CN114881111B - Automatic discrimination method of manned spacecraft on-orbit oxygen consumption state based on unsupervised learning - Google Patents
Automatic discrimination method of manned spacecraft on-orbit oxygen consumption state based on unsupervised learning Download PDFInfo
- Publication number
- CN114881111B CN114881111B CN202210343661.9A CN202210343661A CN114881111B CN 114881111 B CN114881111 B CN 114881111B CN 202210343661 A CN202210343661 A CN 202210343661A CN 114881111 B CN114881111 B CN 114881111B
- Authority
- CN
- China
- Prior art keywords
- data
- module
- encoder
- layer
- label
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
- G06F18/2155—Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the incorporation of unlabelled data, e.g. multiple instance learning [MIL], semi-supervised techniques using expectation-maximisation [EM] or naïve labelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
- Error Detection And Correction (AREA)
- Image Analysis (AREA)
Abstract
本发明涉及一种基于无监督深度学习的载人航天器在轨耗氧状态自动判别方法,包括:1)通过数据编码模块1‑1将原始数据送入编码器,得到相应的隐特征;2)通过数据解码模块1‑2将隐特征送入解码器,得到重构的数据;3)通过伪标签生成模块1‑3,利用K‑means算法对编码器输出的隐特征进行聚类,将聚类结果作为伪标签,用于自动判别载人航天器在轨耗氧状态;4)通过参数更新模块1‑4,利用最小化损失函数更新编码器和解码器的网络参数;其中损失函数包括相似性损失和重构损失。本发明通过无监督深度学习解决任意一对数据的二分类判定问题,从而实现载人航天器在轨耗氧状态自动判别。
The present invention relates to a method for automatically judging the on-orbit oxygen consumption state of a manned spacecraft based on unsupervised deep learning, comprising: 1) sending raw data into an encoder through a data encoding module 1-1 to obtain corresponding hidden features; 2 ) Through the data decoding module 1-2, the hidden features are sent to the decoder to obtain the reconstructed data; 3) Through the pseudo-label generation module 1-3, the K-means algorithm is used to cluster the latent features output by the encoder, and the The clustering result is used as a pseudo-label to automatically determine the oxygen consumption status of the manned spacecraft in orbit; 4) through the parameter update module 1-4, the network parameters of the encoder and decoder are updated by using the minimized loss function; the loss function includes Similarity loss and reconstruction loss. The invention solves the binary classification judgment problem of any pair of data through unsupervised deep learning, thereby realizing the automatic judgment of the on-orbit oxygen consumption state of the manned spacecraft.
Description
技术领域Technical Field
本发明涉及智能信息处理和计算机技术领域,尤其涉及一种基于无监督学习的载人航天器在轨耗氧状态自动判别方法。The present invention relates to the field of intelligent information processing and computer technology, and in particular to a method for automatically distinguishing the oxygen consumption state of a manned spacecraft on orbit based on unsupervised learning.
背景技术Background Art
针对载人航天器在轨时无人状态、乘员轻度活动状态、中度活动状态、重度活动状态等不同状态下耗氧模式进行聚类,自动学习出不同状态下的耗氧模式,从而自动判别载人航天器在轨时的耗氧状态,具有重要意义。It is of great significance to cluster the oxygen consumption patterns in different states such as unmanned state, light activity state, moderate activity state, and heavy activity state of manned spacecraft in orbit, and automatically learn the oxygen consumption patterns in different states, so as to automatically determine the oxygen consumption state of the manned spacecraft when it is in orbit.
大部分传统的时间序列聚类算法将聚类任务分为特征学习和聚类两个独立的阶段。但是不同数据集的判别特征往往不同,因此这类方法的泛化能力差。Most traditional time series clustering algorithms divide the clustering task into two independent stages: feature learning and clustering. However, the discriminant features of different data sets are often different, so this type of method has poor generalization ability.
发明内容Summary of the invention
本发明的目的是一种基于无监督学习的载人航天器在轨耗氧状态自动判别方法,基于无监督深度学习实现载人航天器在轨耗氧状态自动判别方法。The purpose of the present invention is to provide a method for automatically distinguishing the on-orbit oxygen consumption state of a manned spacecraft based on unsupervised learning, and to realize a method for automatically distinguishing the on-orbit oxygen consumption state of a manned spacecraft based on unsupervised deep learning.
本发明提供了一种基于无监督学习的载人航天器在轨耗氧状态自动判别方法,包括:The present invention provides a method for automatically distinguishing the oxygen consumption state of a manned spacecraft on orbit based on unsupervised learning, comprising:
1)通过数据编码模块将原始数据送入编码器,得到相应的隐特征;1) The original data is sent to the encoder through the data encoding module to obtain the corresponding latent features;
2)通过数据解码模块将隐特征送入解码器,得到重构的数据;2) The latent features are sent to the decoder through the data decoding module to obtain the reconstructed data;
3)通过伪标签生成模块,利用K-means算法对编码器输出的隐特征进行聚类,将聚类结果作为伪标签,用于自动判别载人航天器在轨耗氧状态;3) Through the pseudo-label generation module, the K-means algorithm is used to cluster the latent features output by the encoder, and the clustering results are used as pseudo-labels to automatically identify the oxygen consumption state of manned spacecraft on orbit;
4)通过参数更新模块,利用最小化损失函数更新编码器和解码器的网络参数;其中损失函数包括相似性损失和重构损失;其中,所述相似性损失为基于伪标签构建的交叉熵损失,所述重构损失为解码器的输出和原始数据的均方误差。4) Through the parameter update module, the network parameters of the encoder and decoder are updated by minimizing the loss function; wherein the loss function includes similarity loss and reconstruction loss; wherein the similarity loss is the cross entropy loss constructed based on the pseudo-label, and the reconstruction loss is the mean square error between the output of the decoder and the original data.
进一步地,所述数据编码模块包括两个网络分支:全卷积网络FCN和残差网络ResNet;所述全卷积网络FCN分为4个模块;其中,前3个模块均由一个一维卷积层Conv1D,批量归一化层BN和ReLU激活函数层组成的;每个模块卷积层的通道数量分别为128、256、128,卷积核大小分别为8、5、3,步长为1;第4个模块为一个全局平均池化层;每个模块依次连接,即每一个模块的输出将作为下一模块的输入;Furthermore, the data encoding module includes two network branches: a fully convolutional network FCN and a residual network ResNet; the fully convolutional network FCN is divided into 4 modules; wherein the first 3 modules are composed of a one-dimensional convolution layer Conv1D, a batch normalization layer BN and a ReLU activation function layer; the number of channels of the convolution layer of each module is 128, 256, and 128 respectively, the convolution kernel size is 8, 5, and 3 respectively, and the step size is 1; the fourth module is a global average pooling layer; each module is connected in sequence, that is, the output of each module will be used as the input of the next module;
所述残差网络ResNet分为4个模块,其中,前3个模块中每个模块包含三层一维卷积,每层卷积后连接批归一化层和ReLU激活函数;每个模块中的三层卷积通道数量分别为(64,64,64),(192,192,192),(192,192,192),卷积核大小为(8、5、3),步长为1;前三个模块采用残差连接,即每个模块的输入和输出相加作为下一个模块的输入;所述残差网络ResNet中最后一个模块为全局平均池化层;The residual network ResNet is divided into 4 modules, wherein each of the first 3 modules contains three layers of one-dimensional convolution, and each layer of convolution is connected to a batch normalization layer and a ReLU activation function; the number of three-layer convolution channels in each module is (64, 64, 64), (192, 192, 192), (192, 192, 192), respectively, the convolution kernel size is (8, 5, 3), and the step size is 1; the first three modules use residual connection, that is, the input and output of each module are added as the input of the next module; the last module in the residual network ResNet is a global average pooling layer;
所述数据编码模块将两个网络分支的输出连接在一起,并经过一个全连接层,将高维特征映射到样本类别空间,最后经过softmax层,得到数据的标签特征Z;对于一个原始数据xi,数据编码模块表示为zi=f(xi;we),其中we是编码器的网络参数,f(.)表示编码过程,zi是原始数据经过编码器的输出。The data encoding module connects the outputs of the two network branches together, and passes through a fully connected layer to map the high-dimensional features to the sample category space, and finally passes through the softmax layer to obtain the label feature Z of the data; for an original data x i , the data encoding module is expressed as z i =f(x i ; we ), where we is the network parameter of the encoder, f(.) represents the encoding process, and z i is the output of the original data after the encoder.
进一步地,所述数据解码模块通过对编码器提取的特征进行重构,从而对隐特征进行约束使之保留原始数据中重要的信息;所述数据解码模块的输入为经过编码器提取的标签特征Z;Z首先经过全连接层恢复数据在时序上的维度,然后再经过3个转置卷积模块得到重构数据其中,3个转置卷积层中卷积核的数量分别为256、128、1,卷积核大小分别为3、5、8,步长为1;前两个转置卷积模块中的转置卷积层后添加有BN层和ReLU层,最后一个block中的转置卷积层后只添加有BN层,而不使用激活函数;对于一个隐特征zi,所述数据解码模块表示为其中,wd是解码器的网络参数,g(.)表示解码过程,是对原始数据xi的重构,即隐特征zi经过解码器的输出。Furthermore, the data decoding module reconstructs the features extracted by the encoder, thereby constraining the latent features to retain important information in the original data; the input of the data decoding module is the label feature Z extracted by the encoder; Z first passes through the fully connected layer to restore the time dimension of the data, and then passes through three transposed convolution modules to obtain the reconstructed data Among them, the number of convolution kernels in the three transposed convolution layers is 256, 128, and 1 respectively, the convolution kernel sizes are 3, 5, and 8 respectively, and the step size is 1; the transposed convolution layers in the first two transposed convolution modules are followed by BN layers and ReLU layers, and the transposed convolution layer in the last block is followed by only BN layers without using activation functions; for a hidden feature z i , the data decoding module is expressed as Among them, w d is the network parameter of the decoder, g(.) represents the decoding process, It is the reconstruction of the original data x i , that is, the output of the latent feature z i after the decoder.
进一步地,所述伪标签生成模块采用k-means算法对标签特征Z进行聚类;k-means中的距离度量使用余弦距离,聚类过程联合学习一个k×k的质心矩阵C和对zi的聚类分配yi∈{0,1}k,其中yi是一个0-1向量;k-means优化的目标函数如下表示:Furthermore, the pseudo-label generation module uses the k-means algorithm to cluster the label feature Z; the distance metric in k-means uses the cosine distance, and the clustering process jointly learns a k×k centroid matrix C and the cluster assignment yi∈ {0,1} k for zi , where yi is a 0-1 vector; the objective function of k-means optimization is expressed as follows:
当k-means算法完成迭代后,只关注当前最优的聚类分配而不使用质心矩阵C;将其转换为样本对标签矩阵L={lij};其中,lij为一个二元变量,表示xi和xj是否属于一类;若lij=1,那么表示两者为一类,lij=0表示两者属于不同的类别;将其转换为矩阵乘法并利用GPU来加速L的计算,即:When the k-means algorithm completes the iteration, it only focuses on the current optimal cluster assignment Instead of using the centroid matrix C, we convert it into a sample pair label matrix L = {l ij }, where l ij is a binary variable indicating whether xi and xj belong to the same category. If l ij = 1, then they belong to the same category, and l ij = 0 indicates that they belong to different categories. We convert it into matrix multiplication and use the GPU to accelerate the calculation of L, namely:
L=Y*Y*T。L = Y * Y * T.
进一步地,所述参数更新模块根据相似性损失函数和重构损失函数,采用反向传播算法调节网络参数;Furthermore, the parameter updating module uses a back propagation algorithm to adjust the network parameters according to the similarity loss function and the reconstruction loss function;
相似性损失函数的计算公式如下所示:The calculation formula of the similarity loss function is as follows:
sij=cos(zi,zj)s ij =cos( zi , zj )
其中sij表示当前批中任意两个数据的标签特征zi和zj之间的余弦相似性;lij是根据k-means算法生成的伪标签;相似度损失函数在反向传播时,只更新编码器的网络权重we;Where s ij represents the cosine similarity between the label features z i and z j of any two data in the current batch; l ij is the pseudo label generated by the k-means algorithm; the similarity loss function only updates the network weights w e of the encoder during back propagation;
重构损失函数的计算公式如下所示:The calculation formula of the reconstruction loss function is as follows:
其中m表示当前批中的样本数目;是对原始数据xi的重构;重构损失则更新编码器we和解码器wd;Where m represents the number of samples in the current batch; is the reconstruction of the original data x i ; the reconstruction loss updates the encoder w e and decoder w d ;
模型训练完成后,给定大小为p的测试集将其送入编码器得到标签特征zi,取zi中最大响应的索引作为最终该数据的类别标签ci,即:After the model training is completed, a test set of size p is given Send it to the encoder to get the label feature z i , and take the index of the maximum response in z i as the final category label c i of the data, that is:
ci=argmaxh(zih),h=1,…,k。c i =argmax h (z ih ), h=1,...,k.
借由上述方案,通过基于无监督学习的载人航天器在轨耗氧状态自动判别方法,具有如下技术效果:Through the above scheme, the method for automatically distinguishing the oxygen consumption state of manned spacecraft on orbit based on unsupervised learning has the following technical effects:
1)本发明实现了基于端到端的深度聚类算法,对数据的特征表示和聚类进行联合学习以提升聚类算法在不同数据集上的泛化能力。1) The present invention implements an end-to-end deep clustering algorithm, which jointly learns the feature representation and clustering of data to improve the generalization ability of the clustering algorithm on different data sets.
2)本发明将聚类问题转换成对任意一对数据的二分类问题,将当前批中任意一对数据隐特征之间的余弦相似性作为该数据对相似性的预测值,通过对当前批中所有数据的隐特征进行k-means聚类获取任意一对数据相似性的伪标签,从而指导特征编码网络。2) The present invention converts the clustering problem into a binary classification problem for any pair of data, takes the cosine similarity between the latent features of any pair of data in the current batch as the predicted value of the similarity of the data pair, and obtains the pseudo-label of the similarity of any pair of data by performing k-means clustering on the latent features of all data in the current batch, thereby guiding the feature encoding network.
3)本发明对隐特征进行解码来重构原始数据,并通过重构误差对隐特征进行约束。3) The present invention decodes latent features to reconstruct original data, and constrains latent features through reconstruction errors.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。The above description is only an overview of the technical solution of the present invention. In order to more clearly understand the technical means of the present invention and implement it according to the contents of the specification, the following is a detailed description of the preferred embodiments of the present invention in conjunction with the accompanying drawings.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明基于无监督学习的载人航天器在轨耗氧状态自动判别方法的流程图;FIG1 is a flow chart of a method for automatically determining the oxygen consumption state of a manned spacecraft on orbit based on unsupervised learning according to the present invention;
图2是本发明数据编码模块网络结构示意图;FIG2 is a schematic diagram of a network structure of a data encoding module according to the present invention;
图3是本发明数据解码模块网络结构示意图;FIG3 is a schematic diagram of a network structure of a data decoding module of the present invention;
图4是载人航天器在轨耗氧状态1(有人供氧状态)典型曲线图;FIG4 is a typical curve diagram of oxygen consumption state 1 (man-supplied oxygen state) of a manned spacecraft on orbit;
图5是载人航天器在轨耗氧状态2(有人耗氧状态)典型曲线图;FIG5 is a typical curve diagram of oxygen consumption state 2 (manned oxygen consumption state) of a manned spacecraft on orbit;
图6是载人航天器在轨耗氧状态3(无人状态)典型曲线图;FIG6 is a typical curve diagram of oxygen consumption state 3 (unmanned state) of a manned spacecraft on orbit;
图7是本发明针对载人航天器在轨耗氧数据学习结果的标签特征分布图。FIG. 7 is a label feature distribution diagram of the learning result of the manned spacecraft on-orbit oxygen consumption data according to the present invention.
具体实施方式DETAILED DESCRIPTION
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation of the present invention is further described in detail below in conjunction with the accompanying drawings and examples. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
参图1所示,本实施例提供了一种基于无监督深度学习的载人航天器在轨耗氧状态自动判别方法,包括:As shown in FIG1 , this embodiment provides a method for automatically determining the oxygen consumption state of a manned spacecraft on orbit based on unsupervised deep learning, including:
1)通过数据编码模块1-1将原始数据送入编码器,得到相应的隐特征;1) The original data is sent to the encoder through the data encoding module 1-1 to obtain the corresponding latent features;
2)通过数据解码模块1-2将隐特征送入解码器,得到重构的数据;2) The latent features are sent to the decoder through the data decoding module 1-2 to obtain the reconstructed data;
3)通过伪标签生成模块1-3,利用K-means算法对编码器输出的隐特征进行聚类,将聚类结果作为伪标签,用于自动判别载人航天器在轨耗氧状态;3) Through the pseudo-label generation module 1-3, the K-means algorithm is used to cluster the latent features output by the encoder, and the clustering results are used as pseudo-labels to automatically determine the oxygen consumption state of the manned spacecraft on orbit;
4)通过参数更新模块1-4,利用最小化损失函数更新编码器和解码器的网络参数;其中损失函数包括相似性损失和重构损失;其中,所述相似性损失为基于伪标签构建的交叉熵损失,所述重构损失为解码器的输出和原始数据的均方误差。4) Through parameter updating modules 1-4, the network parameters of the encoder and decoder are updated by minimizing the loss function; wherein the loss function includes similarity loss and reconstruction loss; wherein the similarity loss is the cross entropy loss constructed based on the pseudo-label, and the reconstruction loss is the mean square error between the output of the decoder and the original data.
数据编码模块包含两个分支:全卷积网络FCN和残差网络ResNet。FCN的结构可分为4个模块,前3个模块都是由一个一维卷积层Conv1D,批量归一化层BN(BatchNormalization)和ReLU激活函数层组成的。每个模块卷积层的通道数量分别为128、256、128,卷积核大小分别为8、5、3,步长为1。第4个模块是一个全局平均池化(Global averagepooling)层。每个模块依次连接,即每一个模块的输出将作为下一模块的输入。ResNet的结构同样也分为4个模块。前3个模块中每个模块包含三层一维卷积,每层卷积后连接批归一化层和ReLU激活函数。每个模块中的三层卷积通道数量分别为(64,64,64),(192,192,192),(192,192,192),卷积核大小为(8、5、3),步长为1。前三个模块采用残差连接,即每个模块的输入和输出相加作为下一个模块的输入。ResNet中最后一个模块是全局平均池化层。数据编码将模块将两个网络分支的输出连接在一起,并经过一个全连接层,将高维特征映射到样本类别空间,最后经过softmax层,得到数据的标签特征Z。对于一个原始数据xi,数据编码模块可以表示为zi=f(xi;we),其中we是编码器的网络参数,f(.)表示编码过程,zi是原始数据经过编码器的输出。The data encoding module contains two branches: the fully convolutional network FCN and the residual network ResNet. The structure of FCN can be divided into 4 modules. The first 3 modules are composed of a one-dimensional convolution layer Conv1D, a batch normalization layer BN (BatchNormalization) and a ReLU activation function layer. The number of channels of each module convolution layer is 128, 256, and 128 respectively, the convolution kernel size is 8, 5, and 3 respectively, and the step size is 1. The fourth module is a global average pooling layer. Each module is connected in sequence, that is, the output of each module will be used as the input of the next module. The structure of ResNet is also divided into 4 modules. Each of the first 3 modules contains three layers of one-dimensional convolution, and each layer of convolution is connected to a batch normalization layer and a ReLU activation function. The number of three-layer convolution channels in each module is (64, 64, 64), (192, 192, 192), (192, 192, 192), respectively, the convolution kernel size is (8, 5, 3), and the step size is 1. The first three modules use residual connection, that is, the input and output of each module are added as the input of the next module. The last module in ResNet is the global average pooling layer. The data encoding module connects the outputs of the two network branches together, passes through a fully connected layer, maps the high-dimensional features to the sample category space, and finally passes through the softmax layer to obtain the label feature Z of the data. For an original data x i , the data encoding module can be expressed as z i = f(x i ; we ), where we is the network parameter of the encoder, f(.) represents the encoding process, and z i is the output of the original data after the encoder.
数据解码模块是对编码器提取的特征进行重构,目的是对隐特征进行约束使之保留原始数据中重要的信息。数据解码模块的输入为经过编码器提取的标签特征Z。Z首先经过全连接层来恢复数据在时序上的维度,然后再经过3个转置卷积模块得到重构数据具体地,3个转置卷积层中卷积核的数量分别为256、128、1,卷积核大小分别为3、5、8,步长为1。前两个模块中的转置卷积层后还添加了BN层和ReLU层,而最后一个block中的转置卷积层后只添加了BN层,而不使用激活函数。对于一个隐特征zi,数据解码模块可以表示为其中wd是解码器的网络参数,g(.)表示解码过程,是对原始数据xi的重构,即隐特征zi经过解码器的输出。The data decoding module reconstructs the features extracted by the encoder, with the goal of constraining the latent features so that they retain the important information in the original data. The input of the data decoding module is the label feature Z extracted by the encoder. Z first passes through the fully connected layer to restore the time dimension of the data, and then passes through three transposed convolution modules to obtain the reconstructed data. Specifically, the number of convolution kernels in the three transposed convolution layers is 256, 128, and 1, respectively, and the convolution kernel sizes are 3, 5, and 8, respectively, with a stride of 1. The transposed convolution layers in the first two modules are followed by BN layers and ReLU layers, while the transposed convolution layers in the last block are followed by only BN layers without using activation functions. For a hidden feature z i , the data decoding module can be expressed as Where w d is the network parameter of the decoder, g(.) represents the decoding process, It is the reconstruction of the original data x i , that is, the output of the latent feature z i after the decoder.
伪标签生成模块采用k-means算法对标签特征Z进行聚类。标准k-means聚类算法以欧氏距离作为样本点和簇心间距离的衡量标准。考虑到本方法中样本间相似度的度量准则为余弦距离,为了避免距离度量不同带来的问题,k-means中的距离度量也使用余弦距离。聚类过程实际上联合学习了一个k×k的质心矩阵C和对zi的聚类分配yi∈{0,1}k,其中yi是一个0-1向量。因此k-means优化的目标函数可以如下表示:The pseudo-label generation module uses the k-means algorithm to cluster the label feature Z. The standard k-means clustering algorithm uses the Euclidean distance as the measure of the distance between the sample point and the cluster center. Considering that the metric of the similarity between samples in this method is the cosine distance, in order to avoid the problems caused by different distance metrics, the distance metric in k-means also uses the cosine distance. The clustering process actually jointly learns a k×k centroid matrix C and the cluster assignment yi ∈{0,1} k for zi , where yi is a 0-1 vector. Therefore, the objective function of k-means optimization can be expressed as follows:
当k-means算法完成迭代后,本方法只关注当前最优的聚类分配而不使用质心矩阵C。由于本方法关注的是任意一对数据的相似性,故将其转换为样本对标签矩阵L={lij}。其中,lij为一个二元变量,表示xi和xj是否属于一类。若lij=1,那么表示两者为一类,lij=0表示两者属于不同的类别。最简单的获得L的方法是通过二重循环来生成,不过考虑到循环语句会降低模型的训练速度,本文将其转换为矩阵乘法并利用GPU来加速L的计算,即:When the k-means algorithm completes the iteration, this method only focuses on the current optimal clustering assignment Instead of using the centroid matrix C. Since this method focuses on the similarity of any pair of data, it is converted into a sample pair label matrix L = {l ij }. Among them, l ij is a binary variable, indicating whether x i and x j belong to the same category. If l ij = 1, it means that the two are in the same category, and l ij = 0 means that the two belong to different categories. The simplest way to obtain L is to generate it through a double loop, but considering that the loop statement will reduce the training speed of the model, this paper converts it into matrix multiplication and uses the GPU to accelerate the calculation of L, that is:
L=Y*Y*T L=Y * Y * T
参数更新模块根据相似性损失函数和重构损失函数,采用反向传播算法调节网络参数。相似性损失函数的计算公式如下所示:The parameter update module uses the back propagation algorithm to adjust the network parameters according to the similarity loss function and the reconstruction loss function. The calculation formula of the similarity loss function is as follows:
sij=cos(zi,zj)s ij =cos( zi , zj )
其中sij表示当前批中任意两个数据的标签特征zi和zj之间的余弦相似性;lij是根据k-means算法生成的伪标签。相似度损失函数在反向传播时,只更新编码器的网络权重we。Where s ij represents the cosine similarity between the label features z i and z j of any two data in the current batch; l ij is the pseudo label generated by the k-means algorithm. The similarity loss function only updates the network weights w e of the encoder during back propagation.
重构损失函数的计算公式如下所示:The calculation formula of the reconstruction loss function is as follows:
其中m表示当前批中的样本数目;是对原始数据xi的重构。重构损失则更新编码器we和解码器wd。Where m represents the number of samples in the current batch; is the reconstruction of the original data x i . The reconstruction loss updates the encoder w e and decoder w d .
模型训练完成后,给定大小为p的测试集将其送入编码器得到标签特征zi,取zi中最大响应的索引作为最终该数据的类别标签ci,即:After the model training is completed, a test set of size p is given Send it to the encoder to get the label feature z i , and take the index of the maximum response in z i as the final category label c i of the data, that is:
ci=argmaxh(zih),h=1,…,kc i =argmax h (z ih ),h=1,…,k
参照图2,其为数据编码模块网络结构示意图,包括以下步骤:首先进行步骤2-1,将原始数据送入卷积核大小为8、步长为1、通道数目为128的一维卷积层,然后对输出进行批归一化操作和非线性函数ReLU激活操作。执行步骤2-2,将上一步的输出送入卷积核大小为5、步长为1、通道数目为256的一维卷积层,然后对输出进行批归一化操作和非线性函数ReLU激活操作。执行步骤2-3,将上一步的输出送入卷积核大小为3、步长为1、通道数目为128的一维卷积层,然后对输出进行批归一化操作和非线性函数ReLU激活操作。执行步骤2-4,对上一步的输出进行全局池化操作。执行步骤2-5,将原始数据送入卷积核大小为8、步长为1、通道数目为64的一维卷积层,并对输出进行批归一化操作和非线性函数ReLU激活操作;再将输出送入卷积核大小为5、步长为1、通道数目为64的一维卷积层,并对输出进行批归一化操作和非线性函数ReLU激活操作;然后将输出送入卷积核大小为3、步长为1、通道数目为64的一维卷积层,并对输出进行批归一化操作和非线性函数ReLU激活操作;最后将原始数据和输出相加作为该步骤的输出。执行步骤2-6,将上一步的输出送入卷积核大小为8、步长为1、通道数目为192的一维卷积层,并对输出进行批归一化操作和非线性函数ReLU激活操作;再将输出送入卷积核大小为5、步长为1、通道数目为192的一维卷积层,并对输出进行批归一化操作和非线性函数ReLU激活操作;然后将输出送入卷积核大小为3、步长为1、通道数目为192的一维卷积层,并对输出进行批归一化操作和非线性函数ReLU激活操作;最后将该步骤的输入和输出相加作为最终输出。执行步骤2-7,将上一步的输出送入卷积核大小为8、步长为1、通道数目为192的一维卷积层,并对输出进行批归一化操作和非线性函数ReLU激活操作;再将输出送入卷积核大小为5、步长为1、通道数目为192的一维卷积层,并对输出进行批归一化操作和非线性函数ReLU激活操作;然后将输出送入卷积核大小为3、步长为1、通道数目为192的一维卷积层,并对输出进行批归一化操作和非线性函数ReLU激活操作;最后将该步骤的输入和输出相加作为最终输出。执行步骤2-8,对上一步的输出进行全局平均池化操作。执行步骤2-9,将步骤2-4和2-8的输出进行连接。执行步骤2-10,将上一步的输出送入神经元数目为类别数目的全连接层。执行步骤2-11,对上一步的输出进行softmax操作,得到原始数据的标签特征。Referring to Figure 2, it is a schematic diagram of the network structure of the data encoding module, which includes the following steps: first perform step 2-1, send the original data into a one-dimensional convolution layer with a convolution kernel size of 8, a step size of 1, and a number of channels of 128, and then perform batch normalization and non-linear function ReLU activation operations on the output. Perform step 2-2, send the output of the previous step into a one-dimensional convolution layer with a convolution kernel size of 5, a step size of 1, and a number of channels of 256, and then perform batch normalization and non-linear function ReLU activation operations on the output. Perform step 2-3, send the output of the previous step into a one-dimensional convolution layer with a convolution kernel size of 3, a step size of 1, and a number of channels of 128, and then perform batch normalization and non-linear function ReLU activation operations on the output. Perform step 2-4, and perform a global pooling operation on the output of the previous step. Execute steps 2-5, send the original data into a one-dimensional convolutional layer with a convolution kernel size of 8, a stride of 1, and 64 channels, and perform batch normalization and ReLU activation on the output; then send the output into a one-dimensional convolutional layer with a convolution kernel size of 5, a stride of 1, and 64 channels, and perform batch normalization and ReLU activation on the output; then send the output into a one-dimensional convolutional layer with a convolution kernel size of 3, a stride of 1, and 64 channels, and perform batch normalization and ReLU activation on the output; finally, add the original data and the output as the output of this step. Execute steps 2-6, send the output of the previous step to a one-dimensional convolutional layer with a kernel size of 8, a stride of 1, and 192 channels, and perform batch normalization and ReLU activation on the output; then send the output to a one-dimensional convolutional layer with a kernel size of 5, a stride of 1, and 192 channels, and perform batch normalization and ReLU activation on the output; then send the output to a one-dimensional convolutional layer with a kernel size of 3, a stride of 1, and 192 channels, and perform batch normalization and ReLU activation on the output; finally, add the input and output of this step as the final output. Execute step 2-7, send the output of the previous step to a one-dimensional convolution layer with a convolution kernel size of 8, a stride of 1, and a number of channels of 192, and perform batch normalization and nonlinear function ReLU activation on the output; then send the output to a one-dimensional convolution layer with a convolution kernel size of 5, a stride of 1, and a number of channels of 192, and perform batch normalization and nonlinear function ReLU activation on the output; then send the output to a one-dimensional convolution layer with a convolution kernel size of 3, a stride of 1, and a number of channels of 192, and perform batch normalization and nonlinear function ReLU activation on the output; finally, add the input and output of this step as the final output. Execute step 2-8, perform global average pooling on the output of the previous step. Execute step 2-9, connect the outputs of steps 2-4 and 2-8. Execute step 2-10, send the output of the previous step to a fully connected layer with the number of neurons equal to the number of categories. Execute step 2-11, perform softmax operation on the output of the previous step to obtain the label features of the original data.
参照图3,其为数据解码模块网络结构示意图,包括以下步骤:首先进行步骤3-1,将数据的标签特征送入全连接层,该层的神经元素数目为原始数据长度。执行步骤3-2,将上一步的输出送入卷积核大小为3、步长为1、通道数目为256的一维转置卷积层,然后对输出进行批归一化操作和非线性函数ReLU激活操作。执行步骤3-3,将上一步的输出送入卷积核大小为5、步长为1、通道数目为128的一维转置卷积层,然后对输出进行批归一化操作和非线性函数ReLU激活操作。执行步骤3-4,将上一步的输出送入卷积核大小为8、步长为1、通道数目为1的一维转置卷积层,然后对输出进行批归一化操作。Referring to Figure 3, it is a schematic diagram of the network structure of the data decoding module, which includes the following steps: First, perform step 3-1 to send the label features of the data to the fully connected layer, and the number of neural elements in this layer is the length of the original data. Perform step 3-2 to send the output of the previous step to a one-dimensional transposed convolution layer with a convolution kernel size of 3, a step size of 1, and a number of channels of 256, and then perform batch normalization and nonlinear function ReLU activation operations on the output. Perform step 3-3 to send the output of the previous step to a one-dimensional transposed convolution layer with a convolution kernel size of 5, a step size of 1, and a number of channels of 128, and then perform batch normalization and nonlinear function ReLU activation operations on the output. Perform step 3-4 to send the output of the previous step to a one-dimensional transposed convolution layer with a convolution kernel size of 8, a step size of 1, and a number of channels of 1, and then perform batch normalization on the output.
参照图4、图5、图6,其为载人航天器几种在轨耗氧状态的典型曲线图,分别是有人供氧状态、有人耗氧状态、无人状态。4, 5 and 6, which are typical curve diagrams of several on-orbit oxygen consumption states of manned spacecraft, namely manned oxygen supply state, manned oxygen consumption state and unmanned state.
参照图7,其为针对载人航天器在轨耗氧数据学习结果的标签特征分布图,从图中可以看到不同耗氧状态数据对应的标签聚集成明显的不同簇,区别明显,判别无误。Referring to Figure 7, it is a label feature distribution diagram for the learning results of the on-orbit oxygen consumption data of manned spacecraft. From the figure, it can be seen that the labels corresponding to the data of different oxygen consumption states are clustered into distinct clusters, with obvious distinctions and accurate judgments.
本发明通过编码器对原始时序数据进行特征提取,编码器包括两个网络分支全卷积网络和残差网络,将两个网络的特征进行融合作为数据特征表示;然后将隐特征送入解码器对原始数据进行重构。通过无监督深度学习解决任意一对数据的二分类判定问题,从而实现载人航天器在轨耗氧状态自动判别。通过计算当前批中任意一对数据隐特征的余弦相似性,并将其作为网络对该对数据相似度的预测,再通过K-means对隐特征进行聚类生成的伪标签来指导网络参数的更新,最后根据伪标签自动判别载人航天器在轨耗氧状态。具有如下技术效果:The present invention extracts features from the original time series data through an encoder, which includes two network branches, a fully convolutional network and a residual network. The features of the two networks are fused as data feature representation; the latent features are then sent to the decoder to reconstruct the original data. Unsupervised deep learning is used to solve the binary classification problem of any pair of data, thereby realizing automatic discrimination of the oxygen consumption state of manned spacecraft on orbit. By calculating the cosine similarity of the latent features of any pair of data in the current batch, and using it as the network's prediction of the similarity of the pair of data, and then using K-means to cluster the latent features to generate pseudo-labels to guide the update of network parameters, finally the oxygen consumption state of the manned spacecraft on orbit is automatically discriminated based on the pseudo-labels. It has the following technical effects:
1)本发明实现了基于端到端的深度聚类算法,对数据的特征表示和聚类进行联合学习以提升聚类算法在不同数据集上的泛化能力。1) The present invention implements an end-to-end deep clustering algorithm, which jointly learns the feature representation and clustering of data to improve the generalization ability of the clustering algorithm on different data sets.
2)本发明将聚类问题转换成对任意一对数据的二分类问题,将当前批中任意一对数据隐特征之间的余弦相似性作为该数据对相似性的预测值,通过对当前批中所有数据的隐特征进行k-means聚类获取任意一对数据相似性的伪标签,从而指导特征编码网络。2) The present invention converts the clustering problem into a binary classification problem for any pair of data, takes the cosine similarity between the latent features of any pair of data in the current batch as the predicted value of the similarity of the data pair, and obtains the pseudo-label of the similarity of any pair of data by performing k-means clustering on the latent features of all data in the current batch, thereby guiding the feature encoding network.
3)本发明对隐特征进行解码来重构原始数据,并通过重构误差对隐特征进行约束。3) The present invention decodes latent features to reconstruct original data, and constrains latent features through reconstruction errors.
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. It should be pointed out that a person skilled in the art can make several improvements and modifications without departing from the technical principles of the present invention, and these improvements and modifications should also be regarded as within the scope of protection of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210343661.9A CN114881111B (en) | 2022-04-02 | 2022-04-02 | Automatic discrimination method of manned spacecraft on-orbit oxygen consumption state based on unsupervised learning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210343661.9A CN114881111B (en) | 2022-04-02 | 2022-04-02 | Automatic discrimination method of manned spacecraft on-orbit oxygen consumption state based on unsupervised learning |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114881111A CN114881111A (en) | 2022-08-09 |
CN114881111B true CN114881111B (en) | 2023-05-02 |
Family
ID=82669603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210343661.9A Active CN114881111B (en) | 2022-04-02 | 2022-04-02 | Automatic discrimination method of manned spacecraft on-orbit oxygen consumption state based on unsupervised learning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114881111B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108344590A (en) * | 2018-03-02 | 2018-07-31 | 北京空间技术研制试验中心 | Sealed compartment assembly manned spacecraft thermal test method |
CN113056749A (en) * | 2018-09-11 | 2021-06-29 | 辉达公司 | Future object trajectory prediction for autonomous machine applications |
CN113412484A (en) * | 2019-02-07 | 2021-09-17 | 维莎公司 | Method and system for computer-aided manufacturing of three-dimensional parts |
CN113971735A (en) * | 2021-09-16 | 2022-01-25 | 西安电子科技大学 | Depth image clustering method, system, device, medium and terminal |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9213916B2 (en) * | 2012-03-22 | 2015-12-15 | The Charles Stark Draper Laboratory, Inc. | Compressive sensing with local geometric features |
US9613285B2 (en) * | 2012-03-22 | 2017-04-04 | The Charles Stark Draper Laboratory, Inc. | Compressive sensing with local geometric features |
US20210295048A1 (en) * | 2017-01-24 | 2021-09-23 | Tienovix, Llc | System and method for augmented reality guidance for use of equipment systems |
US20200265745A1 (en) * | 2017-01-24 | 2020-08-20 | Tienovix, Llc | System and method for adaptive augmented reality guidance for use of equipment systems |
-
2022
- 2022-04-02 CN CN202210343661.9A patent/CN114881111B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108344590A (en) * | 2018-03-02 | 2018-07-31 | 北京空间技术研制试验中心 | Sealed compartment assembly manned spacecraft thermal test method |
CN113056749A (en) * | 2018-09-11 | 2021-06-29 | 辉达公司 | Future object trajectory prediction for autonomous machine applications |
CN113412484A (en) * | 2019-02-07 | 2021-09-17 | 维莎公司 | Method and system for computer-aided manufacturing of three-dimensional parts |
CN113971735A (en) * | 2021-09-16 | 2022-01-25 | 西安电子科技大学 | Depth image clustering method, system, device, medium and terminal |
Non-Patent Citations (2)
Title |
---|
Burak Yaglioglu et al..Long term and safe relative orbit design for heterogeneous spacecraft clusters.《Advances in Space Research》.2021,全文. * |
孙伟等.基于温/压传感器的航天器在轨检漏方法研究.《真空》.2016,全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN114881111A (en) | 2022-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109299216B (en) | A kind of cross-module state Hash search method and system merging supervision message | |
CN112925962B (en) | Method, system, device and medium for cross-modal data retrieval based on hash coding | |
CN112199532B (en) | Zero sample image retrieval method and device based on Hash coding and graph attention machine mechanism | |
CN108108854A (en) | City road network link prediction method, system and storage medium | |
CN113569906A (en) | Method and Device for Extracting Heterogeneous Graph Information Based on Meta-Path Subgraph | |
CN111026887B (en) | A method and system for cross-media retrieval | |
CN114329232A (en) | A method and system for constructing user portrait based on scientific research network | |
CN110263151B (en) | Latent semantic learning method for multi-view multi-label data | |
CN114118369B (en) | Image classification convolutional neural network design method based on group intelligent optimization | |
Li et al. | Universal representations: A unified look at multiple task and domain learning | |
CN111008224A (en) | A time series classification and retrieval method based on deep multi-task representation learning | |
CN117036760A (en) | Multi-view clustering model implementation method based on graph comparison learning | |
CN114780767A (en) | A large-scale image retrieval method and system based on deep convolutional neural network | |
CN113535947A (en) | Multi-label classification method and device for incomplete data with missing labels | |
CN112465226B (en) | User behavior prediction method based on feature interaction and graph neural network | |
CN114861863A (en) | Heterogeneous graph representation learning method based on meta-path multi-level graph attention network | |
CN118608334A (en) | An educational course recommendation system, method and application based on big data in the education industry | |
CN116258938A (en) | Image Retrieval and Recognition Method Based on Autonomous Evolutionary Loss | |
CN114817581A (en) | Cross-modal Hash retrieval method based on fusion attention mechanism and DenseNet network | |
CN114880538A (en) | Attribute graph community detection method based on self-supervision | |
CN118797415A (en) | Tomato disease identification method, device and storage medium in greenhouse | |
CN111950615B (en) | A network fault feature selection method based on tree species optimization algorithm | |
CN114881111B (en) | Automatic discrimination method of manned spacecraft on-orbit oxygen consumption state based on unsupervised learning | |
CN117523356A (en) | Multi-view semi-supervised characterization learning method for medical image group science | |
CN117079063B (en) | Feature extraction model processing, sample retrieval method and device and computer equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |