CN114875087A - Method for synthesizing 5-hydroxy beta-indolyl alanine by using beta-indolyl alanine as substrate and application thereof - Google Patents
Method for synthesizing 5-hydroxy beta-indolyl alanine by using beta-indolyl alanine as substrate and application thereof Download PDFInfo
- Publication number
- CN114875087A CN114875087A CN202210457985.5A CN202210457985A CN114875087A CN 114875087 A CN114875087 A CN 114875087A CN 202210457985 A CN202210457985 A CN 202210457985A CN 114875087 A CN114875087 A CN 114875087A
- Authority
- CN
- China
- Prior art keywords
- gene
- indolyl
- alanine
- beta
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000004279 alanine Nutrition 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000000758 substrate Substances 0.000 title claims abstract description 19
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 17
- 108090000790 Enzymes Proteins 0.000 claims abstract description 15
- 238000010170 biological method Methods 0.000 claims abstract description 7
- 108090000623 proteins and genes Proteins 0.000 claims description 45
- 241000894006 Bacteria Species 0.000 claims description 28
- 239000013612 plasmid Substances 0.000 claims description 28
- 238000000855 fermentation Methods 0.000 claims description 24
- 230000004151 fermentation Effects 0.000 claims description 24
- 101000902365 Homo sapiens Dihydropteridine reductase Proteins 0.000 claims description 23
- 239000002773 nucleotide Substances 0.000 claims description 22
- 125000003729 nucleotide group Chemical group 0.000 claims description 22
- 108020001096 dihydrofolate reductase Proteins 0.000 claims description 20
- KYNMONSTYCGIDJ-VIFPVBQESA-N (2s)-2-amino-3-(1h-indol-2-yl)propanoic acid Chemical compound C1=CC=C2NC(C[C@H](N)C(O)=O)=CC2=C1 KYNMONSTYCGIDJ-VIFPVBQESA-N 0.000 claims description 19
- 230000014509 gene expression Effects 0.000 claims description 15
- 108010045523 6-pyruvoyltetrahydropterin synthase Proteins 0.000 claims description 13
- 230000037361 pathway Effects 0.000 claims description 13
- 102100028505 6-pyruvoyl tetrahydrobiopterin synthase Human genes 0.000 claims description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 12
- 101000851865 Homo sapiens Tryptophan 5-hydroxylase 2 Proteins 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 11
- 102100024746 Dihydrofolate reductase Human genes 0.000 claims description 10
- 102100022317 Dihydropteridine reductase Human genes 0.000 claims description 10
- 101150116328 Pcd gene Proteins 0.000 claims description 10
- 101710184733 Pterin-4-alpha-carbinolamine dehydratase Proteins 0.000 claims description 10
- 101710201301 Putative pterin-4-alpha-carbinolamine dehydratase Proteins 0.000 claims description 10
- 235000018102 proteins Nutrition 0.000 claims description 10
- 102000004169 proteins and genes Human genes 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 8
- 229940041514 candida albicans extract Drugs 0.000 claims description 8
- 239000012137 tryptone Substances 0.000 claims description 8
- 239000012138 yeast extract Substances 0.000 claims description 8
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000006698 induction Effects 0.000 claims description 5
- 108700005078 Synthetic Genes Proteins 0.000 claims description 4
- 230000001939 inductive effect Effects 0.000 claims description 4
- 239000011780 sodium chloride Substances 0.000 claims description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims description 2
- 238000010353 genetic engineering Methods 0.000 claims description 2
- -1 isopropyl-beta-indolyl-alanine Chemical compound 0.000 claims description 2
- 239000012492 regenerant Substances 0.000 claims 11
- 239000001963 growth medium Substances 0.000 claims 4
- 239000002609 medium Substances 0.000 claims 2
- 238000011218 seed culture Methods 0.000 claims 1
- MTBXENCFNQMOTM-VIFPVBQESA-N (2S)-2-amino-3-(5-hydroxy-1H-indol-2-yl)propanoic acid Chemical compound N[C@H](C(=O)O)CC=1NC2=CC=C(C=C2C=1)O MTBXENCFNQMOTM-VIFPVBQESA-N 0.000 abstract description 33
- 230000008929 regeneration Effects 0.000 abstract description 22
- 238000011069 regeneration method Methods 0.000 abstract description 22
- 230000015572 biosynthetic process Effects 0.000 abstract description 15
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000010276 construction Methods 0.000 abstract description 6
- 102000004190 Enzymes Human genes 0.000 abstract description 5
- 238000005065 mining Methods 0.000 abstract 1
- 108020004414 DNA Proteins 0.000 description 47
- 238000003786 synthesis reaction Methods 0.000 description 12
- 238000012216 screening Methods 0.000 description 8
- 239000012634 fragment Substances 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 5
- 239000013600 plasmid vector Substances 0.000 description 5
- 238000010367 cloning Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000033444 hydroxylation Effects 0.000 description 3
- 238000005805 hydroxylation reaction Methods 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 2
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 2
- 101000892398 Homo sapiens Tryptophan 2,3-dioxygenase Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- OAIVNLHMAFVPQB-ZETCQYMHSA-N (2s)-2-(1h-indol-2-ylamino)propanoic acid Chemical compound C1=CC=C2NC(N[C@@H](C)C(O)=O)=CC2=C1 OAIVNLHMAFVPQB-ZETCQYMHSA-N 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 101150052439 Qdpr gene Proteins 0.000 description 1
- 101150081864 Spr gene Proteins 0.000 description 1
- 101150115335 TPH2 gene Proteins 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 102100040653 Tryptophan 2,3-dioxygenase Human genes 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 108010064332 quinonoid dihydropterin reductase Proteins 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/06—Alanine; Leucine; Isoleucine; Serine; Homoserine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0026—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
- C12N9/0028—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with NAD or NADP as acceptor (1.5.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0026—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
- C12N9/0028—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with NAD or NADP as acceptor (1.5.1)
- C12N9/003—Dihydrofolate reductase [DHFR] (1.5.1.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01153—Sepiapterin reductase (L-erythro-7,8-dihydrobiopterin forming) (1.1.1.153)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y105/00—Oxidoreductases acting on the CH-NH group of donors (1.5)
- C12Y105/01—Oxidoreductases acting on the CH-NH group of donors (1.5) with NAD+ or NADP+ as acceptor (1.5.1)
- C12Y105/01034—6,7-Dihydropteridine reductase (1.5.1.34)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/16—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced pteridine as one donor, and incorporation of one atom of oxygen (1.14.16)
- C12Y114/16004—Tryptophan 5-monooxygenase (1.14.16.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y305/00—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
- C12Y305/04—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
- C12Y305/04016—GTP cyclohydrolase I (3.5.4.16)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明提供了以β‑吲哚基丙氨酸为底物合成5‑羟基β‑吲哚基丙氨酸的方法及其应用。本发明提供的5‑羟基β‑吲哚基丙氨酸高产菌株,用于以β‑吲哚基丙氨酸为底物生物法合成5‑羟基β‑吲哚基丙氨酸的方法,5‑羟基β‑吲哚基丙氨酸的合成产量高。本发明通过对BH4再生系统的构建,新的BH4再生酶的挖掘,加强了工程菌株BH4的再生能力,尤其是双BH4再生系统的同时作用,显著提升了生物合成5‑羟基β‑吲哚基丙氨酸的产量。
The invention provides a method for synthesizing 5-hydroxy β-indolyl alanine using β-indolyl alanine as a substrate and its application. The 5-hydroxy β-indolyl alanine high-yielding strain provided by the invention is used for the biological method of synthesizing 5-hydroxy β-indolyl alanine by using β-indolyl alanine as a substrate, 5 -Hydroxyβ-indolylalanine was synthesized in high yield. Through the construction of the BH4 regeneration system and the mining of new BH4 regeneration enzymes, the invention strengthens the regeneration ability of the engineering strain BH4, especially the simultaneous action of the double BH4 regeneration system, and significantly improves the biosynthesis of 5-hydroxy β-indolyl Alanine production.
Description
技术领域technical field
本发明涉及生物技术领域,特别是涉及一种以β-吲哚基丙氨酸为底物合成5-羟基β-吲哚基丙氨酸的方法及其应用。The invention relates to the field of biotechnology, in particular to a method for synthesizing 5-hydroxy β-indolyl alanine using β-indolyl alanine as a substrate and application thereof.
背景技术Background technique
5-羟基β-吲哚基丙氨酸广泛存在于豆科植物的种子中,其中非洲植物加纳的种子中含量最高。从加纳籽中提取和精制5-羟基β-吲哚基丙氨酸的基本工艺路线为:加纳籽粉碎—萃取—过滤离心—物理脱色—真空浓缩—结晶、重结晶—真空干燥。但随着非洲加纳树数量不断减少,传统提取法获得5-羟基β-吲哚基丙氨酸变得越来越困难,作为人体神经代谢途径中抵抗抑郁、缓解情感性精神障碍的天然药物,近年来5-羟基β-吲哚基丙氨酸的市场需求越来越大,依靠天然产物提取己难以满足市场需求,越来越多的企业开始从化学合成与生物发酵等方面研究5-羟基β-吲哚基丙氨酸的生产。5-Hydroxyβ-indolylalanine is widely present in the seeds of leguminous plants, among which the seeds of the African plant Ghana have the highest content. The basic process route of extracting and purifying 5-hydroxy β-indolylalanine from Ghana seeds is: Ghana seeds crushing - extraction - filtration and centrifugation - physical decolorization - vacuum concentration - crystallization, recrystallization - vacuum drying. However, as the number of African Ghana trees continues to decrease, it is becoming more and more difficult to obtain 5-hydroxyβ-indolylalanine by traditional extraction methods. In recent years, the market demand for 5-hydroxy β-indolylalanine is increasing, and it is difficult to meet the market demand by relying on natural product extraction. More and more companies have begun to study 5-hydroxy from chemical synthesis and biological fermentation. Production of β-indolylalanine.
目前所报道的生物合成5-羟基β-吲哚基丙氨酸的合成方法,大部分是先合成β-吲哚基丙氨酸后再羟化其生成5-羟基β-吲哚基丙氨酸。β-吲哚基丙氨酸的生物合成方法目前已比较成熟。但是β-吲哚基丙氨酸羟化生成5-羟基β-吲哚基丙氨酸需要有BH4为辅因子参与才能进行,而BH4难以储存且价格昂贵,这使得通过额外添加BH4以工业化生产5-羟基β-吲哚基丙氨酸成为不可能。Most of the reported synthetic methods for the biosynthesis of 5-hydroxyβ-indolylalanine firstly synthesize β-indolylalanine and then hydroxylate it to generate 5-hydroxyβ-indolylalanine acid. The biosynthesis of β-indolylalanine is relatively mature. However, the hydroxylation of β-indolylalanine to 5-hydroxyβ-indolylalanine requires the participation of BH4 as a cofactor, and BH4 is difficult to store and expensive, which makes industrial production by adding additional BH4. 5-Hydroxyβ-indolylalanine becomes impossible.
而微生物中又没有BH4的合成路径,要想在微生物中合成则必须通过外源基因的加入。本发明通过对工程菌的BH4合成和再生能力的加强,并通过双BH4再生系统的应用,提高了5-羟基β-吲哚基丙氨酸的产量。However, there is no BH4 synthesis pathway in microorganisms, and in order to synthesize in microorganisms, the addition of exogenous genes must be used. The invention improves the output of 5-hydroxy β-indolylalanine by strengthening the BH4 synthesis and regeneration ability of the engineering bacteria and through the application of the double BH4 regeneration system.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题为提供5-羟基β-吲哚基丙氨酸高产菌株、构建以及以β-吲哚基丙氨酸为底物生物法合成5-羟基β-吲哚基丙氨酸的方法。The technical problem to be solved by the present invention is to provide high-producing strains of 5-hydroxyβ-indolylalanine, construct and biosynthesize 5-hydroxyβ-indolylalanine with β-indolylalanine as a substrate sour method.
为解决上述技术问题,本发明采用的技术方案如下:In order to solve the above-mentioned technical problems, the technical scheme adopted in the present invention is as follows:
提供一种以β-吲哚基丙氨酸为底物生物法合成5-羟基β-吲哚基丙氨酸的方法,包括以下步骤:Provided is a method for synthesizing 5-hydroxy β-indolyl alanine by biological method using β-indolyl alanine as a substrate, comprising the following steps:
1)利用所述的合成5-羟基β-吲哚基丙氨酸蛋白编码基因或能够表达合成β-吲哚基丙氨酸蛋白编码基因的重组基因工程菌,以β-吲哚基丙氨酸为底物,生物发酵合成5-羟基β-吲哚基丙氨酸,所述的能够表达合成5-羟基β-吲哚基丙氨酸蛋白编码基因包括β-吲哚基丙氨酸产5-羟基β-吲哚基丙氨酸途径关键酶基因TPH2;BH4合成基因FOLE、PTPS、SPR;BH4再生酶基因包括PCD基因、qBH2产BH4再生酶基因QDPR和BH2产BH4再生酶基因DHFR;1) utilizing the described synthetic 5-hydroxy β-indolyl alanine protein coding gene or the recombinant genetic engineering bacteria capable of expressing the synthetic β-indolyl alanine protein coding gene, with β-indolyl alanine Acid as a substrate, biofermentatively synthesizes 5-hydroxyβ-indolylalanine, and the protein encoding gene capable of expressing and synthesizing 5-hydroxyβ-indolylalanine includes β-indolylalanine production. 5-Hydroxyβ-indolylalanine pathway key enzyme gene TPH2; BH4 synthesis gene FOLE, PTPS, SPR; BH4 regeneration enzyme genes include PCD gene, qBH2-producing BH4-regenerating enzyme gene QDPR and BH2-producing BH4-regenerating enzyme gene DHFR;
2)从1)的体系中分离得到5-羟基β-吲哚基丙氨酸。2) 5-hydroxyβ-indolylalanine is isolated from the system of 1).
按上述方案,PCD基因的核苷酸序列如SEQ ID NO:5所示,qBH2产BH4再生酶基因QDPR的核苷酸序列如SEQ ID NO:6-10中任一序列所示;BH2产BH4再生酶基因DHFR的核苷酸序列如SEQ ID NO:11-15中任一序列所示。According to the above scheme, the nucleotide sequence of the PCD gene is shown in SEQ ID NO: 5, and the nucleotide sequence of the qBH2-producing BH4 regenase gene QDPR is shown in any sequence in SEQ ID NO: 6-10; BH2 produces BH4 The nucleotide sequence of the regenase gene DHFR is shown in any one of SEQ ID NOs: 11-15.
优选地,所述BH2产BH4再生酶基因QDPR的核苷酸序列如SEQ ID NO:6,和SEQ IDNO:8中任一序列所示;BH2产BH4再生酶基因DHFR的核苷酸序列如SEQ ID NO:11、SEQ IDNO:12、SEQ ID NO:13、SEQ ID NO:14中任一序列所示。Preferably, the nucleotide sequence of the BH2-producing BH4 regenase gene QDPR is shown in any sequence in SEQ ID NO: 6 and SEQ ID NO: 8; the nucleotide sequence of the BH2-producing BH4 regenase gene DHFR is shown in SEQ ID NO: 8 ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14.
更优选地,所述BH2产BH4再生酶基因QDPR的核苷酸序列如SEQ ID NO:8所示;BH2产BH4再生酶基因DHFR的核苷酸序列如SEQ ID NO:14所示。More preferably, the nucleotide sequence of the BH2-producing BH4 regenase gene QDPR is shown in SEQ ID NO: 8; the nucleotide sequence of the BH2-producing BH4 regenase gene DHFR is shown in SEQ ID NO: 14.
按上述方案,β-吲哚基丙氨酸产5-羟基β-吲哚基丙氨酸途径关键酶基因TPH2的核苷酸序列如SEQ ID NO:1所示;According to the above scheme, the nucleotide sequence of the key enzyme gene TPH2 in the pathway of β-indolylalanine producing 5-hydroxyβ-indolylalanine is shown in SEQ ID NO: 1;
BH4合成途径关键酶基因FOLE、PTPS、SPR的核苷酸序列如SEQ ID NO:2-4所示。The nucleotide sequences of the key enzyme genes FOLE, PTPS and SPR of the BH4 synthesis pathway are shown in SEQ ID NOs: 2-4.
按上述方案,所述的步骤1)为将所构建的重组菌经过活化培养后,转接至发酵培养基诱导表达后,以β-吲哚基丙氨酸为底物转化生成5-羟基β-吲哚基丙氨酸。According to the above scheme, the step 1) is to transform the constructed recombinant bacteria into 5-hydroxy β using β-indolyl alanine as a substrate after the activation and cultivation of the constructed recombinant bacteria. -Indolylalanine.
具体的,上述方法为:将所构建的重组基因工程菌分别经过LB培养基活化培养后,得到种子液,将种子液转接至发酵培养基,发酵后加入IPTG诱导,并加入β-吲哚基丙氨酸,发酵转化生成5-羟基β-吲哚基丙氨酸。Specifically, the above method is as follows: after the constructed recombinant genetically engineered bacteria are activated and cultured in LB medium, respectively, a seed liquid is obtained, the seed liquid is transferred to a fermentation medium, after fermentation, IPTG is added for induction, and β-indole is added. 5-hydroxyβ-indolylalanine is produced by fermentation.
进一步地,所述种子液OD600=5;Further, the seed solution OD600=5;
所述种子培养基(质量百分比)为1%胰蛋白胨、1%氯化钠和0.5%酵母提取物;The seed medium (mass percentage) is 1% tryptone, 1% sodium chloride and 0.5% yeast extract;
所述种子液的培养条件为28-40℃,160-230rpm,优选为37℃,225rpm;The culture conditions of the seed solution are 28-40°C, 160-230rpm, preferably 37°C, 225rpm;
所述种子液接入发酵培养基的比例为1%-10%,优选比例为2%;The ratio of the seed liquor to the fermentation medium is 1%-10%, and the preferred ratio is 2%;
所述发酵培养基的组成(质量百分比)为:1.2%胰蛋白胨、2.4%酵母提取物、0.5%甘油、0.231%KH2PO4和1.64%K2HPO4·3H2O;The composition (mass percentage) of the fermentation medium is: 1.2% tryptone, 2.4% yeast extract, 0.5% glycerol, 0.231% KH 2 PO 4 and 1.64% K 2 HPO 4 ·3H 2 O;
所述进行诱导前的发酵时间为1-5h,优选为2h;The fermentation time before the induction is 1-5h, preferably 2h;
所述IPTG的终浓度为0.1-10mM,优选为1mM;The final concentration of the IPTG is 0.1-10 mM, preferably 1 mM;
所述诱导表达的条件为16-37℃,优选为30℃;The condition for inducing expression is 16-37°C, preferably 30°C;
所述反应体系β-吲哚基丙氨酸浓度为1-50g/L,优选10g/L;The β-indolylalanine concentration of the reaction system is 1-50g/L, preferably 10g/L;
所述发酵时间为18-72h,优选为24-66h,更优选为36-48h。The fermentation time is 18-72h, preferably 24-66h, more preferably 36-48h.
本发明还提供BH4再生酶基因,所述的BH4再生酶基因包括BH2产BH4再生酶基因DHFR,核苷酸序列如SEQ ID NO:11-15中任一序列所示。The present invention also provides a BH4 regenase gene, the BH4 regenase gene includes the BH2-producing BH4 regenase gene DHFR, and the nucleotide sequence is shown in any of SEQ ID NOs: 11-15.
按上述方案,所述的BH4再生酶基因还进一步包括PCD基因、qBH2产BH4再生酶基因QDPR,PCD基因的核苷酸序列如SEQ ID NO:5所示,qBH2产BH4再生酶基QDPR的核苷酸序列如SEQ ID NO:6-10中任一序列所示。According to the above scheme, the BH4 regenase gene further includes PCD gene, qBH2 produces BH4 regenase gene QDPR, the nucleotide sequence of PCD gene is as shown in SEQ ID NO: 5, and qBH2 produces the nucleus of BH4 regenase-based QDPR. The nucleotide sequence is shown in any of SEQ ID NOs: 6-10.
本发明还提供一种以β-吲哚基丙氨酸为底物生物法合成5-羟基β-吲哚基丙氨酸的工程菌,包含合成5-羟基β-吲哚基丙氨酸蛋白编码基因,所述的合成5-羟基β-吲哚基丙氨酸蛋白编码基因包括β-吲哚基丙氨酸产5-羟基β-吲哚基丙氨酸途径关键酶基因TPH2;BH4合成基因FOLE、PTPS、SPR;上述BH4再生酶基因。The present invention also provides an engineering bacterium for synthesizing 5-hydroxy β-indolyl alanine by biological method using β-indolyl alanine as a substrate, comprising synthesizing 5-hydroxy β-indolyl alanine protein The coding gene, the synthetic 5-hydroxy β-indolyl alanine protein coding gene includes the key enzyme gene TPH2 of the β-indolyl alanine producing 5-hydroxy β-indolyl alanine pathway; BH4 synthesis Gene FOLE, PTPS, SPR; the above-mentioned BH4 regeneration enzyme gene.
本发明同时提供一种上述基因工程菌的构建方法:β-吲哚基丙氨酸产5-羟基β-吲哚基丙氨酸途径关键酶基因TPH2,BH4合成基因FOLE、PTPS、SPR放入同一质粒串连表达;BH4再生酶基因PCD、QDPR、DHFR放入同一质粒串连表达;将上述质粒共同转化至宿主细胞中,得到重组基因工程菌。The present invention also provides a method for constructing the above-mentioned genetically engineered bacteria: the key enzyme gene TPH2 of the β-indolylalanine-producing 5-hydroxyβ-indolylalanine pathway, and the BH4 synthetic genes FOLE, PTPS and SPR are put into The same plasmid is tandemly expressed; the BH4 regenase genes PCD, QDPR and DHFR are put into the same plasmid for tandem expression; the above-mentioned plasmids are co-transformed into host cells to obtain recombinant genetically engineered bacteria.
进一步地,所述的宿主细胞为大肠杆菌宿主细胞,优选为BL21(DE3)。Further, the host cell is an Escherichia coli host cell, preferably BL21(DE3).
本发明的有益效果:Beneficial effects of the present invention:
本发明通过构建双BH4再生系统工程菌,提供的5-羟基β-吲哚基丙氨酸高产菌株,用于以β-吲哚基丙氨酸为底物生物法合成5-羟基β-吲哚基丙氨酸,5-羟基β-吲哚基丙氨酸的合成产量高。The present invention provides 5-hydroxy β-indolyl alanine high-yielding strain by constructing double BH4 regeneration system engineering bacteria, which is used for biological synthesis of 5-hydroxy β-indolyl alanine by using β-indolyl alanine as a substrate. Indolylalanine, 5-hydroxyβ-indolylalanine was synthesized in high yield.
进一步通过qBH2产BH4再生酶基因QDPR(二氢喋呤还原酶)的筛选和BH2产BH4再生酶基因DHFR(二氢叶酸还原酶)不同物种来源的同功酶组合筛选,可进一步显著提升了生物合成5-羟基β-吲哚基丙氨酸的产量。Further screening of qBH2-producing BH4 regenase gene QDPR (dihydropterin reductase) and BH2-producing BH4 reductase gene DHFR (dihydrofolate reductase) isoenzyme combination from different species can further significantly improve the biological Yield of synthesis of 5-hydroxyβ-indolylalanine.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1:pET28a-H2FPS质粒图谱Figure 1: Plasmid map of pET28a-H2FPS
图2:pACYCDuet-PQ质粒图谱Figure 2: pACYCDuet-PQ plasmid map
图3:pACYCDuet-PQF质粒图谱Figure 3: pACYCDuet-PQF plasmid map
图4:双BH4再生系统以β-吲哚基丙氨酸为底物合成5-羟基β-吲哚基丙氨酸路线示意图;Figure 4: Schematic diagram of the synthesis of 5-hydroxyβ-indolylalanine in the double BH4 regeneration system using β-indolylalanine as a substrate;
具体实施方式Detailed ways
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。Various exemplary embodiments of the present invention will now be described in detail, which detailed description should not be construed as a limitation of the invention, but rather as a more detailed description of certain aspects, features, and embodiments of the invention.
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。It should be understood that the terms described in the present invention are only used to describe particular embodiments, and are not used to limit the present invention. Additionally, for numerical ranges in the present disclosure, it should be understood that each intervening value between the upper and lower limits of the range is also specifically disclosed. Every smaller range between any stated value or intervening value in a stated range and any other stated value or intervening value in that stated range is also encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range.
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention relates. Although only the preferred methods and materials are described herein, any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention.
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本申请说明书和实施例仅是示例性的。It will be apparent to those skilled in the art that various modifications and variations can be made in the specific embodiments of the present invention without departing from the scope or spirit of the invention. Other embodiments will be apparent to those skilled in the art from the description of the present invention. The description and examples of the present application are only exemplary.
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。As used herein, "comprising," "including," "having," "containing," and the like, are open-ended terms, meaning including but not limited to.
大肠杆菌作为外源基因表达的宿主,遗传背景清楚,技术操作简单,培养条件简单,大规模发酵经济,倍受重视。目前大肠杆菌是应用最广泛,最成功的表达体系,常做高效表达的首选体系。下述以大肠杆菌出发,通过改造大肠杆菌以实现发酵法高效大规模工业化生产5-羟基β-吲哚基丙氨酸。As a host for exogenous gene expression, Escherichia coli has a clear genetic background, simple technical operation, simple culture conditions, and large-scale fermentation economy, which has attracted much attention. At present, Escherichia coli is the most widely used and successful expression system, and is often the first choice for high-efficiency expression. The following starts from Escherichia coli, and realizes efficient and large-scale industrial production of 5-hydroxyβ-indolylalanine by means of a fermentation method by transforming Escherichia coli.
实施例1单BH4再生系统工程菌的构建和筛选Example 1 Construction and screening of single BH4 regeneration system engineering bacteria
β-吲哚基丙氨酸羟化途径关键酶基因TPH2;BH4合成途径关键酶FOLE,PTPS,SPR的串联表达。Tandem expression of key enzyme gene TPH2 in β-indolylalanine hydroxylation pathway; key enzyme FOLE, PTPS and SPR in BH4 synthesis pathway.
将TPH2、FOLE、PTPS、SPR基因分别合成并插入到载体质粒pET28a(+)的NdeI和XhoI位点之间,获得pET28a-TPH2、pET28a-FOLE、pET28a-PTPS、pET28a-SPR质粒。The TPH2, FOLE, PTPS and SPR genes were synthesized and inserted between the NdeI and XhoI sites of the vector plasmid pET28a(+) to obtain pET28a-TPH2, pET28a-FOLE, pET28a-PTPS and pET28a-SPR plasmids.
以F1和R1为引物,pET28a-TPH2质粒为模板克隆获得含TPH2基因的pET28a质粒载体;以F2和R2为引物,质粒pET28a-FOLE为模板克隆获得FOLE基因;以F3和R3为引物,质粒pET28a-PTPS为模板克隆获得PTPS基因;以F4和R4为引物,质粒pET28a-SPR为模板克隆获得SPR基因。Using F1 and R1 as primers, the pET28a-TPH2 plasmid was used as the template to clone the pET28a plasmid vector containing the TPH2 gene; using F2 and R2 as the primers, the plasmid pET28a-FOLE was used as the template to clone to obtain the FOLE gene; using F3 and R3 as the primers, the plasmid pET28a was cloned - PTPS was used as template to clone to obtain PTPS gene; F4 and R4 were used as primers, plasmid pET28a-SPR was used as template to clone to obtain SPR gene.
将以上片段通过无缝克隆试剂盒连接在一起,形成质粒pET28a-H2FPS(如图1)The above fragments were linked together by a seamless cloning kit to form plasmid pET28a-H2FPS (as shown in Figure 1)
表1引物序列1Table 1 Primer sequence 1
BH4再生途径关键酶基因PCD、QDPR的串联表达。Tandem expression of key enzyme genes PCD and QDPR in BH4 regeneration pathway.
将BH3OH生成qBH2基因PCD和不同来源的5种qBH2产BH4再生酶基QDPR基因,经过密码子优化人工合成得到Q1、Q2、Q3、Q4、Q5(序列依次如SEQ ID NO:6-10所示),将PCD和Q1-Q5到pACYCDuet质粒的NcoI和AflⅡ位点之间,获得pACYCDuet-PCD、pACYCDuet-Q1、pACYCDuet-Q2、pACYCDuet-Q3、pACYCDuet-Q4、pACYCDuet-Q5质粒。BH3OH generates qBH2 gene PCD and 5 kinds of qBH2 from different sources to produce BH4 regenerating enzyme-based QDPR genes, which are synthesized through codon optimization to obtain Q1, Q2, Q3, Q4, Q5 (sequences are shown in SEQ ID NO: 6-10 in turn. ), put PCD and Q1-Q5 between the NcoI and AflII sites of the pACYCDuet plasmid to obtain pACYCDuet-PCD, pACYCDuet-Q1, pACYCDuet-Q2, pACYCDuet-Q3, pACYCDuet-Q4, pACYCDuet-Q5 plasmids.
以pACYCDuet-P-F和pACYCDuet-P-R引物,pACYCDuet-PCD质粒为模板,克隆获得含PCD基因(序列如SEQ ID NO:5所示)的pACYCDuet质粒载体;以Q1-F、Q1-R,Q2-F、Q2-R,Q3-F、Q3-R,Q4-F、Q4-R,Q5-F、Q5-R引物,分别以质粒pACYCDuet-Q1、pACYCDuet-Q2、pACYCDuet-Q3、pACYCDuet-Q4、pACYCDuet-Q5为模板克隆获得Q1-Q5基因片段。Using pACYCDuet-P-F and pACYCDuet-P-R primers, pACYCDuet-PCD plasmid as template, cloned to obtain pACYCDuet plasmid vector containing PCD gene (sequence shown as SEQ ID NO: 5); with Q1-F, Q1-R, Q2-F , Q2-R, Q3-F, Q3-R, Q4-F, Q4-R, Q5-F, Q5-R primers, respectively using plasmids pACYCDuet-Q1, pACYCDuet-Q2, pACYCDuet-Q3, pACYCDuet-Q4, pACYCDuet -Q5 is the template clone to obtain the Q1-Q5 gene fragment.
将以上Q1-Q5基因片段分别与含PCD基因的pACYCDuet质粒载体片段通过无缝克隆试剂盒连接在一起,形成质粒pACYCDuet-PQ1、pACYCDuet-PQ2、pACYCDuet-PQ3、pACYCDuet-PQ4、pACYCDuet-PQ5。(如图2)The above Q1-Q5 gene fragments were respectively connected with the pACYCDuet plasmid vector fragment containing the PCD gene through a seamless cloning kit to form plasmids pACYCDuet-PQ1, pACYCDuet-PQ2, pACYCDuet-PQ3, pACYCDuet-PQ4, pACYCDuet-PQ5. (Picture 2)
表1引物序列1Table 1 Primer sequence 1
单BH4再生酶产5-羟基β-吲哚基丙氨酸菌株的构建和筛选Construction and Screening of 5-Hydroxyβ-Indolylalanine-Producing Strain with Single BH4 Regenerating Enzyme
将质粒pET28a-H2FPS分别与pACYCDuet-PQ1、pACYCDuet-PQ2、pACYCDuet-PQ3、pACYCDuet-PQ4、pACYCDuet-PQ5电转化入大肠杆菌BL21(DE3)感受态中,得到工程菌KC011、KC012、KC013、KC014、KC015。将工程菌KC011、KC012、KC013、KC014、KC015分别在含有50μg/mL卡那霉素和34μg/mL氯霉素抗生素的种子培养基中培养10h,得到种子液,所述种子液的OD600=5,所述种子培养基(质量百分比)为1%胰蛋白胨、1%氯化钠和0.5%酵母提取物,所述种子液的培养条件为37℃,225rpm;将2%的上述种子液接种到含有1.2%胰蛋白胨、2.4%酵母提取物、0.5%甘油、0.231%KH2PO4和1.64%K2HPO4·3H2O的发酵培养基(质量百分比)中进行发酵培养;发酵培养2h后,加入终浓度1mM IPTG进行诱导表达,诱导表达的温度为30℃,加入终浓度为10g/L的β-吲哚基丙氨酸。发酵转化,利用高效液相色谱检测5-羟基β-吲哚基丙氨酸的产量。The plasmid pET28a-H2FPS and pACYCDuet-PQ1, pACYCDuet-PQ2, pACYCDuet-PQ3, pACYCDuet-PQ4, pACYCDuet-PQ5 were electrotransformed into Escherichia coli BL21 (DE3) competent cells to obtain engineering bacteria KC011, KC012, KC013, KC014, KC015. The engineering bacteria KC011, KC012, KC013, KC014 and KC015 were respectively cultured in the seed medium containing 50 μg/mL kanamycin and 34 μg/mL chloramphenicol antibiotics for 10 h to obtain seed liquid, the OD 600 = 5. The seed medium (mass percentage) is 1% tryptone, 1% sodium chloride and 0.5% yeast extract, and the culture condition of the seed liquid is 37° C., 225 rpm; 2% of the above seed liquid is inoculated To the fermentation medium (mass percentage) containing 1.2% tryptone, 2.4% yeast extract, 0.5% glycerol, 0.231% KH 2 PO 4 and 1.64% K 2 HPO 4 ·3H 2 O; fermentation culture for 2h Afterwards, the final concentration of 1 mM IPTG was added to induce expression, the temperature for inducing expression was 30°C, and the final concentration of 10 g/L β-indolylalanine was added. Fermentation conversion, using high performance liquid chromatography to detect the production of 5-hydroxyβ-indolylalanine.
结果如表所示,其中:工程菌KC011、KC013产5-羟基β-吲哚基丙氨酸的初始速度高于其他菌株,并且工程菌KC013持续产5-羟基β-吲哚基丙氨酸优于KC011,表明:编号Q3的QDPR再生BH4能力最好。The results are shown in the table, among which: the initial rate of 5-hydroxyβ-indolylalanine production by engineering bacteria KC011 and KC013 was higher than that of other strains, and the engineering bacteria KC013 continued to produce 5-hydroxyβ-indolylalanine It was better than KC011, indicating that the QDPR numbered Q3 had the best ability to regenerate BH4.
表2:不同QDPR菌株产量比较Table 2: Comparison of yields of different QDPR strains
实施例2双BH4再生系统工程菌的构建和筛选Embodiment 2 Construction and screening of double BH4 regeneration system engineering bacteria
进一步将上述BH4再生关键基因QDPR和DHFR组合,形成双BH4再生系统,评价筛选这些不同基因组合的工程菌合成5-羟基β-吲哚基丙氨酸的效果。具体以SEQ ID NO:5所示的PCD基因和SEQ ID NO:8所示的QDPR基因为例构建双BH4再生系统。The above-mentioned BH4 regeneration key genes QDPR and DHFR were further combined to form a double BH4 regeneration system, and the effect of screening the engineering bacteria of these different gene combinations to synthesize 5-hydroxyβ-indolylalanine was evaluated. Specifically, the double BH4 regeneration system was constructed by taking the PCD gene shown in SEQ ID NO: 5 and the QDPR gene shown in SEQ ID NO: 8 as examples.
基于双BH4再生系统,以β-吲哚基丙氨酸为底物合成5-羟基β-吲哚基丙氨酸路线如图4所示。Based on the double BH4 regeneration system, the synthesis route of 5-hydroxyβ-indolylalanine using β-indolylalanine as a substrate is shown in Figure 4.
双BH4再生系统关键基因PCD、QDPR和不同DHFR的串连表达:Tandem expression of key genes PCD, QDPR and different DHFRs in the dual BH4 regeneration system:
选择不同来源的DHFR基因经过密码子优化人工合成得到F1-F5(序列依次如SEQID NO:11-15所示),将F1-F5基因插入到pACYCDuet质粒的NcoI和AflⅡ位点之间,获得pACYCDuet-F1、pACYCDuet-F2、pACYCDuet-F3、pACYCDuet-F4、pACYCDuet-F5、质粒。DHFR genes from different sources were selected and synthesized by codon optimization to obtain F1-F5 (the sequences are shown in SEQ ID NOs: 11-15 in sequence), and the F1-F5 genes were inserted into the pACYCDuet plasmid between the NcoI and AflII sites to obtain pACYCDuet -F1, pACYCDuet-F2, pACYCDuet-F3, pACYCDuet-F4, pACYCDuet-F5, plasmid.
以pACYCDuet-P-F、pACYCDuet-PQ3-R为引物,pACYCDuet-PQ3质粒为模板克隆获得含PCD和Q3基因的pACYCDuet质粒载体;以F1-F、F1-R,F2-F、F2-R,F3-F、F3-R,F4-F、F4-R,F5-F、F5-R,为引物,分别以质粒pACYCDuet-F1、pACYCDuet-F2、pACYCDuet-F3、pACYCDuet-F4、pACYCDuet-F5为模板克隆获得F1-F5基因片段。Using pACYCDuet-P-F and pACYCDuet-PQ3-R as primers and pACYCDuet-PQ3 plasmid as template, clone the pACYCDuet plasmid vector containing PCD and Q3 genes; use F1-F, F1-R, F2-F, F2-R, F3- F, F3-R, F4-F, F4-R, F5-F, F5-R are primers, respectively cloned using plasmids pACYCDuet-F1, pACYCDuet-F2, pACYCDuet-F3, pACYCDuet-F4, pACYCDuet-F5 as templates Obtain F1-F5 gene fragments.
将F1-F5基因片段与含PCD和Q3基因的pACYCDuet质粒载体通过无缝克隆试剂盒连接在一起,形成质粒pACYCDuet-PQ3F1、pACYCDuet-PQ3F2、pACYCDuet-PQ3F3、pACYCDuet-PQ3F4、pACYCDuet-PQ3F5。(如图3)表3引物序列2The F1-F5 gene fragment and the pACYCDuet plasmid vector containing the PCD and Q3 genes were linked together by a seamless cloning kit to form plasmids pACYCDuet-PQ3F1, pACYCDuet-PQ3F2, pACYCDuet-PQ3F3, pACYCDuet-PQ3F4, pACYCDuet-PQ3F5. (As shown in Figure 3) Table 3 Primer Sequence 2
双BH4再生酶产5-羟基β-吲哚基丙氨酸菌株的构建和筛选Construction and Screening of 5-Hydroxyβ-Indolylalanine-Producing Strain with Double BH4 Regenerating Enzyme
将质粒pET28a-H2FPS分别与pACYCDuet-PQ3F1、pACYCDuet-PQ3F2、pACYCDuet-PQ3F3、pACYCDuet-PQ3F4、pACYCDuet-PQ3F5电转化入大肠杆菌BL21(DE3)感受态中,得到工程菌KC021、KC022、KC023、KC024、KC025。将工程菌KC021、KC022、KC023、KC024、KC025分别在含有50μg/mL卡那霉素和34μg/mL氯霉素抗生素的种子培养基中培养10h,得到种子液,所述种子液的OD600=5,所述种子培养基(质量百分比)为1%胰蛋白胨、1%氯化钠和0.5%酵母提取物,所述种子液的培养条件为37℃,225rpm;将2%的上述种子液接种到含有1.2%胰蛋白胨、2.4%酵母提取物、0.5%甘油、0.231%KH2PO4和1.64%K2HPO4·3H2O的发酵培养基(质量百分比)中进行发酵培养;发酵培养2h后,加入终浓度1mM IPTG进行诱导表达,诱导表达的温度为30℃,加入终浓度为10g/L的β-吲哚基丙氨酸。发酵转化,利用高效液相色谱检测5-羟基β-吲哚基丙氨酸的产量。The plasmid pET28a-H2FPS and pACYCDuet-PQ3F1, pACYCDuet-PQ3F2, pACYCDuet-PQ3F3, pACYCDuet-PQ3F4, pACYCDuet-PQ3F5 were electrotransformed into E. coli BL21 (DE3) competent cells to obtain engineering bacteria KC021, KC022, KC023, KC024, KC025. The engineering bacteria KC021, KC022, KC023, KC024, and KC025 were cultured in the seed medium containing 50 μg/mL kanamycin and 34 μg/mL chloramphenicol antibiotics for 10 hours, respectively, to obtain a seed liquid with an OD 600 = 5. The seed medium (mass percentage) is 1% tryptone, 1% sodium chloride and 0.5% yeast extract, and the culture condition of the seed liquid is 37° C., 225 rpm; 2% of the above seed liquid is inoculated To the fermentation medium (mass percentage) containing 1.2% tryptone, 2.4% yeast extract, 0.5% glycerol, 0.231% KH 2 PO 4 and 1.64% K 2 HPO 4 ·3H 2 O; fermentation culture for 2h Afterwards, the final concentration of 1 mM IPTG was added to induce expression, the temperature for inducing expression was 30°C, and the final concentration of 10 g/L β-indolylalanine was added. Fermentation conversion, using high performance liquid chromatography to detect the production of 5-hydroxyβ-indolylalanine.
结果如表所示,其中:工程菌KC021、KC022、KC023、KC024产5-羟基β-吲哚基丙氨酸的初始速度高于其他菌株,而工程菌KC023、KC024持续产5-羟基β-吲哚基丙氨酸优于KC021、KC022,且确定编号F4的DHFR与Q3组合再生BH4能力最好,可以保证产物持续高效生产。The results are shown in the table, among which: the initial rate of 5-hydroxyβ-indolylalanine production by engineering bacteria KC021, KC022, KC023 and KC024 was higher than that of other strains, while the engineering bacteria KC023 and KC024 continued to produce 5-hydroxyβ- Indolylalanine is better than KC021 and KC022, and it is determined that the combination of DHFR and Q3 numbered F4 has the best ability to regenerate BH4, which can ensure the continuous and efficient production of the product.
表4:不同DHFR菌株产量比较Table 4: Production comparison of different DHFR strains
本发明通过对β-吲哚基丙氨酸羟化基因TPH2;BH4合成基因FOLE、PTPS、SPR;BH4再生基因PCD、QDPR、DHFR的配合、构建获得了以β-吲哚基丙氨酸为底物生物法合成5-羟基β-吲哚基丙氨酸的工程菌,用于以β-吲哚基丙氨酸为底物生物法合成5-羟基β-吲哚基丙氨酸。In the present invention, the β-indolyl alanine is obtained through the coordination and construction of the β-indolyl alanine hydroxylation gene TPH2; the BH4 synthesis genes FOLE, PTPS, SPR; the BH4 regeneration gene PCD, QDPR and DHFR. The engineering bacterium for synthesizing 5-hydroxyβ-indolylalanine by substrate biological method is used for synthesizing 5-hydroxyβ-indolylalanine by biological method using β-indolylalanine as substrate.
进一步的通过BH4再生途径关键酶基因QDPR的筛选和新的BH4再生途径关键酶基因DHFR的组合筛选,构建的双BH4再生系统显著提升了生物合成5-羟基β-吲哚基丙氨酸的产量。为高效大规模工业化生产5-羟基β-吲哚基丙氨酸提供了条件。Further through the screening of the key enzyme gene QDPR of the BH4 regeneration pathway and the combined screening of the new key enzyme gene DHFR of the BH4 regeneration pathway, the constructed dual BH4 regeneration system significantly improved the biosynthesis of 5-hydroxyβ-indolylalanine. . It provides conditions for efficient large-scale industrial production of 5-hydroxyβ-indolylalanine.
序列表sequence listing
<110> 河北维达康生物科技有限公司<110> Hebei Weida Kang Biotechnology Co., Ltd.
<120> 以β-吲哚基丙氨酸为底物合成5-羟基β-吲哚基丙氨酸的方法及其应用<120> Method for synthesizing 5-hydroxyβ-indolylalanine with β-indolylalanine as substrate and its application
<130> 1<130> 1
<160> 47<160> 47
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 1038<211> 1038
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 1<400> 1
atgaaactgg aggatgttcc gtggttcccg cgtaagatta gcgagctgga taagtgcagc 60atgaaactgg aggatgttcc gtggttcccg cgtaagatta gcgagctgga taagtgcagc 60
caccgtgttc tgatgtatgg tagcgaactg gacgcggatc acccgggttt taaggacaac 120caccgtgttc tgatgtatgg tagcgaactg gacgcggatc acccgggttt taaggacaac 120
gtgtaccgtc agcgtcgtaa atatttcgtg gatgttgcga tgggttacaa gtatggccaa 180gtgtaccgtc agcgtcgtaa atatttcgtg gatgttgcga tgggttacaa gtatggccaa 180
ccgatcccgc gtgttgaata caccgaggaa gaaaccaaga cctggggtgt ggtttttcgt 240ccgatcccgc gtgttgaata caccgaggaa gaaaccaaga cctggggtgt ggtttttcgt 240
gaactgagca aactgtaccc gacccacgcg tgccgtgagt atctgaagat tttctgcctg 300gaactgagca aactgtaccc gacccacgcg tgccgtgagt atctgaagat tttctgcctg 300
ctgaccaaat actgcggcta tcgtgaagac aacgtgccgc agctggagga tgttagcatg 360ctgaccaaat actgcggcta tcgtgaagac aacgtgccgc agctggagga tgttagcatg 360
tttctgaagg agcgtagcgg tttcaccgtg cgtccggttg cgggttacct gagcccgcgt 420tttctgaagg agcgtagcgg tttcaccgtg cgtccggttg cgggttacct gagcccgcgt 420
gactttctgg cgggtctggc gtaccgtgtt ttccactgca cccaatatat ccgtcacggc 480gactttctgg cgggtctggc gtaccgtgtt ttccactgca cccaatatat ccgtcacggc 480
agcgacccgc tgtatacccc ggaaccggat acctgccacg agctgctggg tcacgttccg 540agcgacccgc tgtatacccc ggaaccggat acctgccacg agctgctggg tcacgttccg 540
ctgctggcgg atccgaaatt cgcgcagttt agccaagaaa ttggtctggc gagcctgggt 600ctgctggcgg atccgaaatt cgcgcagttt agccaagaaa ttggtctggc gagcctgggt 600
gcgagcgatg aggatgtgca gaagctggcg acctgctact tctttaccat cgaattcggt 660gcgagcgatg aggatgtgca gaagctggcg acctgctact tctttaccat cgaattcggt 660
ctgtgcaaac aggaaggtca actgcgtgcg tatggtgcgg gcctgctgag cagcattggc 720ctgtgcaaac aggaaggtca actgcgtgcg tatggtgcgg gcctgctgag cagcattggc 720
gaactgaagc acgcgctgag cgacaaggcg tgcgtgaaag cgtttgatcc gaaaaccacc 780gaactgaagc acgcgctgag cgacaaggcg tgcgtgaaag cgtttgatcc gaaaaccacc 780
tgcctgcagg aatgcctgat caccaccttc caagaagcgt actttgttag cgagagcttc 840tgcctgcagg aatgcctgat caccaccttc caagaagcgt actttgttag cgagagcttc 840
gaagaggcga aggagaaaat gcgtgacttc gcgaagagca tcacccgtcc gttcagcgtg 900gaagaggcga aggagaaaat gcgtgacttc gcgaagagca tcacccgtcc gttcagcgtg 900
tactttaacc cgtataccca gagcatcgaa attctgaaag acacccgtag cattgagaac 960tactttaacc cgtataccca gagcatcgaa attctgaaag acacccgtag cattgagaac 960
gtggttcaag atctgcgtag cgacctgaac accgtttgcg atgcgctgaa taaaatgaac 1020gtggttcaag atctgcgtag cgacctgaac accgtttgcg atgcgctgaa taaaatgaac 1020
caatatctgg gtatctaa 1038caatatctgg gtatctaa 1038
<210> 2<210> 2
<211> 669<211> 669
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 2<400> 2
atgccatcac tcagtaaaga agcggccctg gttcatgaag cgttagttgc gcgaggactg 60atgccatcac tcagtaaaga agcggccctg gttcatgaag cgttagttgc gcgaggactg 60
gaaacaccgc tgcgcccgcc cgtgcatgaa atggataacg aaacgcgcaa aagccttatt 120gaaacaccgc tgcgcccgcc cgtgcatgaa atggataacg aaacgcgcaa aagccttatt 120
gctggtcata tgaccgaaat catgcagctg ctgaatctcg acctggctga tgacagtttg 180gctggtcata tgaccgaaat catgcagctg ctgaatctcg acctggctga tgacagtttg 180
atggaaacgc cgcatcgcat cgctaaaatg tatgtcgatg aaattttctc cggtctggat 240atggaaacgc cgcatcgcat cgctaaaatg tatgtcgatg aaattttctc cggtctggat 240
tacgccaatt tcccgaaaat caccctcatt gaaaacaaaa tgaaggtcga tgaaatggtc 300tacgccaatt tcccgaaaat caccctcatt gaaaacaaaa tgaaggtcga tgaaatggtc 300
accgtgcgcg atatcactct gaccagcacc tgtgaacacc attttgttac catcgatggc 360accgtgcgcg atatcactct gaccagcacc tgtgaacacc attttgttac catcgatggc 360
aaagcgacgg tggcctatat cccgaaagat tcggtgatcg gtctgtcaaa aattaaccgc 420aaagcgacgg tggcctatat cccgaaagat tcggtgatcg gtctgtcaaa aattaaccgc 420
attgtgcagt tctttgccca gcgtccgcag gtgcaggaac gtctgacgca gcaaattctt 480attgtgcagt tctttgccca gcgtccgcag gtgcaggaac gtctgacgca gcaaattctt 480
attgcgctac aaacgctgct gggcaccaat aacgtggctg tctcgatcga cgcggtgcat 540attgcgctac aaacgctgct gggcaccaat aacgtggctg tctcgatcga cgcggtgcat 540
tactgcgtga aggcgcgtgg catccgcgat gcaaccagtg ccacgacaac gacctctctt 600tactgcgtga aggcgcgtgg catccgcgat gcaaccagtg ccacgacaac gacctctctt 600
ggtggattgt tcaaatccag tcagaatacg cgccacaaat ttctgcgcgc tgtgcgtcat 660ggtggattgt tcaaatccag tcagaatacg cgccacaaat ttctgcgcgc tgtgcgtcat 660
cacaactga 669cacaactga 669
<210> 3<210> 3
<211> 435<211> 435
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 3<400> 3
atgaatgcgg cggtgggcct gcgtcgtcgt gcgcgtctga gccgtctggt tagctttagc 60atgaatgcgg cggtgggcct gcgtcgtcgt gcgcgtctga gccgtctggt tagctttagc 60
gcgagccatc gtctgcacag cccgagcctg agcgcggagg aaaacctgaa ggttttcggt 120gcgagccatc gtctgcacag cccgagcctg agcgcggagg aaaacctgaa ggttttcggt 120
aaatgcaaca acccgaacgg tcacggccac aactacaagg tggttgtgac catccacggc 180aaatgcaaca acccgaacgg tcacggccac aactacaagg tggttgtgac catccacggc 180
gagattgacc cggttaccgg catggtgatg aacctgaccg atctgaaaga atatatggag 240gagattgacc cggttaccgg catggtgatg aacctgaccg atctgaaaga atatatggag 240
gaagcgatca tgaagccgct ggaccacaaa aacctggacc tggatgttcc gtactttgcg 300gaagcgatca tgaagccgct ggaccacaaa aacctggacc tggatgttcc gtactttgcg 300
gatgttgtga gcaccaccga gaacgttgcg gtgtatattt gggaaaacct gcagcgtctg 360gatgttgtga gcaccaccga gaacgttgcg gtgtatattt gggaaaacct gcagcgtctg 360
ctgccggtgg gcgcgctgta taaggtgaaa gtgtatgaaa ccgacaacaa catcgtggtg 420ctgccggtgg gcgcgctgta taaggtgaaa gtgtatgaaa ccgacaacaa catcgtggtg 420
tataagggtg aataa 435tataagggtg aataa 435
<210> 4<210> 4
<211> 810<211> 810
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 4<400> 4
atgaccatga ttaccccgag cctgggccgt ggccgtctgg gttgcgcggt gtgcgttctg 60atgaccatga ttaccccgag cctgggccgt ggccgtctgg gttgcgcggt gtgcgttctg 60
accggtgcga gccgtggttt tggccgtgcg ctggcgccgc agctggcggg tctgctgagc 120accggtgcga gccgtggttt tggccgtgcg ctggcgccgc agctggcggg tctgctgagc 120
ccgggcagcg tgctgctgct gagcgcgcgt agcgactcca tgctgcgtca gctgaaagag 180ccgggcagcg tgctgctgct gagcgcgcgt agcgactcca tgctgcgtca gctgaaagag 180
gagctgtgca cccagcaacc gggtctgcaa gtggttctgg cggcggcgga tctgggtacc 240gagctgtgca cccagcaacc gggtctgcaa gtggttctgg cggcggcgga tctgggtacc 240
gagagcggcg tgcagcaact gctgagcgcg gttcgtgagc tgccgcgtcc ggaacgtctg 300gagagcggcg tgcagcaact gctgagcgcg gttcgtgagc tgccgcgtcc ggaacgtctg 300
caacgtctgc tgctgatcaa caacgcgggt accctgggtg atgtgagcaa gggcttcctg 360caacgtctgc tgctgatcaa caacgcgggt accctgggtg atgtgagcaa gggcttcctg 360
aacattaacg atctggcgga agttaacaac tactgggcgc tgaacctgac cagcatgttg 420aacattaacg atctggcgga agttaacaac tactgggcgc tgaacctgac cagcatgttg 420
tgcctgacca ccggtaccct gaacgcgttc agcaacagcc cgggcctgag caaaaccgtg 480tgcctgacca ccggtaccct gaacgcgttc agcaacagcc cgggcctgag caaaaccgtg 480
gttaacatca gcagcctgtg cgcgctgcag ccgtttaagg gttggggcct gtactgcgcg 540gttaacatca gcagcctgtg cgcgctgcag ccgtttaagg gttggggcct gtactgcgcg 540
ggtaaagcgg cgcgtgacat gctgtatcaa gtgctggcgg ttgaggaacc gagcgtgcgt 600ggtaaagcgg cgcgtgacat gctgtatcaa gtgctggcgg ttgaggaacc gagcgtgcgt 600
gttctgagct atgcgccggg tccgctggac accaacatgc agcaactggc gcgtgaaacc 660gttctgagct atgcgccggg tccgctggac accaacatgc agcaactggc gcgtgaaacc 660
agcatggacc cggaactgcg tagccgtctg cagaagctga acagcgaggg tgaactggtt 720agcatggacc cggaactgcg tagccgtctg cagaagctga acagcgaggg tgaactggtt 720
gattgcggca ccagcgcgca aaaactgctg agcctgctgc aacgcgatac ctttcagagc 780gattgcggca ccagcgcgca aaaactgctg agcctgctgc aacgcgatac ctttcagagc 780
ggtgcgcacg tggactttta cgacatctaa 810ggtgcgcacg tggactttta cgacatctaa 810
<210> 5<210> 5
<211> 315<211> 315
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 5<400> 5
atggcaggca aagcgcaccg tctgtctgcg gaagaacgcg atcagctgct gccgaacctg 60atggcaggca aagcgcaccg tctgtctgcg gaagaacgcg atcagctgct gccgaacctg 60
cgtgcagtgg gctggaacga actggaaggt cgcgatgcta tcttcaaaca attccacttt 120cgtgcagtgg gctggaacga actggaaggt cgcgatgcta tcttcaaaca attccacttt 120
aaggatttca accgtgcgtt cggcttcatg actcgtgttg cactgcaagc agaaaaactg 180aaggatttca accgtgcgtt cggcttcatg actcgtgttg cactgcaagc agaaaaactg 180
gatcatcacc cggaatggtt caacgtttac aacaaagtac atattaccct gagcacccac 240gatcatcacc cggaatggtt caacgtttac aacaaagtac atattaccct gagcacccac 240
gaatgcgcag gtctgtctga acgcgatatc aacctggcgt ccttcatcga acaggttgcg 300gaatgcgcag gtctgtctga acgcgatatc aacctggcgt ccttcatcga acaggttgcg 300
gtttccatga cctga 315gtttccatga cctga 315
<210> 6<210> 6
<211> 735<211> 735
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 6<400> 6
atggcagcag cagcagcagc aggtgaagct cgtcgtgttc tggtttacgg tggtcgtggt 60atggcagcag cagcagcagc aggtgaagct cgtcgtgttc tggtttacgg tggtcgtggt 60
gcactgggca gccgctgcgt tcaggcattc cgtgcgcgta actggtgggt ggcttccgtg 120gcactgggca gccgctgcgt tcaggcattc cgtgcgcgta actggtgggt ggcttccgtg 120
gacgttgtcg agaacgaaga ggcgtccgca tccattatcg ttaaaatgac cgattccttc 180gacgttgtcg agaacgaaga ggcgtccgca tccattatcg ttaaaatgac cgattccttc 180
accgaacagg cagatcaggt tactgccgaa gttggcaaac tgctgggtga agaaaaagta 240accgaacagg cagatcaggt tactgccgaa gttggcaaac tgctgggtga agaaaaagta 240
gatgcgatcc tgtgtgttgc tggtggctgg gctggtggta acgccaaaag caaatccctg 300gatgcgatcc tgtgtgttgc tggtggctgg gctggtggta acgccaaaag caaatccctg 300
ttcaaaaact gtgatctgat gtggaaacag tctatctgga cctctactat ttctagccat 360ttcaaaaact gtgatctgat gtggaaacag tctatctgga cctctactat ttctagccat 360
ctggcgacta agcacctgaa agaaggtggt ctgctgaccc tggccggtgc caaagcagct 420ctggcgacta agcacctgaa agaaggtggt ctgctgaccc tggccggtgc caaagcagct 420
ctggatggta cgccgggtat gattggttac ggcatggcta aaggcgctgt acatcagctg 480ctggatggta cgccgggtat gattggttac ggcatggcta aaggcgctgt acatcagctg 480
tgccagtccc tggcgggtaa aaactctggc atgccaccgg gtgctgcggc gatcgcggtg 540tgccagtccc tggcgggtaa aaactctggc atgccaccgg gtgctgcggc gatcgcggtg 540
ctgccggtga ccctggatac cccgatgaat cgtaaaagca tgccggaagc ggatttctct 600ctgccggtga ccctggatac cccgatgaat cgtaaaagca tgccggaagc ggatttctct 600
tcttggacgc cgctggaatt tctggtagaa acgttccacg attggattac cggtaaaaac 660tcttggacgc cgctggaatt tctggtagaa acgttccacg attggattac cggtaaaaac 660
cgtccgtctt ccggtagcct gatccaggta gtgacgaccg aaggtcgcac ggaactgacg 720cgtccgtctt ccggtagcct gatccaggta gtgacgaccg aaggtcgcac ggaactgacg 720
ccagcctatt tttga 735ccagcctatt tttga 735
<210> 7<210> 7
<211> 726<211> 726
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 7<400> 7
atggcggcga gcggcgaagc gcgccgcgtg ctggtgtatg gcggccgcgg cgcgctgggc 60atggcggcga gcggcgaagc gcgccgcgtg ctggtgtatg gcggccgcgg cgcgctgggc 60
agccgctgcg tgcaggcgtt tcgcgcgcgc aactggtggg tggcgagcat tgatgtggtg 120agccgctgcg tgcaggcgtt tcgcgcgcgc aactggtggg tggcgagcat tgatgtggtg 120
gaaaacgaag aagcgagcgc gagcgtgatt gtgaaaatga ccgatagctt taccgaacag 180gaaaacgaag aagcgagcgc gagcgtgatt gtgaaaatga ccgatagctt taccgaacag 180
gcggatcagg tgaccgcgga agtgggcaaa ctgctgggcg atcagaaagt ggatgcgatt 240gcggatcagg tgaccgcgga agtgggcaaa ctgctgggcg atcagaaagt ggatgcgatt 240
ctgtgcgtgg cgggcggctg ggcgggcggc aacgcgaaaa gcaaaagcct gtttaaaaac 300ctgtgcgtgg cgggcggctg ggcgggcggc aacgcgaaaa gcaaaagcct gtttaaaaac 300
tgcgatctga tgtggaaaca gagcatttgg accagcacca ttagcagcca tctggcgacc 360tgcgatctga tgtggaaaca gagcatttgg accagcacca ttagcagcca tctggcgacc 360
aaacatctga aagaaggcgg cctgctgacc ctggcgggcg cgaaagcggc gctggatggc 420aaacatctga aagaaggcgg cctgctgacc ctggcgggcg cgaaagcggc gctggatggc 420
accccgggca tgattggcta tggcatggcg aaaggcgcgg tgcatcagct gtgccagagc 480accccgggca tgattggcta tggcatggcg aaaggcgcgg tgcatcagct gtgccagagc 480
ctggcgggca aaaacagcgg catgccgagc ggcgcggcgg cgattgcggt gctgccggtg 540ctggcgggca aaaacagcgg catgccgagc ggcgcggcgg cgattgcggt gctgccggtg 540
accctggata ccccgatgaa ccgcaaaagc atgccggaag cggattttag cagctggacc 600accctggata ccccgatgaa ccgcaaaagc atgccggaag cggattttag cagctggacc 600
ccgctggaat ttctggtgga aacctttcat gattggatta ccggcaacaa acgcccgaac 660ccgctggaat ttctggtgga aacctttcat gattggatta ccggcaacaa acgcccgaac 660
agcggcagcc tgattcaggt ggtgaccacc gatggcaaaa ccgaactgac cccggcgtat 720agcggcagcc tgattcaggt ggtgaccacc gatggcaaaa ccgaactgac cccggcgtat 720
ttttaa 726ttttaa 726
<210> 8<210> 8
<211> 654<211> 654
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 8<400> 8
atggatatta tcagcgttgc gctgaaacgt catagcacca aagcctttga tgcaagcaaa 60atggatatta tcagcgttgc gctgaaacgt catagcacca aagcctttga tgcaagcaaa 60
aagctgaccc cggaacaggc agaacagatt aaaacgctgc tgcagtatag cccgagcagc 120aagctgaccc cggaacaggc agaacagatt aaaacgctgc tgcagtatag cccgagcagc 120
accaacagcc agccgtggca ttttattgtc gcaagcaccg aagaaggtaa agcacgtgtt 180accaacagcc agccgtggca ttttattgtc gcaagcaccg aagaaggtaa agcacgtgtt 180
gcaaaaagcg cagcaggtaa ttatgttttt aatgaacgta aaatgctgga tgcaagccat 240gcaaaaagcg cagcaggtaa ttatgttttt aatgaacgta aaatgctgga tgcaagccat 240
gtggttgtat tttgtgcaaa aaccgcaatg gatgatgtgt ggctgaaact ggttgttgat 300gtggttgtat tttgtgcaaa aaccgcaatg gatgatgtgt ggctgaaact ggttgttgat 300
caggaagatg cagatggccg ttttgccacc ccggaagcca aagcagcaaa tgataaaggt 360caggaagatg cagatggccg ttttgccacc ccggaagcca aagcagcaaa tgataaaggt 360
cgtaaatttt ttgcagatat gcatcgtaaa gatttacatg atgatgcaga atggatggca 420cgtaaatttt ttgcagatat gcatcgtaaa gatttacatg atgatgcaga atggatggca 420
aaacaggtat atctgaatgt tggtaacttt ctgctgggtg ttgcagcact gggtctggat 480aaacaggtat atctgaatgt tggtaacttt ctgctgggtg ttgcagcact gggtctggat 480
gccgttccga ttgaaggttt tgatgcagca attctggatg cagaatttgg tctgaaagaa 540gccgttccga ttgaaggttt tgatgcagca attctggatg cagaatttgg tctgaaagaa 540
aaaggttata cctccctggt tgttgttcct gttggtcatc attcagttga agattttaat 600aaaggttata cctccctggt tgttgttcct gttggtcatc attcagttga agattttaat 600
gcaaccctgc cgaaatctcg tctgccgcag aatattacac tgacggaagt ttaa 654gcaaccctgc cgaaatctcg tctgccgcag aatattacac tgacggaagt ttaa 654
<210> 9<210> 9
<211> 627<211> 627
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 9<400> 9
atggcgaccg cggcgggcga agcgcgccgc gtgctggtgt atggcggccg cggcgcgctg 60atggcgaccg cggcgggcga agcgcgccgc gtgctggtgt atggcggccg cggcgcgctg 60
ggcagccagt gcgtgcaggc gtttcgcgcg cgcaactggt gggtggcgag cattgatctg 120ggcagccagt gcgtgcaggc gtttcgcgcg cgcaactggt gggtggcgag cattgatctg 120
gtggaaaacg aagaagcgag cgcgaacgtg ctggtgaaaa tgaccgatag ctttaccgaa 180gtggaaaacg aagaagcgag cgcgaacgtg ctggtgaaaa tgaccgatag ctttaccgaa 180
caggcggatc aggtgaccgc ggatattggc cagctgctgg gcgcggaaaa agtggatgcg 240caggcggatc aggtgaccgc ggatattggc cagctgctgg gcgcggaaaa agtggatgcg 240
attctgtgcg tggcgggcgg ctgggcgggc ggcagcgcga aaagcaaaag cctgtttaaa 300attctgtgcg tggcgggcgg ctgggcgggc ggcagcgcga aaagcaaaag cctgtttaaa 300
aactgcgatc tgatgtggaa acagagcatg tggaccagca ccattagcag ccatctggcg 360aactgcgatc tgatgtggaa acagagcatg tggaccagca ccattagcag ccatctggcg 360
accaaacatc tgaaagaagg cggcctgctg accctgaccg gcgcgaaagc ggcgctggat 420accaaacatc tgaaagaagg cggcctgctg accctgaccg gcgcgaaagc ggcgctggat 420
ggcaccccgg gcatgattgg ctatggcatg gcgaaaggcg cggtgcatca gctgtgccgc 480ggcaccccgg gcatgattgg ctatggcatg gcgaaaggcg cggtgcatca gctgtgccgc 480
agcctggcgg gcaaagatag cggcatgccg gcgggcagcg cggcgattgc ggtgctgccg 540agcctggcgg gcaaagatag cggcatgccg gcgggcagcg cggcgattgc ggtgctgccg 540
gtgaccctgg ataccccgat gaaccgcaaa agcatgccga aagcggattt tagcagctgg 600gtgaccctgg ataccccgat gaaccgcaaa agcatgccga aagcggattt tagcagctgg 600
accccgctgg aatttctggt ggaataa 627accccgctgg aatttctggt ggaataa 627
<210> 10<210> 10
<211> 708<211> 708
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 10<400> 10
atgagcgcgg gccgcgtggt gatttatggc ggcaaaggcg cgctgggcag cgcgtgcgtg 60atgagcgcgg gccgcgtggt gatttatggc ggcaaaggcg cgctgggcag cgcgtgcgtg 60
gatcatttta aagcgaacaa ctattgggtg ggcagcattg atctgaccga aaacgaaaaa 120gatcatttta aagcgaacaa ctattgggtg ggcagcattg atctgaccga aaacgaaaaa 120
gcggatgtga gcattgtggt gccgcgcgat gcgagctggg tggaacagga agaaaccgtg 180gcggatgtga gcattgtggt gccgcgcgat gcgagctggg tggaacagga agaaaccgtg 180
gtgagcaaag tgggcgaaag cctggcgggc gaaaaactgg atgcggtgat ttgcgtggcg 240gtgagcaaag tgggcgaaag cctggcgggc gaaaaactgg atgcggtgat ttgcgtggcg 240
ggcggctggg cgggcggcaa cgcgaaaaaa gatctggcga aaaacgcgga tctgatgtgg 300ggcggctggg cgggcggcaa cgcgaaaaaa gatctggcga aaaacgcgga tctgatgtgg 300
aaacagagcg tgctgaccag cgcgattagc gcggcggtgg cggcgcagca tctgaaagcg 360aaacagagcg tgctgaccag cgcgattagc gcggcggtgg cggcgcagca tctgaaagcg 360
ggcggcctgc tggcgctgac cggcgcgaaa ccggcgctgg aaggcacccc gggcatgatt 420ggcggcctgc tggcgctgac cggcgcgaaa ccggcgctgg aaggcacccc gggcatgatt 420
ggctatggca tggcgaaagc ggcggtgcat cagctgaccc gcagcctggg cgcggaaaaa 480ggctatggca tggcgaaagc ggcggtgcat cagctgaccc gcagcctggg cgcggaaaaa 480
agcggcctgc cggcgggcag cctggcggtg agcattctgc cggtgaccct ggataccccg 540agcggcctgc cggcgggcag cctggcggtg agcattctgc cggtgaccct ggataccccg 540
atgaaccgca aatggatgcc ggatgcggat tttggcacct ggaccccgct gaccgaagtg 600atgaaccgca aatggatgcc ggatgcggat tttggcacct ggaccccgct gaccgaagtg 600
gcgggcctgt ttctgaaatg gacccaggat caggaacgcc cgaaaaccgg cagcctgctg 660gcgggcctgt ttctgaaatg gacccaggat caggaacgcc cgaaaaccgg cagcctgctg 660
cagctgatta ccaccaacgg cattacccag ctgattgcgg cggaataa 708cagctgatta ccaccaacgg cattacccag ctgattgcgg cggaataa 708
<210> 11<210> 11
<211> 564<211> 564
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 11<400> 11
atggtgggca gcctgaactg cattgtggcg gtgagccaga acatgggcat tggcaaaaac 60atggtgggca gcctgaactg cattgtggcg gtgagccaga acatgggcat tggcaaaaac 60
ggcgatctgc cgtggccgcc gctgcgcaac gaatttcgct attttcagcg catgaccacc 120ggcgatctgc cgtggccgcc gctgcgcaac gaatttcgct attttcagcg catgaccacc 120
accagcagcg tggaaggcaa acagaacctg gtgattatgg gcaaaaaaac ctggtttagc 180accagcagcg tggaaggcaa acagaacctg gtgattatgg gcaaaaaaac ctggtttagc 180
attccggaaa aaaaccgccc gctgaaaggc cgcattaacc tggtgctgag ccgcgaactg 240attccggaaa aaaaccgccc gctgaaaggc cgcattaacc tggtgctgag ccgcgaactg 240
aaagaaccgc cgcagggcgc gcattttctg agccgcagcc tggatgatgc gctgaaactg 300aaagaaccgc cgcagggcgc gcattttctg agccgcagcc tggatgatgc gctgaaactg 300
accgaacagc cggaactggc gaacaaagtg gatatggtgt ggattgtggg cggcagcagc 360accgaacagc cggaactggc gaacaaagtg gatatggtgt ggattgtggg cggcagcagc 360
gtgtataaag aagcgatgaa ccatccgggc catctgaaac tgtttgtgac ccgcattatg 420gtgtataaag aagcgatgaa ccatccgggc catctgaaac tgtttgtgac ccgcattatg 420
caggattttg aaagcgatac cttttttccg gaaattgatc tggaaaaata taaactgctg 480caggattttg aaagcgatac ctttttttccg gaaattgatc tggaaaaata taaactgctg 480
ccggaatatc cgggcgtgct gagcgatgtg caggaagaaa aaggcattaa atataaattt 540ccggaatatc cgggcgtgct gagcgatgtg caggaagaaa aaggcattaa atataaattt 540
gaagtgtatg aaaaaaacga ttaa 564gaagtgtatg aaaaaaacga ttaa 564
<210> 12<210> 12
<211> 564<211> 564
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 12<400> 12
atggtgcgcc cgctgaactg cattgtggcg gtgagccaga acatgggcat tggcaaaaac 60atggtgcgcc cgctgaactg cattgtggcg gtgagccaga acatgggcat tggcaaaaac 60
ggcgatctgc cgtggccgct gctgcgcaac gaatttaaat attttcagcg catgaccacc 120ggcgatctgc cgtggccgct gctgcgcaac gaatttaaat attttcagcg catgaccacc 120
accagcagcg tggaaggcaa acagaacctg gtgattatgg gccgcaaaac ctggtttagc 180accagcagcg tggaaggcaa acagaacctg gtgattatgg gccgcaaaac ctggtttagc 180
attccggaaa aaaaccgccc gctgaaagat cgcattaaca ttgtgctgag ccgcgaactg 240attccggaaa aaaaccgccc gctgaaagat cgcattaaca ttgtgctgag ccgcgaactg 240
aaagaaccgc cgcagggcgc gcattttctg gcgaaaagcc tggatgatgc gctgaaactg 300aaagaaccgc cgcagggcgc gcattttctg gcgaaaagcc tggatgatgc gctgaaactg 300
attgaacagc cggaactggc gagcaaagtg gatatggtgt gggtggtggg cggcagcagc 360attgaacagc cggaactggc gagcaaagtg gatatggtgt gggtggtggg cggcagcagc 360
gtgtatcagg aagcgatgaa ccagccgggc catctgcgcc tgtttgtgac ccgcattatg 420gtgtatcagg aagcgatgaa ccagccgggc catctgcgcc tgtttgtgac ccgcattatg 420
caggaatttg aaagcgatac cttttttccg gaaattgatc tggaaaaata taaactgctg 480caggaatttg aaagcgatac ctttttttccg gaaattgatc tggaaaaata taaactgctg 480
ccggaatatc cgggcgtgct gagcgaaatt caggaagaaa aaggcattaa atataaattt 540ccggaatatc cgggcgtgct gagcgaaatt caggaagaaa aaggcattaa atataaattt 540
gaagtgtatg aaaaaaaaga ttaa 564gaagtgtatg aaaaaaaaga ttaa 564
<210> 13<210> 13
<211> 480<211> 480
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 13<400> 13
atgatcagtc tgattgcggc gttagcggta gatcgcgtta tcggcatgga aaacgccatg 60atgatcagtc tgattgcggc gttagcggta gatcgcgtta tcggcatgga aaacgccatg 60
ccgtggaacc tgcctgccga tctcgcctgg tttaaacgca acaccttaaa taaacccgtg 120ccgtggaacc tgcctgccga tctcgcctgg tttaaacgca acaccttaaa taaacccgtg 120
attatgggcc gccatacctg ggaatcaatc ggtcgtccgt tgccaggacg caaaaatatt 180attatgggcc gccatacctg ggaatcaatc ggtcgtccgt tgccaggacg caaaaatatt 180
atcctcagca gtcaaccggg tacggacgat cgcgtaacgt gggtgaagtc ggtggatgaa 240atcctcagca gtcaaccggg tacggacgat cgcgtaacgt gggtgaagtc ggtggatgaa 240
gccatcgcgg cgtgtggtga cgtaccagaa atcatggtga ttggcggcgg tcgcgtttat 300gccatcgcgg cgtgtggtga cgtaccagaa atcatggtga ttggcggcgg tcgcgtttat 300
gaacagttct tgccaaaagc gcaaaaactg tatctgacgc atatcgacgc agaagtggaa 360gaacagttct tgccaaaagc gcaaaaactg tatctgacgc atatcgacgc agaagtggaa 360
ggcgacaccc atttcccgga ttacgagccg gatgactggg aatcggtatt cagcgaattc 420ggcgacaccc atttcccgga ttacgagccg gatgactggg aatcggtatt cagcgaattc 420
cacgatgctg atgcgcagaa ctctcacagc tattgctttg agattctgga gcggcggtaa 480cacgatgctg atgcgcagaa ctctcacagc tattgctttg agattctgga gcggcggtaa 480
<210> 14<210> 14
<211> 573<211> 573
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 14<400> 14
atggtgcgca gcctgaacag cattgtggcg gtgtgccaga acatgggcat tggcaaagat 60atggtgcgca gcctgaacag cattgtggcg gtgtgccaga acatgggcat tggcaaagat 60
ggcaacctgc cgtggccgcc gctgcgcaac gaatataaat attttcagcg catgaccagc 120ggcaacctgc cgtggccgcc gctgcgcaac gaatataaat attttcagcg catgaccagc 120
accagccatg tggaaggcaa acagaacgcg gtgattatgg gcaaaaaaac ctggtttagc 180accagccatg tggaaggcaa acagaacgcg gtgattatgg gcaaaaaaac ctggtttagc 180
attccggaaa aaaaccgccc gctgaaagat cgcattaaca ttgtgctgag ccgcgaactg 240attccggaaa aaaaccgccc gctgaaagat cgcattaaca ttgtgctgag ccgcgaactg 240
aaagaagcgc cgaaaggcgc gcattatctg agcaaaagcc tggatgatgc gctggcgctg 300aaagaagcgc cgaaaggcgc gcattatctg agcaaaagcc tggatgatgc gctggcgctg 300
ctggatagcc cggaactgaa aagcaaagtg gatatggtgt ggattgtggg cggcaccgcg 360ctggatagcc cggaactgaa aagcaaagtg gatatggtgt ggattgtggg cggcaccgcg 360
gtgtataaag cggcgatgga aaaaccgatt aaccatcgcc tgtttgtgac ccgcattctg 420gtgtataaag cggcgatgga aaaaccgatt aaccatcgcc tgtttgtgac ccgcattctg 420
catgaatttg aaagcgatac cttttttccg gaaattgatt ataaagattt taaactgctg 480catgaatttg aaagcgatac cttttttccg gaaattgatt ataaagattt taaactgctg 480
accgaatatc cgggcgtgcc ggcggatatt caggaagaaa acggcattca gtataaattt 540accgaatatc cgggcgtgcc ggcggatatt caggaagaaa acggcattca gtataaattt 540
gaagtgtatc agaaaagcgt gctggcgcag taa 573gaagtgtatc agaaaagcgt gctggcgcag taa 573
<210> 15<210> 15
<211> 489<211> 489
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 15<400> 15
atgaccgtga gcattattgt ggcgattgat gaaaacaaag cgattggcaa aaacaaccag 60atgaccgtga gcattattgt ggcgattgat gaaaacaaag cgattggcaa aaacaaccag 60
ctgctgtggc atctgccgaa cgatctgaaa ttttttaaaa aaaccaccag cggccatacc 120ctgctgtggc atctgccgaa cgatctgaaa ttttttaaaa aaaccaccag cggccatacc 120
attattatgg gccgcaaaac ctttgatagc attggcaaag cgctgccgaa ccgccgcaac 180attattatgg gccgcaaaac ctttgatagc attggcaaag cgctgccgaa ccgccgcaac 180
attgtgatta gccgcaacaa aaacctgaaa attgaaggcg cggaagtgta tagcagcatt 240attgtgatta gccgcaacaa aaacctgaaa attgaaggcg cggaagtgta tagcagcatt 240
gatcaggcgc tgaacacctg caaaaacgaa caggaagtgt ttattattgg cggcgcggaa 300gatcaggcgc tgaacacctg caaaaacgaa caggaagtgt ttattattgg cggcgcggaa 300
atttataaac aggcggaacc gattaccgat aaattttata ttaccaaagt gcatcatcag 360atttataaac aggcggaacc gattaccgat aaattttata ttaccaaagt gcatcatcag 360
tttgatgcgg ataccttttt taacaacctg aacctgaacg aactgaacga aatttggcgc 420tttgatgcgg atacctttttt taacaacctg aacctgaacg aactgaacga aatttggcgc 420
gaagaaaacc atgcggatga acgccatctg tatgattata cctttctgat tctggaaaaa 480gaagaaaacc atgcggatga acgccatctg tatgattata cctttctgat tctggaaaaa 480
cgcaaataa 489cgcaaataa 489
<210> 16<210> 16
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 16<400> 16
caaagcccga aaggaagctg agttggctgc tgccaccgct gagc 44caaagcccga aaggaagctg agttggctgc tgccaccgct gagc 44
<210> 17<210> 17
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 17<400> 17
ctcgagaaga aggagatata catatgccat cactcagtaa agaag 45ctcgagaaga aggagatata catatgccat cactcagtaa agaag 45
<210> 18<210> 18
<211> 58<211> 58
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 18<400> 18
caggaaacag ctatgaccat gattaccaat agcatgaata tgaatgcggc ggtgggcc 58caggaaacag ctatgaccat gattaccaat agcatgaata tgaatgcggc ggtgggcc 58
<210> 19<210> 19
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 19<400> 19
ggatcccagg aaacagctat gaccatgatt accccgagcc tgggc 45ggatcccagg aaacagctat gaccatgatt accccgagcc tgggc 45
<210> 20<210> 20
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 20<400> 20
atgtatatct ccttcttctc gagttagata cccagatatt ggttc 45atgtatatct ccttcttctc gagttagata cccagatatt ggttc 45
<210> 21<210> 21
<211> 59<211> 59
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 21<400> 21
attcatgcta ttggtaatca tggtcatagc tgtttcctgt cagttgtgat gacgcacag 59attcatgcta ttggtaatca tggtcatagc tgtttcctgt cagttgtgat gacgcacag 59
<210> 22<210> 22
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 22<400> 22
agctgtttcc tgggatcctt attcaccctt atacaccacg atgttg 46agctgtttcc tgggatcctt attcaccctt atacaccacg atgttg 46
<210> 23<210> 23
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 23<400> 23
tcctttcggg ctttgttaga tgtcgtaaaa gtccacgtgc gcacc 45tcctttcggg ctttgttaga tgtcgtaaaa gtccacgtgc gcacc 45
<210> 24<210> 24
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 24<400> 24
ttaacctagg ctgctgccac cgctgagcaa taactagcat aaccc 45ttaacctagg ctgctgccac cgctgagcaa taactagcat aaccc 45
<210> 25<210> 25
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 25<400> 25
atgtatatct ccttcttaga tccgcggccg ctcaggtcat ggaaa 45atgtatatct ccttcttaga tccgcggccg ctcaggtcat ggaaa 45
<210> 26<210> 26
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 26<400> 26
gcggccgcgg atctaagaag gagatataca tatggcagca gcagc 45gcggccgcgg atctaagaag gagatataca tatggcagca gcagc 45
<210> 27<210> 27
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 27<400> 27
agcagcctag gttaatcaaa aataggctgg cgtcagttcc gtgcg 45agcagcctag gttaatcaaa aataggctgg cgtcagttcc gtgcg 45
<210> 28<210> 28
<211> 45<211> 45
<212> DNA<212> DNA
<213> 28<213> 28
<400> 28<400> 28
gaaggagata tacatatggc ggcgagcggc gaagcgcgcc gcgtg 45gaagggagata tacatatggc ggcgagcggc gaagcgcgcc gcgtg 45
<210> 29<210> 29
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 29<400> 29
agcagcctag gttaattaaa aatacgccgg ggtcagttcg gttttg 46agcagcctag gttaattaaa aatacgccgg ggtcagttcg gttttg 46
<210> 30<210> 30
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 30<400> 30
gaaggagata tacatatgga tattatcagc gttgcgctga aacg 44gaagggagata tacatatgga tattatcagc gttgcgctga aacg 44
<210> 31<210> 31
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 31<400> 31
agcagcctag gttaattaaa cttccgtcag tgtaatattc tgcgg 45agcagcctag gttaattaaa cttccgtcag tgtaatattc tgcgg 45
<210> 32<210> 32
<211> 42<211> 42
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 32<400> 32
gaaggagata tacatatggc gaccgcggcg ggcgaagcgc gc 42gaagggagata tacatatggc gaccgcggcg ggcgaagcgc gc 42
<210> 33<210> 33
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 33<400> 33
agcagcctag gttaattatt ccaccagaaa ttccagcggg gtcc 44agcagcctag gttaattatt ccaccagaaa ttccagcggg gtcc 44
<210> 34<210> 34
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 34<400> 34
gaaggagata tacatatgag cgcgggccgc gtggtgattt atggc 45gaagggagata tacatatgag cgcgggccgc gtggtgattt atggc 45
<210> 35<210> 35
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 35<400> 35
agcagcctag gttaattatt ccgccgcaat cagctgggta atgcc 45agcagcctag gttaattatt ccgccgcaat cagctgggta atgcc 45
<210> 36<210> 36
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 36<400> 36
ttaacctagg ctgctgccac cgctgagcaa taactagcat aaccc 45ttaacctagg ctgctgccac cgctgagcaa taactagcat aaccc 45
<210> 37<210> 37
<211> 47<211> 47
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 37<400> 37
atgtatatct ccttcttact agttcaaaaa taggctggcg tcagttc 47atgtatatct ccttcttact agttcaaaaa taggctggcg tcagttc 47
<210> 38<210> 38
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 38<400> 38
gaaggagata tacatatggt gggcagcctg aactgcattg tggcg 45gaagggagata tacatatggt gggcagcctg aactgcattg tggcg 45
<210> 39<210> 39
<211> 39<211> 39
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 39<400> 39
agcagcctag gttaattaat cgtttttttc atacacttc 39agcagcctag gttaattaat cgtttttttc atacacttc 39
<210> 40<210> 40
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 40<400> 40
gaaggagata tacatatggt gcgcccgctg aactgcattg tggcg 45gaagggagata tacatatggt gcgcccgctg aactgcattg tggcg 45
<210> 41<210> 41
<211> 39<211> 39
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 41<400> 41
agcagcctag gttaattaat cttttttttc atacacttc 39agcagcctag gttaattaat ctttttttttc atacacttc 39
<210> 42<210> 42
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 42<400> 42
gaaggagata tacatatgat cagtctgatt gcggcgttag cggtag 46gaagggagata tacatatgat cagtctgatt gcggcgttag cggtag 46
<210> 43<210> 43
<211> 46<211> 46
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 43<400> 43
agcagcctag gttaattacc gccgctccag aatctcaaag caatag 46agcagcctag gttaattacc gccgctccag aatctcaaag caatag 46
<210> 44<210> 44
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 44<400> 44
gaaggagata tacatatggt gcgcagcctg aacagcattg tggcg 45gaaggagata tacatatggt gcgcagcctg aacagcattg tggcg 45
<210> 45<210> 45
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 45<400> 45
agcagcctag gttaattact gcgccagcac gcttttctga tacac 45agcagcctag gttaattact gcgccagcac gcttttctga tacac 45
<210> 46<210> 46
<211> 43<211> 43
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 46<400> 46
gaaggagata tacatatgac cgtgagcatt attgtggcga ttg 43gaagggagata tacatatgac cgtgagcatt attgtggcga ttg 43
<210> 47<210> 47
<211> 44<211> 44
<212> DNA<212> DNA
<213> 人工序列()<213> artificial sequence()
<400> 47<400> 47
agcagcctag gttaattatt tgcgtttttc cagaatcaga aagg 44agcagcctag gttaattatt tgcgtttttc cagaatcaga aagg 44
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210457985.5A CN114875087B (en) | 2022-04-27 | 2022-04-27 | Method for synthesizing 5-hydroxy beta-indolylalanine by taking beta-indolylalanine as substrate and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210457985.5A CN114875087B (en) | 2022-04-27 | 2022-04-27 | Method for synthesizing 5-hydroxy beta-indolylalanine by taking beta-indolylalanine as substrate and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114875087A true CN114875087A (en) | 2022-08-09 |
CN114875087B CN114875087B (en) | 2023-08-04 |
Family
ID=82670765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210457985.5A Active CN114875087B (en) | 2022-04-27 | 2022-04-27 | Method for synthesizing 5-hydroxy beta-indolylalanine by taking beta-indolylalanine as substrate and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114875087B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112955174A (en) * | 2018-07-09 | 2021-06-11 | 旗舰先锋创新V股份有限公司 | Fusogenic liposome compositions and uses thereof |
CN114134186A (en) * | 2021-11-04 | 2022-03-04 | 河北维达康生物科技有限公司 | A method for biological synthesis of 5-hydroxyβ-indolylalanine using glucose as a substrate |
-
2022
- 2022-04-27 CN CN202210457985.5A patent/CN114875087B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112955174A (en) * | 2018-07-09 | 2021-06-11 | 旗舰先锋创新V股份有限公司 | Fusogenic liposome compositions and uses thereof |
CN114134186A (en) * | 2021-11-04 | 2022-03-04 | 河北维达康生物科技有限公司 | A method for biological synthesis of 5-hydroxyβ-indolylalanine using glucose as a substrate |
Non-Patent Citations (3)
Title |
---|
AUTHOR: ""MULTISPECIES: oxygen-insensitive NAD(P)H nitroreductase [Enterobacteriaceae]"", 《GENBANK DATABASE》 * |
CALDWELL RB等: ""dihydrofolate reductase [Gallus gallus]"", 《GENBANK DATABASE》 * |
NASTASSJA HIMMELREICH等: ""Molecular and metabolic bases of tetrahydrobiopterin (BH4) deficiencies"", 《MOLECULAR GENETICS AND METABOLISM》 * |
Also Published As
Publication number | Publication date |
---|---|
CN114875087B (en) | 2023-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114107152B (en) | Construction method and application of high-yield 3-fucosyllactose microorganism | |
CN114874964B (en) | Construction method and application of recombinant escherichia coli for high yield of 2' -fucosyllactose | |
CN109777763B (en) | A genetically engineered bacterium for L-theanine production and its construction and application | |
CN104531629B (en) | A kind of yclodextrin glycosyltransferase mutant of raising AA 2G conversion ratios | |
CN107794273B (en) | A three-gene co-expression vector for synthesizing DL-alanine and its application | |
CN107858340B (en) | D-fructose-6-phosphate aldolase A mutant with high catalytic activity, recombinant expression vector, genetically engineered bacteria and its application | |
CN106520715B (en) | A kind of short-chain dehydrogenase and its gene, recombinant expression carrier, genetic engineering bacterium and its application in the synthesis of astaxanthin chiral intermediate | |
CN111454918B (en) | A kind of alkenol reductase mutant and its application in the preparation of (R)-citronellal | |
WO2022148377A1 (en) | Host cell of heterologous synthetic flavonoid compound, and use thereof | |
CN114672525B (en) | Biosynthesis method and application of N-acetyl-5-methoxy tryptamine | |
CN118813432B (en) | Recombinant bacteria for producing D-psicose by fermentation and preparation method thereof | |
CN105349516A (en) | Threonine deaminase, coding gene, carrier, engineering bacterium and applications | |
CN114875087B (en) | Method for synthesizing 5-hydroxy beta-indolylalanine by taking beta-indolylalanine as substrate and application thereof | |
CN110904062B (en) | Strain capable of producing L-alanine at high yield | |
CN114908129B (en) | Dehydrogenase for the preparation of (R) -4-chloro-3-hydroxybutyric acid ethyl ester | |
CN117511889A (en) | Enzyme and application thereof in preparation of unnatural amino acid dipeptide | |
CN112011495B (en) | Recombinant escherichia coli for expressing thermolysin mutant and application thereof | |
CN113881737A (en) | Method for large-scale production of CMP-sialic acid by coupling fermentation of genetically engineered bacteria and yeast | |
CN115537405B (en) | Ketoreductase and application thereof in preparation of (S) -1- (3-chlorophenyl) -1, 3-propanediol | |
CN119570765B (en) | Aminopeptidase for synthesizing L-carnosine and its application | |
CN115851684B (en) | Nitrilase and application thereof in methionine synthesis | |
CN114250237B (en) | Tyrosine phenol lyase mutant, engineering bacterium and application thereof in catalytic synthesis of levodopa | |
CN118406725A (en) | Method for producing gamma-aminobutyric acid by microbial catalysis | |
CN117603930A (en) | Recombinant bacterium for expressing mutant sirohem synthase | |
CN119432953A (en) | Sucrose isomerase mutant and its application in isomaltulose production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Method and application of synthesizing 5-hydroxy b - indolylanine using b - indolylanine as substrate Granted publication date: 20230804 Pledgee: China Construction Bank Co.,Ltd. Baoding Hengxiang South Street Branch Pledgor: Hebei weidakang Biotechnology Co.,Ltd. Registration number: Y2024980045830 |