. The current energy storage system consists of multiple battery clusters, and a single battery cluster consists of multiple batteries connected in series (see Figure 1). The battery cluster is also equipped with an energy storage BMS device. The total voltage, current, temperature and other data of the cluster battery are calculated, and key parameters such as SOC, SOH, and charge and discharge capacity are calculated at the same time, and the charge and discharge control, protection, and alarm of the battery cluster are performed according to the detection and calculation results. As shown in Fig. 1, the existing energy storage BMS device includes a first-stage resistance voltage dividing structure composed of a voltage dividing resistor Ra and a voltage dividing resistor Rb, and the voltage dividing resistor Ra and the voltage dividing resistor Rb are used to convert the DC high voltage of the battery cluster. The DC low voltage analog signal acceptable to the processing chip in the energy storage BMS device is connected to the ADC pin of the processing chip, and the processing chip performs digital signal conversion on the DC voltage analog through the internal ADC. However, with the development of the energy storage system, in order to further improve the conversion efficiency of the energy storage system, the number of batteries connected in series in the battery cluster is increasing, and the total voltage level of the entire battery cluster is also getting higher and higher. 1500V class. As the total voltage of the battery cluster increases from 1000V to 1500V, the ADC of the processing chip increases the sampling range of 500V, and the sampling accuracy of the total voltage of the battery cluster decreases correspondingly. The estimation of key parameters has resulted in large errors, so that problems such as inaccurate operation of charge and discharge management strategies, fault protection and alarm malfunction or non-action occur. In addition, because the prior art directly connects the divided low-voltage signal to the pins of the processing chip of the energy storage BMS device, when the battery cluster is interfered by other devices or an impulse signal is generated, the interfering signal and impulse signal will It is directly applied to the pins of the processing chip, so that the processing chip is damaged, so that the safety of the energy storage BMS device is not high enough. Therefore, it is very important to improve the sampling accuracy of the total voltage of the battery cluster and the safety of the device.
在第一个实施例中,图2为本公开实施例所提供的一种三段式双隔离电压采样储能BMS装置的框图;图3为本公开实施例所提供的一种三段式双隔离电压采样储能BMS装置的电路图。本公开涉及的三段式双隔离电压采样储能BMS装置可以简称为储能BMS装置。储能BMS(BATTERY MANAGEMENT SYSTEM)装置即储能电池管理装置。该三段式双隔离电压采样储能BMS装置解决了现有技术中电池簇总电压的采样精度不高以及装置安全性不高的问题。In the first embodiment, FIG. 2 is a block diagram of a three-stage dual-isolation voltage sampling energy storage BMS device provided by an embodiment of the present disclosure; Circuit diagram of the isolated voltage sampling energy storage BMS device. The three-stage dual-isolation voltage sampling energy storage BMS device involved in the present disclosure may be referred to as an energy storage BMS device for short. The energy storage BMS (BATTERY MANAGEMENT SYSTEM) device is the energy storage battery management device. The three-stage double-isolated voltage sampling energy storage BMS device solves the problems of low sampling accuracy of the total voltage of the battery cluster and low device safety in the prior art.
如图2所示,三段式双隔离电压采样储能BMS装置10包括一级分压电路11、二级分压电路12、模拟信号隔离电路13、ADC采样芯片14、磁隔离芯片15和处理芯片16。一级分压电路11、二级分压电路12、模拟信号隔离电路13、ADC采样芯片14、磁隔离芯片15和处理芯片16依次连接。As shown in FIG. 2 , the three-stage dual isolation voltage sampling energy
在本实施例中,一级分压电路11与电池簇连接。一级分压电路11,用于对电池簇总电压进行分压获得第一中间电压。具体地,电池簇由多个电池串联组成,其中两端的电池分别为电池簇的正极和负极,电池簇的正极和负极形成的电压为电池簇总电压,一级分压电路11与电池簇并联,并对电池簇总电压进行分压处理。电池簇总电压的范围可以为0~1500V。在一些实施例中,电池簇可以被包括在三段式双隔离电压采样储能BMS装置10中。In this embodiment, the first-stage
在本实施例中,一级分压电路11由多个分压电阻组成,此时一级分压电路11将电池簇总电压分成多段,每个分压电阻对应一段,也即每个分压电阻对应一个第一中间电压,因此第一中间电压的数量与一级分压电路11中分压电阻数量一致。In this embodiment, the first-stage
在一些实施例中,一级分压电路11包括三个分压电阻,此时一级分压电路11将电池簇总电压分成三段,第一中间电压的数量为3个。即第一中间电压包括第一分压、第二分压和第三分压。如图3所示,一级分压电路11由第一分压电阻R1、第二分压电阻R2和第三分压电阻R3串联形成。具体地,第一分压电阻R1负端连接电池簇负极,第一分压电阻R1正端连接第二分压电阻R2负端,第二分压电阻R2正端连接第三分压电阻R3负端,第三分压电阻R3正端连接电池簇正极。第一分压为第一分压电阻R1两端的电压,第二分压为第二分压电阻两端R2的电压,第三分压为第三分压电阻R3两端的电压。在这种情况下,对进行三段分压的电池簇总电压每段单独进行采样,缩小采样通道的量程以提高采样精度。In some embodiments, the first-stage
在本实施例中,各分压电阻的阻值可以相同,有可以不同。In this embodiment, the resistance values of the voltage dividing resistors may be the same or different.
在一些实施例中,第一分压电阻R1、第二分压电阻R2和第三分压电阻R3的阻值相等,此时第一分压电阻R1、第二分压电阻R2和第三分压电阻R3均分电池簇总电压,即第一分压、第二分压和第三分压相等。第一分压电阻R1、第二分压电阻R2和第三分压电阻R3的阻值例如为10MΩ。In some embodiments, the resistance values of the first voltage dividing resistor R1, the second voltage dividing resistor R2 and the third voltage dividing resistor R3 are equal, and at this time the first voltage dividing resistor R1, the second voltage dividing resistor R2 and the third voltage dividing resistor R1 The piezoresistor R3 equally divides the total voltage of the battery cluster, that is, the first divided voltage, the second divided voltage and the third divided voltage are equal. The resistance values of the first voltage dividing resistor R1 , the second voltage dividing resistor R2 and the third voltage dividing resistor R3 are, for example, 10MΩ.
在本实施例中,二级分压电路12,用于对第一中间电压进行分压获得第二中间电压。In this embodiment, the two-stage
在本实施例中,二级分压电路12可以由多个分压电阻组成。二级分压电路12通过多个分压电阻将经过一级分压电路11分压后的电压进行二级分压。由此,通过对每段电压进行二级电阻分压进行采样,缩小电压信号,以满足ADC采样芯片的采样范围。In this embodiment, the secondary
在一些实施例中,二级分压电路12包括六个分压电阻。如图3所示,二级分压电路12包括依次串联的第四分压电阻R4、第五分压电阻R5、第六分压电阻R6、第七分压电阻R7、第八分压电阻R8和第九分压电阻R9。第四分压电阻R4和第五分压电阻R5与第一分压电阻R1并联,第六分压电阻R6和第七分压电阻R7与第二分压电阻R2并联,第八分压电阻R8和第九分压电阻R9与第三分压电阻R3并联。In some embodiments, the secondary
具体地,二级分压电路12通过第四分压电阻R4、第五分压电阻R5将第一分压电阻R1两端电压进行二级分压,第四分压电阻R4负端连接第一分压电阻R1负端,第四分压电阻R4正端连接第五分压电阻R5负端,第五分压电阻R5正端连接第一分压电阻R1正端;通过第六分压阻R6、第七分压电阻R7将第二分压电阻R2两端电压进行二级分压,第六分压电阻R6负端连接第二分压电阻R2负端,第六分压电阻R6正端连接第七分压电阻R7负端,第七分压电阻R7正端连接第二分压电阻R2正端;通过第八分压电阻R8、第九分压电阻R9将第三分压电阻R3两端电压进行二级分压,第八分压电阻R8负端连接第三分压电阻R3负端,第八分压电阻R8正端连接第九分压电阻R9负端,第九分压电阻R9正端连接第三分压电阻R3正端。Specifically, the secondary
在本实施例中,二级分压电路12中每个分压电阻均对对应的一级分压电路11中分压电阻两端电压进行二级分压,选取二级分压电路12中的三个分压电阻,该三个分压电阻进行二级分压后的中间电压作为第二中间电压,此时第二中间电压的数量为三个,第二中间电压包括第四分压、第五分压和第六分压。若选择第四分压电阻R4、第六分压电阻R6和第八分压电阻R8,则第四分压为第四分压电阻R4两端的电压,第五分压为第六分压电阻R6两端的电压,第六分压为第八分压电阻R8两端的电压。In this embodiment, each voltage dividing resistor in the secondary
在本实施例中,各分压电阻的阻值可以相同,有可以不同。In this embodiment, the resistance values of the voltage dividing resistors may be the same or different.
在一些实施例中,第四分压电阻R4、第六分压电阻R6和第八分压电阻R8的阻值相等,第五分压电阻R5、第七分压电阻R7和第九分压电阻R9的阻值相等。第四分压电阻R4、第六分压电阻R6和第八分压电阻R8的阻值例如为100KΩ,第五分压电阻R5、第七分压电阻R7和第九分压电阻R9的阻值例如为10MΩ。此时可以将第四分压、第五分压和第六分压分别控制在0~5V。In some embodiments, the resistance values of the fourth voltage dividing resistor R4, the sixth voltage dividing resistor R6 and the eighth voltage dividing resistor R8 are equal, and the fifth voltage dividing resistor R5, the seventh voltage dividing resistor R7 and the ninth voltage dividing resistor The resistance of R9 is equal. The resistance values of the fourth voltage dividing resistor R4, the sixth voltage dividing resistor R6 and the eighth voltage dividing resistor R8 are, for example, 100KΩ, and the resistance values of the fifth voltage dividing resistor R5, the seventh voltage dividing resistor R7 and the ninth voltage dividing resistor R9 For example, 10MΩ. At this time, the fourth partial pressure, the fifth partial pressure and the sixth partial pressure can be controlled at 0-5V, respectively.
在本实施例中,模拟信号隔离电路13,用于对第二中间电压进行隔离处理获得第一隔离电压。In this embodiment, the analog
在本实施例中,模拟信号隔离电路13可以由模拟隔离器组成,模拟隔离器的数量与第二中间电压的数量一致。In this embodiment, the analog
在一些实施例中,第二中间电压的数量为三个,则模拟隔离器的数量为3个,故第一隔离电压的数量为3个。In some embodiments, the number of the second intermediate voltages is three, and the number of the analog isolators is three, so the number of the first isolation voltages is three.
在一些实施例中,如图3所示,模拟信号隔离电路13包括第一模拟隔离器U1、第二模拟隔离器U2和第三模拟隔离器U3。第四分压电阻R4两端连接第一模拟隔离器U1,第六分压电阻R6两端连接第二模拟隔离器U2,第八分压电阻R8两端连接第三模拟隔离器U3。在这种情况下,在电池簇电压的模拟信号(即第二中间电压)与ADC采样芯片的模拟信号输入端之间使用模拟隔离器,以有效隔离干扰和冲击信号,同时让三段分压的信号每一段都能匹配ADC采样芯片的输入范围。In some embodiments, as shown in FIG. 3 , the analog
在一些实施例中,如图3所示,第一模拟隔离器U1、第二模拟隔离器U2和第三模拟隔离器U3的型号均为TE6664N。型号为TE6664N的模拟隔离器功能为对0~5V的直流信号进行电气隔离,输入电压为0~5V,隔离输出为0~5V(即输出电压),输入与隔离输出为线性对应关系。In some embodiments, as shown in FIG. 3 , the models of the first analog isolator U1 , the second analog isolator U2 and the third analog isolator U3 are all TE6664N. The function of the analog isolator model TE6664N is to electrically isolate the DC signal from 0 to 5V. The input voltage is 0 to 5V, and the isolated output is 0 to 5V (ie, the output voltage). The input and the isolated output have a linear correspondence.
在一些实施例中,如图3所示,第一模拟隔离器U1的8号引脚为负输入电压Vi1-的引脚,第一模拟隔离器U1的9号引脚为正输入电压Vi1+的引脚;第二模拟隔离器U2的8号引脚为负输入电压Vi2-的引脚,第二模拟隔离器U2的9号引脚为正输入电压Vi2+的引脚,第三模拟隔离器U3的8号引脚为负输入电压Vi3-的引脚,第三模拟隔离器U3的9号引脚为正输入电压Vi3+的引脚。第四分压电阻R4正端连接第一模拟隔离器U1的9号引脚,第四分压电阻R4负端连接第一模拟隔离器U1的8号引脚;第六分压电阻R6正端连接第二模拟隔离器U2的9号引脚,第六分压电阻R6负端连接第二模拟隔离器U2的8号引脚;第八分压电阻正端连接第三模拟隔离器U3的9号引脚,第八分压电阻负端连接第三模拟隔离器U3的8号引脚。In some embodiments, as shown in FIG. 3 ,
在一些实施例中,如图3所示,第一模拟隔离器U1的2号引脚为负输出电压Vo1-的引脚,第一模拟隔离器U1的1号引脚为正输出电压Vo1+的引脚;第二模拟隔离器U2的2号引脚为负输出电压Vo2-的引脚,第二模拟隔离器U2的1号引脚为正输出电压Vo2+的引脚,第三模拟隔离器U3的2号引脚为负输出电压Vo3-的引脚,第三模拟隔离器U3的1号引脚为正输出电压Vo3+的引脚。In some embodiments, as shown in FIG. 3 , the No. 2 pin of the first analog isolator U1 is the pin of the negative output voltage Vo1-, and the No. 1 pin of the first analog isolator U1 is the pin of the positive output voltage Vo1+ pin; pin 2 of the second analog isolator U2 is the pin of the negative output voltage Vo2-,
第一模拟隔离器U1、第二模拟隔离器U2和第三模拟隔离器U3分别接收第四分压、第五分压和第六分压,进行一级隔离后输出对应的第一隔离电压。The first analog isolator U1 , the second analog isolator U2 and the third analog isolator U3 receive the fourth, fifth and sixth voltage divisions, respectively, and output the corresponding first isolation voltage after primary isolation.
在本实施例中,ADC采样芯片14与模拟信号隔离电路13连接,ADC采样芯片14,用于基于第一隔离电压获得采样电压。若第一隔离电压的数量为3个,则采样电压的数量也为3个。In this embodiment, the
在一些实施例中,如图3所示,ADC采样芯片14可以是型号为ADCS8162的ADC采样芯片U4。型号为ADCS8162的ADC采样芯片U4的功能为将输入的0~5V模拟信号转化为数字信号,通过SPI(Serial Peripheral Interface)通讯将采样信号(即数字信号)发至处理芯片。In some embodiments, as shown in FIG. 3 , the
在一些实施例中,如图3所示,ADC采样芯片U4的49号引脚为第一输入电压V1引脚,ADC采样芯片U4的50号引脚为第一接地引脚,ADC采样芯片U4的51号引脚为第二输入电压V2引脚,ADC采样芯片U4的52号引脚为第二接地引脚,ADC采样芯片U4的53号引脚为第三输入电压V3引脚,ADC采样芯片U4的54号引脚为第三接地引脚。第一模拟隔离器U1的1号引脚连接ADC采样芯片U4的49号引脚,第一模拟隔离器U1的2号引脚连接ADC采样芯片U4的50号引脚;第二模拟隔离器U2的1号引脚连接ADC采样芯片U4的51号引脚,第二模拟隔离器U2的2号引脚连接ADC采样芯片U4的52号引脚;第三模拟隔离器U3的1号引脚连接ADC采样芯片U4的53号引脚,第三模拟隔离器U3的2号引脚连接ADC采样芯片U4的54号引脚。其中第一输入电压V1引脚接收一级隔离后的第四分压,第二输入电压V2引脚接收一级隔离后的第五分压,第三输入电压V3引脚接收一级隔离后的第六分压。In some embodiments, as shown in FIG. 3 , pin 49 of the ADC sampling chip U4 is the first input voltage V1 pin, pin 50 of the ADC sampling chip U4 is the first ground pin, and the ADC sampling chip U4 The 51st pin is the second input voltage V2 pin, the 52nd pin of the ADC sampling chip U4 is the second ground pin, the 53rd pin of the ADC sampling chip U4 is the third input voltage V3 pin, the
在一些实施例中,如图3所示,ADC采样芯片U4的9号引脚为第一模数转换启动CONVSTA引脚,ADC采样芯片U4的10号引脚为第二模数转换启动CONVSTB引脚,ADC采样芯片U4的9号引脚连接ADC采样芯片U4的10号引脚时,所有通道同步采样。ADC采样芯片U4的12号引脚为时钟信号SCLK引脚(例如SPI通讯时钟信号引脚),ADC采样芯片U4的13号引脚为片选信号引脚,ADC采样芯片U4的24号引脚为第一输出数字信号DOUTA引脚,ADC采样芯片U4的25号引脚为第二输出数字信号DOUTB引脚。In some embodiments, as shown in FIG. 3 , pin 9 of the ADC sampling chip U4 is the first analog-to-digital conversion start CONVSTA pin, and pin 10 of the ADC sampling chip U4 is the second analog-to-digital conversion start CONVSTB pin When pin 9 of ADC sampling chip U4 is connected to pin 10 of ADC sampling chip U4, all channels are sampled synchronously. The 12th pin of the ADC sampling chip U4 is the clock signal SCLK pin (such as the SPI communication clock signal pin), and the 13th pin of the ADC sampling chip U4 is the chip select signal pin, the No. 24 pin of the ADC sampling chip U4 is the first output digital signal DOUTA pin, and the No. 25 pin of the ADC sampling chip U4 is the second output digital signal DOUTB pin.
在本实施例中,磁隔离芯片15,用于对采样电压进行隔离处理获得第二隔离电压。若采样电压的数量也为3个,则第二隔离电压的数量也为3个。In this embodiment, the magnetic isolation chip 15 is used for isolating the sampled voltage to obtain the second isolation voltage. If the number of sampling voltages is also three, the number of second isolation voltages is also three.
在一些实施例中,如图3所示,磁隔离芯片15可以是型号为BLD7741的磁隔离芯片U5。型号为BLD7741的磁隔离芯片U5功能为将SPI通讯信号进行电气隔离,通过磁耦合方式传输数据。在这种情况下,ADC采样芯片14与处理芯片16间的通讯采用磁隔离芯片15,进一步隔离模拟信号和数字信号,当ADC采样芯片14损坏时不影响处理芯片16正常运行,以保证处理芯片16其他功能可用。In some embodiments, as shown in FIG. 3 , the magnetic isolation chip 15 may be a magnetic isolation chip U5 with a model name of BLD7741. The function of the magnetic isolation chip U5, model BLD7741, is to electrically isolate the SPI communication signal and transmit data through magnetic coupling. In this case, the communication between the
在一些实施例中,如图3所示,磁隔离芯片U5的11号引脚为原边输入信号VID引脚,磁隔离芯片U5的12号引脚为原边第三输出信号VOC引脚,磁隔离芯片U5的13号引脚为原边第二输出信号VOB引脚,磁隔离芯片U5的14号引脚为原边第一输出信号VOA引脚,磁隔离芯片U5的6号引脚为副边输出信号VOD引脚,磁隔离芯片U5的5号引脚为副边第三输入信号VIC引脚,磁隔离芯片U5的3号引脚为副边第二输入信号VIB引脚,磁隔离芯片U5的2号引脚为副边第一输入信号VIA引脚。In some embodiments, as shown in FIG. 3 , the No. 11 pin of the magnetic isolation chip U5 is the primary side input signal VID pin, and the No. 12 pin of the magnetic isolation chip U5 is the primary side third output signal VOC pin, The No. 13 pin of the magnetic isolation chip U5 is the VOB pin of the second output signal of the primary side, the No. 14 pin of the magnetic isolation chip U5 is the VOA pin of the first output signal of the primary side, and the No. 6 pin of the magnetic isolation chip U5 is Secondary side output signal VOD pin, magnetic isolation
在本实施例中,处理芯片16,用于基于第二隔离电压计算得到电池簇总电压。In this embodiment, the processing chip 16 is configured to calculate and obtain the total voltage of the battery cluster based on the second isolation voltage.
在一些实施例中,如图3所示,处理芯片16可以是型号为GD32F407的MCU芯片U6。MCU芯片U6的41号引脚为时钟信号SPIO-CLK引脚,MCU芯片U6的42号引脚为信号输入SPIO-MISO引脚(即SPI0通讯的数据接收脚),MCU芯片U6的43号引脚为模数转换控制信号AD-CONVST引脚,MCU芯片U6的40号引脚为片选信号CS引脚。In some embodiments, as shown in FIG. 3 , the processing chip 16 may be an MCU chip U6 whose model is GD32F407. The 41st pin of the MCU chip U6 is the clock signal SPIO-CLK pin, the 42nd pin of the MCU chip U6 is the signal input SPIO-MISO pin (that is, the data receiving pin of the SPI0 communication), and the 43rd pin of the MCU chip U6 The pin is the AD-CONVST pin of the analog-to-digital conversion control signal, and the 40th pin of the MCU chip U6 is the chip selection signal CS pin.
在本实施例中,处理芯片用于:基于第二隔离电压计算得到第二中间电压,基于第二中间电压计算得到第一中间电压,基于第一中间电压计算得到电池簇总电压。In this embodiment, the processing chip is used for: calculating the second intermediate voltage based on the second isolation voltage, calculating the first intermediate voltage based on the second intermediate voltage, and calculating the total voltage of the battery cluster based on the first intermediate voltage.
具体地,若第二隔离电压的数量为3个,例如第二隔离电压包括第一磁隔电压Va、第二磁隔电压Vb和第三磁隔电压Vc,处理芯片基于第一磁隔电压Va、第二磁隔电压Vb和第三磁隔电压Vc获得一级隔离后的第四分压、一级隔离后的第五分压和一级隔离后的第六分压,由于模拟隔离器的输入与隔离输出为线性对应关系,进而获得第四分压、第五分压和第六分压,进一步根据电阻分压原理获得第一分压、第二分压和第三分压,对第一分压、第二分压和第三分压求和即可获得电池簇总电压。Specifically, if the number of the second isolation voltages is three, for example, the second isolation voltage includes a first magnetic isolation voltage Va, a second magnetic isolation voltage Vb and a third magnetic isolation voltage Vc, and the processing chip is based on the first magnetic isolation voltage Va , the second magnetic isolation voltage Vb and the third magnetic isolation voltage Vc obtain the fourth divided voltage after primary isolation, the fifth divided voltage after primary isolation, and the sixth divided voltage after primary isolation. There is a linear correspondence between the input and the isolated output, and then the fourth, fifth and sixth partial pressures are obtained, and the first, second and third partial pressures are further obtained according to the principle of resistance division. The total voltage of the battery cluster can be obtained by summing up the first partial pressure, the second partial pressure and the third partial pressure.
在一些实施例中,如图3所示,ADC采样芯片U4、磁隔离芯片U5、MCU芯片U6的连接方式具体是:ADC采样芯片U4的24号、25号引脚连接到磁隔离芯片U5的11号引脚,ADC采样芯片U4的13号引脚连接到磁隔离芯片U5的12号引脚;ADC采样芯片U4的12号引脚连接到磁隔离芯片U5的13号引脚;ADC采样芯片U4的9号、10号引脚连接到磁隔离芯片U4的14号引脚。磁隔离芯片U5的6号引脚连接到MCU芯片U6的42号引脚;磁隔离芯片U5的5号引脚连接到MCU芯片U6的40号引脚;磁隔离芯片U5的4号引脚连接到MCU芯片U6的41号引脚;磁隔离芯片U5的3号引脚连接到MCU芯片U6的43号引脚。In some embodiments, as shown in FIG. 3 , the connection mode of the ADC sampling chip U4, the magnetic isolation chip U5, and the MCU chip U6 is as follows: pins 24 and 25 of the ADC sampling chip U4 are connected to the pins of the magnetic isolation chip U5.
其中,MCU芯片U6获取到ADC采样芯片U4输出的数据的过程包括:MCU芯片U6的40号引脚连接至磁隔离芯片U5的5号引脚,经信号隔离后,通过磁隔离芯片U5的12号引脚输出到ADC采样芯片U4的13号引脚,该信号为ADC采样芯片U4的片选信号,由MCU芯片U6的40号引脚进行控制;MCU芯片U6的41号引脚连接至磁隔离芯片U5的4号引脚,经信号隔离后,通过磁隔离芯片U5的13号引脚输出到ADC采样芯片U4的12号引脚,该信号为ADC采样芯片U4的SPI通讯时钟信号,由MCU芯片U6的41号引脚发出时钟信号,以使SPI时钟同步;MCU芯片U6的43号引脚连接至磁隔离芯片U5的3号引脚,经信号隔离后,通过磁隔离芯片U5的14号引脚输出到ADC采样芯片U4的9号引脚和10号引脚,该两个引脚为ADC采样芯片U4的模拟信号转换数字信号的控制引脚,由MCU芯片U6的43号引脚进行控制;当需要读取电压时,MCU芯片U6的41号引脚发出时钟信号以使ADC采样芯片U4的SPI通讯时钟与MCU芯片U6的SPI通讯时钟同步;MCU芯片U6控制其40号引脚电平为低电平,通过磁隔离芯片U5施加到ADC采样芯片U4的13号脚上,以使ADC采样芯片U4处于有效工作状态;MCU芯片U6控制其43号引脚为高电平,通过磁隔离芯片U5施加到ADC采样芯片U4的9号引脚和10号引脚上,以将模拟信号转换为数字信号并最终通过ADC采样芯片U4的24号引脚和25号引脚发出,经过磁隔离芯片U5隔离后发送至MCU芯片的42号引脚。The process for the MCU chip U6 to obtain the data output by the ADC sampling chip U4 includes: connecting the No. 40 pin of the MCU chip U6 to the No. 5 pin of the magnetic isolation chip U5, after signal isolation, through the 12 pin of the magnetic isolation chip U5 Pin No. 13 is output to pin No. 13 of ADC sampling chip U4, which is the chip selection signal of ADC sampling chip U4, and is controlled by No. 40 pin of MCU chip U6; No. 41 pin of MCU chip U6 is connected to the magnetic The No. 4 pin of the isolation chip U5, after signal isolation, is output to the No. 12 pin of the ADC sampling chip U4 through the No. 13 pin of the magnetic isolation chip U5. This signal is the SPI communication clock signal of the ADC sampling chip U4.
结合图3所示的储能BMS装置电池簇总电压采样方法如下:Combined with the energy storage BMS device battery cluster total voltage sampling method shown in Figure 3, the sampling method is as follows:
电池簇总电压经一级分压电路分压,其中第一分压电阻R1、第二分压电阻R2、第三分压电阻R3阻值相同,均分电池簇总电压;第四分压电阻R4和第五分压电阻R5对第一分压电阻R1两端电压进行二级分压,第六分压电阻R6和第七分压电阻R7对第二分压电阻R2两端电压进行二级分压,第八分压电阻R8和第九分压电阻R9对第三分压电阻R3两端电压进行二级分压;The total voltage of the battery cluster is divided by the first-level voltage divider circuit, wherein the first voltage divider resistor R1, the second voltage divider resistor R2, and the third voltage divider resistor R3 have the same resistance values, and the total voltage of the battery cluster is equally divided; the fourth voltage divider resistor R4 and the fifth voltage dividing resistor R5 perform secondary voltage division on the voltage across the first voltage dividing resistor R1, and the sixth voltage dividing resistor R6 and the seventh voltage dividing resistor R7 perform secondary voltage division on the voltage across the second voltage dividing resistor R2 voltage divider, the eighth voltage divider resistor R8 and the ninth voltage divider resistor R9 perform secondary voltage divider on the voltage across the third voltage divider resistor R3;
经过二级分压后,第四分压电阻R4负端连接第一模拟隔离器U1的8号引脚,第四分压电阻R4正端连接第一模拟隔离器U1的9号引脚,第四分压电阻R4两端电压经过第一模拟隔离器U1隔离后由第一模拟隔离器U1的1号引脚和2号引脚输出到ADC采样芯片U4的49号引脚和50号引脚;第六分压电阻R6负端连接第二模拟隔离器U2的8号引脚,第六分压电阻R6正端连接第二模拟隔离器U2的9号引脚,第六分压电阻R6两端电压经过第二模拟隔离器U2隔离后由第二模拟隔离器U2的1号引脚和2号引脚输出到ADC采样芯片U4的51号引脚和52号引脚;第八分压电阻R8负端连接第三模拟隔离器U3的8号引脚,第八分压电阻R8正端连接第三模拟隔离器U3的9号引脚,第八分压电阻R8两端电压经过第三模拟隔离器U3隔离后由第三模拟隔离器U3的1号引脚和2号引脚输出到ADC采样芯片U4的53号引脚和54号引脚;After the secondary voltage division, the negative terminal of the fourth voltage dividing resistor R4 is connected to the No. 8 pin of the first analog isolator U1, the positive terminal of the fourth voltage dividing resistor R4 is connected to the No. 9 pin of the first analog isolator U1, and the third voltage dividing resistor R4 is connected to the No. The voltage across the four voltage divider resistor R4 is isolated by the first analog isolator U1 and then output from
ADC采样芯片U4的49和50号引脚、51和52号引脚、53和54号引脚模拟信号输入范围为0~5V,第四分压、第五分压和第六分压经对应的模拟隔离器隔离后输入到ADC采样芯片U4进行转换,转换为数字信号,通过ADC采样芯片U4的24号引脚、25号引脚的信号输出发送至磁隔离芯片U5的11号引脚,经过对信号隔离(例如SPI通讯信号隔离)后,通过磁隔离芯片U5的6号引脚输出到MCU芯片U6的42号引脚;The analog signal input range of
MCU芯片U6接收到ADC采样芯片U4发过来的数据后,进行处理以确定第四分压、第五分压和第六分压,由于型号为ADCS8162的ADC采样芯片U4是16位ADC采样芯片,其模拟信号输入通道49和50号引脚、51和52号引脚、53和54号引脚模拟信号输入范围为0~5V,对应的数字信号输出为0~65535,MCU芯片U6对数字信号进行进一步的转换以确定一级隔离后的第四分压、一级隔离后的第五分压和一级隔离后的第六分压;其计算公式如下:After the MCU chip U6 receives the data sent by the ADC sampling chip U4, it processes it to determine the fourth, fifth and sixth voltage divisions. Since the ADC sampling chip U4 with the model ADCS8162 is a 16-bit ADC sampling chip, The analog signal input range of
一级隔离后的第四分压=当前通道数字信号值÷65535×5VThe fourth divided voltage after the first-level isolation = the digital signal value of the current channel ÷ 65535 × 5V
一级隔离后的第五分压=当前通道数字信号值÷65535×5VThe fifth voltage divider after the first-level isolation = the digital signal value of the current channel ÷ 65535 × 5V
一级隔离后的第六分压=当前通道数字信号值÷65535×5VThe sixth voltage divider after first-level isolation = current channel digital signal value ÷ 65535×5V
基于一级隔离后的第四分压、一级隔离后的第五分压和一级隔离后的第六分压的电压值获得第四分压、第五分压和第六分压的电压值,其中型号为TE6664N的模拟隔离器的输入输出电压一致,故第四分压等于一级隔离后的第四分压,第五分压等于一级隔离后的第五分压,第六分压等于一级隔离后的第六分压,从而确定第四分压电阻R4两端的电压、第六分压电阻R6两端的电压和第八分压电阻R8两端的电压;The voltages of the fourth divided voltage, the fifth divided voltage and the sixth divided voltage are obtained based on the voltage values of the fourth divided voltage after the primary isolation, the fifth divided voltage after the primary isolation, and the sixth divided voltage after the primary isolation The input and output voltages of the analog isolator model TE6664N are the same, so the fourth partial pressure is equal to the fourth partial pressure after the first-level isolation, the fifth partial pressure is equal to the fifth partial pressure after the first-level isolation, and the sixth partial pressure The voltage is equal to the sixth divided voltage after the first-level isolation, thereby determining the voltage across the fourth voltage dividing resistor R4, the voltage across the sixth voltage dividing resistor R6 and the voltage across the eighth voltage dividing resistor R8;
根据电阻分压原理,基于第四分压电阻R4两端的电压、第六分压电阻R6两端的电压和第八分压电阻R8两端的电压获得第一分压电阻R1两端的电压、第二分压电阻R2两端的电压和第三分压电阻R3两端的电压,其计算公式如下:According to the principle of resistance division, based on the voltage across the fourth voltage dividing resistor R4, the voltage across the sixth voltage dividing resistor R6 and the voltage across the eighth voltage dividing resistor R8, the voltage across the first voltage dividing resistor R1 and the second voltage dividing resistor R1 are obtained. The voltage across the piezoresistor R2 and the voltage across the third voltage dividing resistor R3 are calculated as follows:
第一分压电阻R1两端的电压=第四分压电阻R4两端的电压÷R4×(R4+R5)The voltage across the first voltage dividing resistor R1=the voltage across the fourth voltage dividing resistor R4÷R4×(R4+R5)
第二分压电阻R2两端的电压=第六分压电阻R6两端的电压÷R6×(R6+R7)The voltage across the second voltage dividing resistor R2=the voltage across the sixth voltage dividing resistor R6÷R6×(R6+R7)
第三分压电阻R3两端的电压=第八分压电阻R8两端的电压值÷R8×(R8+R9)The voltage across the third voltage dividing resistor R3=the voltage value across the eighth voltage dividing resistor R8÷R8×(R8+R9)
对第一分压电阻R1两端的电压、第二分压电阻R2两端的电压和第三分压电阻R3两端的电压进行求和获得电池簇总电压。The total voltage of the battery cluster is obtained by summing the voltage across the first voltage dividing resistor R1, the voltage across the second voltage dividing resistor R2, and the voltage across the third voltage dividing resistor R3.
在本公开的三段式双隔离电压采样储能BMS装置中,利用依次连接的一级分压电路、二级分压电路、模拟信号隔离电路、ADC采样芯片、磁隔离芯片和处理芯片,一级分压电路对电池簇总电压进行分压获得第一中间电压;二级分压电路对第一中间电压进行分压获得第二中间电压;模拟信号隔离电路对第二中间电压进行隔离处理获得第一隔离电压;ADC采样芯片基于第一隔离电压获得采样电压;磁隔离芯片对采样电压进行隔离处理获得第二隔离电压;处理芯片基于第二隔离电压计算得到电池簇总电压,在这种情况下,利用一级分压电路、二级分压电路对电池簇总电压进行分段采样提高了电池簇总电压的采样精度,另外通过模拟信号隔离电路、磁隔离芯片进行两级隔离处理,提高了储能BMS装置的安全性,降低了故障率。另外本公开的电池簇总电压的范围是0~1500V,一级分压电路包括三个等阻值的分压电阻,故本公开的储能BMS装置是一种可支持0~1500V直流高精度三段式双隔离电压采样储能BMS装置,其采用三段式分压结构,将0~1500V电池簇总电压平均分为三段,进而分别对三段电压单独采样,缩小了单个采样通道的量程,通过对每段电压进行二级电阻分压进行采样,缩小电压信号,以满足ADC采样芯片的采样范围,具有系统简单、采样精度高的特点,相较于传统采样装置,精度可达±0.1%以内。同时,本公开采用两级隔离技术,对模拟量信号进行一级隔离,经过ADC采样芯片后对SPI通讯信号又进行了一次数字信号隔离,极大的提高了抗干扰能力和安全性。In the three-stage dual-isolation voltage sampling energy storage BMS device of the present disclosure, a first-stage voltage divider circuit, a second-stage voltage divider circuit, an analog signal isolation circuit, an ADC sampling chip, a magnetic isolation chip, and a processing chip are connected in sequence. The secondary voltage divider circuit divides the total voltage of the battery cluster to obtain a first intermediate voltage; the secondary voltage divider circuit divides the first intermediate voltage to obtain a second intermediate voltage; the analog signal isolation circuit isolates the second intermediate voltage to obtain The first isolation voltage; the ADC sampling chip obtains the sampling voltage based on the first isolation voltage; the magnetic isolation chip performs isolation processing on the sampling voltage to obtain the second isolation voltage; the processing chip calculates the total voltage of the battery cluster based on the second isolation voltage, in this case In the next step, the first-stage voltage divider circuit and the second-stage voltage divider circuit are used to sample the total voltage of the battery cluster in segments, which improves the sampling accuracy of the total voltage of the battery cluster. The safety of the energy storage BMS device is improved, and the failure rate is reduced. In addition, the range of the total voltage of the battery cluster of the present disclosure is 0-1500V, and the first-stage voltage divider circuit includes three voltage-dividing resistors with equal resistance values, so the energy storage BMS device of the present disclosure is a kind of high-precision 0-1500V DC capable of supporting The three-stage double-isolated voltage sampling energy storage BMS device adopts a three-stage voltage divider structure, which divides the total voltage of the 0-1500V battery cluster into three sections on average, and then samples the three sections of voltage separately, reducing the number of single sampling channels. Range, by sampling the voltage of each segment by the second-level resistor divider, the voltage signal is reduced to meet the sampling range of the ADC sampling chip. It has the characteristics of simple system and high sampling accuracy. Compared with traditional sampling devices, the accuracy can reach ± within 0.1%. At the same time, the present disclosure adopts two-level isolation technology to perform one-level isolation for analog signals, and performs digital signal isolation for SPI communication signals after the ADC sampling chip, which greatly improves the anti-interference ability and security.
下述为本公开方法实施例,对于本公开方法实施例中未披露的细节,请参照本公开装置实施例。本公开的方法实施例提出了一种三段式双隔离电压采样方法。该三段式双隔离电压采样方法采用上述装置实施例的三段式双隔离电压采样储能BMS装置实现电压采样。The following is an embodiment of the method of the present disclosure. For details not disclosed in the embodiment of the method of the present disclosure, please refer to the embodiment of the apparatus of the present disclosure. The method embodiment of the present disclosure proposes a three-stage dual isolation voltage sampling method. The three-stage double-isolation voltage sampling method adopts the three-stage double-isolation voltage sampling energy storage BMS device of the above device embodiment to realize voltage sampling.
图4为本公开实施例所提供的一种三段式双隔离电压采样方法的流程示意图。该三段式双隔离电压采样方法,包括:FIG. 4 is a schematic flowchart of a three-stage dual isolation voltage sampling method according to an embodiment of the present disclosure. The three-stage dual isolation voltage sampling method includes:
S101,对电池簇总电压进行分压获得第一中间电压。S101, divide the total voltage of the battery cluster to obtain a first intermediate voltage.
在步骤S101中,通过一级分压电路对电池簇总电压进行分压获得第一中间电压。电池簇总电压的范围(即量程)为0~1500V。具体内容参见上述装置实施例中的相关描述,此处不在赘述。In step S101, a first intermediate voltage is obtained by dividing the total voltage of the battery cluster by a first-stage voltage dividing circuit. The range (ie range) of the total voltage of the battery cluster is 0 to 1500V. For details, refer to the relevant descriptions in the foregoing apparatus embodiments, which are not repeated here.
S102,对第一中间电压进行分压获得第二中间电压。S102: Divide the first intermediate voltage to obtain a second intermediate voltage.
在步骤S102中,通过二级分压电路对第一中间电压进行分压获得第二中间电压。具体内容参见上述装置实施例中的相关描述,此处不在赘述。In step S102, the second intermediate voltage is obtained by dividing the first intermediate voltage by the secondary voltage dividing circuit. For details, refer to the relevant descriptions in the foregoing apparatus embodiments, which are not repeated here.
S103,将第二中间电压输入模拟信号隔离电路进行隔离获得第一隔离电压。S103, the second intermediate voltage is input into the analog signal isolation circuit for isolation to obtain a first isolation voltage.
在步骤S103中,模拟信号隔离电路可以由多个模拟隔离器组成。具体内容参见上述装置实施例中的相关描述,此处不在赘述。In step S103, the analog signal isolation circuit may be composed of a plurality of analog isolators. For details, refer to the relevant descriptions in the foregoing apparatus embodiments, which are not repeated here.
S104,对第一隔离电压进行ADC采样获得采样电压。S104, ADC sampling is performed on the first isolation voltage to obtain a sampling voltage.
在步骤S104中,通过ADC采样芯片对第一隔离电压进行ADC采样获得采样电压。具体内容参见上述装置实施例中的相关描述,此处不在赘述。In step S104, ADC sampling is performed on the first isolation voltage by an ADC sampling chip to obtain a sampling voltage. For details, refer to the relevant descriptions in the foregoing apparatus embodiments, which are not repeated here.
S105,将采样电压输入磁隔离芯片进行隔离获得第二隔离电压。S105, the sampling voltage is input into the magnetic isolation chip for isolation to obtain a second isolation voltage.
S106,基于第二隔离电压计算得到电池簇总电压。S106, calculate and obtain the total voltage of the battery cluster based on the second isolation voltage.
在步骤S106中,通过处理芯片计算得到电池簇总电压。其中,基于第二隔离电压计算得到电池簇总电压,包括:基于第二隔离电压计算得到第二中间电压,基于第二中间电压计算得到第一中间电压,基于第一中间电压计算得到电池簇总电压。具体内容参见上述装置实施例中的相关描述,此处不在赘述。In step S106, the total voltage of the battery cluster is obtained through calculation by the processing chip. Wherein, calculating the total voltage of the battery cluster based on the second isolation voltage includes: calculating the second intermediate voltage based on the second isolation voltage, calculating the first intermediate voltage based on the second intermediate voltage, and calculating the total battery cluster based on the first intermediate voltage. Voltage. For details, refer to the relevant descriptions in the foregoing apparatus embodiments, which are not repeated here.
需要说明的是,前述对三段式双隔离电压采样储能BMS装置实施例的解释说明也适用于该实施例的三段式双隔离电压采样方法,此处不在赘述。It should be noted that the foregoing explanations on the embodiment of the three-stage double-isolation voltage sampling energy storage BMS device are also applicable to the three-stage double-isolation voltage sampling method in this embodiment, and are not repeated here.
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。The above-mentioned serial numbers of the embodiments of the present disclosure are only for description, and do not represent the advantages or disadvantages of the embodiments.
在本公开的三段式双隔离电压采样方法中,对电池簇总电压进行分压获得第一中间电压;对第一中间电压进行分压获得第二中间电压;对第二中间电压进行隔离处理获得第一隔离电压;基于第一隔离电压获得采样电压;对采样电压进行隔离处理获得第二隔离电压;基于第二隔离电压计算得到电池簇总电压,在这种情况下,利用对电池簇总电压进行多级分段采样提高了电池簇总电压的采样精度,另外通过两级隔离处理,提高了储能BMS装置的安全性。另外电池簇总电压的量程为0~1500V,对电池簇总电压分段采样,缩小了单个采样通道的量程,采样精度高,相较于传统采样方法,精度可达±0.1%以内。同时,本公开采用两级隔离技术,对每段电压检测的模拟信号先进行了模拟信号隔离,经过进行ADC采样的数字信号进行隔离,系统安全性高、抗干扰能力强。In the three-stage dual isolation voltage sampling method of the present disclosure, the total voltage of the battery cluster is divided to obtain a first intermediate voltage; the first intermediate voltage is divided to obtain a second intermediate voltage; and the second intermediate voltage is isolated Obtain the first isolation voltage; obtain the sampled voltage based on the first isolation voltage; perform isolation processing on the sampled voltage to obtain the second isolation voltage; calculate the total voltage of the battery cluster based on the second isolation voltage. The multi-stage sub-sampling of the voltage improves the sampling accuracy of the total voltage of the battery cluster, and the safety of the energy storage BMS device is improved through two-stage isolation processing. In addition, the range of the total voltage of the battery cluster is 0~1500V. The total voltage of the battery cluster is sampled in sections, which reduces the range of a single sampling channel, and the sampling accuracy is high. Compared with the traditional sampling method, the accuracy can reach within ±0.1%. Meanwhile, the present disclosure adopts the two-stage isolation technology to isolate the analog signal of each voltage detection first, and then isolate the digital signal sampled by the ADC. The system has high security and strong anti-interference ability.
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本公开在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, the steps described in the present disclosure can be executed in parallel, sequentially or in different orders, and the present disclosure is not limited herein as long as the desired results of the technical solutions disclosed in the present disclosure can be achieved.
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。The above-mentioned specific embodiments do not constitute a limitation on the protection scope of the present disclosure. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions may occur depending on design requirements and other factors. Any modifications, equivalent replacements, and improvements made within the spirit and principles of the present disclosure should be included within the protection scope of the present disclosure.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210493906.6A CN114895094B (en) | 2022-04-28 | 2022-04-28 | Three-stage dual-isolation voltage sampling method and energy storage BMS device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210493906.6A CN114895094B (en) | 2022-04-28 | 2022-04-28 | Three-stage dual-isolation voltage sampling method and energy storage BMS device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114895094A true CN114895094A (en) | 2022-08-12 |
CN114895094B CN114895094B (en) | 2025-01-03 |
Family
ID=82720770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210493906.6A Active CN114895094B (en) | 2022-04-28 | 2022-04-28 | Three-stage dual-isolation voltage sampling method and energy storage BMS device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114895094B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104538751A (en) * | 2014-12-31 | 2015-04-22 | 四川中光防雷科技股份有限公司 | Flexible grounding device and method and system thereof |
CN104849609A (en) * | 2015-05-29 | 2015-08-19 | 河南森源重工有限公司 | Device for detecting power battery voltage sampling line sequence of electric car |
CN207336606U (en) * | 2017-06-15 | 2018-05-08 | 上海汽车集团股份有限公司 | High pressure real-time watch device based on transformer coupled isolation |
WO2021184695A1 (en) * | 2020-03-20 | 2021-09-23 | 威胜信息技术股份有限公司 | High-precision direct-current electric energy testing apparatus and method |
CN217689154U (en) * | 2022-04-28 | 2022-10-28 | 中国华能集团清洁能源技术研究院有限公司 | Voltage sampling energy storage BMS device |
-
2022
- 2022-04-28 CN CN202210493906.6A patent/CN114895094B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104538751A (en) * | 2014-12-31 | 2015-04-22 | 四川中光防雷科技股份有限公司 | Flexible grounding device and method and system thereof |
CN104849609A (en) * | 2015-05-29 | 2015-08-19 | 河南森源重工有限公司 | Device for detecting power battery voltage sampling line sequence of electric car |
CN207336606U (en) * | 2017-06-15 | 2018-05-08 | 上海汽车集团股份有限公司 | High pressure real-time watch device based on transformer coupled isolation |
WO2021184695A1 (en) * | 2020-03-20 | 2021-09-23 | 威胜信息技术股份有限公司 | High-precision direct-current electric energy testing apparatus and method |
CN217689154U (en) * | 2022-04-28 | 2022-10-28 | 中国华能集团清洁能源技术研究院有限公司 | Voltage sampling energy storage BMS device |
Also Published As
Publication number | Publication date |
---|---|
CN114895094B (en) | 2025-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI440873B (en) | System and method for monitoring cells in energy storage system | |
CN105116819A (en) | Battery management main system suitable for new energy automobile and control method thereof | |
CN106019160B (en) | A kind of battery management system and detection method of the electric car with AC internal Resistance inspection | |
CN110275116A (en) | Battery diagnostic system and method using second path redundancy measurement method | |
CN107064804B (en) | BMS data acquisition system with high-low end current detection function | |
CN102540098A (en) | Data collecting system of battery pack | |
CN107800172A (en) | A kind of data collecting system of batteries of electric automobile module | |
CN101144837A (en) | Voltage detection circuit and method thereof | |
CN217689154U (en) | Voltage sampling energy storage BMS device | |
CN112557933B (en) | Method and device for calculating battery state of health | |
CN203249964U (en) | A power battery voltage acquisition system | |
CN201113493Y (en) | A battery voltage sampling circuit | |
CN103293355B (en) | A kind of tension measuring circuit | |
CN114895094A (en) | Three-stage double isolation voltage sampling method and energy storage BMS device | |
CN206400074U (en) | A high-precision power battery pack data acquisition system | |
CN112162206B (en) | A multi-cell lithium battery voltage detection circuit | |
CN109428362B (en) | Active equalization strategy optimization method of battery management system | |
CN218526121U (en) | Battery formation and grading reference generation and data return inspection equipment | |
CN204649831U (en) | The accurate sample-taking calculating circuit of lithium battery BMS system charging and discharging currents | |
CN106443156B (en) | Electric automobile current measurement circuit | |
CN208334593U (en) | Battery voltage monitoring circuit | |
JP2024534357A (en) | Battery diagnostic method, battery diagnostic device providing said method, and battery system | |
CN116520007A (en) | Battery sampling circuit and vehicle | |
CN204945219U (en) | A kind of single voltage detecting system for feul cells based on LTC6803 | |
CN211086534U (en) | A SOC estimation system based on hybrid energy storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |