[go: up one dir, main page]

CN114891757B - A directed evolution method of laccase and mutant laccase gene, expression vector, recombinant strain and its application in detoxifying aflatoxin - Google Patents

A directed evolution method of laccase and mutant laccase gene, expression vector, recombinant strain and its application in detoxifying aflatoxin Download PDF

Info

Publication number
CN114891757B
CN114891757B CN202210661906.2A CN202210661906A CN114891757B CN 114891757 B CN114891757 B CN 114891757B CN 202210661906 A CN202210661906 A CN 202210661906A CN 114891757 B CN114891757 B CN 114891757B
Authority
CN
China
Prior art keywords
laccase
mutant
pro
gly
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210661906.2A
Other languages
Chinese (zh)
Other versions
CN114891757A (en
Inventor
方泽民
彭齐霞
刘娟娟
肖亚中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202210661906.2A priority Critical patent/CN114891757B/en
Publication of CN114891757A publication Critical patent/CN114891757A/en
Application granted granted Critical
Publication of CN114891757B publication Critical patent/CN114891757B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0061Laccase (1.10.3.2)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/25Removal of unwanted matter, e.g. deodorisation or detoxification using enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03002Laccase (1.10.3.2)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明涉及生物工程技术领域,公开了一种漆酶定向进化方法及突变漆酶基因、表达载体、重组菌株及其脱毒黄曲霉毒素应用,所述漆酶的氨基酸序列如SEQ ID No:1所示,所述SEQ ID No:1中第235位氨基酸由Ser变为Pro得到突变漆酶,所述突变漆酶的氨基酸序列如SEQ ID No:3所示。本发明的有益效果在于:本发明以在Pichiapastoris中异源表达的漆酶为基础,通过定点饱和突变,并在P.pastoris中异源表达突变漆酶基因,构建了一个“小而精”的饱和突变体文库;最终通过筛选获得了一株重组毕赤酵母突变菌株,其发酵产生的酶蛋白脱毒AFB1的效率提升至1.34倍,突变体蛋白可应用于生物乙醇制备过程中干酒糟及其可溶物(DDGS)中AFB1的同步脱毒。

The invention relates to the technical field of bioengineering and discloses a laccase directed evolution method, a mutant laccase gene, an expression vector, a recombinant strain and its application in detoxifying aflatoxin. The amino acid sequence of the laccase is as SEQ ID No: 1 As shown, the amino acid at position 235 in SEQ ID No: 1 is changed from Ser to Pro to obtain a mutant laccase, and the amino acid sequence of the mutant laccase is as shown in SEQ ID No: 3. The beneficial effect of the present invention is that: based on the laccase heterologously expressed in Pichiapastoris, the present invention constructs a "small and precise" laccase through heterologous expression of the mutated laccase gene in P. pastoris through site-directed saturation mutation. Saturated mutant library; finally, a recombinant Pichia pastoris mutant strain was obtained through screening. The efficiency of detoxifying AFB1, the enzyme protein produced by fermentation, was increased to 1.34 times. The mutant protein can be used in dry distiller's grains and its production during the production of bioethanol. Simultaneous detoxification of AFB1 in soluble matter (DDGS).

Description

一种漆酶定向进化方法及突变漆酶基因、表达载体、重组菌株 及其脱毒黄曲霉毒素应用A directed evolution method of laccase and mutant laccase gene, expression vector and recombinant strain and its application in detoxifying aflatoxins

技术领域Technical field

本发明涉及生物工程技术领域,尤其涉及一种漆酶定向进化方法及突变漆酶基因、表达载体、重组菌株及其脱毒黄曲霉毒素应用。The invention relates to the field of bioengineering technology, and in particular to a laccase directed evolution method, mutant laccase gene, expression vector, recombinant strain and its application for detoxifying aflatoxin.

背景技术Background technique

黄曲霉毒素(Aflatoxins,AFs)是由黄曲霉(Aspergillus flavus)、集峰曲霉(Aspergillus nominus)和寄生曲霉(Aspergillus paraciticus)等产生的一类真菌毒素,主要污染一些农作物,如花生、玉米、小麦等,给世界各国的农业生产造成了很大的经济损失。Aflatoxins (AFs) are a type of mycotoxin produced by Aspergillus flavus , Aspergillus nominus , and Aspergillus paraciticus . They mainly contaminate some crops, such as peanuts, corn, and wheat. etc., causing great economic losses to agricultural production in various countries around the world.

AFB1可通过物理、化学以及生物法降解,但物理方法耗时,且无法保障AFB1被完全清除;化学物质的使用虽然能显著降低AFB1浓度,但同时导致营养物质的损失,降低食品或饲料质量;直接使用微生物体降解AFB1,也会损害产品的感官特性,且降解过程的安全性无法保证。AFB1 can be degraded through physical, chemical and biological methods, but physical methods are time-consuming and cannot guarantee that AFB1 is completely removed. Although the use of chemical substances can significantly reduce the concentration of AFB1, it also leads to the loss of nutrients and reduces the quality of food or feed; Directly using microorganisms to degrade AFB1 will also damage the sensory properties of the product, and the safety of the degradation process cannot be guaranteed.

生物法脱毒作为脱毒方式之一,因其绿色、环保、安全等特点,深受人们的青睐。其中,酶具有底物特异性、催化效率高、环境友好的特点,被广泛应用于食品和饲料工业,所以最安全有效的方法是选用特定的酶来降解AFB1。Biological detoxification, as one of the detoxification methods, is deeply favored by people because of its green, environmental protection, safety and other characteristics. Among them, enzymes have the characteristics of substrate specificity, high catalytic efficiency, and environmental friendliness, and are widely used in the food and feed industry. Therefore, the safest and most effective method is to use specific enzymes to degrade AFB1.

漆酶(ρ-二元酚氧化酶,EC 1.10.3.2)是一种含铜的多酚氧化酶,具有宽泛的底物谱。2009年,Alberts等人第一次发现真菌漆酶可用于黄曲霉毒素的脱毒。但目前关于提高漆酶脱毒AFB1效率的定向进化方面的研究较少,因此,对提高漆酶脱毒AFB1效率的定向进化研究具有重大研究意义和实际应用价值。Laccase (ρ-diphenol oxidase, EC 1.10.3.2) is a copper-containing polyphenol oxidase with a broad substrate spectrum. In 2009, Alberts et al. first discovered that fungal laccase can be used to detoxify aflatoxins. However, there are currently few studies on directed evolution to improve the efficiency of laccase detoxification of AFB1. Therefore, research on directed evolution to improve the efficiency of laccase detoxification of AFB1 has great research significance and practical application value.

发明内容Contents of the invention

本发明所要解决的技术问题在于如何提供一种漆酶定向进化方法及突变漆酶基因、表达载体、重组菌株及其脱毒黄曲霉毒素应用,其利用定点饱和突变技术,实现对目标漆酶的定向改造,获得的突变漆酶可提高漆酶脱毒AFB1效率,在生物乙醇制备过程中干酒糟及其可溶物中黄曲霉毒素的同步脱毒中具有很好的实际应用价值。The technical problem to be solved by the present invention is how to provide a directed evolution method of laccase and mutant laccase genes, expression vectors, recombinant strains and their applications for detoxifying aflatoxin, which utilizes site-directed saturation mutation technology to achieve the target laccase. Through targeted transformation, the mutant laccase obtained can improve the efficiency of laccase detoxification of AFB1, and has great practical application value in the simultaneous detoxification of aflatoxin in dry distiller's grains and its solubles during the production of bioethanol.

本发明通过以下技术手段实现解决上述技术问题:The present invention solves the above technical problems through the following technical means:

本发明第一方面提出一种突变漆酶,所述漆酶的氨基酸序列如SEQ ID No : 1所示,所述SEQ ID No : 1中第235位氨基酸由Ser变为Phe得到突变漆酶,所述突变漆酶的氨基酸序列如SEQ ID No : 3所示。A first aspect of the present invention proposes a mutant laccase. The amino acid sequence of the laccase is as shown in SEQ ID No: 1. The amino acid at position 235 in SEQ ID No: 1 is changed from Ser to Phe to obtain a mutant laccase. The amino acid sequence of the mutant laccase is shown in SEQ ID No: 3.

有益效果:本发明利用定点饱和突变技术,实现对目标漆酶的定向改造,获得了一种对AFB1脱毒效率提高的突变漆酶,其脱毒效率提升至1.34倍,可用于黄曲霉毒素脱毒。Beneficial effects: The present invention utilizes fixed-site saturation mutation technology to achieve directional transformation of the target laccase, and obtains a mutant laccase with improved detoxification efficiency for AFB1. Its detoxification efficiency is increased to 1.34 times, and can be used for aflatoxin removal. poison.

优先的,所述漆酶氨基酸编码的核苷酸序列如SEQ ID No : 2所示;所述突变漆酶氨基酸编码的核苷酸序列如SEQ ID No : 4所示。Preferably, the nucleotide sequence encoding the laccase amino acid is shown in SEQ ID No: 2; the nucleotide sequence encoding the mutant laccase amino acid is shown in SEQ ID No: 4.

本发明第二方面提出一种含有上述突变漆酶基因的重组表达载体。A second aspect of the present invention proposes a recombinant expression vector containing the above mutant laccase gene.

优先的,所述重组表达载体为所述突变漆酶基因连接至pPIC9K上得到的pPIC9K-mlcc5表达载体。Preferably, the recombinant expression vector is the pPIC9K- mlcc5 expression vector obtained by connecting the mutant laccase gene to pPIC9K.

本发明第三方面提出一种含有上述重组表达载体的重组菌株。The third aspect of the present invention proposes a recombinant strain containing the above recombinant expression vector.

优先的,所述重组菌株为所述重组表达载体转入毕赤酵母中得到的P. pastoris-pPIC9K-mlcc5Preferably, the recombinant strain is P. pastoris -pPIC9K- mlcc5 obtained by transforming the recombinant expression vector into Pichia pastoris.

本发明第四方面提出一种获得上述重组菌株的方法,包括以下步骤:The fourth aspect of the present invention proposes a method for obtaining the above-mentioned recombinant strain, including the following steps:

(1)提取漆酶基因模板:对Escherichia coliTrans1 T1-pPIC9K-lcc5进行培养、收集,提取pPIC9K-lcc5质粒;(1) Extract laccase gene template: Cultivate and collect Escherichia coli Trans1 T1-pPIC9K- lcc5 , and extract the pPIC9K- lcc5 plasmid;

(2)克隆突变基因:以所述pPIC9K-lcc5质粒为模板,对分子动力学模拟及序列保守性分析获得的潜在有益突变位点分别进行饱和突变,并采用PCR扩增获得突变mlcc5基因;(2) Cloning the mutant gene: Using the pPIC9K- lcc5 plasmid as a template, perform saturation mutations on the potential beneficial mutation sites obtained by molecular dynamics simulation and sequence conservation analysis, and use PCR amplification to obtain the mutant mlcc5 gene;

(3)构建重组表达载体:通过酶切连接法,将所述突变mlcc5基因插入到pPIC9K启动子AOX1下游,构建pPIC9K-mlcc5表达载体;(3) Construct a recombinant expression vector: insert the mutant mlcc5 gene into the downstream of pPIC9K promoter AOX1 through enzyme digestion ligation method to construct a pPIC9K- mlcc5 expression vector;

(4)获取重组菌株:将所述pPIC9K-mlcc5表达载体转化至Trans1 T1感受态细胞中,得到Trans1 T1-pPIC9K-mlcc5(4) Obtain the recombinant strain: transform the pPIC9K- mlcc5 expression vector into Trans1 T1 competent cells to obtain Trans1 T1-pPIC9K- mlcc5 ;

使用限制性内切酶SacI对pPIC9K-mlcc5质粒线性化,通过电击转化法将线性化表达载体转入宿主毕赤酵母中得到P. pastoris-pPIC9K-mlcc5Restriction endonuclease Sac I was used to linearize the pPIC9K- mlcc5 plasmid, and the linearized expression vector was transferred into the host Pichia pastoris through electroporation transformation to obtain P. pastoris -pPIC9K- mlcc5 ;

(5)筛选饱和突变文库:以P. pastoris-pPIC9K、野生型P. pastoris-pPIC9K-lcc5为对照组,将对照组、所述P. pastoris-pPIC9K-mlcc5分别转接于含BMGY培养基的96孔板中培养,后加入BMM培养基诱导突变漆酶表达;并以AFB1为底物测定脱毒效率,筛选AFB1脱毒效率优于对照组的突变漆酶P. pastoris-pPIC9K-mlcc5(5) Screen the saturated mutation library: use P. pastoris -pPIC9K and wild-type P. pastoris -pPIC9K- lcc 5 as the control group, and transfer the control group and the P. pastoris -pPIC9K- mlcc5 to BMGY-containing medium respectively Cultured in a 96-well plate, and then added BMM medium to induce the expression of mutant laccase; and used AFB1 as a substrate to determine the detoxification efficiency, and screened the mutant laccase P. pastoris -pPIC9K- mlcc5 whose AFB1 detoxification efficiency was better than that of the control group.

有益效果:本发明以在Pichia pastoris中异源表达的漆酶为基础,通过定点饱和突变,并在P. pastoris中异源表达突变漆酶基因,构建了一个“小而精”的饱和突变体文库;最终通过筛选获得了一株重组毕赤酵母突变菌株,其发酵产生的酶蛋白脱毒AFB1的效率提升至1.34倍,突变体蛋白可应用于生物乙醇制备过程中干酒糟及其可溶物(DDGS)中AFB1的同步脱毒。Beneficial effects: The present invention is based on the laccase heterologously expressed in Pichia pastoris , through site-directed saturation mutation, and heterologously expresses the mutated laccase gene in P. pastoris to construct a "small but refined" saturated mutant. Library; Finally, a recombinant Pichia pastoris mutant strain was obtained through screening. The efficiency of detoxifying AFB1 in the enzyme protein produced by its fermentation was increased to 1.34 times. The mutant protein can be used in dry distiller's grains and its solubles in the production of bioethanol. Synchronized detoxification of AFB1 in (DDGS).

优先的,所述步骤(3)中酶切连接法包括:采用SnaB Ⅰ和NotⅠ两种限制性内切酶分别对所述突变mlcc5基因和pPIC9K空载进行双酶切,然后通过T4连接酶将载体与突变基因连接。Preferably, the enzyme digestion and ligation method in step (3) includes: using two restriction endonucleases, Sna B Ⅰ and Not Ⅰ, to double-enzyme digest the mutant mlcc5 gene and pPIC9K empty vector respectively, and then ligate through T4 Enzymes link the vector to the mutated gene.

本发明第五方面提出一种上述重组菌株在黄曲霉毒素脱毒中的应用,包括以下步骤:以AFB1为底物,向其中加入乙醇、突变漆酶发酵液、pH=4.0的柠檬酸-Na2HPO4缓冲液,在30~32 ℃、800~1000 rpm反应20~24 h;其中,AFB1终浓度为0.1~0.15 μg/mL,乙醇终浓度为15~20%,酶液终浓度为0.2~0.25 U,柠檬酸-Na2HPO4缓冲液补足余量。The fifth aspect of the present invention proposes an application of the above recombinant strain in aflatoxin detoxification, which includes the following steps: using AFB1 as a substrate, adding ethanol, mutant laccase fermentation broth, and citric acid-Na with pH=4.0 thereto 2 HPO 4 buffer, react at 30~32 ℃, 800~1000 rpm for 20~24 hours; among them, the final concentration of AFB1 is 0.1~0.15 μg/mL, the final concentration of ethanol is 15~20%, and the final concentration of enzyme solution is 0.2 ~0.25 U, citric acid-Na 2 HPO 4 buffer to make up the balance.

本发明第六方面提出一种上述重组菌株在生物乙醇制备过程中干酒糟及其可溶物中黄曲霉毒素的同步脱毒中的应用。The sixth aspect of the present invention proposes the application of the above-mentioned recombinant strain in the simultaneous detoxification of aflatoxin in dried distiller's grains and its solubles during the preparation of bioethanol.

本发明的优点在于:The advantages of the present invention are:

1.本申请利用定点饱和突变技术,实现对目标漆酶的定向改造;1. This application uses site-directed saturation mutation technology to achieve targeted transformation of the target laccase;

2.本申请获得一种对AFB1脱毒效率提高的突变漆酶,其脱毒效率提升至1.34倍;2. This application obtained a mutant laccase that improves the detoxification efficiency of AFB1, and its detoxification efficiency is increased to 1.34 times;

3.本申请获得的突变漆酶可用于黄曲霉毒素脱毒。3. The mutant laccase obtained in this application can be used for aflatoxin detoxification.

附图说明Description of the drawings

图1为本申请实施例1中采用琼脂糖凝胶电泳检测饱和突变基因的扩增结果图。Figure 1 is a diagram showing the amplification results of detecting saturated mutant genes using agarose gel electrophoresis in Example 1 of the present application.

图2为本申请实施例1中突变基因表达载体构建示意图。Figure 2 is a schematic diagram of the construction of the mutant gene expression vector in Example 1 of the present application.

图3为本申请实施例1中底物筛选结果图。Figure 3 is a diagram of substrate screening results in Example 1 of the present application.

具体实施方式Detailed ways

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the embodiments of the present invention. Obviously, the described embodiments are part of the present invention. Examples, not all examples. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.

下述实施例中所用的试验材料和试剂等,如无特殊说明,均可从商业途径获得。The test materials and reagents used in the following examples can all be obtained from commercial sources unless otherwise specified.

实施例中未注明具体技术或条件者,均可以按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。If no specific techniques or conditions are specified in the examples, the techniques or conditions described in literature in the field can be followed or the product instructions can be followed.

实施例1Example 1

本实施例提供一种漆酶定向进化方法及突变漆酶基因、表达载体、重组菌株及其脱毒黄曲霉毒素应用,包括以下步骤:This embodiment provides a laccase directed evolution method, mutant laccase gene, expression vector, recombinant strain and its application for detoxifying aflatoxin, including the following steps:

1.提取漆酶基因模板1. Extract laccase gene template

将来源于现代生物制造安徽省重点实验室的Escherichia coliTrans1 T1-pPIC9K-lcc5取出,于LB平板培养基(含AMP)上划线,并在37 ℃下培养箱培养8~12 h;然后挑取单克隆,接种于含LB液体培养基(含AMP)的试管中,并在37 ℃下摇床过夜培养;收集菌体,按照质粒提取试剂盒操作说明提取pPIC9K-lcc5质粒,得到漆酶基因模板。Take out the Escherichia coli Trans1 T1-pPIC9K- lcc5 from the Anhui Provincial Key Laboratory of Modern Biomanufacturing, streak it on the LB plate medium (containing AMP), and culture it in an incubator at 37°C for 8 to 12 hours; then pick Take a single clone, inoculate it into a test tube containing LB liquid culture medium (containing AMP), and culture it on a shaking table at 37°C overnight; collect the bacterial cells, and extract the pPIC9K- lcc5 plasmid according to the instructions of the plasmid extraction kit to obtain the laccase gene template.

经测定,漆酶的氨基酸序列如SEQ ID No : 1所示,漆酶氨基酸编码的核苷酸序列如SEQ ID No : 2所示。After determination, the amino acid sequence of laccase is shown in SEQ ID No: 1, and the nucleotide sequence encoding the laccase amino acid is shown in SEQ ID No: 2.

2.克隆突变基因2. Clone mutant genes

lcc5质粒为漆酶基因模板,使用SnapGene软件设计引物,引物序列见表1,并选择毕赤酵母偏好的密码子,对分子动力学模拟及序列保守性分析获得的潜在有益突变位点分别进行饱和突变。采用PCR扩增获得突变mlcc5基因,PCR扩增操作参考PrimeSTAR® HSDNA Polymerase说明书,各反应程序的反应条件见表2,反应体系中各组分用量见表3。Using the lcc5 plasmid as the laccase gene template, SnapGene software was used to design primers. The primer sequences are shown in Table 1. The codons preferred by Pichia pastoris were selected, and the potential beneficial mutation sites obtained by molecular dynamics simulation and sequence conservation analysis were separately analyzed. Saturation mutation. The mutated mlcc5 gene was obtained by PCR amplification. For the PCR amplification operation, refer to the instructions of PrimeSTAR® HSDNA Polymerase. The reaction conditions of each reaction program are shown in Table 2. The dosage of each component in the reaction system is shown in Table 3.

表1引物设计Table 1 Primer design

表2PCR反应条件Table 2 PCR reaction conditions

表3PCR反应体系(50 μL)Table 3 PCR reaction system (50 μL)

PCR扩增结束后,采用琼脂糖凝胶电泳检测饱和突变基因的扩增情况,结果如图1所示,图1A为突变位点上、下游片段扩增结果,图1B为全长突变基因扩增结果,该检测结果显示,扩增条带大小正确。After PCR amplification, agarose gel electrophoresis was used to detect the amplification of the saturated mutant gene. The results are shown in Figure 1. Figure 1A shows the amplification results of the upstream and downstream fragments of the mutation site. Figure 1B shows the amplification results of the full-length mutant gene. The amplification result showed that the size of the amplified band was correct.

3.构建重组表达载体3. Construct recombinant expression vector

①如图2所示,采用SnaB Ⅰ和NotⅠ两种限制性内切酶,分别对将PCR扩增获得的突变mlcc5基因和pPIC9K空载进行双酶切,双酶切反应体系中各组分用量见表4,酶切于37 ℃反应60 min。酶切完成后,产物以1%的核酸胶进行纯化回收。① As shown in Figure 2, two restriction endonucleases, Sna B Ⅰ and Not Ⅰ, were used to double-digest the mutant mlcc5 gene and pPIC9K empty vector obtained by PCR amplification. Each group in the double-digestion reaction system The dosage is shown in Table 4. Enzyme digestion was carried out at 37°C for 60 minutes. After the enzyme digestion is completed, the product is purified and recovered using 1% nucleic acid gel.

表4双酶切反应体系(50 μL)Table 4 Double enzyme digestion reaction system (50 μL)

②在T4连接酶作用下,按照摩尔比为1:6的用量,将酶切后的突变mlcc5基因插入到pPIC9K空载的启动子AOX1下游,条件为22 ℃连接60 min,以此构建pPIC9K-mlcc5表达载体。② Under the action of T4 ligase, insert the digested mutant mlcc5 gene into the downstream of pPIC9K empty promoter AOX1 at a molar ratio of 1:6, and ligate at 22°C for 60 minutes to construct pPIC9K- mlcc5 expression vector.

4.获取重组菌株4. Obtain recombinant strains

①将构建的pPIC9K-mlcc5表达载体转化至Trans1 T1感受态细胞中,得到Trans1T1-pPIC9K-mlcc5①Transform the constructed pPIC9K- mlcc5 expression vector into Trans1 T1 competent cells to obtain Trans1T1-pPIC9K- mlcc5 .

②在37 ℃条件下培养Trans1 T1-pPIC9K-mlcc58~12 h,并提取pPIC9K-mlcc5质粒;如图2所示,然后使用限制性内切酶SacI对pPIC9K-mlcc5质粒线性化,条件为37 ℃反应60 min;再通过电击转化法将线性化表达载体转入宿主毕赤酵母(P. pastoris)中,得到P. pastoris-pPIC9K-mlcc5② Cultivate Trans1 T1-pPIC9K- mlcc5 at 37°C for 8~12 hours, and extract the pPIC9K- mlcc5 plasmid; as shown in Figure 2, then use restriction endonuclease Sac I to linearize the pPIC9K- mlcc5 plasmid, the conditions are: React at 37°C for 60 minutes; then transfer the linearized expression vector into the host P. pastoris ( P. pastoris ) through electroporation transformation method to obtain P. pastoris -pPIC9K- mlcc5 .

5.筛选饱和突变文库5. Screen saturation mutation library

①将P. pastoris-pPIC9K-mlcc5从保菌管单克隆转接到含有100 mL BMGY培养基的96孔板中,并于28 ℃、800 rpm条件下养菌24 h。①Transfer a single clone of P. pastoris -pPIC9K- mlcc5 from the storage tube into a 96-well plate containing 100 mL BMGY medium, and culture the bacteria at 28°C and 800 rpm for 24 hours.

②以P. pastoris-pPIC9K、野生型P. pastoris-pPIC9K-lcc5为对照组,将养好的对照组、P. pastoris-pPIC9K-mlcc5分别用印膜转到含有800 μL BMGY培养基的96孔板中培养,每组样品做三个平行样,尽量保证每块板的接种量一致,并于28 ℃、800 rpm条件下培养24 h。② Use P. pastoris-pPIC9K and wild-type P. pastoris -pPIC9K- lcc 5 as the control group. Transfer the cultured control group and P. pastoris -pPIC9K- mlcc5 to 96 wells containing 800 μL BMGY medium using printed membranes. Culture in plates, make three parallel samples of each group of samples, try to ensure that the inoculation amount of each plate is consistent, and culture at 28°C and 800 rpm for 24 h.

③将上述培养的样品分别以600 rpm离心15 min,除去上清液,然后在每孔中加入800 μL BMM培养基,诱导培养24 h,使对照组菌株和突变漆酶表达。③Centrifuge the above cultured samples at 600 rpm for 15 min, remove the supernatant, then add 800 μL BMM medium to each well, induce culture for 24 h, and express the control strain and mutant laccase.

④以黄曲霉毒素B1(AFB1)为底物,向其中加入乙醇、稀释1~5倍的诱导后对照组或突变漆酶发酵液、pH=4.0的柠檬酸-Na2HPO4缓冲液,反应体系总体积为200 μL,其中AFB1终浓度为0.1 μg/mL,乙醇终浓度为15%,酶液终浓度为0.2 U,柠檬酸-Na2HPO4缓冲液补足体积至200 μL。④ Use aflatoxin B1 (AFB1) as the substrate, add ethanol, the induced control group or mutant laccase fermentation broth diluted 1 to 5 times, and citric acid-Na 2 HPO 4 buffer with pH=4.0, and react. The total volume of the system is 200 μL, in which the final concentration of AFB1 is 0.1 μg/mL, the final concentration of ethanol is 15%, the final concentration of the enzyme solution is 0.2 U, and the citric acid-Na 2 HPO 4 buffer is used to make up the volume to 200 μL.

将各反应体系在32 ℃、800 rpm反应24 h,测定各反应体系中AFB1的脱毒效率相较于野生型脱毒率倍数,该倍数可用公式表示为:脱毒率倍数=突变漆酶脱毒率/野生型漆酶脱毒率,测定结果如图3所示。Each reaction system was reacted at 32°C and 800 rpm for 24 hours, and the detoxification efficiency of AFB1 in each reaction system was compared with the wild-type detoxification rate multiple. The multiple can be expressed by the formula: detoxification rate multiple = mutant laccase detoxification rate Toxicity rate/wild-type laccase detoxification rate, the measurement results are shown in Figure 3.

根据图3,筛选出对AFB1脱毒效率相对照组提升1.34倍的P. pastoris-pPIC9K-mlcc5为目标突变漆酶经测定,筛选出的突变漆酶的氨基酸序列如SEQ ID No : 3所示,突变漆酶氨基酸编码的核苷酸序列如SEQ ID No : 4所示。According to Figure 3, P. pastoris -pPIC9K- mlcc5, which has a 1.34-fold improvement in AFB1 detoxification efficiency compared to the control group, was selected as the target mutant laccase . After determination, the amino acid sequence of the screened mutant laccase is shown in SEQ ID No: 3, and the nucleotide sequence encoding the amino acid of the mutant laccase is shown in SEQ ID No: 4.

6.重组菌株在生物乙醇制备过程中干酒糟及其可溶物(DDGS)中AFB1同步脱毒中的应用6. Application of recombinant strains in the simultaneous detoxification of AFB1 in distillers dried grains and solubles (DDGS) during the production of bioethanol

以生物乙醇制备过程中DDGS为底物,向其中加入乙醇、筛选出的突变漆酶培养液、pH=4.0的柠檬酸-Na2HPO4缓冲液,反应体系总体积为200 μL。其中,AFB1终浓度为0.1 μg/mL-1,乙醇终浓度为15%,酶液终浓度为0.2 U,柠檬酸-Na2HPO4缓冲液补足体积至200 μL。将反应体系在32 ℃、800 rpm反应24 h,测定反应体系中AFB1的脱毒效率为16%。Using DDGS in the bioethanol preparation process as the substrate, ethanol, the screened mutant laccase culture solution, and citric acid- Na 2 HPO 4 buffer with pH = 4.0 were added to it. The total volume of the reaction system was 200 μL. Among them, the final concentration of AFB1 is 0.1 μg/mL -1 , the final concentration of ethanol is 15%, the final concentration of enzyme solution is 0.2 U, and the citric acid-Na 2 HPO 4 buffer is added to the volume to 200 μL. The reaction system was reacted at 32°C and 800 rpm for 24 h, and the detoxification efficiency of AFB1 in the reaction system was determined to be 16%.

实施例2Example 2

本实施例提供一种漆酶定向进化方法及突变漆酶基因、表达载体、重组菌株及其脱毒黄曲霉毒素应用,包括以下步骤:This embodiment provides a laccase directed evolution method, mutant laccase gene, expression vector, recombinant strain and its application for detoxifying aflatoxin, including the following steps:

步骤1-5同实施例1。Steps 1-5 are the same as in Example 1.

6.重组菌株在生物乙醇制备过程中干酒糟及其可溶物(DDGS)中AFB1同步脱毒中的应用6. Application of recombinant strains in the simultaneous detoxification of AFB1 in distillers dried grains and solubles (DDGS) during the production of bioethanol

以生物乙醇制备过程中DDGS为底物,向其中加入乙醇、筛选出的突变漆酶培养液、pH=4.0的柠檬酸-Na2HPO4缓冲液,反应体系总体积为200 μL。其中,AFB1终浓度为0.13 μg/mL-1,乙醇终浓度为18%,酶液终浓度为0.23 U,柠檬酸-Na2HPO4缓冲液补足体积至200 μL。将反应体系在31 ℃、900 rpm反应22 h,测定反应体系中AFB1的脱毒效率为16.2%。Using DDGS in the bioethanol preparation process as the substrate, ethanol, the screened mutant laccase culture solution, and citric acid- Na 2 HPO 4 buffer with pH = 4.0 were added to it. The total volume of the reaction system was 200 μL. Among them, the final concentration of AFB1 is 0.13 μg/mL -1 , the final concentration of ethanol is 18%, the final concentration of enzyme solution is 0.23 U, and the citric acid-Na 2 HPO 4 buffer is added to the volume to 200 μL. The reaction system was reacted at 31°C and 900 rpm for 22 h, and the detoxification efficiency of AFB1 in the reaction system was determined to be 16.2%.

实施例3Example 3

本实施例提供一种漆酶定向进化方法及突变漆酶基因、表达载体、重组菌株及其脱毒黄曲霉毒素应用,包括以下步骤:This embodiment provides a laccase directed evolution method, mutant laccase gene, expression vector, recombinant strain and its application for detoxifying aflatoxin, including the following steps:

步骤1-5同实施例1。Steps 1-5 are the same as in Example 1.

6.重组菌株在生物乙醇制备过程中干酒糟及其可溶物(DDGS)中AFB1同步脱毒中的应用6. Application of recombinant strains in the simultaneous detoxification of AFB1 in distillers dried grains and solubles (DDGS) during the production of bioethanol

以生物乙醇制备过程中DDGS为底物,向其中加入乙醇、筛选出的突变漆酶培养液、pH=4.0的柠檬酸-Na2HPO4缓冲液,反应体系总体积为200 μL。其中,AFB1终浓度为0.15 μg/mL-1,乙醇终浓度为20%,酶液终浓度为0.25 U,柠檬酸-Na2HPO4缓冲液补足体积至200 μL。将反应体系在30 ℃、1000 rpm反应20 h,测定反应体系中AFB1的脱毒效率为16.5%。Using DDGS in the bioethanol preparation process as the substrate, ethanol, the screened mutant laccase culture solution, and citric acid- Na 2 HPO 4 buffer with pH = 4.0 were added to it. The total volume of the reaction system was 200 μL. Among them, the final concentration of AFB1 is 0.15 μg/mL -1 , the final concentration of ethanol is 20%, the final concentration of enzyme solution is 0.25 U, and the citric acid-Na 2 HPO 4 buffer is added to the volume to 200 μL. The reaction system was reacted at 30°C and 1000 rpm for 20 h, and the detoxification efficiency of AFB1 in the reaction system was determined to be 16.5%.

对比例1Comparative example 1

本对比例采用含有pPIC9K空载的毕赤酵母(P. pastoris)菌对生物乙醇制备过程中干酒糟及其可溶物(DDGS)中AFB1进行同步脱毒。In this comparative example, P. pastoris bacteria containing empty pPIC9K were used to simultaneously detoxify AFB1 in distillers dried grains and solubles (DDGS) during the production of bioethanol.

以生物乙醇制备过程中DDGS为底物,向其中加入乙醇、含有pPIC9K空载的毕赤酵母(P. pastoris)菌株液、pH=4.0的柠檬酸-Na2HPO4缓冲液,反应体系总体积为200 μL。其中,AFB1终浓度为0.1 μg/mL-1,乙醇终浓度为15%,酶液终浓度为0.2 U,柠檬酸-Na2HPO4缓冲液补足体积至200 μL。将反应体系在32 ℃、800 rpm反应24 h,测定反应体系中AFB1的脱毒效率为0%。Use DDGS as the substrate in the bioethanol preparation process, add ethanol, P. pastoris strain containing pPIC9K empty, citric acid-Na 2 HPO 4 buffer with pH=4.0, and the total volume of the reaction system is 200 μL. Among them, the final concentration of AFB1 is 0.1 μg/mL -1 , the final concentration of ethanol is 15%, the final concentration of enzyme solution is 0.2 U, and the citric acid-Na 2 HPO 4 buffer is added to the volume to 200 μL. The reaction system was reacted at 32°C and 800 rpm for 24 h, and the detoxification efficiency of AFB1 in the reaction system was determined to be 0%.

对比例2Comparative example 2

本对比例采用野生型P. pastoris-pPIC9K-lcc5菌株对生物乙醇制备过程中干酒糟及其可溶物(DDGS)中AFB1进行同步脱毒。In this comparative example, the wild-type P. pastoris -pPIC9K- lcc 5 strain was used to simultaneously detoxify AFB1 in distillers dried grains and solubles (DDGS) during bioethanol preparation.

以生物乙醇制备过程中DDGS为底物,向其中加入乙醇、野生型P. pastoris-pPIC9K-lcc5菌株液、pH=4.0的柠檬酸-Na2HPO4缓冲液,反应体系总体积为200 μL。其中,AFB1终浓度为0.1 μg/mL-1,乙醇终浓度为15%,酶液终浓度为0.2 U,柠檬酸-Na2HPO4缓冲液补足体积至200 μL。将反应体系在32 ℃、800 rpm反应24 h,测定反应体系中AFB1的脱毒效率为12%。Use DDGS in the bioethanol preparation process as the substrate, add ethanol, wild-type P. pastoris -pPIC9K- lcc 5 strain liquid, and citric acid-Na 2 HPO 4 buffer with pH=4.0. The total volume of the reaction system is 200 μL. . Among them, the final concentration of AFB1 is 0.1 μg/mL -1 , the final concentration of ethanol is 15%, the final concentration of enzyme solution is 0.2 U, and the citric acid-Na 2 HPO 4 buffer is added to the volume to 200 μL. The reaction system was reacted at 32°C and 800 rpm for 24 h, and the detoxification efficiency of AFB1 in the reaction system was determined to be 12%.

本申请的实施原理为:本发明以在Pichia pastoris中异源表达的漆酶为基础,通过定点饱和突变,并在P. pastoris中异源表达突变漆酶基因,构建了一个“小而精”的饱和突变体文库;最终通过筛选获得了一株重组毕赤酵母突变菌株,其发酵产生的酶蛋白脱毒AFB1的效率提升至1.34倍,突变体蛋白可应用于生物乙醇制备过程中干酒糟及其可溶物(DDGS)中AFB1的同步脱毒。The implementation principle of this application is: the present invention is based on the laccase heterologously expressed in Pichia pastoris , through site-directed saturation mutation, and heterologously expresses the mutated laccase gene in P. pastoris to construct a "small but precise" A saturated mutant library; a recombinant Pichia pastoris mutant strain was finally obtained through screening. The efficiency of detoxifying AFB1, an enzyme protein produced by fermentation, was increased to 1.34 times. The mutant protein can be used in dry distiller's grains and in the production of bioethanol. Simultaneous detoxification of AFB1 in its soluble form (DDGS).

以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that they can still modify the technical solutions of the foregoing embodiments. The recorded technical solutions may be modified, or some of the technical features thereof may be equivalently replaced; however, these modifications or substitutions shall not cause the essence of the corresponding technical solutions to deviate from the spirit and scope of the technical solutions of each embodiment of the present invention.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 安徽大学<110> Anhui University

<120> 一种漆酶定向进化方法及突变漆酶基因、表达载体、重组菌株及其脱毒黄曲<120> A laccase directed evolution method and mutant laccase gene, expression vector, recombinant strain and detoxified yellow yeast

霉毒素应用Mycotoxin applications

<130> 1<130> 1

<160> 4<160> 4

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 509<211> 509

<212> PRT<212> PRT

<213> Coprinopsis cinerea<213> Coprinopsis cinerea

<400> 1<400> 1

Ile Ile Gly Asn Gln Asp Thr Met Thr Ile Ser Asn Ile Asn Ala GlyIle Ile Gly Asn Gln Asp Thr Met Thr Ile Ser Asn Ile Asn Ala Gly

1 5 10 151 5 10 15

Pro Asp Gly Phe Thr Arg Pro Val Ile Ala Val Asn Gly Glu Phe ProPro Asp Gly Phe Thr Arg Pro Val Ile Ala Val Asn Gly Glu Phe Pro

20 25 30 20 25 30

Ser Pro Leu Val Arg Ala Asn Lys Gly Asp Asp Phe Arg Ile Asn ValSer Pro Leu Val Arg Ala Asn Lys Gly Asp Asp Phe Arg Ile Asn Val

35 40 45 35 40 45

Val Asn Asn Leu Asp Asp Asp Thr Met Leu Arg Gln Thr Ser Val HisVal Asn Asn Leu Asp Asp Asp Thr Met Leu Arg Gln Thr Ser Val His

50 55 60 50 55 60

Trp His Gly Val Phe Gln His Gln Ser Ala Trp Ala Asp Gly Pro AspTrp His Gly Val Phe Gln His Gln Ser Ala Trp Ala Asp Gly Pro Asp

65 70 75 8065 70 75 80

Gly Val Thr Gln Cys Pro Ile Pro Gln Ser Gly Gln Glu Phe Glu TyrGly Val Thr Gln Cys Pro Ile Pro Gln Ser Gly Gln Glu Phe Glu Tyr

85 90 95 85 90 95

Ala Phe Asn Ala Gly Gln Glu Ala Gly Thr Phe Trp Tyr His Ser HisAla Phe Asn Ala Gly Gln Glu Ala Gly Thr Phe Trp Tyr His Ser His

100 105 110 100 105 110

Tyr Gly Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Leu Val Ile TyrTyr Gly Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Leu Val Ile Tyr

115 120 125 115 120 125

Asp Pro Glu Asp Pro His Gln Asp Leu Tyr Asp Val Asp Asp Glu AsnAsp Pro Glu Asp Pro His Gln Asp Leu Tyr Asp Val Asp Asp Glu Asn

130 135 140 130 135 140

Thr Ile Ile Thr Leu Ala Asp Trp Tyr His Leu Gln Ala Pro Ser IleThr Ile Ile Thr Leu Ala Asp Trp Tyr His Leu Gln Ala Pro Ser Ile

145 150 155 160145 150 155 160

Gln Gly Pro Ala Val Ser Gln Ala Thr Leu Ile Asn Gly Lys Gly ArgGln Gly Pro Ala Val Ser Gln Ala Thr Leu Ile Asn Gly Lys Gly Arg

165 170 175 165 170 175

Arg Pro Gly Ser Thr Glu Gly Asp Ile Ala Val Val Asn Val Glu LysArg Pro Gly Ser Thr Glu Gly Asp Ile Ala Val Val Asn Val Glu Lys

180 185 190 180 185 190

Asp Ser Arg Tyr Arg Phe Arg Ile Val Ser Leu Ser Cys Asp Pro AspAsp Ser Arg Tyr Arg Phe Arg Ile Val Ser Leu Ser Cys Asp Pro Asp

195 200 205 195 200 205

Tyr Thr Phe Ser Ile Asp Asn His Thr Met Thr Ile Ile Glu Ala AspTyr Thr Phe Ser Ile Asp Asn His Thr Met Thr Ile Ile Glu Ala Asp

210 215 220 210 215 220

Gly Gln Asn Thr Lys Pro Leu Glu Val Glu Ser Ile Arg Val Phe AlaGly Gln Asn Thr Lys Pro Leu Glu Val Glu Ser Ile Arg Val Phe Ala

225 230 235 240225 230 235 240

Gly Gln Arg Tyr Ser Val Val Val Asn Ala Asp Gln Ala Ile Gly AsnGly Gln Arg Tyr Ser Val Val Val Asn Ala Asp Gln Ala Ile Gly Asn

245 250 255 245 250 255

Tyr Trp Ile Arg Ala Glu Pro Asn Ile Gly Asp Thr Gly Leu Val GlyTyr Trp Ile Arg Ala Glu Pro Asn Ile Gly Asp Thr Gly Leu Val Gly

260 265 270 260 265 270

Thr Ser Gly Gly Gly Val Asn Ser Ala Ile Leu Arg Tyr Ala Thr AlaThr Ser Gly Gly Gly Val Asn Ser Ala Ile Leu Arg Tyr Ala Thr Ala

275 280 285 275 280 285

Asp Glu Val Glu Pro Asp Thr Pro Arg Leu Thr Asn Arg Pro Ala LeuAsp Glu Val Glu Pro Asp Thr Pro Arg Leu Thr Asn Arg Pro Ala Leu

290 295 300 290 295 300

Gln Glu Ser Asn Leu Arg Ala Leu Thr Ser Gly Val Pro Gly Gly AspGln Glu Ser Asn Leu Arg Ala Leu Thr Ser Gly Val Pro Gly Gly Asp

305 310 315 320305 310 315 320

Gly Pro Ala Asp Ile Thr Phe Thr Phe Asn Leu Gly Leu Asn Phe AlaGly Pro Ala Asp Ile Thr Phe Thr Phe Asn Leu Gly Leu Asn Phe Ala

325 330 335 325 330 335

Thr Gly Thr Phe Ser Met Asn Pro Gly Glu Ser Trp Val His Pro AspThr Gly Thr Phe Ser Met Asn Pro Gly Glu Ser Trp Val His Pro Asp

340 345 350 340 345 350

Thr Pro Val Met Val Gln Ile Met Asn Gly Val Pro Ala Glu Asp LeuThr Pro Val Met Val Gln Ile Met Asn Gly Val Pro Ala Glu Asp Leu

355 360 365 355 360 365

Val Pro Ala Glu Ser Leu His Thr Ile Thr Arg Gly Gln Val Val GluVal Pro Ala Glu Ser Leu His Thr Ile Thr Arg Gly Gln Val Val Glu

370 375 380 370 375 380

Val Val Ile Pro Pro Phe Gly Ile Ala Gly Pro His Pro Phe His LeuVal Val Ile Pro Pro Phe Gly Ile Ala Gly Pro His Pro Phe His Leu

385 390 395 400385 390 395 400

His Gly His Ala Phe Ser Val Ile Lys Ser Ala Gly Gly Ser Pro AsnHis Gly His Ala Phe Ser Val Ile Lys Ser Ala Gly Gly Ser Pro Asn

405 410 415 405 410 415

Phe Val Asp Pro Val Arg Arg Asp Val Val Ala Val Gly Thr Glu AlaPhe Val Asp Pro Val Arg Arg Asp Val Val Ala Val Gly Thr Glu Ala

420 425 430 420 425 430

Gly Gln Gly Asp Thr Ile Ile Arg Phe Val Ala Asp Asn Pro Gly ProGly Gln Gly Asp Thr Ile Ile Arg Phe Val Ala Asp Asn Pro Gly Pro

435 440 445 435 440 445

Trp Phe Phe His Cys His Ile Glu Phe His Leu Val Thr Gly Leu AlaTrp Phe Phe His Cys His Ile Glu Phe His Leu Val Thr Gly Leu Ala

450 455 460 450 455 460

Ala Val Phe Met Glu Ala Pro Asp Glu Ile Ala Ser Ser Asn Pro ProAla Val Phe Met Glu Ala Pro Asp Glu Ile Ala Ser Ser Asn Pro Pro

465 470 475 480465 470 475 480

Pro Pro Ser Trp Asp Ala Leu Cys Pro Ala Phe Ser Ala Leu Pro ProPro Pro Ser Trp Asp Ala Leu Cys Pro Ala Phe Ser Ala Leu Pro Pro

485 490 495 485 490 495

Ser Ala Thr Ser Ile Arg Ile Val Pro Thr Pro Thr ProSer Ala Thr Ser Ile Arg Ile Val Pro Thr Pro Thr Pro

500 505 500 505

<210> 2<210> 2

<211> 1530<211> 1530

<212> DNA<212> DNA

<213> Coprinopsis cinerea<213> Coprinopsis cinerea

<400> 2<400> 2

atcattggca accaagatac tatgaccatc tctaatatta atgctggccc agatggcttc 60atcattggca accaagatac tatgaccatc tctaatatta atgctggccc agatggcttc 60

accagacctg tcatcgcggt caatggcgaa ttcccttctc ccctcgttag ggccaacaag 120accagacctg tcatcgcggt caatggcgaa ttcccttctc ccctcgttag ggccaacaag 120

ggcgacgact ttcgaattaa cgtcgtgaac aatttggacg atgacactat gcttcgtcaa 180ggcgacgact ttcgaattaa cgtcgtgaac aatttggacg atgacactat gcttcgtcaa 180

accagtgttc actggcacgg tgtcttccag caccagtctg cttgggctga tggcccggat 240accagtgttc actggcacgg tgtcttccag caccagtctg cttgggctga tggcccggat 240

ggtgttactc agtgtcccat tccccaatca ggccaagagt tcgaatatgc attcaatgca 300ggtgttatactc agtgtcccat tccccaatca ggccaagagt tcgaatatgc attcaatgca 300

ggacaagagg caggcacatt ctggtaccat tctcattacg gtactcaata ctgcgatggc 360ggacaagagg caggcacatt ctggtaccat tctcattacg gtactcaata ctgcgatggc 360

ctccgtggtc ctttggtcat ctacgatccc gaagatcctc atcaggatct ctacgatgtc 420ctccgtggtc ctttggtcat ctacgatccc gaagatcctc atcaggatct ctacgatgtc 420

gacgacgaga atactattat caccttggcc gattggtacc atctccaagc gccttccatc 480gacgacgaga atactattat caccttggcc gattggtacc atctccaagc gccttccatc 480

caaggccctg ctgtctctca ggcgaccctc attaatggaa agggccgacg acctggcagc 540caaggccctg ctgtctctca ggcgaccctc attaatggaa agggccgacg acctggcagc 540

accgaaggcg acatcgccgt cgtgaacgtc gagaaggact cgaggtaccg attccgcatc 600accgaaggcg acatcgccgt cgtgaacgtc gagaaggact cgaggtaccg attccgcatc 600

gtttcccttt cctgcgaccc cgactacacg ttctcgattg ataaccacac catgaccatc 660gtttcccttt cctgcgaccc cgactacacg ttctcgattg ataaccacac catgaccatc 660

attgaagctg acgggcaaaa caccaagccc ctcgaggtcg agagtatcag agtcttcgct 720attgaagctg acgggcaaaa caccaagccc ctcgaggtcg agagtatcag agtcttcgct 720

ggacaaaggt actctgtcgt cgtgaacgct gaccaggcta tcggcaacta ctggatccgt 780ggacaaaggt actctgtcgt cgtgaacgct gaccaggcta tcggcaacta ctggatccgt 780

gctgagccca acatcggtga cactggactg gttggaacca gcggaggtgg tgtcaactcc 840gctgagccca acatcggtga cactggactg gttggaacca gcggaggtgg tgtcaactcc 840

gccatcctgc gctatgccac cgccgacgag gtcgagcccg atacaccaag gcttaccaac 900gccatcctgc gctatgccac cgccgacgag gtcgagcccg atacaccaag gcttaccaac 900

cgacccgcct tgcaagagtc gaacctccgc gcattgactt ccggtgtccc aggaggcgat 960cgacccgcct tgcaagagtc gaacctccgc gcattgactt ccggtgtccc aggaggcgat 960

ggtcctgctg atattacctt caccttcaac ctcggcctca acttcgcaac tggcacattc 1020ggtcctgctg atattacctt caccttcaac ctcggcctca acttcgcaac tggcacattc 1020

tccatgaacc ctggcgagag ctgggtccac cctgacactc ctgtcatggt ccagatcatg 1080tccatgaacc ctggcgagag ctgggtccac cctgacactc ctgtcatggt ccagatcatg 1080

aatggcgttc ctgccgagga tctcgttccc gctgagtccc tccatactat tactcgcggc 1140aatggcgttc ctgccgagga tctcgttccc gctgagtccc tccatactat tactcgcggc 1140

caagttgtgg aagttgtcat cccacccttc ggtatcgctg gacctcatcc tttccatctc 1200caagttgtgg aagttgtcat cccacccttc ggtatcgctg gacctcatcc tttccatctc 1200

cacggtcacg ccttcagcgt tatcaagagc gccggtggtt ctcccaactt cgtcgaccca 1260cacggtcacg ccttcagcgt tatcaagagc gccggtggtt ctcccaactt cgtcgaccca 1260

gtccgccgtg acgtggtcgc tgttggtact gaagctggac agggagacac tattatccga 1320gtccgccgtg acgtggtcgc tgttggtact gaagctggac agggagacac tattatccga 1320

ttcgttgctg ataacccagg accgtggttc ttccattgcc acatcgagtt ccaccttgtc 1380ttcgttgctg ataacccagg accgtggttc ttccattgcc acatcgagtt ccaccttgtc 1380

accggtttgg ctgctgtctt catggaagcc cccgacgaga tcgccagcag caacccccct 1440accggtttgg ctgctgtctt catggaagcc cccgacgaga tcgccagcag caacccccct 1440

cctccctcgt gggatgccct gtgccctgct ttctctgctc ttcctccctc ggccacgagc 1500cctccctcgt gggatgccct gtgccctgct ttctctgctc ttcctccctc ggccacgagc 1500

atccgcattg tccccacccc tactccctaa 1530atccgcattg tccccaccccc tactccctaa 1530

<210> 3<210> 3

<211> 509<211> 509

<212> PRT<212> PRT

<213> Coprinopsis cinerea<213> Coprinopsis cinerea

<400> 3<400> 3

Ile Ile Gly Asn Gln Asp Thr Met Thr Ile Ser Asn Ile Asn Ala GlyIle Ile Gly Asn Gln Asp Thr Met Thr Ile Ser Asn Ile Asn Ala Gly

1 5 10 151 5 10 15

Pro Asp Gly Phe Thr Arg Pro Val Ile Ala Val Asn Gly Glu Phe ProPro Asp Gly Phe Thr Arg Pro Val Ile Ala Val Asn Gly Glu Phe Pro

20 25 30 20 25 30

Ser Pro Leu Val Arg Ala Asn Lys Gly Asp Asp Phe Arg Ile Asn ValSer Pro Leu Val Arg Ala Asn Lys Gly Asp Asp Phe Arg Ile Asn Val

35 40 45 35 40 45

Val Asn Asn Leu Asp Asp Asp Thr Met Leu Arg Gln Thr Ser Val HisVal Asn Asn Leu Asp Asp Asp Thr Met Leu Arg Gln Thr Ser Val His

50 55 60 50 55 60

Trp His Gly Val Phe Gln His Gln Ser Ala Trp Ala Asp Gly Pro AspTrp His Gly Val Phe Gln His Gln Ser Ala Trp Ala Asp Gly Pro Asp

65 70 75 8065 70 75 80

Gly Val Thr Gln Cys Pro Ile Pro Gln Ser Gly Gln Glu Phe Glu TyrGly Val Thr Gln Cys Pro Ile Pro Gln Ser Gly Gln Glu Phe Glu Tyr

85 90 95 85 90 95

Ala Phe Asn Ala Gly Gln Glu Ala Gly Thr Phe Trp Tyr His Ser HisAla Phe Asn Ala Gly Gln Glu Ala Gly Thr Phe Trp Tyr His Ser His

100 105 110 100 105 110

Tyr Gly Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Leu Val Ile TyrTyr Gly Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Leu Val Ile Tyr

115 120 125 115 120 125

Asp Pro Glu Asp Pro His Gln Asp Leu Tyr Asp Val Asp Asp Glu AsnAsp Pro Glu Asp Pro His Gln Asp Leu Tyr Asp Val Asp Asp Glu Asn

130 135 140 130 135 140

Thr Ile Ile Thr Leu Ala Asp Trp Tyr His Leu Gln Ala Pro Ser IleThr Ile Ile Thr Leu Ala Asp Trp Tyr His Leu Gln Ala Pro Ser Ile

145 150 155 160145 150 155 160

Gln Gly Pro Ala Val Ser Gln Ala Thr Leu Ile Asn Gly Lys Gly ArgGln Gly Pro Ala Val Ser Gln Ala Thr Leu Ile Asn Gly Lys Gly Arg

165 170 175 165 170 175

Arg Pro Gly Ser Thr Glu Gly Asp Ile Ala Val Val Asn Val Glu LysArg Pro Gly Ser Thr Glu Gly Asp Ile Ala Val Val Asn Val Glu Lys

180 185 190 180 185 190

Asp Ser Arg Tyr Arg Phe Arg Ile Val Ser Leu Ser Cys Asp Pro AspAsp Ser Arg Tyr Arg Phe Arg Ile Val Ser Leu Ser Cys Asp Pro Asp

195 200 205 195 200 205

Tyr Thr Phe Ser Ile Asp Asn His Thr Met Thr Ile Ile Glu Ala AspTyr Thr Phe Ser Ile Asp Asn His Thr Met Thr Ile Ile Glu Ala Asp

210 215 220 210 215 220

Gly Gln Asn Thr Lys Pro Leu Glu Val Glu Phe Ile Arg Val Phe AlaGly Gln Asn Thr Lys Pro Leu Glu Val Glu Phe Ile Arg Val Phe Ala

225 230 235 240225 230 235 240

Gly Gln Arg Tyr Ser Val Val Val Asn Ala Asp Gln Ala Ile Gly AsnGly Gln Arg Tyr Ser Val Val Val Asn Ala Asp Gln Ala Ile Gly Asn

245 250 255 245 250 255

Tyr Trp Ile Arg Ala Glu Pro Asn Ile Gly Asp Thr Gly Leu Val GlyTyr Trp Ile Arg Ala Glu Pro Asn Ile Gly Asp Thr Gly Leu Val Gly

260 265 270 260 265 270

Thr Ser Gly Gly Gly Val Asn Ser Ala Ile Leu Arg Tyr Ala Thr AlaThr Ser Gly Gly Gly Val Asn Ser Ala Ile Leu Arg Tyr Ala Thr Ala

275 280 285 275 280 285

Asp Glu Val Glu Pro Asp Thr Pro Arg Leu Thr Asn Arg Pro Ala LeuAsp Glu Val Glu Pro Asp Thr Pro Arg Leu Thr Asn Arg Pro Ala Leu

290 295 300 290 295 300

Gln Glu Ser Asn Leu Arg Ala Leu Thr Ser Gly Val Pro Gly Gly AspGln Glu Ser Asn Leu Arg Ala Leu Thr Ser Gly Val Pro Gly Gly Asp

305 310 315 320305 310 315 320

Gly Pro Ala Asp Ile Thr Phe Thr Phe Asn Leu Gly Leu Asn Phe AlaGly Pro Ala Asp Ile Thr Phe Thr Phe Asn Leu Gly Leu Asn Phe Ala

325 330 335 325 330 335

Thr Gly Thr Phe Ser Met Asn Pro Gly Glu Ser Trp Val His Pro AspThr Gly Thr Phe Ser Met Asn Pro Gly Glu Ser Trp Val His Pro Asp

340 345 350 340 345 350

Thr Pro Val Met Val Gln Ile Met Asn Gly Val Pro Ala Glu Asp LeuThr Pro Val Met Val Gln Ile Met Asn Gly Val Pro Ala Glu Asp Leu

355 360 365 355 360 365

Val Pro Ala Glu Ser Leu His Thr Ile Thr Arg Gly Gln Val Val GluVal Pro Ala Glu Ser Leu His Thr Ile Thr Arg Gly Gln Val Val Glu

370 375 380 370 375 380

Val Val Ile Pro Pro Phe Gly Ile Ala Gly Pro His Pro Phe His LeuVal Val Ile Pro Pro Phe Gly Ile Ala Gly Pro His Pro Phe His Leu

385 390 395 400385 390 395 400

His Gly His Ala Phe Ser Val Ile Lys Ser Ala Gly Gly Ser Pro AsnHis Gly His Ala Phe Ser Val Ile Lys Ser Ala Gly Gly Ser Pro Asn

405 410 415 405 410 415

Phe Val Asp Pro Val Arg Arg Asp Val Val Ala Val Gly Thr Glu AlaPhe Val Asp Pro Val Arg Arg Asp Val Val Ala Val Gly Thr Glu Ala

420 425 430 420 425 430

Gly Gln Gly Asp Thr Ile Ile Arg Phe Val Ala Asp Asn Pro Gly ProGly Gln Gly Asp Thr Ile Ile Arg Phe Val Ala Asp Asn Pro Gly Pro

435 440 445 435 440 445

Trp Phe Phe His Cys His Ile Glu Phe His Leu Val Thr Gly Leu AlaTrp Phe Phe His Cys His Ile Glu Phe His Leu Val Thr Gly Leu Ala

450 455 460 450 455 460

Ala Val Phe Met Glu Ala Pro Asp Glu Ile Ala Ser Ser Asn Pro ProAla Val Phe Met Glu Ala Pro Asp Glu Ile Ala Ser Ser Asn Pro Pro

465 470 475 480465 470 475 480

Pro Pro Ser Trp Asp Ala Leu Cys Pro Ala Phe Ser Ala Leu Pro ProPro Pro Ser Trp Asp Ala Leu Cys Pro Ala Phe Ser Ala Leu Pro Pro

485 490 495 485 490 495

Ser Ala Thr Ser Ile Arg Ile Val Pro Thr Pro Thr ProSer Ala Thr Ser Ile Arg Ile Val Pro Thr Pro Thr Pro

500 505 500 505

<210> 4<210> 4

<211> 1530<211> 1530

<212> DNA<212> DNA

<213> Coprinopsis cinerea<213> Coprinopsis cinerea

<400> 4<400> 4

atcattggca accaagatac tatgaccatc tctaatatta atgctggccc agatggcttc 60atcattggca accaagatac tatgaccatc tctaatatta atgctggccc agatggcttc 60

accagacctg tcatcgcggt caatggcgaa ttcccttctc ccctcgttag ggccaacaag 120accagacctg tcatcgcggt caatggcgaa ttcccttctc ccctcgttag ggccaacaag 120

ggcgacgact ttcgaattaa cgtcgtgaac aatttggacg atgacactat gcttcgtcaa 180ggcgacgact ttcgaattaa cgtcgtgaac aatttggacg atgacactat gcttcgtcaa 180

accagtgttc actggcacgg tgtcttccag caccagtctg cttgggctga tggcccggat 240accagtgttc actggcacgg tgtcttccag caccagtctg cttgggctga tggcccggat 240

ggtgttactc agtgtcccat tccccaatca ggccaagagt tcgaatatgc attcaatgca 300ggtgttatactc agtgtcccat tccccaatca ggccaagagt tcgaatatgc attcaatgca 300

ggacaagagg caggcacatt ctggtaccat tctcattacg gtactcaata ctgcgatggc 360ggacaagagg caggcacatt ctggtaccat tctcattacg gtactcaata ctgcgatggc 360

ctccgtggtc ctttggtcat ctacgatccc gaagatcctc atcaggatct ctacgatgtc 420ctccgtggtc ctttggtcat ctacgatccc gaagatcctc atcaggatct ctacgatgtc 420

gacgacgaga atactattat caccttggcc gattggtacc atctccaagc gccttccatc 480gacgacgaga atactattat caccttggcc gattggtacc atctccaagc gccttccatc 480

caaggccctg ctgtctctca ggcgaccctc attaatggaa agggccgacg acctggcagc 540caaggccctg ctgtctctca ggcgaccctc attaatggaa agggccgacg acctggcagc 540

accgaaggcg acatcgccgt cgtgaacgtc gagaaggact cgaggtaccg attccgcatc 600accgaaggcg acatcgccgt cgtgaacgtc gagaaggact cgaggtaccg attccgcatc 600

gtttcccttt cctgcgaccc cgactacacg ttctcgattg ataaccacac catgaccatc 660gtttcccttt cctgcgaccc cgactacacg ttctcgattg ataaccacac catgaccatc 660

attgaagctg acgggcaaaa caccaagccc ctcgaggtcg agtttatcag agtcttcgct 720attgaagctg acgggcaaaa caccaagccc ctcgaggtcg agtttatcag agtcttcgct 720

ggacaaaggt actctgtcgt cgtgaacgct gaccaggcta tcggcaacta ctggatccgt 780ggacaaaggt actctgtcgt cgtgaacgct gaccaggcta tcggcaacta ctggatccgt 780

gctgagccca acatcggtga cactggactg gttggaacca gcggaggtgg tgtcaactcc 840gctgagccca acatcggtga cactggactg gttggaacca gcggaggtgg tgtcaactcc 840

gccatcctgc gctatgccac cgccgacgag gtcgagcccg atacaccaag gcttaccaac 900gccatcctgc gctatgccac cgccgacgag gtcgagcccg atacaccaag gcttaccaac 900

cgacccgcct tgcaagagtc gaacctccgc gcattgactt ccggtgtccc aggaggcgat 960cgacccgcct tgcaagagtc gaacctccgc gcattgactt ccggtgtccc aggaggcgat 960

ggtcctgctg atattacctt caccttcaac ctcggcctca acttcgcaac tggcacattc 1020ggtcctgctg atattacctt caccttcaac ctcggcctca acttcgcaac tggcacattc 1020

tccatgaacc ctggcgagag ctgggtccac cctgacactc ctgtcatggt ccagatcatg 1080tccatgaacc ctggcgagag ctgggtccac cctgacactc ctgtcatggt ccagatcatg 1080

aatggcgttc ctgccgagga tctcgttccc gctgagtccc tccatactat tactcgcggc 1140aatggcgttc ctgccgagga tctcgttccc gctgagtccc tccatactat tactcgcggc 1140

caagttgtgg aagttgtcat cccacccttc ggtatcgctg gacctcatcc tttccatctc 1200caagttgtgg aagttgtcat cccacccttc ggtatcgctg gacctcatcc tttccatctc 1200

cacggtcacg ccttcagcgt tatcaagagc gccggtggtt ctcccaactt cgtcgaccca 1260cacggtcacg ccttcagcgt tatcaagagc gccggtggtt ctcccaactt cgtcgaccca 1260

gtccgccgtg acgtggtcgc tgttggtact gaagctggac agggagacac tattatccga 1320gtccgccgtg acgtggtcgc tgttggtact gaagctggac agggagacac tattatccga 1320

ttcgttgctg ataacccagg accgtggttc ttccattgcc acatcgagtt ccaccttgtc 1380ttcgttgctg ataacccagg accgtggttc ttccattgcc acatcgagtt ccaccttgtc 1380

accggtttgg ctgctgtctt catggaagcc cccgacgaga tcgccagcag caacccccct 1440accggtttgg ctgctgtctt catggaagcc cccgacgaga tcgccagcag caacccccct 1440

cctccctcgt gggatgccct gtgccctgct ttctctgctc ttcctccctc ggccacgagc 1500cctccctcgt gggatgccct gtgccctgct ttctctgctc ttcctccctc ggccacgagc 1500

atccgcattg tccccacccc tactccctaa 1530atccgcattg tccccaccccc tactccctaa 1530

Claims (8)

1.一种突变漆酶,其特征在于:所述突变漆酶的氨基酸序列如SEQ ID No : 3所示。1. A mutant laccase, characterized in that: the amino acid sequence of the mutant laccase is shown in SEQ ID No: 3. 2.一种编码如权利要求1所述突变漆酶的基因,其特征在于:所述突变漆酶氨基酸编码的核苷酸序列如SEQ ID No : 4所示。2. A gene encoding a mutant laccase as claimed in claim 1, characterized in that: the nucleotide sequence encoding the amino acid of the mutant laccase is as shown in SEQ ID No: 4. 3.一种含有如权利要求2所述突变漆酶基因的重组表达载体。3. A recombinant expression vector containing the mutant laccase gene of claim 2. 4.根据权利要求3所述的重组表达载体,其特征在于:所述重组表达载体为将权利要求3所述突变漆酶基因连接至pPIC9K上得到的pPIC9K-mlcc5表达载体。4. The recombinant expression vector according to claim 3, characterized in that: the recombinant expression vector is the pPIC9K- mlcc5 expression vector obtained by connecting the mutant laccase gene described in claim 3 to pPIC9K. 5.一种含有如权利要求3所述重组表达载体的重组菌株。5. A recombinant strain containing the recombinant expression vector according to claim 3. 6.根据权利要求5所述的重组菌株,其特征在于:所述重组菌株为将权利要求3所述重组表达载体转入毕赤酵母中得到的P. pastoris-pPIC9K-mlcc56. The recombinant strain according to claim 5, characterized in that: the recombinant strain is P. pastoris -pPIC9K- mlcc5 obtained by transforming the recombinant expression vector described in claim 3 into Pichia pastoris. 7.一种如权利要求5所述重组菌株在黄曲霉毒素脱毒中的应用,其特征在于:包括以下步骤:7. The application of a recombinant strain in aflatoxin detoxification as claimed in claim 5, characterized in that: comprising the following steps: 以AFB1为底物,向其中加入乙醇、突变漆酶发酵液、pH=4.0的柠檬酸-Na2HPO4缓冲液,在30~32 ℃、800~1000 rpm反应20~24 h;其中,AFB1终浓度为0.1~0.15 μg/mL,乙醇终浓度为15~20%,酶液终浓度为0.2~0.25 U,柠檬酸-Na2HPO4缓冲液补足余量。Use AFB1 as the substrate, add ethanol, mutant laccase fermentation broth, and citric acid-Na 2 HPO 4 buffer with pH=4.0, and react at 30~32°C and 800~1000 rpm for 20~24 h; among them, AFB1 The final concentration is 0.1~0.15 μg/mL, the final concentration of ethanol is 15~20%, the final concentration of enzyme solution is 0.2~0.25 U, and citric acid-Na 2 HPO 4 buffer is used to make up the balance. 8.一种如权利要求5所述重组菌株在生物乙醇制备过程中干酒糟及其可溶物中黄曲霉毒素的同步脱毒中的应用。8. Application of a recombinant strain according to claim 5 in the simultaneous detoxification of aflatoxin in dried distiller's grains and its solubles during the preparation of bioethanol.
CN202210661906.2A 2022-06-13 2022-06-13 A directed evolution method of laccase and mutant laccase gene, expression vector, recombinant strain and its application in detoxifying aflatoxin Active CN114891757B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210661906.2A CN114891757B (en) 2022-06-13 2022-06-13 A directed evolution method of laccase and mutant laccase gene, expression vector, recombinant strain and its application in detoxifying aflatoxin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210661906.2A CN114891757B (en) 2022-06-13 2022-06-13 A directed evolution method of laccase and mutant laccase gene, expression vector, recombinant strain and its application in detoxifying aflatoxin

Publications (2)

Publication Number Publication Date
CN114891757A CN114891757A (en) 2022-08-12
CN114891757B true CN114891757B (en) 2024-01-23

Family

ID=82728194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210661906.2A Active CN114891757B (en) 2022-06-13 2022-06-13 A directed evolution method of laccase and mutant laccase gene, expression vector, recombinant strain and its application in detoxifying aflatoxin

Country Status (1)

Country Link
CN (1) CN114891757B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116179501B (en) * 2023-03-29 2025-03-25 安徽大学 A laccase mutant, its encoding gene, expression strain and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001046A1 (en) * 1990-07-06 1992-01-23 Valtion Teknillinen Tutkimuskeskus Laccase production by recombinant organisms
WO2011028708A1 (en) * 2009-09-04 2011-03-10 Codexis, Inc. Variant cbh2 cellulases and related polynucleotides
CN105026557A (en) * 2013-03-01 2015-11-04 帝斯曼知识产权资产管理有限公司 Alpha-amylase variants
CN108374000A (en) * 2018-03-01 2018-08-07 华南理工大学 A kind of Laccase mutant and the preparation method and application thereof improving dye decolored efficiency
CN109295017A (en) * 2018-07-24 2019-02-01 安徽大学 Fungal laccase mutant PIE5, and expression strain and application thereof
CN114107364A (en) * 2021-12-22 2022-03-01 河北省微生物研究所有限公司 Construction method of laccase-producing recombinant pichia pastoris engineering strain

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001046A1 (en) * 1990-07-06 1992-01-23 Valtion Teknillinen Tutkimuskeskus Laccase production by recombinant organisms
WO2011028708A1 (en) * 2009-09-04 2011-03-10 Codexis, Inc. Variant cbh2 cellulases and related polynucleotides
CN105026557A (en) * 2013-03-01 2015-11-04 帝斯曼知识产权资产管理有限公司 Alpha-amylase variants
CN108374000A (en) * 2018-03-01 2018-08-07 华南理工大学 A kind of Laccase mutant and the preparation method and application thereof improving dye decolored efficiency
CN109295017A (en) * 2018-07-24 2019-02-01 安徽大学 Fungal laccase mutant PIE5, and expression strain and application thereof
CN114107364A (en) * 2021-12-22 2022-03-01 河北省微生物研究所有限公司 Construction method of laccase-producing recombinant pichia pastoris engineering strain

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hoegger,P.J. et al..laccase 5 [Coprinopsis cinerea] GenBank: AAR01246.1.《genbank》.2004,第1-2页. *
漆酶的定向进化及其在染料脱色中的应用;李燕;《中国知网硕士电子期刊》;第1-60页 *

Also Published As

Publication number Publication date
CN114891757A (en) 2022-08-12

Similar Documents

Publication Publication Date Title
Smith et al. Isolation and characterization of urease from Aspergillus niger
CN107012130A (en) A kind of glucose oxidase mutant and its encoding gene and application
CN112921043B (en) Mutant nucleic acid, expression vector, laccase mutant with high specific activity and preparation method thereof
CN110527677B (en) Zearalenone hydrolase mutant ZHDM2 and its encoding gene and application
CN113862233B (en) Method for improving acid stability of glucose oxidase, mutant Q241E/R499E, gene and application
CN109402087B (en) A novel ferulic acid esterase and its preparation method and application
Chen et al. Heterologous expression and characterization of Penicillium citrinum nuclease P1 in Aspergillus niger and its application in the production of nucleotides
CN108841809A (en) With height than amylase mutant and its gene and application living and thermal stability
CN114891757B (en) A directed evolution method of laccase and mutant laccase gene, expression vector, recombinant strain and its application in detoxifying aflatoxin
CN103834629A (en) Recombinant high-temperature pullulanase and preparation method thereof
CN114736881B (en) Glucose oxidase GoxM10 mutant A4D with improved acid stability and its derivative mutants and applications
Bakri et al. Isolation and identification of a new fungal strain for amylase biosynthesis
Miao et al. Enhanced extracellular expression of α-Amylase DL3-4-1 in Bacillus subtilis via systematic screening of optimal signal peptides
CN119144587A (en) Alpha-amylase, alpha-amylase gene, engineering bacteria for high-yield alpha-amylase and application of engineering bacteria
CN111304182A (en) β -glucosidase and preparation method and application thereof
CN114736880B (en) Mutant D497N of glucose oxidase GoxM10 with improved acid stability as well as derivative mutant and application thereof
CN105039386A (en) Method for constructing monascus strain capable of achieving high yield of acid protease
CN110305855A (en) Gastrodia elata GeCPR gene and its application
KR101350955B1 (en) Novel exoglucanase and the Use thereof
CN113223616B (en) Method for screening alginate lyase with salt adaptation to PL7 family
CN105368802B (en) A kind of salt tolerant esterase and its encoding gene and application
WO2014082513A1 (en) Lipase and use thereof
CN101469343B (en) Phytase high throughput screen system based on pyroxylin membrance
CN110878293B (en) Application of bacillus licheniformis with deletion of yceD gene in production of heterologous protein
CN109006917A (en) Wheat catalase is improving the application in flour processing quality

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant