CN114868567B - A water-saving irrigation system and method based on data analysis - Google Patents
A water-saving irrigation system and method based on data analysis Download PDFInfo
- Publication number
- CN114868567B CN114868567B CN202210434772.0A CN202210434772A CN114868567B CN 114868567 B CN114868567 B CN 114868567B CN 202210434772 A CN202210434772 A CN 202210434772A CN 114868567 B CN114868567 B CN 114868567B
- Authority
- CN
- China
- Prior art keywords
- water
- pipeline
- saving
- storage tank
- condensation recovery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G9/00—Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
- A01G9/24—Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
- A01G9/247—Watering arrangements
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/06—Watering arrangements making use of perforated pipe-lines located in the soil
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/16—Control of watering
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/16—Control of watering
- A01G25/167—Control by humidity of the soil itself or of devices simulating soil or of the atmosphere; Soil humidity sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/25—Greenhouse technology, e.g. cooling systems therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/14—Measures for saving energy, e.g. in green houses
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Soil Sciences (AREA)
- Greenhouses (AREA)
- Cultivation Of Plants (AREA)
Abstract
Description
技术领域technical field
本发明涉及节能灌溉领域,具体涉及一种基于数据分析的节水型灌溉系统及方法。The invention relates to the field of energy-saving irrigation, in particular to a water-saving irrigation system and method based on data analysis.
背景技术Background technique
节水灌溉是以最低限度的用水量获得最大的产量或收益,也就是最大限度地提高单位灌溉水量的农作物产量和产值的灌溉措施。节水灌溉能够以较少的灌溉水量取得较好的生产效益和经济效益。要求采取最有效的技术措施,使有限的灌溉水量创造最佳的生产效益和经济效益。节水灌溉目前的主要应用的领域为温室。温室能够有效的对植物生产环境实施温度的调节,并通过温度的调节实现微环境的建立,有效的实现水资源的高效利用,但是目前,在温室内实施的节水灌溉仍然存在很多缺陷,具体表现为:Water-saving irrigation is an irrigation measure that maximizes crop yield and output value per unit of irrigation water to obtain the maximum yield or benefit with the minimum amount of water. Water-saving irrigation can achieve better production and economic benefits with less irrigation water. It is required to take the most effective technical measures to make the limited irrigation water create the best production and economic benefits. The current main application field of water-saving irrigation is the greenhouse. The greenhouse can effectively adjust the temperature of the plant production environment, and realize the establishment of the microenvironment through temperature adjustment, and effectively realize the efficient use of water resources. However, at present, there are still many defects in the implementation of water-saving irrigation in the greenhouse. Expressed as:
首先是蒸发消耗问题,作物和绿地植被从种子萌发以及成长的全过程都需要水参与光合作用。但植株消耗的水分99%以上是用于叶面蒸腾和株间土壤蒸发,以调节作物体温、改善小气候和向植物体内输送养分。这部分蒸发的水分不能得到很好的回收利用,在温室种植灌溉作业运行时,这种浪费更为严重,通过通风作业的方式将大部分水蒸气带走,造成了水资源的耗散;The first is the problem of evaporation consumption. Crops and green vegetation need water to participate in photosynthesis in the whole process from seed germination to growth. However, more than 99% of the water consumed by plants is used for leaf transpiration and soil evaporation between plants to regulate crop body temperature, improve microclimate and deliver nutrients to plants. This part of the evaporated water cannot be well recycled, and this waste is even more serious when the greenhouse planting and irrigation operations are in operation, and most of the water vapor is taken away through ventilation operations, resulting in the dissipation of water resources;
其次,传统的避免水资源灌溉浪费的技术主要是渠道防渗技术,渠道渗漏是农田灌溉用水损失的主要方面。采用渠道防渗技术后,一般可使渠系水利用系数提高到0.6—0.85,比原来的土渠提高50%—70%。但是传统的渠道灌溉技术使用范围不广泛,特别是在温室或者大棚种植时实施具有一定难度,同时受到地形结构的影响,导致该技术在温室种植作业中推广难度极大。Secondly, the traditional technology to avoid water waste in irrigation is mainly channel anti-seepage technology, and channel seepage is the main aspect of farmland irrigation water loss. After the anti-seepage technology of the canal is adopted, the water utilization coefficient of the canal system can generally be increased to 0.6-0.85, which is 50%-70% higher than that of the original soil canal. However, the traditional canal irrigation technology is not widely used, especially in greenhouse or greenhouse planting, it is difficult to implement, and affected by the terrain structure, it is extremely difficult to promote this technology in greenhouse planting operations.
再次,受到温差和天气因素的影响,蒸发的水蒸气很快就会耗散,在温室内实施的灌溉作业有很大一部分的水分是随着植物的蒸发在温室内顶部或者侧壁冷凝后随着通风作业的运行逐渐消散,这部分水分的处理遭到很大的浪费,在一些水资源欠缺的地方,这种消耗造成了很大的资源浪费。Again, affected by the temperature difference and weather factors, the evaporated water vapor will quickly dissipate, and a large part of the water in the irrigation operation in the greenhouse is condensed on the top or side wall of the greenhouse with the evaporation of the plants. As the operation of the ventilation operation gradually dissipates, the treatment of this part of the water is greatly wasted. In some places where water resources are scarce, this consumption has caused a great waste of resources.
从上可知,采用温室种植时,急需一套规范的节水灌溉系统,通过对温室内各种数据的有效采集和反馈,实现根据温室内各种数据的有效反馈得以最大化的节水灌溉作业,保证水资源有效的利用,最大限度的提高水资源的利用率。It can be seen from the above that when planting in a greenhouse, a standardized water-saving irrigation system is urgently needed. Through the effective collection and feedback of various data in the greenhouse, the water-saving irrigation operation can be maximized based on the effective feedback of various data in the greenhouse. , to ensure the effective use of water resources and maximize the utilization of water resources.
发明内容Contents of the invention
针对现有技术的不足,本发明提供一种结构简单,操作方便,智能化程度高,结合物联网数据采集技术,节省水资源,智能化程度高,闭环式水资源循环利用,节水效果明显,有效防止水分耗散,高效收集废水循环利用,节水灌溉方法简单易操作的基于数据分析的节水型灌溉系统及方法,用于克服现有技术中的缺陷。Aiming at the deficiencies of the prior art, the present invention provides a simple structure, convenient operation, high degree of intelligence, combined with Internet of Things data acquisition technology, saving water resources, high degree of intelligence, closed-loop recycling of water resources, and obvious water saving effect The water-saving irrigation system and method based on data analysis, which can effectively prevent water dissipation, efficiently collect waste water for recycling, and have a simple and easy-to-operate water-saving irrigation method, are used to overcome the defects in the prior art.
本发明的技术方案是这样实现的:一种基于数据分析的节水型灌溉系统,包括设置在温室主体外部两侧的第一储水箱和第二储水箱、设置在温室主体内部的近端数据采集装置、与第一储水箱相连通的第一地埋管以及与第二储水箱第二地埋管,所述的第一储水箱内设置有至少一个第一抽水泵,第一抽水泵通过管道与第一纵向输送管道相连通,第二储水箱内设置有至少一个第二抽水泵,第二抽水泵通过管道与第二纵向输送管道相连通,在第一纵向输送管道以及第二纵向输送管道的顶部设置有节水回收装置,第一纵向输送管道通过节水回收装置与第一地埋管相连通,第二纵向输送管道通过节水回收装置与第二地埋管相连通,数据采集装置通过物联网与远程控制主机相连接,远程控制主机与控制器相连接。The technical solution of the present invention is realized in the following way: a water-saving irrigation system based on data analysis, including a first water storage tank and a second water storage tank arranged on both sides outside the greenhouse main body, and a near-end data storage tank arranged inside the greenhouse main body. The collection device, the first buried pipe connected with the first water storage tank, and the second buried pipe connected with the second water storage tank, the first water storage tank is provided with at least one first water pump, and the first water pump passes through The pipeline communicates with the first longitudinal conveying pipeline, and at least one second water pump is arranged in the second water storage tank, and the second water pump communicates with the second longitudinal conveying pipeline through the pipeline, and the first longitudinal conveying pipeline and the second longitudinal conveying pipeline The top of the pipeline is equipped with a water-saving recovery device. The first longitudinal conveying pipeline is connected with the first buried pipe through the water-saving recovery device, and the second longitudinal conveying pipeline is connected with the second buried pipe through the water-saving recovery device. Data collection The device is connected with the remote control host through the Internet of Things, and the remote control host is connected with the controller.
所述的节水回收装置包括第一节水装置和第二节水装置,第一节水装置包括第一冷凝回收片,第二节水装置包括第二冷凝回收片,第一冷凝回收片为弧形空腔片状结构,第一冷凝回收片的两端分别与两根第一纵向输送管道的顶部相连通,在靠近第一储水箱一侧的第一纵向输送管道上设置有第三电磁阀,在靠近第二储水箱一侧的第一纵向输送管道上设置有第一三通电磁阀,第一三通电磁阀的其中一个出水端口通过管道与安装在第二储水箱内的第一降温装置相连通,第一三通电磁阀的另一个出水端口通过管道与第一地埋管相连通,第二冷凝回收片为弧形空腔片状结构,第二冷凝回收片的两端分别与两根第二纵向输送管道的顶部相连通,在靠近第二储水箱一侧的第二纵向输送管道上设置有第四电磁阀,在靠近第一储水箱一侧的第二纵向输送管道上设置有第二三通电磁阀,第二三通电磁阀的其中一个出水端口通过管道与安装在第一储水箱内的第二降温装置相连通,第二三通电磁阀的另一个出水端口通过管道与第二地埋管相连通,在第一冷凝回收片靠近第一储水箱一侧的端部下方安装有第一节水仓,第一节水仓的底部通过管道与第一储水箱的顶部相连通,在第二冷凝回收片靠近第二储水箱一侧的端部下方安装有第二节水仓,第二节水仓的底部通过管道与第二储水箱的顶部相连通,第三电磁阀、第四电磁阀、第一三通电磁阀以及第二三通电磁阀通过导线与控制器相连接。The water-saving recovery device includes a first water-saving device and a second water-saving device, the first water-saving device includes a first condensation recovery sheet, the second water-saving device includes a second condensation recovery sheet, and the first condensation recovery sheet is Arc-shaped cavity sheet structure, the two ends of the first condensate recovery sheet communicate with the tops of the two first longitudinal conveying pipes respectively, and a third electromagnetic Valve, a first three-way solenoid valve is provided on the first longitudinal delivery pipeline near the second water storage tank, and one of the water outlet ports of the first three-way solenoid valve is connected with the first three-way solenoid valve installed in the second water storage tank through the pipeline. The cooling device is connected, the other water outlet port of the first three-way solenoid valve is connected with the first buried pipe through a pipeline, the second condensation recovery piece is an arc-shaped cavity sheet structure, and the two ends of the second condensation recovery piece are respectively It communicates with the tops of the two second longitudinal conveying pipes, a fourth electromagnetic valve is arranged on the second longitudinal conveying pipe near the second water storage tank, and a fourth solenoid valve is arranged on the second longitudinal conveying pipe near the first water storage tank. A second three-way solenoid valve is provided, and one of the water outlet ports of the second three-way solenoid valve communicates with the second cooling device installed in the first water storage tank through a pipeline, and the other water outlet port of the second three-way solenoid valve passes through The pipeline is connected with the second underground pipe, and a first water-saving warehouse is installed under the end of the first condensation recovery sheet close to the side of the first water storage tank, and the bottom of the first water-saving warehouse is connected to the first water storage tank The top is connected, and a second water-saving warehouse is installed under the end of the second condensate recovery sheet close to the side of the second water storage tank. The bottom of the second water-saving warehouse is connected to the top of the second water storage tank through pipes, and the third The solenoid valve, the fourth solenoid valve, the first three-way solenoid valve and the second three-way solenoid valve are connected with the controller through wires.
所述的第一储水箱和第二储水箱的形状和大小均相同,第一储水箱和第二储水箱均为保温水箱,在第一储水箱的顶部设置有带有第一电磁阀的进水管,在第二储水箱的顶部设置有带有第二电磁阀的进水管,第一电磁阀和第二电磁阀分别通过导线与控制器相连接,第一储水箱和第二储水箱的底部外侧分别连接有第一排污阀和第二排污阀,温室主体的顶部设置有弧形顶棚,在弧形顶棚的外部两侧分别设置有第一外部节水槽和第二外部节水槽,在弧形顶棚的内部两侧均设置有顶棚接水槽,两个顶棚接水槽分别与第一外部节水槽和第二外部节水槽相连通,第一外部节水槽和第二外部节水槽的底部分别通过管道与第一储水箱和第二储水箱的顶部相连通。The shape and size of the first water storage tank and the second water storage tank are the same, both the first water storage tank and the second water storage tank are thermal insulation water tanks, and the top of the first water storage tank is provided with an inlet valve with a first electromagnetic valve. Water pipe, the top of the second water storage tank is provided with a water inlet pipe with a second solenoid valve, the first solenoid valve and the second solenoid valve are respectively connected to the controller through wires, the bottom of the first water storage tank and the second water storage tank The outer sides are respectively connected with the first sewage valve and the second sewage valve. The top of the main body of the greenhouse is provided with an arc-shaped ceiling. Both sides of the interior of the ceiling are provided with ceiling water receiving tanks, and the two ceiling water receiving tanks are respectively connected with the first external water saving tank and the second external water saving tank, and the bottoms of the first external water saving tank and the second external water saving tank are respectively connected to the The tops of the first water storage tank and the second water storage tank are connected.
所述的第一纵向输送管道和第二纵向输送管道均至少为两根,两根第一纵向输送管道均通过管道支架分别固定安装在温室主体两侧的内壁,两根第二纵向输送管道均通过管道支架分别固定安装在温室主体两侧的内壁,第一抽水泵通过管道与第一上部横向主管道相连通,第一上部横向主管道的顶部与靠近第一储水箱位置的第一纵向输送管道的底部相连通,第二抽水泵通过管道与第二上部横向主管道相连通,第二上部横向主管道的顶部与靠近第二储水箱位置的第二纵向输送管道的底部相连通,靠近第二储水箱位置的第一纵向输送管道的底部通过第一下部横向主管道与第一地埋管相连通,靠近第一储水箱位置的第二纵向输送管道的底部通过第二下部横向主管道与第二地埋管相连通。There are at least two first longitudinal conveying pipes and second longitudinal conveying pipes, and the two first longitudinal conveying pipes are respectively fixed and installed on the inner walls of the main body of the greenhouse through pipe supports, and the two second longitudinal conveying pipes are respectively The pipe brackets are respectively fixed and installed on the inner walls of both sides of the main body of the greenhouse. The first water pump communicates with the first upper horizontal main pipe through the pipe. The bottom of the pipeline is connected, the second pump is connected with the second upper horizontal main pipeline through the pipeline, and the top of the second upper horizontal main pipeline is connected with the bottom of the second longitudinal delivery pipeline near the second water storage tank, near the second The bottom of the first longitudinal conveying pipeline at the position of the second water storage tank communicates with the first buried pipe through the first lower transverse main pipeline, and the bottom of the second longitudinal conveying pipeline close to the position of the first water storage tank passes through the second lower transverse main pipeline Connected with the second buried pipe.
所述的第一地埋管和第二地埋管均为S型平面盘管铺设的地埋渗透式灌溉管道结构,第一地埋管和第二地埋管的形状和尺寸相同,第一地埋管和第二地埋管的安装方向相互对应,第一地埋管和第二地埋管的铺设长度均与温室主体的长度相配合,第一地埋管和第二地埋管的铺设宽度均是温室主体宽度的二分之一,数据采集装置包括地上数据采集器和地埋数据采集器,地埋数据采集器是由插接在第一地埋管和第二地埋管之间的若干土壤湿度采集器组成的,地上数据采集器是由分别安装在第一纵向输送管道和第二纵向输送管道顶部的温度采集器和湿度采集器组成的,土壤湿度采集器、温度采集器和湿度采集器分别通过有线或者无线连接的方式与远程控制主机相连接。The first buried pipe and the second buried pipe are both buried permeable irrigation pipeline structures laid by S-shaped planar coils. The shape and size of the first buried pipe and the second buried pipe are the same. The installation directions of the buried pipe and the second buried pipe correspond to each other. The laying lengths of the first buried pipe and the second buried pipe match the length of the main body of the greenhouse. The length of the first buried pipe and the second buried pipe The laying width is 1/2 of the width of the main body of the greenhouse. The data acquisition device includes an above-ground data collector and a buried data collector. The buried data collector is inserted between the first buried pipe and the second buried pipe. The ground data collector is composed of a temperature collector and a humidity collector respectively installed on the top of the first longitudinal conveying pipeline and the top of the second longitudinal conveying pipeline. The soil moisture collector, temperature collector and the humidity collector are respectively connected to the remote control host through wired or wireless connection.
所述的第一冷凝回收片和第二冷凝回收片的形状和大小均相同,在温室主体的顶部固定安装有顶部三角加强支架,第一冷凝回收片和第二冷凝回收片的顶部均通过第一连接吊绳与顶部三角加强支架的底部相连接,第一节水仓和第二节水仓的形状相同,第一节水仓和第二节水仓均为顶部带有开口的长方形槽状结构,第一节水仓和第二节水仓顶部均通过第二连接吊绳与顶部三角加强支架的底部相连接,第一节水仓位于靠近第一储水箱一侧的第一冷凝回收片和第二冷凝回收片的弧低端部下方,第二节水仓位于靠近第二储水箱一侧的第一冷凝回收片和第二冷凝回收片的弧低端部下方,第一节水仓和第二节水仓分别对称分布在第一冷凝回收片以及第二冷凝回收片的中线两侧,第一冷凝回收片和第二冷凝回收片的中线为同一条直线上。The shape and size of the first condensate recovery sheet and the second condensate recovery sheet are the same, and the top triangular reinforcement bracket is fixedly installed on the top of the greenhouse main body, and the tops of the first condensate recovery sheet and the second condensate recovery sheet pass through the first A connecting sling is connected to the bottom of the triangular reinforcing bracket on the top. The first water-saving bin and the second water-saving bin have the same shape. Both the first water-saving bin and the second water-saving bin are in the shape of a rectangular groove with an opening on the top Structure, the top of the first water-saving tank and the top of the second water-saving tank are connected to the bottom of the top triangular reinforcement bracket through the second connecting rope, and the first water-saving tank is located on the first condensation recovery piece near the first water storage tank side and the arc-low end of the second condensate recovery sheet, the second water-saving chamber is located below the arc-low end of the first condensate recovery sheet and the second condensate recovery sheet on the side close to the second water storage tank, the first water-saving chamber and the second water-saving chamber are respectively symmetrically distributed on both sides of the center line of the first condensation recovery sheet and the second condensation recovery sheet, and the center lines of the first condensation recovery sheet and the second condensation recovery sheet are on the same straight line.
所述的第一冷凝回收片和第二冷凝回收片的顶部均设置有散热翅片,第一冷凝回收片和第二冷凝回收片均采用导热轻质材料制成,第一冷凝回收片和第二冷凝回收片的底部均为利于水滴汇集和重力导流的平滑面结构,在第一冷凝回收片的两端设置有与第一冷凝回收片内腔相连接的第一喷灌管道,在该第一喷灌管道上设置有第五电磁阀,在第二冷凝回收片的两端设置有与第二冷凝回收片内腔相连接的第二喷灌管道,在该第二喷灌管道上设置有第六电磁阀,第五电磁阀和第六电磁阀均通过导线与控制器相连接,在第五电磁阀和第六电磁阀的下方均设置有喷嘴。The tops of the first condensate recovery sheet and the second condensate recovery sheet are both provided with cooling fins, the first condensate recovery sheet and the second condensate recovery sheet are made of heat-conducting lightweight materials, the first condensate recovery sheet and the second condensate recovery sheet The bottoms of the two condensation recovery pieces are all smooth surface structures that are beneficial to the collection of water droplets and gravity diversion. At both ends of the first condensation recovery piece, there are first sprinkler pipes connected to the inner cavity of the first condensation recovery piece. A fifth solenoid valve is arranged on a sprinkler irrigation pipe, and a second sprinkler irrigation pipe connected to the inner cavity of the second condensation recovery sheet is arranged at both ends of the second condensation recovery sheet, and a sixth electromagnetic valve is arranged on the second sprinkler irrigation pipe. The valves, the fifth solenoid valve and the sixth solenoid valve are all connected to the controller through wires, and nozzles are arranged below the fifth solenoid valve and the sixth solenoid valve.
所述的第一降温装置包括安装在第二储水箱内的第一喷淋降温管,第一喷淋降温管通过管道与第一三通电磁阀的其中一个出水端相连通,第二降温装置相连通包括安装在第一储水箱内的第二喷淋降温管,第二喷淋降温管通过管道与第二三通电磁阀的其中一个出水端相连通,在温室主体的外侧设置有用于固定外部纵向管道的外部纵向管道支撑架。The first cooling device includes a first spray cooling pipe installed in the second water storage tank, the first spray cooling pipe communicates with one of the outlet ends of the first three-way solenoid valve through a pipeline, and the second cooling device The communication includes the second spray cooling pipe installed in the first water storage tank, the second spray cooling pipe communicates with one of the water outlet ends of the second three-way solenoid valve through the pipe, and is provided on the outside of the greenhouse main body for fixing External longitudinal pipe supports for external longitudinal pipes.
一种如上所述的基于数据分析的节水型灌溉系统的节水灌溉方法,其方法如下:A water-saving irrigation method for a water-saving irrigation system based on data analysis as described above, the method is as follows:
当温室主体内的温度和湿度达到预设的临界值时,温度和湿度的数值被数据采集装置采集,采集后的数据通过物联网传输至远程控制主机,远程控制主机收到采集的数据后向控制器发出指令实施节水回收作业,控制器控制第一抽水泵开启,第一抽水泵将位于第一储水箱内的水抽出并输送至第一纵向输送管道内,第三电磁阀通过控制器开启,第一储水箱内的水通过第一纵向输送管道进入至第一冷凝回收片内,温室主体内的高温水气与内腔充满凉水的第一冷凝回收片实施换热,水气冷凝后在第一冷凝回收片的两端底部落入第一节水仓和第二节水仓内,该部分冷凝水通过第一节水仓和第二节水仓输送至第一储水箱和第二储水箱内回收利用,第一冷凝回收片吸收热量后凉水转变为温度较高的水,此时控制器控制第一三通电磁阀的一个出水端开启,位于第一冷凝回收片内经过热交换后的高温水通过管道输送至位于第二储水箱内的第一降温装置,通过第一降温装置喷淋降温后落入第二储水箱底部;同时,控制器控制第二抽水泵开启,第二抽水泵将位于第二储水箱内的水抽出并输送至第二纵向输送管道内,第四电磁阀通过控制器开启,第二储水箱内的水通过第二纵向输送管道进入至第二冷凝回收片内,温室主体内的高温水气与内腔充满凉水的第二冷凝回收片实施换热,水气冷凝后在第二冷凝回收片的两端底部落入第一节水仓和第二节水仓内,该部分冷凝水通过第一节水仓和第二节水仓输送至第一储水箱和第二储水箱内回收利用,第二冷凝回收片吸收热量后凉水转变为温度较高的水,此时控制器控制第二三通电磁阀的一个出水端开启,位于第二冷凝回收片内经过热交换后的高温水通过管道输送至位于第一储水箱内的第二降温装置,通过第二降温装置喷淋降温后落入第一储水箱底部;When the temperature and humidity in the main body of the greenhouse reach the preset critical value, the temperature and humidity values are collected by the data acquisition device, and the collected data is transmitted to the remote control host through the Internet of Things. After receiving the collected data, the remote control host sends The controller issues an instruction to implement water-saving recovery operations. The controller controls the first water pump to be turned on. The first water pump pumps out the water in the first water storage tank and transports it to the first longitudinal conveying pipeline. The third solenoid valve passes the controller. Open, the water in the first water storage tank enters into the first condensation recovery sheet through the first longitudinal conveying pipe, the high-temperature water vapor in the main body of the greenhouse exchanges heat with the first condensation recovery sheet whose inner cavity is filled with cold water, and the water vapor condenses The bottom of both ends of the first condensate recovery sheet falls into the first water-saving tank and the second water-saving tank, and this part of the condensed water is transported to the first water storage tank and the second water-saving tank through the first water-saving tank and the second water-saving tank. The water is recycled in the water storage tank. After the first condensate recovery piece absorbs heat, the cold water turns into water with a higher temperature. At this time, the controller controls one of the water outlets of the first three-way solenoid valve to open, which is located in the first condensate recovery piece through heat exchange. The final high-temperature water is transported to the first cooling device located in the second water storage tank through pipelines, and then falls into the bottom of the second water storage tank after being sprayed and cooled by the first cooling device; at the same time, the controller controls the second water pump to open, and the second The water pump pumps out the water in the second water storage tank and sends it to the second longitudinal delivery pipe, the fourth solenoid valve is opened by the controller, and the water in the second water storage tank enters the second condensate recovery through the second longitudinal delivery pipe In the sheet, the high-temperature water vapor in the main body of the greenhouse exchanges heat with the second condensing recovery sheet filled with cold water. After the water vapor condenses, it falls into the first water-saving tank and the second section In the water tank, this part of condensed water is transported to the first water storage tank and the second water storage tank for recycling through the first water-saving tank and the second water-saving tank, and the second condensate recovery sheet absorbs heat and turns the cold water into higher temperature At this time, the controller controls one water outlet of the second three-way solenoid valve to open, and the high-temperature water after heat exchange in the second condensate recovery sheet is transported through the pipeline to the second cooling device in the first water storage tank. The second cooling device falls into the bottom of the first water storage tank after spraying and cooling;
当温室主体内的土壤湿度较低需要实施灌溉作业时,土壤湿度数据被数据采集装置采集,采集后的数据通过物联网传输至远程控制主机,远程控制主机收到采集的数据后向控制器发出指令实施灌溉作业,控制器控制第一抽水泵开启,第一抽水泵将位于第一储水箱内的水抽出并输送至第一纵向输送管道内,第三电磁阀通过控制器开启,第一储水箱内的水通过第一纵向输送管道进入至第一冷凝回收片内,同时控制器控制第一三通电磁阀的另一个出水端开启,位于第一冷凝回收片内的水通过管道输送至第一地埋管内,通过第一地埋管实施地埋渗透式灌溉作业;同时,控制器控制第二抽水泵开启,第二抽水泵将位于第二储水箱内的水抽出并输送至第二纵向输送管道内,第四电磁阀通过控制器开启,第二储水箱内的水通过第二纵向输送管道进入至第二冷凝回收片,同时控制器控制第二三通电磁阀的另一个出水端开启,位于第二冷凝回收片内的水通过管道输送至第二地埋管内,通过第二地埋管实施地埋渗透式灌溉作业。When the soil humidity in the main body of the greenhouse is low and irrigation operations are required, the soil moisture data is collected by the data acquisition device, and the collected data is transmitted to the remote control host through the Internet of Things, and the remote control host sends the data to the controller after receiving the collected data. Command to implement irrigation work, the controller controls the first water pump to be turned on, the first water pump pumps out the water in the first water storage tank and transports it to the first longitudinal conveying pipeline, the third solenoid valve is opened by the controller, and the first water storage tank The water in the water tank enters into the first condensate recovery piece through the first longitudinal delivery pipe, and at the same time, the controller controls the other water outlet end of the first three-way solenoid valve to open, and the water in the first condensate recovery piece is transported to the second condensate recovery piece through the pipeline. In a buried pipe, the buried permeable irrigation operation is implemented through the first buried pipe; at the same time, the controller controls the opening of the second water pump, and the second water pump pumps out the water in the second water storage tank and transports it to the second longitudinal water tank. In the delivery pipeline, the fourth solenoid valve is opened by the controller, the water in the second water storage tank enters the second condensate recovery piece through the second longitudinal delivery pipeline, and the controller controls the other water outlet of the second three-way solenoid valve to open The water located in the second condensate recovery sheet is transported to the second buried pipe through the pipeline, and the buried osmotic irrigation operation is implemented through the second buried pipe.
本发明具有如下的积极效果:本产品提供了一种基于数据分析的节水型灌溉系统及方法,采用本发明所述的套规范的节水灌溉系统,通过对温室内各种数据的有效采集和反馈,实现根据温室最大化的节水灌溉作业,保证水资源有效的利用,最大限度的提高水资源的利用率。The present invention has the following positive effects: This product provides a water-saving irrigation system and method based on data analysis, adopts the standardized water-saving irrigation system described in the present invention, and effectively collects various data in the greenhouse And feedback, realize the water-saving irrigation operation based on the maximum of the greenhouse, ensure the effective use of water resources, and maximize the utilization rate of water resources.
首先,能够有效的解决温室内水分蒸发消耗问题,通过节水回收装置,将温室内蒸发的水分很好的回收利用,高效的节省了水资源;其次,产品爱采用循环式结构,在水气回收作业中通过闭环的循环作业方式实现水资源的高效利用,在灌溉作业时充分利用回收的水资源再利用,并实施渗透智能灌溉的作业方式,整体构架结构简单,适合建立局部温室环境内使用,节省了水资源;再次,通过节水装置回收的水能够通过冷凝回收片和节水仓实施高效的回收作业,大大提高了系统的稳定性,同时温室顶部的水气凝结后也能很好的回收,外部雨水也能得到回收,利用保温的水箱实现水资源的存储,最大限度的实现了节约用水。First of all, it can effectively solve the problem of water evaporation and consumption in the greenhouse. Through the water-saving recovery device, the evaporated water in the greenhouse can be recycled and utilized, and water resources can be saved efficiently. In the recycling operation, the efficient use of water resources is realized through the closed-loop circulation operation method, and the recycled water resources are fully utilized in the irrigation operation, and the operation method of permeable intelligent irrigation is implemented. The overall structure is simple and suitable for use in the establishment of a local greenhouse environment. , saving water resources; again, the water recovered through the water-saving device can be efficiently recovered through the condensation recovery sheet and the water-saving bin, which greatly improves the stability of the system, and at the same time, the water vapor on the top of the greenhouse can also be well condensed The external rainwater can also be recycled, and the insulated water tank is used to store water resources, which maximizes water conservation.
附图说明Description of drawings
图1为本发明的结构示意图。Fig. 1 is a structural schematic diagram of the present invention.
图2为本发明的局部俯视结构示意图之一。Fig. 2 is one of the partial top view structural diagrams of the present invention.
图3为本发明的局部俯视结构示意图之二。Fig. 3 is the second partial top view structural diagram of the present invention.
图4为本发明的局部俯视结构示意图之三。FIG. 4 is a third schematic view of a partial top view structure of the present invention.
图5为本发明的系统运行方式结构示意图。Fig. 5 is a schematic structural diagram of the system operation mode of the present invention.
具体实施方式Detailed ways
如图1、2、3、4、5所示,一种基于数据分析的节水型灌溉系统,包括设置在温室主体29外部两侧的第一储水箱3和第二储水箱4、设置在温室主体29内部的近端数据采集装置、与第一储水箱3相连通的第一地埋管24以及与第二储水箱4第二地埋管25,所述的第一储水箱3内设置有至少一个第一抽水泵5,第一抽水泵5通过管道与第一纵向输送管道11相连通,第二储水箱4内设置有至少一个第二抽水泵6,第二抽水泵6通过管道与第二纵向输送管道12相连通,在第一纵向输送管道11以及第二纵向输送管道12的顶部设置有节水回收装置,第一纵向输送管道11通过节水回收装置与第一地埋管24相连通,第二纵向输送管道12通过节水回收装置与第二地埋管25相连通,数据采集装置通过物联网与远程控制主机相连接,远程控制主机与控制器相连接。所述的节水回收装置包括第一节水装置和第二节水装置,第一节水装置包括第一冷凝回收片13,第二节水装置包括第二冷凝回收片14,第一冷凝回收片13为弧形空腔片状结构,第一冷凝回收片13的两端分别与两根第一纵向输送管道11的顶部相连通,在靠近第一储水箱3一侧的第一纵向输送管道11上设置有第三电磁阀7,在靠近第二储水箱4一侧的第一纵向输送管道11上设置有第一三通电磁阀9,第一三通电磁阀9的其中一个出水端口通过管道与安装在第二储水箱4内的第一降温装置相连通,第一三通电磁阀9的另一个出水端口通过管道与第一地埋管24相连通,第二冷凝回收片14为弧形空腔片状结构,第二冷凝回收片14的两端分别与两根第二纵向输送管道12的顶部相连通,在靠近第二储水箱4一侧的第二纵向输送管道12上设置有第四电磁阀8,在靠近第一储水箱3一侧的第二纵向输送管道12上设置有第二三通电磁阀10,第二三通电磁阀10的其中一个出水端口通过管道与安装在第一储水箱3内的第二降温装置相连通,第二三通电磁阀10的另一个出水端口通过管道与第二地埋管25相连通,在第一冷凝回收片13靠近第一储水箱3一侧的端部下方安装有第一节水仓16,第一节水仓16的底部通过管道与第一储水箱3的顶部相连通,在第二冷凝回收片14靠近第二储水箱4一侧的端部下方安装有第二节水仓17,第二节水仓17的底部通过管道与第二储水箱4的顶部相连通,第三电磁阀7、第四电磁阀8、第一三通电磁阀9以及第二三通电磁阀10通过导线与控制器相连接。As shown in Figures 1, 2, 3, 4, and 5, a water-saving irrigation system based on data analysis includes a first water storage tank 3 and a second water storage tank 4 arranged on both sides of the greenhouse
所述的第一储水箱3和第二储水箱4的形状和大小均相同,第一储水箱3和第二储水箱4均为保温水箱,在第一储水箱3的顶部设置有带有第一电磁阀1的进水管,在第二储水箱4的顶部设置有带有第二电磁阀2的进水管,第一电磁阀1和第二电磁阀2分别通过导线与控制器相连接,第一储水箱3和第二储水箱4的底部外侧分别连接有第一排污阀38和第二排污阀37,温室主体29的顶部设置有弧形顶棚31,在弧形顶棚31的外部两侧分别设置有第一外部节水槽32和第二外部节水槽33,在弧形顶棚31的内部两侧均设置有顶棚接水槽36,两个顶棚接水槽36分别与第一外部节水槽32和第二外部节水槽33相连通,第一外部节水槽32和第二外部节水槽33的底部分别通过管道与第一储水箱3和第二储水箱4的顶部相连通。所述的第一纵向输送管道11和第二纵向输送管道12均至少为两根,两根第一纵向输送管道11均通过管道支架34分别固定安装在温室主体29两侧的内壁,两根第二纵向输送管道12均通过管道支架34分别固定安装在温室主体29两侧的内壁,第一抽水泵5通过管道与第一上部横向主管道21相连通,第一上部横向主管道21的顶部与靠近第一储水箱3位置的第一纵向输送管道11的底部相连通,第二抽水泵6通过管道与第二上部横向主管道20相连通,第二上部横向主管道20的顶部与靠近第二储水箱4位置的第二纵向输送管道12的底部相连通,靠近第二储水箱4位置的第一纵向输送管道11的底部通过第一下部横向主管道23与第一地埋管24相连通,靠近第一储水箱3位置的第二纵向输送管道12的底部通过第二下部横向主管道22与第二地埋管25相连通。所述的第一地埋管24和第二地埋管25均为S型平面盘管铺设的地埋渗透式灌溉管道结构,第一地埋管24和第二地埋管25的形状和尺寸相同,第一地埋管24和第二地埋管25的安装方向相互对应,第一地埋管24和第二地埋管25的铺设长度均与温室主体29的长度相配合,第一地埋管24和第二地埋管25的铺设宽度均是温室主体29宽度的二分之一,数据采集装置包括地上数据采集器和地埋数据采集器,地埋数据采集器是由插接在第一地埋管24和第二地埋管25之间的若干土壤湿度采集器26组成的,地上数据采集器是由分别安装在第一纵向输送管道11和第二纵向输送管道12顶部的温度采集器28和湿度采集器27组成的,土壤湿度采集器26、温度采集器28和湿度采集器27分别通过有线或者无线连接的方式与远程控制主机相连接。The shape and size of the first water storage tank 3 and the second water storage tank 4 are the same. The water inlet pipe of a
所述的第一冷凝回收片13和第二冷凝回收片14的形状和大小均相同,在温室主体29的顶部固定安装有顶部三角加强支架30,第一冷凝回收片13和第二冷凝回收片14的顶部均通过第一连接吊绳40与顶部三角加强支架30的底部相连接,第一节水仓16和第二节水仓17的形状相同,第一节水仓16和第二节水仓17均为顶部带有开口的长方形槽状结构,第一节水仓16和第二节水仓17顶部均通过第二连接吊绳39与顶部三角加强支架30的底部相连接,第一节水仓16位于靠近第一储水箱3一侧的第一冷凝回收片13和第二冷凝回收片14的弧低端部下方,第二节水仓17位于靠近第二储水箱4一侧的第一冷凝回收片13和第二冷凝回收片14的弧低端部下方,第一节水仓16和第二节水仓17分别对称分布在第一冷凝回收片13以及第二冷凝回收片14的中线两侧,第一冷凝回收片13和第二冷凝回收片14的中线为同一条直线上。所述的第一冷凝回收片13和第二冷凝回收片14的顶部均设置有散热翅片52,第一冷凝回收片13和第二冷凝回收片14均采用导热轻质材料制成,第一冷凝回收片13和第二冷凝回收片14的底部均为利于水滴汇集和重力导流的平滑面结构,在第一冷凝回收片13的两端设置有与第一冷凝回收片13内腔相连接的第一喷灌管道,在该第一喷灌管道上设置有第五电磁阀18,在第二冷凝回收片14的两端设置有与第二冷凝回收片14内腔相连接的第二喷灌管道,在该第二喷灌管道上设置有第六电磁阀42,第五电磁阀18和第六电磁阀42均通过导线与控制器相连接,在第五电磁阀18和第六电磁阀42的下方均设置有喷嘴19。所述的第一降温装置包括安装在第二储水箱4内的第一喷淋降温管15,第一喷淋降温管15通过管道与第一三通电磁阀9的其中一个出水端相连通,第二降温装置相连通包括安装在第一储水箱3内的第二喷淋降温管41,第二喷淋降温管41通过管道与第二三通电磁阀10的其中一个出水端相连通,在温室主体29的外侧设置有用于固定外部纵向管道的外部纵向管道支撑架35。The shape and size of the first
当温室主体29内的温度和湿度达到预设的临界值时,温度和湿度的数值被温度采集器28和湿度采集器27采集,采集后的数据通过物联网传输至远程控制主机,远程控制主机收到采集的数据后向控制器发出指令实施节水回收作业,控制器控制第一抽水泵5开启,第一抽水泵5将位于第一储水箱3内的水抽出并输送至第一上部横向主管道21内,然后通过第一上部横向主管道21输送至第一纵向输送管道11内,第三电磁阀7通过控制器开启,第一储水箱3内的水通过第一纵向输送管道11进入至第一冷凝回收片13内,温室主体29内的高温水气与内腔充满凉水的第一冷凝回收片13实施换热,在散热翅片52的散热作用下,高温水气冷凝后在第一冷凝回收片13的两端底部落入第一节水仓16和第二节水仓17内,该部分冷凝水通过第一节水仓16和第二节水仓17输送至第一储水箱3和第二储水箱4内回收利用,第一冷凝回收片13吸收热量后凉水转变为温度较高的水,此时控制器控制第一三通电磁阀9的一个出水端开启,位于第一冷凝回收片13内经过热交换后的高温水通过管道输送至位于第二储水箱4内的第一喷淋降温管15,通过第一喷淋降温管15喷淋降温后落入第二储水箱4底部;同时,控制器控制第二抽水泵6开启,第二抽水泵6将位于第二储水箱4内的水抽出并输送至第二上部横向主管道20内,然后通过第二上部横向主管道20输送至第二纵向输送管道12内,第四电磁阀8通过控制器开启,第二储水箱4内的水通过第二纵向输送管道12进入至第二冷凝回收片14内,温室主体29内的高温水气与内腔充满凉水的第二冷凝回收片14实施换热,在散热翅片52的散热作用下,高温水气冷凝后在第二冷凝回收片14的两端底部落入第一节水仓16和第二节水仓17内,该部分冷凝水通过第一节水仓16和第二节水仓17输送至第一储水箱3和第二储水箱4内回收利用,第二冷凝回收片14吸收热量后凉水转变为温度较高的水,此时控制器控制第二三通电磁阀10的一个出水端开启,位于第二冷凝回收片14内经过热交换后的高温水通过管道输送至位于第一储水箱3内的第二喷淋降温管21,通过第二喷淋降温管21喷淋降温后落入第一储水箱3底部;When the temperature and humidity in the greenhouse
当温室主体29内的土壤湿度较低需要实施灌溉作业时,土壤湿度数据被土壤湿度采集器26采集,采集后的数据通过物联网传输至远程控制主机,远程控制主机收到采集的数据后向控制器发出指令实施灌溉作业,控制器控制第一抽水泵5开启,第一抽水泵5将位于第一储水箱3内的水抽出并输送至第一上部横向主管道21内,然后通过第一上部横向主管道21输送至第一纵向输送管道11内,第三电磁阀7通过控制器开启,第一储水箱3内的水通过第一纵向输送管道11进入至第一冷凝回收片13内,同时控制器控制第一三通电磁阀9的另一个出水端开启,位于第一冷凝回收片13内的水通过管道输送至第一下部横向主管道内,再由第一下部横向主管道23输送至第一地埋管24内,通过第一地埋管24实施地埋渗透式灌溉作业;同时,控制器控制第二抽水泵6开启,第二抽水泵6将位于第二储水箱4内的水抽出并输送至第二上部横向主管道20内,然后通过第二上部横向主管道20输送至第二纵向输送管道12内,第四电磁阀8通过控制器开启,第二储水箱4内的水通过第二纵向输送管道12进入至第二冷凝回收片14,同时控制器控制第二三通电磁阀10的另一个出水端开启,位于第二冷凝回收片14内的水通过管道输送至第二下部横向主管道22内,再由第二下部横向主管道22输送至第二地埋管25内,通过第二地埋管25实施地埋渗透式灌溉作业。When the soil humidity in the greenhouse
当温室主体29内的空气湿度较低需要实施喷淋作业时,温度和湿度的数值被温度采集器28和湿度采集器27采集,采集后的数据通过物联网传输至远程控制主机,远程控制主机收到采集的数据后向控制器发出指令实施喷淋作业,控制器控制第一抽水泵5开启,第一抽水泵5将位于第一储水箱3内的水抽出并输送至第一纵向输送管道11内,第三电磁阀7通过控制器开启,第一储水箱3内的水通过第一纵向输送管道11进入至第一冷凝回收片13内,同时控制器控制第一三通电磁阀9关闭,控制器控制第五电磁阀18开启,位于第一冷凝回收片13内的水通过第五电磁阀18下方均设置的喷嘴19实施喷淋作业,喷淋的水增加空气湿度的同时最终落入温室主体29底部;同时,控制器控制第二抽水泵6开启,第二抽水泵6将位于第二储水箱4内的水抽出并输送至第二纵向输送管道12内,第四电磁阀8通过控制器开启,第二储水箱4内的水通过第二纵向输送管道12进入至第二冷凝回收片14,同时控制器控制第二三通电磁阀10关闭,控制器控制第六电磁阀42开启,位于第二冷凝回收片14内的水通过第六电磁阀42下方均设置的喷嘴19实施喷淋作业,喷淋的水增加空气湿度的同时最终落入温室主体29底部。When the air humidity in the greenhouse main body 29 is low and needs to be sprayed, the temperature and humidity values are collected by the temperature collector 28 and the humidity collector 27, and the collected data are transmitted to the remote control host through the Internet of Things, and the remote control host After receiving the collected data, an instruction is sent to the controller to carry out the spraying operation, and the controller controls the first water pump 5 to be turned on, and the first water pump 5 pumps out the water in the first water storage tank 3 and transports it to the first longitudinal conveying pipeline 11, the third solenoid valve 7 is opened by the controller, and the water in the first water storage tank 3 enters the first condensation recovery sheet 13 through the first longitudinal delivery pipe 11, and the controller controls the first three-way solenoid valve 9 to close , the controller controls the opening of the fifth electromagnetic valve 18, and the water located in the first condensate recovery sheet 13 is sprayed through the nozzles 19 provided under the fifth electromagnetic valve 18, and the sprayed water increases the air humidity and finally falls into the At the bottom of the greenhouse main body 29; at the same time, the controller controls the second water pump 6 to be turned on, and the second water pump 6 pumps out the water in the second water storage tank 4 and transports it to the second longitudinal conveying pipeline 12, and the fourth electromagnetic valve 8 passes through When the controller is turned on, the water in the second water storage tank 4 enters the second condensation recovery piece 14 through the second longitudinal delivery pipe 12, and at the same time, the controller controls the second three-way solenoid valve 10 to close, and the controller controls the sixth solenoid valve 42 to open , the water positioned in the second condensation recovery sheet 14 implements the spraying operation through the nozzles 19 provided under the sixth electromagnetic valve 42, and the sprayed water increases the air humidity and finally falls into the bottom of the greenhouse main body 29.
当温室主体29内的温度和湿度过高时,弧形顶棚31的底部也会因外部气温低于温室内气温导致水气凝结,该部分水气凝结后在自重的作用下顺着弧形顶棚31的底壁逐步滑落,最终落入顶棚接水槽36内,然后进入到第一外部节水槽32和第二外部节水槽33内,被第一储水箱3和第二储水箱4回收利用。因外部环境降雨的部分水通过第一外部节水槽32和第二外部节水槽33收集后进入到第一储水箱3和第二储水箱4回收利用。When the temperature and humidity in the
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。The above is only a preferred embodiment of the present invention, and is not intended to limit the present invention to other forms. Any skilled person who is familiar with this profession may use the technical content disclosed above to change or modify the equivalent of equivalent changes. Example. However, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention without departing from the content of the technical solution of the present invention still belong to the protection scope of the technical solution of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210434772.0A CN114868567B (en) | 2022-04-24 | 2022-04-24 | A water-saving irrigation system and method based on data analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210434772.0A CN114868567B (en) | 2022-04-24 | 2022-04-24 | A water-saving irrigation system and method based on data analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114868567A CN114868567A (en) | 2022-08-09 |
CN114868567B true CN114868567B (en) | 2023-07-07 |
Family
ID=82671158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210434772.0A Active CN114868567B (en) | 2022-04-24 | 2022-04-24 | A water-saving irrigation system and method based on data analysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114868567B (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4858377A (en) * | 1986-10-16 | 1989-08-22 | Ocs, Inc. | Plant oriented control system based upon vapor pressure deficit data |
CN204259524U (en) * | 2014-11-12 | 2015-04-15 | 中国建筑第七工程局有限公司 | Novel intelligent greenhouse cooling device |
CN205902521U (en) * | 2016-07-05 | 2017-01-25 | 牟帅臣 | Greenhouse irrigation system |
EP3721703A1 (en) * | 2019-04-12 | 2020-10-14 | Easy Technic SA | Autonomous crop-growing system |
CN110036884B (en) * | 2019-05-13 | 2021-05-11 | 中国水利水电科学研究院 | Irrigation method and device based on water use characteristics of crop growth cycle and real-time weather |
CN110178601B (en) * | 2019-06-28 | 2021-05-11 | 云南旭滇农业技术有限公司 | Intelligent greenhouse for heat collection and water-air membrane heat exchange by utilizing greenhouse effect and environment control method |
CN213044555U (en) * | 2020-06-16 | 2021-04-27 | 山东科技大学 | Controllable vegetation irrigation system utilizing solar energy |
-
2022
- 2022-04-24 CN CN202210434772.0A patent/CN114868567B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114868567A (en) | 2022-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN204762531U (en) | Heat supply of big -arch shelter soil is moisturized and is irrigated water intensification cyclic utilization system | |
CN100591203C (en) | Irrigation system | |
CN201426282Y (en) | Automatically controlled combined potting system | |
CN105393850B (en) | A kind of closed heliogreenhouse heat sink | |
CN206879584U (en) | A kind of spray irrigation system of agricultural greenhouse | |
US20070189852A1 (en) | Modular network irrigation system | |
KR101057472B1 (en) | Circulating water heater | |
CN109537674A (en) | Roof rain water collection storage utilization system | |
CN206149986U (en) | Novel vegetable greenhouse | |
CN208029445U (en) | A kind of agricultural water-saving irrigation device | |
CN210746318U (en) | Device for irrigating greenhouse by desalting brackish water | |
CN209950046U (en) | Efficient water-saving landscaping irrigation system | |
CN114868567B (en) | A water-saving irrigation system and method based on data analysis | |
CN101606478B (en) | Underground drip irrigation method based on tubelet effluent | |
CN214657408U (en) | Sponge urban rainfall self-circulation seepage storage structure | |
CN209741967U (en) | Roof rainwater collection, storage and utilization system | |
CN205431352U (en) | Novel afforestation water conservation is driped irrigation device | |
CN107172948A (en) | A kind of abrupt slope hillside orchard fertilization system and its control method | |
CN111165214A (en) | A planting irrigation and temperature control system | |
CN105706852A (en) | Environment-friendly efficient water circulating system for agricultural irrigation | |
CN205284419U (en) | Closed sunlight greenhouse heat sink | |
CN209345560U (en) | A kind of split type trickle irrigation micro-spray system in blueberry planting process | |
CN211631063U (en) | Gather ability circulation warmhouse booth for heating | |
CN203834560U (en) | Water-harvesting, salt-isolating and water-storing device for solar greenhouse incoastal saline-alkali area | |
CN206978189U (en) | A kind of intelligent temperature control greenhouse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |